1 /* 2 * Copyright 2018 Advanced Micro Devices, Inc. 3 * All Rights Reserved. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the 7 * "Software"), to deal in the Software without restriction, including 8 * without limitation the rights to use, copy, modify, merge, publish, 9 * distribute, sub license, and/or sell copies of the Software, and to 10 * permit persons to whom the Software is furnished to do so, subject to 11 * the following conditions: 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 19 * USE OR OTHER DEALINGS IN THE SOFTWARE. 20 * 21 * The above copyright notice and this permission notice (including the 22 * next paragraph) shall be included in all copies or substantial portions 23 * of the Software. 24 * 25 */ 26 27 #include <linux/io-64-nonatomic-lo-hi.h> 28 #ifdef CONFIG_X86 29 #include <asm/hypervisor.h> 30 #endif 31 32 #include "amdgpu.h" 33 #include "amdgpu_gmc.h" 34 #include "amdgpu_ras.h" 35 #include "amdgpu_reset.h" 36 #include "amdgpu_xgmi.h" 37 38 #include <drm/drm_drv.h> 39 #include <drm/ttm/ttm_tt.h> 40 41 /** 42 * amdgpu_gmc_pdb0_alloc - allocate vram for pdb0 43 * 44 * @adev: amdgpu_device pointer 45 * 46 * Allocate video memory for pdb0 and map it for CPU access 47 * Returns 0 for success, error for failure. 48 */ 49 int amdgpu_gmc_pdb0_alloc(struct amdgpu_device *adev) 50 { 51 int r; 52 struct amdgpu_bo_param bp; 53 u64 vram_size = adev->gmc.xgmi.node_segment_size * adev->gmc.xgmi.num_physical_nodes; 54 uint32_t pde0_page_shift = adev->gmc.vmid0_page_table_block_size + 21; 55 uint32_t npdes = (vram_size + (1ULL << pde0_page_shift) - 1) >> pde0_page_shift; 56 57 memset(&bp, 0, sizeof(bp)); 58 bp.size = PAGE_ALIGN((npdes + 1) * 8); 59 bp.byte_align = PAGE_SIZE; 60 bp.domain = AMDGPU_GEM_DOMAIN_VRAM; 61 bp.flags = AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED | 62 AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS; 63 bp.type = ttm_bo_type_kernel; 64 bp.resv = NULL; 65 bp.bo_ptr_size = sizeof(struct amdgpu_bo); 66 67 r = amdgpu_bo_create(adev, &bp, &adev->gmc.pdb0_bo); 68 if (r) 69 return r; 70 71 r = amdgpu_bo_reserve(adev->gmc.pdb0_bo, false); 72 if (unlikely(r != 0)) 73 goto bo_reserve_failure; 74 75 r = amdgpu_bo_pin(adev->gmc.pdb0_bo, AMDGPU_GEM_DOMAIN_VRAM); 76 if (r) 77 goto bo_pin_failure; 78 r = amdgpu_bo_kmap(adev->gmc.pdb0_bo, &adev->gmc.ptr_pdb0); 79 if (r) 80 goto bo_kmap_failure; 81 82 amdgpu_bo_unreserve(adev->gmc.pdb0_bo); 83 return 0; 84 85 bo_kmap_failure: 86 amdgpu_bo_unpin(adev->gmc.pdb0_bo); 87 bo_pin_failure: 88 amdgpu_bo_unreserve(adev->gmc.pdb0_bo); 89 bo_reserve_failure: 90 amdgpu_bo_unref(&adev->gmc.pdb0_bo); 91 return r; 92 } 93 94 /** 95 * amdgpu_gmc_get_pde_for_bo - get the PDE for a BO 96 * 97 * @bo: the BO to get the PDE for 98 * @level: the level in the PD hirarchy 99 * @addr: resulting addr 100 * @flags: resulting flags 101 * 102 * Get the address and flags to be used for a PDE (Page Directory Entry). 103 */ 104 void amdgpu_gmc_get_pde_for_bo(struct amdgpu_bo *bo, int level, 105 uint64_t *addr, uint64_t *flags) 106 { 107 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 108 109 switch (bo->tbo.resource->mem_type) { 110 case TTM_PL_TT: 111 *addr = bo->tbo.ttm->dma_address[0]; 112 break; 113 case TTM_PL_VRAM: 114 *addr = amdgpu_bo_gpu_offset(bo); 115 break; 116 default: 117 *addr = 0; 118 break; 119 } 120 *flags = amdgpu_ttm_tt_pde_flags(bo->tbo.ttm, bo->tbo.resource); 121 amdgpu_gmc_get_vm_pde(adev, level, addr, flags); 122 } 123 124 /* 125 * amdgpu_gmc_pd_addr - return the address of the root directory 126 */ 127 uint64_t amdgpu_gmc_pd_addr(struct amdgpu_bo *bo) 128 { 129 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 130 uint64_t pd_addr; 131 132 /* TODO: move that into ASIC specific code */ 133 if (adev->asic_type >= CHIP_VEGA10) { 134 uint64_t flags = AMDGPU_PTE_VALID; 135 136 amdgpu_gmc_get_pde_for_bo(bo, -1, &pd_addr, &flags); 137 pd_addr |= flags; 138 } else { 139 pd_addr = amdgpu_bo_gpu_offset(bo); 140 } 141 return pd_addr; 142 } 143 144 /** 145 * amdgpu_gmc_set_pte_pde - update the page tables using CPU 146 * 147 * @adev: amdgpu_device pointer 148 * @cpu_pt_addr: cpu address of the page table 149 * @gpu_page_idx: entry in the page table to update 150 * @addr: dst addr to write into pte/pde 151 * @flags: access flags 152 * 153 * Update the page tables using CPU. 154 */ 155 int amdgpu_gmc_set_pte_pde(struct amdgpu_device *adev, void *cpu_pt_addr, 156 uint32_t gpu_page_idx, uint64_t addr, 157 uint64_t flags) 158 { 159 void __iomem *ptr = (void *)cpu_pt_addr; 160 uint64_t value; 161 162 /* 163 * The following is for PTE only. GART does not have PDEs. 164 */ 165 value = addr & 0x0000FFFFFFFFF000ULL; 166 value |= flags; 167 writeq(value, ptr + (gpu_page_idx * 8)); 168 169 return 0; 170 } 171 172 /** 173 * amdgpu_gmc_agp_addr - return the address in the AGP address space 174 * 175 * @bo: TTM BO which needs the address, must be in GTT domain 176 * 177 * Tries to figure out how to access the BO through the AGP aperture. Returns 178 * AMDGPU_BO_INVALID_OFFSET if that is not possible. 179 */ 180 uint64_t amdgpu_gmc_agp_addr(struct ttm_buffer_object *bo) 181 { 182 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 183 184 if (!bo->ttm) 185 return AMDGPU_BO_INVALID_OFFSET; 186 187 if (bo->ttm->num_pages != 1 || bo->ttm->caching == ttm_cached) 188 return AMDGPU_BO_INVALID_OFFSET; 189 190 if (bo->ttm->dma_address[0] + PAGE_SIZE >= adev->gmc.agp_size) 191 return AMDGPU_BO_INVALID_OFFSET; 192 193 return adev->gmc.agp_start + bo->ttm->dma_address[0]; 194 } 195 196 /** 197 * amdgpu_gmc_vram_location - try to find VRAM location 198 * 199 * @adev: amdgpu device structure holding all necessary information 200 * @mc: memory controller structure holding memory information 201 * @base: base address at which to put VRAM 202 * 203 * Function will try to place VRAM at base address provided 204 * as parameter. 205 */ 206 void amdgpu_gmc_vram_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc, 207 u64 base) 208 { 209 uint64_t vis_limit = (uint64_t)amdgpu_vis_vram_limit << 20; 210 uint64_t limit = (uint64_t)amdgpu_vram_limit << 20; 211 212 mc->vram_start = base; 213 mc->vram_end = mc->vram_start + mc->mc_vram_size - 1; 214 if (limit < mc->real_vram_size) 215 mc->real_vram_size = limit; 216 217 if (vis_limit && vis_limit < mc->visible_vram_size) 218 mc->visible_vram_size = vis_limit; 219 220 if (mc->real_vram_size < mc->visible_vram_size) 221 mc->visible_vram_size = mc->real_vram_size; 222 223 if (mc->xgmi.num_physical_nodes == 0) { 224 mc->fb_start = mc->vram_start; 225 mc->fb_end = mc->vram_end; 226 } 227 dev_info(adev->dev, "VRAM: %lluM 0x%016llX - 0x%016llX (%lluM used)\n", 228 mc->mc_vram_size >> 20, mc->vram_start, 229 mc->vram_end, mc->real_vram_size >> 20); 230 } 231 232 /** amdgpu_gmc_sysvm_location - place vram and gart in sysvm aperture 233 * 234 * @adev: amdgpu device structure holding all necessary information 235 * @mc: memory controller structure holding memory information 236 * 237 * This function is only used if use GART for FB translation. In such 238 * case, we use sysvm aperture (vmid0 page tables) for both vram 239 * and gart (aka system memory) access. 240 * 241 * GPUVM (and our organization of vmid0 page tables) require sysvm 242 * aperture to be placed at a location aligned with 8 times of native 243 * page size. For example, if vm_context0_cntl.page_table_block_size 244 * is 12, then native page size is 8G (2M*2^12), sysvm should start 245 * with a 64G aligned address. For simplicity, we just put sysvm at 246 * address 0. So vram start at address 0 and gart is right after vram. 247 */ 248 void amdgpu_gmc_sysvm_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc) 249 { 250 u64 hive_vram_start = 0; 251 u64 hive_vram_end = mc->xgmi.node_segment_size * mc->xgmi.num_physical_nodes - 1; 252 mc->vram_start = mc->xgmi.node_segment_size * mc->xgmi.physical_node_id; 253 mc->vram_end = mc->vram_start + mc->xgmi.node_segment_size - 1; 254 mc->gart_start = hive_vram_end + 1; 255 mc->gart_end = mc->gart_start + mc->gart_size - 1; 256 mc->fb_start = hive_vram_start; 257 mc->fb_end = hive_vram_end; 258 dev_info(adev->dev, "VRAM: %lluM 0x%016llX - 0x%016llX (%lluM used)\n", 259 mc->mc_vram_size >> 20, mc->vram_start, 260 mc->vram_end, mc->real_vram_size >> 20); 261 dev_info(adev->dev, "GART: %lluM 0x%016llX - 0x%016llX\n", 262 mc->gart_size >> 20, mc->gart_start, mc->gart_end); 263 } 264 265 /** 266 * amdgpu_gmc_gart_location - try to find GART location 267 * 268 * @adev: amdgpu device structure holding all necessary information 269 * @mc: memory controller structure holding memory information 270 * @gart_placement: GART placement policy with respect to VRAM 271 * 272 * Function will try to place GART before or after VRAM. 273 * If GART size is bigger than space left then we ajust GART size. 274 * Thus function will never fails. 275 */ 276 void amdgpu_gmc_gart_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc, 277 enum amdgpu_gart_placement gart_placement) 278 { 279 const uint64_t four_gb = 0x100000000ULL; 280 u64 size_af, size_bf; 281 /*To avoid the hole, limit the max mc address to AMDGPU_GMC_HOLE_START*/ 282 u64 max_mc_address = min(adev->gmc.mc_mask, AMDGPU_GMC_HOLE_START - 1); 283 284 /* VCE doesn't like it when BOs cross a 4GB segment, so align 285 * the GART base on a 4GB boundary as well. 286 */ 287 size_bf = mc->fb_start; 288 size_af = max_mc_address + 1 - ALIGN(mc->fb_end + 1, four_gb); 289 290 if (mc->gart_size > max(size_bf, size_af)) { 291 dev_warn(adev->dev, "limiting GART\n"); 292 mc->gart_size = max(size_bf, size_af); 293 } 294 295 switch (gart_placement) { 296 case AMDGPU_GART_PLACEMENT_HIGH: 297 mc->gart_start = max_mc_address - mc->gart_size + 1; 298 break; 299 case AMDGPU_GART_PLACEMENT_LOW: 300 mc->gart_start = 0; 301 break; 302 case AMDGPU_GART_PLACEMENT_BEST_FIT: 303 default: 304 if ((size_bf >= mc->gart_size && size_bf < size_af) || 305 (size_af < mc->gart_size)) 306 mc->gart_start = 0; 307 else 308 mc->gart_start = max_mc_address - mc->gart_size + 1; 309 break; 310 } 311 312 mc->gart_start &= ~(four_gb - 1); 313 mc->gart_end = mc->gart_start + mc->gart_size - 1; 314 dev_info(adev->dev, "GART: %lluM 0x%016llX - 0x%016llX\n", 315 mc->gart_size >> 20, mc->gart_start, mc->gart_end); 316 } 317 318 /** 319 * amdgpu_gmc_agp_location - try to find AGP location 320 * @adev: amdgpu device structure holding all necessary information 321 * @mc: memory controller structure holding memory information 322 * 323 * Function will place try to find a place for the AGP BAR in the MC address 324 * space. 325 * 326 * AGP BAR will be assigned the largest available hole in the address space. 327 * Should be called after VRAM and GART locations are setup. 328 */ 329 void amdgpu_gmc_agp_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc) 330 { 331 const uint64_t sixteen_gb = 1ULL << 34; 332 const uint64_t sixteen_gb_mask = ~(sixteen_gb - 1); 333 u64 size_af, size_bf; 334 335 if (mc->fb_start > mc->gart_start) { 336 size_bf = (mc->fb_start & sixteen_gb_mask) - 337 ALIGN(mc->gart_end + 1, sixteen_gb); 338 size_af = mc->mc_mask + 1 - ALIGN(mc->fb_end + 1, sixteen_gb); 339 } else { 340 size_bf = mc->fb_start & sixteen_gb_mask; 341 size_af = (mc->gart_start & sixteen_gb_mask) - 342 ALIGN(mc->fb_end + 1, sixteen_gb); 343 } 344 345 if (size_bf > size_af) { 346 mc->agp_start = (mc->fb_start - size_bf) & sixteen_gb_mask; 347 mc->agp_size = size_bf; 348 } else { 349 mc->agp_start = ALIGN(mc->fb_end + 1, sixteen_gb); 350 mc->agp_size = size_af; 351 } 352 353 mc->agp_end = mc->agp_start + mc->agp_size - 1; 354 dev_info(adev->dev, "AGP: %lluM 0x%016llX - 0x%016llX\n", 355 mc->agp_size >> 20, mc->agp_start, mc->agp_end); 356 } 357 358 /** 359 * amdgpu_gmc_set_agp_default - Set the default AGP aperture value. 360 * @adev: amdgpu device structure holding all necessary information 361 * @mc: memory controller structure holding memory information 362 * 363 * To disable the AGP aperture, you need to set the start to a larger 364 * value than the end. This function sets the default value which 365 * can then be overridden using amdgpu_gmc_agp_location() if you want 366 * to enable the AGP aperture on a specific chip. 367 * 368 */ 369 void amdgpu_gmc_set_agp_default(struct amdgpu_device *adev, 370 struct amdgpu_gmc *mc) 371 { 372 mc->agp_start = 0xffffffffffff; 373 mc->agp_end = 0; 374 mc->agp_size = 0; 375 } 376 377 /** 378 * amdgpu_gmc_fault_key - get hask key from vm fault address and pasid 379 * 380 * @addr: 48 bit physical address, page aligned (36 significant bits) 381 * @pasid: 16 bit process address space identifier 382 */ 383 static inline uint64_t amdgpu_gmc_fault_key(uint64_t addr, uint16_t pasid) 384 { 385 return addr << 4 | pasid; 386 } 387 388 /** 389 * amdgpu_gmc_filter_faults - filter VM faults 390 * 391 * @adev: amdgpu device structure 392 * @ih: interrupt ring that the fault received from 393 * @addr: address of the VM fault 394 * @pasid: PASID of the process causing the fault 395 * @timestamp: timestamp of the fault 396 * 397 * Returns: 398 * True if the fault was filtered and should not be processed further. 399 * False if the fault is a new one and needs to be handled. 400 */ 401 bool amdgpu_gmc_filter_faults(struct amdgpu_device *adev, 402 struct amdgpu_ih_ring *ih, uint64_t addr, 403 uint16_t pasid, uint64_t timestamp) 404 { 405 struct amdgpu_gmc *gmc = &adev->gmc; 406 uint64_t stamp, key = amdgpu_gmc_fault_key(addr, pasid); 407 struct amdgpu_gmc_fault *fault; 408 uint32_t hash; 409 410 /* Stale retry fault if timestamp goes backward */ 411 if (amdgpu_ih_ts_after(timestamp, ih->processed_timestamp)) 412 return true; 413 414 /* If we don't have space left in the ring buffer return immediately */ 415 stamp = max(timestamp, AMDGPU_GMC_FAULT_TIMEOUT + 1) - 416 AMDGPU_GMC_FAULT_TIMEOUT; 417 if (gmc->fault_ring[gmc->last_fault].timestamp >= stamp) 418 return true; 419 420 /* Try to find the fault in the hash */ 421 hash = hash_64(key, AMDGPU_GMC_FAULT_HASH_ORDER); 422 fault = &gmc->fault_ring[gmc->fault_hash[hash].idx]; 423 while (fault->timestamp >= stamp) { 424 uint64_t tmp; 425 426 if (atomic64_read(&fault->key) == key) { 427 /* 428 * if we get a fault which is already present in 429 * the fault_ring and the timestamp of 430 * the fault is after the expired timestamp, 431 * then this is a new fault that needs to be added 432 * into the fault ring. 433 */ 434 if (fault->timestamp_expiry != 0 && 435 amdgpu_ih_ts_after(fault->timestamp_expiry, 436 timestamp)) 437 break; 438 else 439 return true; 440 } 441 442 tmp = fault->timestamp; 443 fault = &gmc->fault_ring[fault->next]; 444 445 /* Check if the entry was reused */ 446 if (fault->timestamp >= tmp) 447 break; 448 } 449 450 /* Add the fault to the ring */ 451 fault = &gmc->fault_ring[gmc->last_fault]; 452 atomic64_set(&fault->key, key); 453 fault->timestamp = timestamp; 454 455 /* And update the hash */ 456 fault->next = gmc->fault_hash[hash].idx; 457 gmc->fault_hash[hash].idx = gmc->last_fault++; 458 return false; 459 } 460 461 /** 462 * amdgpu_gmc_filter_faults_remove - remove address from VM faults filter 463 * 464 * @adev: amdgpu device structure 465 * @addr: address of the VM fault 466 * @pasid: PASID of the process causing the fault 467 * 468 * Remove the address from fault filter, then future vm fault on this address 469 * will pass to retry fault handler to recover. 470 */ 471 void amdgpu_gmc_filter_faults_remove(struct amdgpu_device *adev, uint64_t addr, 472 uint16_t pasid) 473 { 474 struct amdgpu_gmc *gmc = &adev->gmc; 475 uint64_t key = amdgpu_gmc_fault_key(addr, pasid); 476 struct amdgpu_ih_ring *ih; 477 struct amdgpu_gmc_fault *fault; 478 uint32_t last_wptr; 479 uint64_t last_ts; 480 uint32_t hash; 481 uint64_t tmp; 482 483 if (adev->irq.retry_cam_enabled) 484 return; 485 486 ih = &adev->irq.ih1; 487 /* Get the WPTR of the last entry in IH ring */ 488 last_wptr = amdgpu_ih_get_wptr(adev, ih); 489 /* Order wptr with ring data. */ 490 rmb(); 491 /* Get the timetamp of the last entry in IH ring */ 492 last_ts = amdgpu_ih_decode_iv_ts(adev, ih, last_wptr, -1); 493 494 hash = hash_64(key, AMDGPU_GMC_FAULT_HASH_ORDER); 495 fault = &gmc->fault_ring[gmc->fault_hash[hash].idx]; 496 do { 497 if (atomic64_read(&fault->key) == key) { 498 /* 499 * Update the timestamp when this fault 500 * expired. 501 */ 502 fault->timestamp_expiry = last_ts; 503 break; 504 } 505 506 tmp = fault->timestamp; 507 fault = &gmc->fault_ring[fault->next]; 508 } while (fault->timestamp < tmp); 509 } 510 511 int amdgpu_gmc_ras_sw_init(struct amdgpu_device *adev) 512 { 513 int r; 514 515 /* umc ras block */ 516 r = amdgpu_umc_ras_sw_init(adev); 517 if (r) 518 return r; 519 520 /* mmhub ras block */ 521 r = amdgpu_mmhub_ras_sw_init(adev); 522 if (r) 523 return r; 524 525 /* hdp ras block */ 526 r = amdgpu_hdp_ras_sw_init(adev); 527 if (r) 528 return r; 529 530 /* mca.x ras block */ 531 r = amdgpu_mca_mp0_ras_sw_init(adev); 532 if (r) 533 return r; 534 535 r = amdgpu_mca_mp1_ras_sw_init(adev); 536 if (r) 537 return r; 538 539 r = amdgpu_mca_mpio_ras_sw_init(adev); 540 if (r) 541 return r; 542 543 /* xgmi ras block */ 544 r = amdgpu_xgmi_ras_sw_init(adev); 545 if (r) 546 return r; 547 548 return 0; 549 } 550 551 int amdgpu_gmc_ras_late_init(struct amdgpu_device *adev) 552 { 553 return 0; 554 } 555 556 void amdgpu_gmc_ras_fini(struct amdgpu_device *adev) 557 { 558 559 } 560 561 /* 562 * The latest engine allocation on gfx9/10 is: 563 * Engine 2, 3: firmware 564 * Engine 0, 1, 4~16: amdgpu ring, 565 * subject to change when ring number changes 566 * Engine 17: Gart flushes 567 */ 568 #define AMDGPU_VMHUB_INV_ENG_BITMAP 0x1FFF3 569 570 int amdgpu_gmc_allocate_vm_inv_eng(struct amdgpu_device *adev) 571 { 572 struct amdgpu_ring *ring; 573 unsigned vm_inv_engs[AMDGPU_MAX_VMHUBS] = {0}; 574 unsigned i; 575 unsigned vmhub, inv_eng; 576 struct amdgpu_ring *shared_ring; 577 578 /* init the vm inv eng for all vmhubs */ 579 for_each_set_bit(i, adev->vmhubs_mask, AMDGPU_MAX_VMHUBS) { 580 vm_inv_engs[i] = AMDGPU_VMHUB_INV_ENG_BITMAP; 581 /* reserve engine 5 for firmware */ 582 if (adev->enable_mes) 583 vm_inv_engs[i] &= ~(1 << 5); 584 /* reserve mmhub engine 3 for firmware */ 585 if (adev->enable_umsch_mm) 586 vm_inv_engs[i] &= ~(1 << 3); 587 } 588 589 for (i = 0; i < adev->num_rings; ++i) { 590 ring = adev->rings[i]; 591 vmhub = ring->vm_hub; 592 593 if (ring == &adev->mes.ring[0] || 594 ring == &adev->mes.ring[1] || 595 ring == &adev->umsch_mm.ring || 596 ring == &adev->cper.ring_buf) 597 continue; 598 599 /* Skip if the ring is a shared ring */ 600 if (amdgpu_sdma_is_shared_inv_eng(adev, ring)) 601 continue; 602 603 inv_eng = ffs(vm_inv_engs[vmhub]); 604 if (!inv_eng) { 605 dev_err(adev->dev, "no VM inv eng for ring %s\n", 606 ring->name); 607 return -EINVAL; 608 } 609 610 ring->vm_inv_eng = inv_eng - 1; 611 vm_inv_engs[vmhub] &= ~(1 << ring->vm_inv_eng); 612 613 dev_info(adev->dev, "ring %s uses VM inv eng %u on hub %u\n", 614 ring->name, ring->vm_inv_eng, ring->vm_hub); 615 /* SDMA has a special packet which allows it to use the same 616 * invalidation engine for all the rings in one instance. 617 * Therefore, we do not allocate a separate VM invalidation engine 618 * for SDMA page rings. Instead, they share the VM invalidation 619 * engine with the SDMA gfx ring. This change ensures efficient 620 * resource management and avoids the issue of insufficient VM 621 * invalidation engines. 622 */ 623 shared_ring = amdgpu_sdma_get_shared_ring(adev, ring); 624 if (shared_ring) { 625 shared_ring->vm_inv_eng = ring->vm_inv_eng; 626 dev_info(adev->dev, "ring %s shares VM invalidation engine %u with ring %s on hub %u\n", 627 ring->name, ring->vm_inv_eng, shared_ring->name, ring->vm_hub); 628 continue; 629 } 630 } 631 632 return 0; 633 } 634 635 void amdgpu_gmc_flush_gpu_tlb(struct amdgpu_device *adev, uint32_t vmid, 636 uint32_t vmhub, uint32_t flush_type) 637 { 638 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 639 struct amdgpu_vmhub *hub = &adev->vmhub[vmhub]; 640 struct dma_fence *fence; 641 struct amdgpu_job *job; 642 int r; 643 644 if (!hub->sdma_invalidation_workaround || vmid || 645 !adev->mman.buffer_funcs_enabled || !adev->ib_pool_ready || 646 !ring->sched.ready) { 647 /* 648 * A GPU reset should flush all TLBs anyway, so no need to do 649 * this while one is ongoing. 650 */ 651 if (!down_read_trylock(&adev->reset_domain->sem)) 652 return; 653 654 if (adev->gmc.flush_tlb_needs_extra_type_2) 655 adev->gmc.gmc_funcs->flush_gpu_tlb(adev, vmid, 656 vmhub, 2); 657 658 if (adev->gmc.flush_tlb_needs_extra_type_0 && flush_type == 2) 659 adev->gmc.gmc_funcs->flush_gpu_tlb(adev, vmid, 660 vmhub, 0); 661 662 adev->gmc.gmc_funcs->flush_gpu_tlb(adev, vmid, vmhub, 663 flush_type); 664 up_read(&adev->reset_domain->sem); 665 return; 666 } 667 668 /* The SDMA on Navi 1x has a bug which can theoretically result in memory 669 * corruption if an invalidation happens at the same time as an VA 670 * translation. Avoid this by doing the invalidation from the SDMA 671 * itself at least for GART. 672 */ 673 mutex_lock(&adev->mman.gtt_window_lock); 674 r = amdgpu_job_alloc_with_ib(ring->adev, &adev->mman.high_pr, 675 AMDGPU_FENCE_OWNER_UNDEFINED, 676 16 * 4, AMDGPU_IB_POOL_IMMEDIATE, 677 &job); 678 if (r) 679 goto error_alloc; 680 681 job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gart.bo); 682 job->vm_needs_flush = true; 683 job->ibs->ptr[job->ibs->length_dw++] = ring->funcs->nop; 684 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 685 fence = amdgpu_job_submit(job); 686 mutex_unlock(&adev->mman.gtt_window_lock); 687 688 dma_fence_wait(fence, false); 689 dma_fence_put(fence); 690 691 return; 692 693 error_alloc: 694 mutex_unlock(&adev->mman.gtt_window_lock); 695 dev_err(adev->dev, "Error flushing GPU TLB using the SDMA (%d)!\n", r); 696 } 697 698 int amdgpu_gmc_flush_gpu_tlb_pasid(struct amdgpu_device *adev, uint16_t pasid, 699 uint32_t flush_type, bool all_hub, 700 uint32_t inst) 701 { 702 struct amdgpu_ring *ring = &adev->gfx.kiq[inst].ring; 703 struct amdgpu_kiq *kiq = &adev->gfx.kiq[inst]; 704 unsigned int ndw; 705 int r, cnt = 0; 706 uint32_t seq; 707 708 /* 709 * A GPU reset should flush all TLBs anyway, so no need to do 710 * this while one is ongoing. 711 */ 712 if (!down_read_trylock(&adev->reset_domain->sem)) 713 return 0; 714 715 if (!adev->gmc.flush_pasid_uses_kiq || !ring->sched.ready) { 716 if (adev->gmc.flush_tlb_needs_extra_type_2) 717 adev->gmc.gmc_funcs->flush_gpu_tlb_pasid(adev, pasid, 718 2, all_hub, 719 inst); 720 721 if (adev->gmc.flush_tlb_needs_extra_type_0 && flush_type == 2) 722 adev->gmc.gmc_funcs->flush_gpu_tlb_pasid(adev, pasid, 723 0, all_hub, 724 inst); 725 726 adev->gmc.gmc_funcs->flush_gpu_tlb_pasid(adev, pasid, 727 flush_type, all_hub, 728 inst); 729 r = 0; 730 } else { 731 /* 2 dwords flush + 8 dwords fence */ 732 ndw = kiq->pmf->invalidate_tlbs_size + 8; 733 734 if (adev->gmc.flush_tlb_needs_extra_type_2) 735 ndw += kiq->pmf->invalidate_tlbs_size; 736 737 if (adev->gmc.flush_tlb_needs_extra_type_0) 738 ndw += kiq->pmf->invalidate_tlbs_size; 739 740 spin_lock(&adev->gfx.kiq[inst].ring_lock); 741 r = amdgpu_ring_alloc(ring, ndw); 742 if (r) { 743 spin_unlock(&adev->gfx.kiq[inst].ring_lock); 744 goto error_unlock_reset; 745 } 746 if (adev->gmc.flush_tlb_needs_extra_type_2) 747 kiq->pmf->kiq_invalidate_tlbs(ring, pasid, 2, all_hub); 748 749 if (flush_type == 2 && adev->gmc.flush_tlb_needs_extra_type_0) 750 kiq->pmf->kiq_invalidate_tlbs(ring, pasid, 0, all_hub); 751 752 kiq->pmf->kiq_invalidate_tlbs(ring, pasid, flush_type, all_hub); 753 r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT); 754 if (r) { 755 amdgpu_ring_undo(ring); 756 spin_unlock(&adev->gfx.kiq[inst].ring_lock); 757 goto error_unlock_reset; 758 } 759 760 amdgpu_ring_commit(ring); 761 spin_unlock(&adev->gfx.kiq[inst].ring_lock); 762 763 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); 764 765 might_sleep(); 766 while (r < 1 && cnt++ < MAX_KIQ_REG_TRY && 767 !amdgpu_reset_pending(adev->reset_domain)) { 768 msleep(MAX_KIQ_REG_BAILOUT_INTERVAL); 769 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); 770 } 771 772 if (cnt > MAX_KIQ_REG_TRY) { 773 dev_err(adev->dev, "timeout waiting for kiq fence\n"); 774 r = -ETIME; 775 } else 776 r = 0; 777 } 778 779 error_unlock_reset: 780 up_read(&adev->reset_domain->sem); 781 return r; 782 } 783 784 void amdgpu_gmc_fw_reg_write_reg_wait(struct amdgpu_device *adev, 785 uint32_t reg0, uint32_t reg1, 786 uint32_t ref, uint32_t mask, 787 uint32_t xcc_inst) 788 { 789 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_inst]; 790 struct amdgpu_ring *ring = &kiq->ring; 791 signed long r, cnt = 0; 792 unsigned long flags; 793 uint32_t seq; 794 795 if (adev->mes.ring[0].sched.ready) { 796 amdgpu_mes_reg_write_reg_wait(adev, reg0, reg1, 797 ref, mask); 798 return; 799 } 800 801 spin_lock_irqsave(&kiq->ring_lock, flags); 802 amdgpu_ring_alloc(ring, 32); 803 amdgpu_ring_emit_reg_write_reg_wait(ring, reg0, reg1, 804 ref, mask); 805 r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT); 806 if (r) 807 goto failed_undo; 808 809 amdgpu_ring_commit(ring); 810 spin_unlock_irqrestore(&kiq->ring_lock, flags); 811 812 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); 813 814 /* don't wait anymore for IRQ context */ 815 if (r < 1 && in_interrupt()) 816 goto failed_kiq; 817 818 might_sleep(); 819 while (r < 1 && cnt++ < MAX_KIQ_REG_TRY && 820 !amdgpu_reset_pending(adev->reset_domain)) { 821 822 msleep(MAX_KIQ_REG_BAILOUT_INTERVAL); 823 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); 824 } 825 826 if (cnt > MAX_KIQ_REG_TRY) 827 goto failed_kiq; 828 829 return; 830 831 failed_undo: 832 amdgpu_ring_undo(ring); 833 spin_unlock_irqrestore(&kiq->ring_lock, flags); 834 failed_kiq: 835 dev_err(adev->dev, "failed to write reg %x wait reg %x\n", reg0, reg1); 836 } 837 838 /** 839 * amdgpu_gmc_tmz_set -- check and set if a device supports TMZ 840 * @adev: amdgpu_device pointer 841 * 842 * Check and set if an the device @adev supports Trusted Memory 843 * Zones (TMZ). 844 */ 845 void amdgpu_gmc_tmz_set(struct amdgpu_device *adev) 846 { 847 switch (amdgpu_ip_version(adev, GC_HWIP, 0)) { 848 /* RAVEN */ 849 case IP_VERSION(9, 2, 2): 850 case IP_VERSION(9, 1, 0): 851 /* RENOIR looks like RAVEN */ 852 case IP_VERSION(9, 3, 0): 853 /* GC 10.3.7 */ 854 case IP_VERSION(10, 3, 7): 855 /* GC 11.0.1 */ 856 case IP_VERSION(11, 0, 1): 857 if (amdgpu_tmz == 0) { 858 adev->gmc.tmz_enabled = false; 859 dev_info(adev->dev, 860 "Trusted Memory Zone (TMZ) feature disabled (cmd line)\n"); 861 } else { 862 adev->gmc.tmz_enabled = true; 863 dev_info(adev->dev, 864 "Trusted Memory Zone (TMZ) feature enabled\n"); 865 } 866 break; 867 case IP_VERSION(10, 1, 10): 868 case IP_VERSION(10, 1, 1): 869 case IP_VERSION(10, 1, 2): 870 case IP_VERSION(10, 1, 3): 871 case IP_VERSION(10, 3, 0): 872 case IP_VERSION(10, 3, 2): 873 case IP_VERSION(10, 3, 4): 874 case IP_VERSION(10, 3, 5): 875 case IP_VERSION(10, 3, 6): 876 /* VANGOGH */ 877 case IP_VERSION(10, 3, 1): 878 /* YELLOW_CARP*/ 879 case IP_VERSION(10, 3, 3): 880 case IP_VERSION(11, 0, 4): 881 case IP_VERSION(11, 5, 0): 882 case IP_VERSION(11, 5, 1): 883 case IP_VERSION(11, 5, 2): 884 case IP_VERSION(11, 5, 3): 885 /* Don't enable it by default yet. 886 */ 887 if (amdgpu_tmz < 1) { 888 adev->gmc.tmz_enabled = false; 889 dev_info(adev->dev, 890 "Trusted Memory Zone (TMZ) feature disabled as experimental (default)\n"); 891 } else { 892 adev->gmc.tmz_enabled = true; 893 dev_info(adev->dev, 894 "Trusted Memory Zone (TMZ) feature enabled as experimental (cmd line)\n"); 895 } 896 break; 897 default: 898 adev->gmc.tmz_enabled = false; 899 dev_info(adev->dev, 900 "Trusted Memory Zone (TMZ) feature not supported\n"); 901 break; 902 } 903 } 904 905 /** 906 * amdgpu_gmc_noretry_set -- set per asic noretry defaults 907 * @adev: amdgpu_device pointer 908 * 909 * Set a per asic default for the no-retry parameter. 910 * 911 */ 912 void amdgpu_gmc_noretry_set(struct amdgpu_device *adev) 913 { 914 struct amdgpu_gmc *gmc = &adev->gmc; 915 uint32_t gc_ver = amdgpu_ip_version(adev, GC_HWIP, 0); 916 bool noretry_default = (gc_ver == IP_VERSION(9, 0, 1) || 917 gc_ver == IP_VERSION(9, 4, 0) || 918 gc_ver == IP_VERSION(9, 4, 1) || 919 gc_ver == IP_VERSION(9, 4, 2) || 920 gc_ver == IP_VERSION(9, 4, 3) || 921 gc_ver == IP_VERSION(9, 4, 4) || 922 gc_ver == IP_VERSION(9, 5, 0) || 923 gc_ver >= IP_VERSION(10, 3, 0)); 924 925 if (!amdgpu_sriov_xnack_support(adev)) 926 gmc->noretry = 1; 927 else 928 gmc->noretry = (amdgpu_noretry == -1) ? noretry_default : amdgpu_noretry; 929 } 930 931 void amdgpu_gmc_set_vm_fault_masks(struct amdgpu_device *adev, int hub_type, 932 bool enable) 933 { 934 struct amdgpu_vmhub *hub; 935 u32 tmp, reg, i; 936 937 hub = &adev->vmhub[hub_type]; 938 for (i = 0; i < 16; i++) { 939 reg = hub->vm_context0_cntl + hub->ctx_distance * i; 940 941 tmp = (hub_type == AMDGPU_GFXHUB(0)) ? 942 RREG32_SOC15_IP(GC, reg) : 943 RREG32_SOC15_IP(MMHUB, reg); 944 945 if (enable) 946 tmp |= hub->vm_cntx_cntl_vm_fault; 947 else 948 tmp &= ~hub->vm_cntx_cntl_vm_fault; 949 950 (hub_type == AMDGPU_GFXHUB(0)) ? 951 WREG32_SOC15_IP(GC, reg, tmp) : 952 WREG32_SOC15_IP(MMHUB, reg, tmp); 953 } 954 } 955 956 void amdgpu_gmc_get_vbios_allocations(struct amdgpu_device *adev) 957 { 958 unsigned size; 959 960 /* 961 * Some ASICs need to reserve a region of video memory to avoid access 962 * from driver 963 */ 964 adev->mman.stolen_reserved_offset = 0; 965 adev->mman.stolen_reserved_size = 0; 966 967 /* 968 * TODO: 969 * Currently there is a bug where some memory client outside 970 * of the driver writes to first 8M of VRAM on S3 resume, 971 * this overrides GART which by default gets placed in first 8M and 972 * causes VM_FAULTS once GTT is accessed. 973 * Keep the stolen memory reservation until the while this is not solved. 974 */ 975 switch (adev->asic_type) { 976 case CHIP_VEGA10: 977 adev->mman.keep_stolen_vga_memory = true; 978 /* 979 * VEGA10 SRIOV VF with MS_HYPERV host needs some firmware reserved area. 980 */ 981 #ifdef CONFIG_X86 982 if (amdgpu_sriov_vf(adev) && hypervisor_is_type(X86_HYPER_MS_HYPERV)) { 983 adev->mman.stolen_reserved_offset = 0x500000; 984 adev->mman.stolen_reserved_size = 0x200000; 985 } 986 #endif 987 break; 988 case CHIP_RAVEN: 989 case CHIP_RENOIR: 990 adev->mman.keep_stolen_vga_memory = true; 991 break; 992 default: 993 adev->mman.keep_stolen_vga_memory = false; 994 break; 995 } 996 997 if (amdgpu_sriov_vf(adev) || 998 !amdgpu_device_has_display_hardware(adev)) { 999 size = 0; 1000 } else { 1001 size = amdgpu_gmc_get_vbios_fb_size(adev); 1002 1003 if (adev->mman.keep_stolen_vga_memory) 1004 size = max(size, (unsigned)AMDGPU_VBIOS_VGA_ALLOCATION); 1005 } 1006 1007 /* set to 0 if the pre-OS buffer uses up most of vram */ 1008 if ((adev->gmc.real_vram_size - size) < (8 * 1024 * 1024)) 1009 size = 0; 1010 1011 if (size > AMDGPU_VBIOS_VGA_ALLOCATION) { 1012 adev->mman.stolen_vga_size = AMDGPU_VBIOS_VGA_ALLOCATION; 1013 adev->mman.stolen_extended_size = size - adev->mman.stolen_vga_size; 1014 } else { 1015 adev->mman.stolen_vga_size = size; 1016 adev->mman.stolen_extended_size = 0; 1017 } 1018 } 1019 1020 /** 1021 * amdgpu_gmc_init_pdb0 - initialize PDB0 1022 * 1023 * @adev: amdgpu_device pointer 1024 * 1025 * This function is only used when GART page table is used 1026 * for FB address translatioin. In such a case, we construct 1027 * a 2-level system VM page table: PDB0->PTB, to cover both 1028 * VRAM of the hive and system memory. 1029 * 1030 * PDB0 is static, initialized once on driver initialization. 1031 * The first n entries of PDB0 are used as PTE by setting 1032 * P bit to 1, pointing to VRAM. The n+1'th entry points 1033 * to a big PTB covering system memory. 1034 * 1035 */ 1036 void amdgpu_gmc_init_pdb0(struct amdgpu_device *adev) 1037 { 1038 int i; 1039 uint64_t flags = adev->gart.gart_pte_flags; //TODO it is UC. explore NC/RW? 1040 /* Each PDE0 (used as PTE) covers (2^vmid0_page_table_block_size)*2M 1041 */ 1042 u64 vram_size = adev->gmc.xgmi.node_segment_size * adev->gmc.xgmi.num_physical_nodes; 1043 u64 pde0_page_size = (1ULL<<adev->gmc.vmid0_page_table_block_size)<<21; 1044 u64 vram_addr = adev->vm_manager.vram_base_offset - 1045 adev->gmc.xgmi.physical_node_id * adev->gmc.xgmi.node_segment_size; 1046 u64 vram_end = vram_addr + vram_size; 1047 u64 gart_ptb_gpu_pa = amdgpu_gmc_vram_pa(adev, adev->gart.bo); 1048 int idx; 1049 1050 if (!drm_dev_enter(adev_to_drm(adev), &idx)) 1051 return; 1052 1053 flags |= AMDGPU_PTE_VALID | AMDGPU_PTE_READABLE; 1054 flags |= AMDGPU_PTE_WRITEABLE; 1055 flags |= AMDGPU_PTE_SNOOPED; 1056 flags |= AMDGPU_PTE_FRAG((adev->gmc.vmid0_page_table_block_size + 9*1)); 1057 flags |= AMDGPU_PDE_PTE_FLAG(adev); 1058 1059 /* The first n PDE0 entries are used as PTE, 1060 * pointing to vram 1061 */ 1062 for (i = 0; vram_addr < vram_end; i++, vram_addr += pde0_page_size) 1063 amdgpu_gmc_set_pte_pde(adev, adev->gmc.ptr_pdb0, i, vram_addr, flags); 1064 1065 /* The n+1'th PDE0 entry points to a huge 1066 * PTB who has more than 512 entries each 1067 * pointing to a 4K system page 1068 */ 1069 flags = AMDGPU_PTE_VALID; 1070 flags |= AMDGPU_PTE_SNOOPED | AMDGPU_PDE_BFS_FLAG(adev, 0); 1071 /* Requires gart_ptb_gpu_pa to be 4K aligned */ 1072 amdgpu_gmc_set_pte_pde(adev, adev->gmc.ptr_pdb0, i, gart_ptb_gpu_pa, flags); 1073 drm_dev_exit(idx); 1074 } 1075 1076 /** 1077 * amdgpu_gmc_vram_mc2pa - calculate vram buffer's physical address from MC 1078 * address 1079 * 1080 * @adev: amdgpu_device pointer 1081 * @mc_addr: MC address of buffer 1082 */ 1083 uint64_t amdgpu_gmc_vram_mc2pa(struct amdgpu_device *adev, uint64_t mc_addr) 1084 { 1085 return mc_addr - adev->gmc.vram_start + adev->vm_manager.vram_base_offset; 1086 } 1087 1088 /** 1089 * amdgpu_gmc_vram_pa - calculate vram buffer object's physical address from 1090 * GPU's view 1091 * 1092 * @adev: amdgpu_device pointer 1093 * @bo: amdgpu buffer object 1094 */ 1095 uint64_t amdgpu_gmc_vram_pa(struct amdgpu_device *adev, struct amdgpu_bo *bo) 1096 { 1097 return amdgpu_gmc_vram_mc2pa(adev, amdgpu_bo_gpu_offset(bo)); 1098 } 1099 1100 int amdgpu_gmc_vram_checking(struct amdgpu_device *adev) 1101 { 1102 struct amdgpu_bo *vram_bo = NULL; 1103 uint64_t vram_gpu = 0; 1104 void *vram_ptr = NULL; 1105 1106 int ret, size = 0x100000; 1107 uint8_t cptr[10]; 1108 1109 ret = amdgpu_bo_create_kernel(adev, size, PAGE_SIZE, 1110 AMDGPU_GEM_DOMAIN_VRAM, 1111 &vram_bo, 1112 &vram_gpu, 1113 &vram_ptr); 1114 if (ret) 1115 return ret; 1116 1117 memset(vram_ptr, 0x86, size); 1118 memset(cptr, 0x86, 10); 1119 1120 /** 1121 * Check the start, the mid, and the end of the memory if the content of 1122 * each byte is the pattern "0x86". If yes, we suppose the vram bo is 1123 * workable. 1124 * 1125 * Note: If check the each byte of whole 1M bo, it will cost too many 1126 * seconds, so here, we just pick up three parts for emulation. 1127 */ 1128 ret = memcmp(vram_ptr, cptr, 10); 1129 if (ret) { 1130 ret = -EIO; 1131 goto release_buffer; 1132 } 1133 1134 ret = memcmp(vram_ptr + (size / 2), cptr, 10); 1135 if (ret) { 1136 ret = -EIO; 1137 goto release_buffer; 1138 } 1139 1140 ret = memcmp(vram_ptr + size - 10, cptr, 10); 1141 if (ret) { 1142 ret = -EIO; 1143 goto release_buffer; 1144 } 1145 1146 release_buffer: 1147 amdgpu_bo_free_kernel(&vram_bo, &vram_gpu, 1148 &vram_ptr); 1149 1150 return ret; 1151 } 1152 1153 static const char *nps_desc[] = { 1154 [AMDGPU_NPS1_PARTITION_MODE] = "NPS1", 1155 [AMDGPU_NPS2_PARTITION_MODE] = "NPS2", 1156 [AMDGPU_NPS3_PARTITION_MODE] = "NPS3", 1157 [AMDGPU_NPS4_PARTITION_MODE] = "NPS4", 1158 [AMDGPU_NPS6_PARTITION_MODE] = "NPS6", 1159 [AMDGPU_NPS8_PARTITION_MODE] = "NPS8", 1160 }; 1161 1162 static ssize_t available_memory_partition_show(struct device *dev, 1163 struct device_attribute *addr, 1164 char *buf) 1165 { 1166 struct drm_device *ddev = dev_get_drvdata(dev); 1167 struct amdgpu_device *adev = drm_to_adev(ddev); 1168 int size = 0, mode; 1169 char *sep = ""; 1170 1171 for_each_inst(mode, adev->gmc.supported_nps_modes) { 1172 size += sysfs_emit_at(buf, size, "%s%s", sep, nps_desc[mode]); 1173 sep = ", "; 1174 } 1175 size += sysfs_emit_at(buf, size, "\n"); 1176 1177 return size; 1178 } 1179 1180 static ssize_t current_memory_partition_store(struct device *dev, 1181 struct device_attribute *attr, 1182 const char *buf, size_t count) 1183 { 1184 struct drm_device *ddev = dev_get_drvdata(dev); 1185 struct amdgpu_device *adev = drm_to_adev(ddev); 1186 enum amdgpu_memory_partition mode; 1187 struct amdgpu_hive_info *hive; 1188 int i; 1189 1190 mode = UNKNOWN_MEMORY_PARTITION_MODE; 1191 for_each_inst(i, adev->gmc.supported_nps_modes) { 1192 if (!strncasecmp(nps_desc[i], buf, strlen(nps_desc[i]))) { 1193 mode = i; 1194 break; 1195 } 1196 } 1197 1198 if (mode == UNKNOWN_MEMORY_PARTITION_MODE) 1199 return -EINVAL; 1200 1201 if (mode == adev->gmc.gmc_funcs->query_mem_partition_mode(adev)) { 1202 dev_info( 1203 adev->dev, 1204 "requested NPS mode is same as current NPS mode, skipping\n"); 1205 return count; 1206 } 1207 1208 /* If device is part of hive, all devices in the hive should request the 1209 * same mode. Hence store the requested mode in hive. 1210 */ 1211 hive = amdgpu_get_xgmi_hive(adev); 1212 if (hive) { 1213 atomic_set(&hive->requested_nps_mode, mode); 1214 amdgpu_put_xgmi_hive(hive); 1215 } else { 1216 adev->gmc.requested_nps_mode = mode; 1217 } 1218 1219 dev_info( 1220 adev->dev, 1221 "NPS mode change requested, please remove and reload the driver\n"); 1222 1223 return count; 1224 } 1225 1226 static ssize_t current_memory_partition_show( 1227 struct device *dev, struct device_attribute *addr, char *buf) 1228 { 1229 struct drm_device *ddev = dev_get_drvdata(dev); 1230 struct amdgpu_device *adev = drm_to_adev(ddev); 1231 enum amdgpu_memory_partition mode; 1232 1233 mode = adev->gmc.gmc_funcs->query_mem_partition_mode(adev); 1234 if ((mode >= ARRAY_SIZE(nps_desc)) || 1235 (BIT(mode) & AMDGPU_ALL_NPS_MASK) != BIT(mode)) 1236 return sysfs_emit(buf, "UNKNOWN\n"); 1237 1238 return sysfs_emit(buf, "%s\n", nps_desc[mode]); 1239 } 1240 1241 static DEVICE_ATTR_RW(current_memory_partition); 1242 static DEVICE_ATTR_RO(available_memory_partition); 1243 1244 int amdgpu_gmc_sysfs_init(struct amdgpu_device *adev) 1245 { 1246 bool nps_switch_support; 1247 int r = 0; 1248 1249 if (!adev->gmc.gmc_funcs->query_mem_partition_mode) 1250 return 0; 1251 1252 nps_switch_support = (hweight32(adev->gmc.supported_nps_modes & 1253 AMDGPU_ALL_NPS_MASK) > 1); 1254 if (!nps_switch_support) 1255 dev_attr_current_memory_partition.attr.mode &= 1256 ~(S_IWUSR | S_IWGRP | S_IWOTH); 1257 else 1258 r = device_create_file(adev->dev, 1259 &dev_attr_available_memory_partition); 1260 1261 if (r) 1262 return r; 1263 1264 return device_create_file(adev->dev, 1265 &dev_attr_current_memory_partition); 1266 } 1267 1268 void amdgpu_gmc_sysfs_fini(struct amdgpu_device *adev) 1269 { 1270 if (!adev->gmc.gmc_funcs->query_mem_partition_mode) 1271 return; 1272 1273 device_remove_file(adev->dev, &dev_attr_current_memory_partition); 1274 device_remove_file(adev->dev, &dev_attr_available_memory_partition); 1275 } 1276 1277 int amdgpu_gmc_get_nps_memranges(struct amdgpu_device *adev, 1278 struct amdgpu_mem_partition_info *mem_ranges, 1279 uint8_t *exp_ranges) 1280 { 1281 struct amdgpu_gmc_memrange *ranges; 1282 int range_cnt, ret, i, j; 1283 uint32_t nps_type; 1284 bool refresh; 1285 1286 if (!mem_ranges || !exp_ranges) 1287 return -EINVAL; 1288 1289 refresh = (adev->init_lvl->level != AMDGPU_INIT_LEVEL_MINIMAL_XGMI) && 1290 (adev->gmc.reset_flags & AMDGPU_GMC_INIT_RESET_NPS); 1291 ret = amdgpu_discovery_get_nps_info(adev, &nps_type, &ranges, 1292 &range_cnt, refresh); 1293 1294 if (ret) 1295 return ret; 1296 1297 /* TODO: For now, expect ranges and partition count to be the same. 1298 * Adjust if there are holes expected in any NPS domain. 1299 */ 1300 if (*exp_ranges && (range_cnt != *exp_ranges)) { 1301 dev_warn( 1302 adev->dev, 1303 "NPS config mismatch - expected ranges: %d discovery - nps mode: %d, nps ranges: %d", 1304 *exp_ranges, nps_type, range_cnt); 1305 ret = -EINVAL; 1306 goto err; 1307 } 1308 1309 for (i = 0; i < range_cnt; ++i) { 1310 if (ranges[i].base_address >= ranges[i].limit_address) { 1311 dev_warn( 1312 adev->dev, 1313 "Invalid NPS range - nps mode: %d, range[%d]: base: %llx limit: %llx", 1314 nps_type, i, ranges[i].base_address, 1315 ranges[i].limit_address); 1316 ret = -EINVAL; 1317 goto err; 1318 } 1319 1320 /* Check for overlaps, not expecting any now */ 1321 for (j = i - 1; j >= 0; j--) { 1322 if (max(ranges[j].base_address, 1323 ranges[i].base_address) <= 1324 min(ranges[j].limit_address, 1325 ranges[i].limit_address)) { 1326 dev_warn( 1327 adev->dev, 1328 "overlapping ranges detected [ %llx - %llx ] | [%llx - %llx]", 1329 ranges[j].base_address, 1330 ranges[j].limit_address, 1331 ranges[i].base_address, 1332 ranges[i].limit_address); 1333 ret = -EINVAL; 1334 goto err; 1335 } 1336 } 1337 1338 mem_ranges[i].range.fpfn = 1339 (ranges[i].base_address - 1340 adev->vm_manager.vram_base_offset) >> 1341 AMDGPU_GPU_PAGE_SHIFT; 1342 mem_ranges[i].range.lpfn = 1343 (ranges[i].limit_address - 1344 adev->vm_manager.vram_base_offset) >> 1345 AMDGPU_GPU_PAGE_SHIFT; 1346 mem_ranges[i].size = 1347 ranges[i].limit_address - ranges[i].base_address + 1; 1348 } 1349 1350 if (!*exp_ranges) 1351 *exp_ranges = range_cnt; 1352 err: 1353 kfree(ranges); 1354 1355 return ret; 1356 } 1357 1358 int amdgpu_gmc_request_memory_partition(struct amdgpu_device *adev, 1359 int nps_mode) 1360 { 1361 /* Not supported on VF devices and APUs */ 1362 if (amdgpu_sriov_vf(adev) || (adev->flags & AMD_IS_APU)) 1363 return -EOPNOTSUPP; 1364 1365 if (!adev->psp.funcs) { 1366 dev_err(adev->dev, 1367 "PSP interface not available for nps mode change request"); 1368 return -EINVAL; 1369 } 1370 1371 return psp_memory_partition(&adev->psp, nps_mode); 1372 } 1373 1374 static inline bool amdgpu_gmc_need_nps_switch_req(struct amdgpu_device *adev, 1375 int req_nps_mode, 1376 int cur_nps_mode) 1377 { 1378 return (((BIT(req_nps_mode) & adev->gmc.supported_nps_modes) == 1379 BIT(req_nps_mode)) && 1380 req_nps_mode != cur_nps_mode); 1381 } 1382 1383 void amdgpu_gmc_prepare_nps_mode_change(struct amdgpu_device *adev) 1384 { 1385 int req_nps_mode, cur_nps_mode, r; 1386 struct amdgpu_hive_info *hive; 1387 1388 if (amdgpu_sriov_vf(adev) || !adev->gmc.supported_nps_modes || 1389 !adev->gmc.gmc_funcs->request_mem_partition_mode) 1390 return; 1391 1392 cur_nps_mode = adev->gmc.gmc_funcs->query_mem_partition_mode(adev); 1393 hive = amdgpu_get_xgmi_hive(adev); 1394 if (hive) { 1395 req_nps_mode = atomic_read(&hive->requested_nps_mode); 1396 if (!amdgpu_gmc_need_nps_switch_req(adev, req_nps_mode, 1397 cur_nps_mode)) { 1398 amdgpu_put_xgmi_hive(hive); 1399 return; 1400 } 1401 r = amdgpu_xgmi_request_nps_change(adev, hive, req_nps_mode); 1402 amdgpu_put_xgmi_hive(hive); 1403 goto out; 1404 } 1405 1406 req_nps_mode = adev->gmc.requested_nps_mode; 1407 if (!amdgpu_gmc_need_nps_switch_req(adev, req_nps_mode, cur_nps_mode)) 1408 return; 1409 1410 /* even if this fails, we should let driver unload w/o blocking */ 1411 r = adev->gmc.gmc_funcs->request_mem_partition_mode(adev, req_nps_mode); 1412 out: 1413 if (r) 1414 dev_err(adev->dev, "NPS mode change request failed\n"); 1415 else 1416 dev_info( 1417 adev->dev, 1418 "NPS mode change request done, reload driver to complete the change\n"); 1419 } 1420 1421 bool amdgpu_gmc_need_reset_on_init(struct amdgpu_device *adev) 1422 { 1423 if (adev->gmc.gmc_funcs->need_reset_on_init) 1424 return adev->gmc.gmc_funcs->need_reset_on_init(adev); 1425 1426 return false; 1427 } 1428