1 /* 2 * Copyright 2018 Advanced Micro Devices, Inc. 3 * All Rights Reserved. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the 7 * "Software"), to deal in the Software without restriction, including 8 * without limitation the rights to use, copy, modify, merge, publish, 9 * distribute, sub license, and/or sell copies of the Software, and to 10 * permit persons to whom the Software is furnished to do so, subject to 11 * the following conditions: 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 19 * USE OR OTHER DEALINGS IN THE SOFTWARE. 20 * 21 * The above copyright notice and this permission notice (including the 22 * next paragraph) shall be included in all copies or substantial portions 23 * of the Software. 24 * 25 */ 26 27 #include <linux/io-64-nonatomic-lo-hi.h> 28 #ifdef CONFIG_X86 29 #include <asm/hypervisor.h> 30 #endif 31 32 #include "amdgpu.h" 33 #include "amdgpu_gmc.h" 34 #include "amdgpu_ras.h" 35 #include "amdgpu_reset.h" 36 #include "amdgpu_xgmi.h" 37 38 #include <drm/drm_drv.h> 39 #include <drm/ttm/ttm_tt.h> 40 41 static const u64 four_gb = 0x100000000ULL; 42 43 bool amdgpu_gmc_is_pdb0_enabled(struct amdgpu_device *adev) 44 { 45 return adev->gmc.xgmi.connected_to_cpu || amdgpu_virt_xgmi_migrate_enabled(adev); 46 } 47 48 /** 49 * amdgpu_gmc_pdb0_alloc - allocate vram for pdb0 50 * 51 * @adev: amdgpu_device pointer 52 * 53 * Allocate video memory for pdb0 and map it for CPU access 54 * Returns 0 for success, error for failure. 55 */ 56 int amdgpu_gmc_pdb0_alloc(struct amdgpu_device *adev) 57 { 58 int r; 59 struct amdgpu_bo_param bp; 60 u64 vram_size = adev->gmc.xgmi.node_segment_size * adev->gmc.xgmi.num_physical_nodes; 61 uint32_t pde0_page_shift = adev->gmc.vmid0_page_table_block_size + 21; 62 uint32_t npdes = (vram_size + (1ULL << pde0_page_shift) - 1) >> pde0_page_shift; 63 64 memset(&bp, 0, sizeof(bp)); 65 bp.size = PAGE_ALIGN((npdes + 1) * 8); 66 bp.byte_align = PAGE_SIZE; 67 bp.domain = AMDGPU_GEM_DOMAIN_VRAM; 68 bp.flags = AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED | 69 AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS; 70 bp.type = ttm_bo_type_kernel; 71 bp.resv = NULL; 72 bp.bo_ptr_size = sizeof(struct amdgpu_bo); 73 74 r = amdgpu_bo_create(adev, &bp, &adev->gmc.pdb0_bo); 75 if (r) 76 return r; 77 78 r = amdgpu_bo_reserve(adev->gmc.pdb0_bo, false); 79 if (unlikely(r != 0)) 80 goto bo_reserve_failure; 81 82 r = amdgpu_bo_pin(adev->gmc.pdb0_bo, AMDGPU_GEM_DOMAIN_VRAM); 83 if (r) 84 goto bo_pin_failure; 85 r = amdgpu_bo_kmap(adev->gmc.pdb0_bo, &adev->gmc.ptr_pdb0); 86 if (r) 87 goto bo_kmap_failure; 88 89 amdgpu_bo_unreserve(adev->gmc.pdb0_bo); 90 return 0; 91 92 bo_kmap_failure: 93 amdgpu_bo_unpin(adev->gmc.pdb0_bo); 94 bo_pin_failure: 95 amdgpu_bo_unreserve(adev->gmc.pdb0_bo); 96 bo_reserve_failure: 97 amdgpu_bo_unref(&adev->gmc.pdb0_bo); 98 return r; 99 } 100 101 /** 102 * amdgpu_gmc_get_pde_for_bo - get the PDE for a BO 103 * 104 * @bo: the BO to get the PDE for 105 * @level: the level in the PD hirarchy 106 * @addr: resulting addr 107 * @flags: resulting flags 108 * 109 * Get the address and flags to be used for a PDE (Page Directory Entry). 110 */ 111 void amdgpu_gmc_get_pde_for_bo(struct amdgpu_bo *bo, int level, 112 uint64_t *addr, uint64_t *flags) 113 { 114 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 115 116 switch (bo->tbo.resource->mem_type) { 117 case TTM_PL_TT: 118 *addr = bo->tbo.ttm->dma_address[0]; 119 break; 120 case TTM_PL_VRAM: 121 *addr = amdgpu_bo_gpu_offset(bo); 122 break; 123 default: 124 *addr = 0; 125 break; 126 } 127 *flags = amdgpu_ttm_tt_pde_flags(bo->tbo.ttm, bo->tbo.resource); 128 amdgpu_gmc_get_vm_pde(adev, level, addr, flags); 129 } 130 131 /* 132 * amdgpu_gmc_pd_addr - return the address of the root directory 133 */ 134 uint64_t amdgpu_gmc_pd_addr(struct amdgpu_bo *bo) 135 { 136 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 137 uint64_t pd_addr; 138 139 /* TODO: move that into ASIC specific code */ 140 if (adev->asic_type >= CHIP_VEGA10) { 141 uint64_t flags = AMDGPU_PTE_VALID; 142 143 amdgpu_gmc_get_pde_for_bo(bo, -1, &pd_addr, &flags); 144 pd_addr |= flags; 145 } else { 146 pd_addr = amdgpu_bo_gpu_offset(bo); 147 } 148 return pd_addr; 149 } 150 151 /** 152 * amdgpu_gmc_set_pte_pde - update the page tables using CPU 153 * 154 * @adev: amdgpu_device pointer 155 * @cpu_pt_addr: cpu address of the page table 156 * @gpu_page_idx: entry in the page table to update 157 * @addr: dst addr to write into pte/pde 158 * @flags: access flags 159 * 160 * Update the page tables using CPU. 161 */ 162 int amdgpu_gmc_set_pte_pde(struct amdgpu_device *adev, void *cpu_pt_addr, 163 uint32_t gpu_page_idx, uint64_t addr, 164 uint64_t flags) 165 { 166 void __iomem *ptr = (void *)cpu_pt_addr; 167 uint64_t value; 168 169 /* 170 * The following is for PTE only. GART does not have PDEs. 171 */ 172 value = addr & 0x0000FFFFFFFFF000ULL; 173 value |= flags; 174 writeq(value, ptr + (gpu_page_idx * 8)); 175 176 return 0; 177 } 178 179 /** 180 * amdgpu_gmc_agp_addr - return the address in the AGP address space 181 * 182 * @bo: TTM BO which needs the address, must be in GTT domain 183 * 184 * Tries to figure out how to access the BO through the AGP aperture. Returns 185 * AMDGPU_BO_INVALID_OFFSET if that is not possible. 186 */ 187 uint64_t amdgpu_gmc_agp_addr(struct ttm_buffer_object *bo) 188 { 189 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 190 191 if (!bo->ttm) 192 return AMDGPU_BO_INVALID_OFFSET; 193 194 if (bo->ttm->num_pages != 1 || bo->ttm->caching == ttm_cached) 195 return AMDGPU_BO_INVALID_OFFSET; 196 197 if (bo->ttm->dma_address[0] + PAGE_SIZE >= adev->gmc.agp_size) 198 return AMDGPU_BO_INVALID_OFFSET; 199 200 return adev->gmc.agp_start + bo->ttm->dma_address[0]; 201 } 202 203 /** 204 * amdgpu_gmc_vram_location - try to find VRAM location 205 * 206 * @adev: amdgpu device structure holding all necessary information 207 * @mc: memory controller structure holding memory information 208 * @base: base address at which to put VRAM 209 * 210 * Function will try to place VRAM at base address provided 211 * as parameter. 212 */ 213 void amdgpu_gmc_vram_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc, 214 u64 base) 215 { 216 uint64_t vis_limit = (uint64_t)amdgpu_vis_vram_limit << 20; 217 uint64_t limit = (uint64_t)amdgpu_vram_limit << 20; 218 219 mc->vram_start = base; 220 mc->vram_end = mc->vram_start + mc->mc_vram_size - 1; 221 if (limit < mc->real_vram_size) 222 mc->real_vram_size = limit; 223 224 if (vis_limit && vis_limit < mc->visible_vram_size) 225 mc->visible_vram_size = vis_limit; 226 227 if (mc->real_vram_size < mc->visible_vram_size) 228 mc->visible_vram_size = mc->real_vram_size; 229 230 if (mc->xgmi.num_physical_nodes == 0) { 231 mc->fb_start = mc->vram_start; 232 mc->fb_end = mc->vram_end; 233 } 234 dev_info(adev->dev, "VRAM: %lluM 0x%016llX - 0x%016llX (%lluM used)\n", 235 mc->mc_vram_size >> 20, mc->vram_start, 236 mc->vram_end, mc->real_vram_size >> 20); 237 } 238 239 /** amdgpu_gmc_sysvm_location - place vram and gart in sysvm aperture 240 * 241 * @adev: amdgpu device structure holding all necessary information 242 * @mc: memory controller structure holding memory information 243 * 244 * This function is only used if use GART for FB translation. In such 245 * case, we use sysvm aperture (vmid0 page tables) for both vram 246 * and gart (aka system memory) access. 247 * 248 * GPUVM (and our organization of vmid0 page tables) require sysvm 249 * aperture to be placed at a location aligned with 8 times of native 250 * page size. For example, if vm_context0_cntl.page_table_block_size 251 * is 12, then native page size is 8G (2M*2^12), sysvm should start 252 * with a 64G aligned address. For simplicity, we just put sysvm at 253 * address 0. So vram start at address 0 and gart is right after vram. 254 */ 255 void amdgpu_gmc_sysvm_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc) 256 { 257 u64 hive_vram_start = 0; 258 u64 hive_vram_end = mc->xgmi.node_segment_size * mc->xgmi.num_physical_nodes - 1; 259 mc->vram_start = mc->xgmi.node_segment_size * mc->xgmi.physical_node_id; 260 mc->vram_end = mc->vram_start + mc->xgmi.node_segment_size - 1; 261 /* node_segment_size may not 4GB aligned on SRIOV, align up is needed. */ 262 mc->gart_start = ALIGN(hive_vram_end + 1, four_gb); 263 mc->gart_end = mc->gart_start + mc->gart_size - 1; 264 if (amdgpu_virt_xgmi_migrate_enabled(adev)) { 265 /* set mc->vram_start to 0 to switch the returned GPU address of 266 * amdgpu_bo_create_reserved() from FB aperture to GART aperture. 267 */ 268 mc->vram_start = 0; 269 mc->vram_end = mc->vram_start + mc->mc_vram_size - 1; 270 mc->visible_vram_size = min(mc->visible_vram_size, mc->real_vram_size); 271 } else { 272 mc->fb_start = hive_vram_start; 273 mc->fb_end = hive_vram_end; 274 } 275 dev_info(adev->dev, "VRAM: %lluM 0x%016llX - 0x%016llX (%lluM used)\n", 276 mc->mc_vram_size >> 20, mc->vram_start, 277 mc->vram_end, mc->real_vram_size >> 20); 278 dev_info(adev->dev, "GART: %lluM 0x%016llX - 0x%016llX\n", 279 mc->gart_size >> 20, mc->gart_start, mc->gart_end); 280 } 281 282 /** 283 * amdgpu_gmc_gart_location - try to find GART location 284 * 285 * @adev: amdgpu device structure holding all necessary information 286 * @mc: memory controller structure holding memory information 287 * @gart_placement: GART placement policy with respect to VRAM 288 * 289 * Function will try to place GART before or after VRAM. 290 * If GART size is bigger than space left then we ajust GART size. 291 * Thus function will never fails. 292 */ 293 void amdgpu_gmc_gart_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc, 294 enum amdgpu_gart_placement gart_placement) 295 { 296 u64 size_af, size_bf; 297 /*To avoid the hole, limit the max mc address to AMDGPU_GMC_HOLE_START*/ 298 u64 max_mc_address = min(adev->gmc.mc_mask, AMDGPU_GMC_HOLE_START - 1); 299 300 /* VCE doesn't like it when BOs cross a 4GB segment, so align 301 * the GART base on a 4GB boundary as well. 302 */ 303 size_bf = mc->fb_start; 304 size_af = max_mc_address + 1 - ALIGN(mc->fb_end + 1, four_gb); 305 306 if (mc->gart_size > max(size_bf, size_af)) { 307 dev_warn(adev->dev, "limiting GART\n"); 308 mc->gart_size = max(size_bf, size_af); 309 } 310 311 switch (gart_placement) { 312 case AMDGPU_GART_PLACEMENT_HIGH: 313 mc->gart_start = max_mc_address - mc->gart_size + 1; 314 break; 315 case AMDGPU_GART_PLACEMENT_LOW: 316 mc->gart_start = 0; 317 break; 318 case AMDGPU_GART_PLACEMENT_BEST_FIT: 319 default: 320 if ((size_bf >= mc->gart_size && size_bf < size_af) || 321 (size_af < mc->gart_size)) 322 mc->gart_start = 0; 323 else 324 mc->gart_start = max_mc_address - mc->gart_size + 1; 325 break; 326 } 327 328 mc->gart_start &= ~(four_gb - 1); 329 mc->gart_end = mc->gart_start + mc->gart_size - 1; 330 dev_info(adev->dev, "GART: %lluM 0x%016llX - 0x%016llX\n", 331 mc->gart_size >> 20, mc->gart_start, mc->gart_end); 332 } 333 334 /** 335 * amdgpu_gmc_agp_location - try to find AGP location 336 * @adev: amdgpu device structure holding all necessary information 337 * @mc: memory controller structure holding memory information 338 * 339 * Function will place try to find a place for the AGP BAR in the MC address 340 * space. 341 * 342 * AGP BAR will be assigned the largest available hole in the address space. 343 * Should be called after VRAM and GART locations are setup. 344 */ 345 void amdgpu_gmc_agp_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc) 346 { 347 const uint64_t sixteen_gb = 1ULL << 34; 348 const uint64_t sixteen_gb_mask = ~(sixteen_gb - 1); 349 u64 size_af, size_bf; 350 351 if (mc->fb_start > mc->gart_start) { 352 size_bf = (mc->fb_start & sixteen_gb_mask) - 353 ALIGN(mc->gart_end + 1, sixteen_gb); 354 size_af = mc->mc_mask + 1 - ALIGN(mc->fb_end + 1, sixteen_gb); 355 } else { 356 size_bf = mc->fb_start & sixteen_gb_mask; 357 size_af = (mc->gart_start & sixteen_gb_mask) - 358 ALIGN(mc->fb_end + 1, sixteen_gb); 359 } 360 361 if (size_bf > size_af) { 362 mc->agp_start = (mc->fb_start - size_bf) & sixteen_gb_mask; 363 mc->agp_size = size_bf; 364 } else { 365 mc->agp_start = ALIGN(mc->fb_end + 1, sixteen_gb); 366 mc->agp_size = size_af; 367 } 368 369 mc->agp_end = mc->agp_start + mc->agp_size - 1; 370 dev_info(adev->dev, "AGP: %lluM 0x%016llX - 0x%016llX\n", 371 mc->agp_size >> 20, mc->agp_start, mc->agp_end); 372 } 373 374 /** 375 * amdgpu_gmc_set_agp_default - Set the default AGP aperture value. 376 * @adev: amdgpu device structure holding all necessary information 377 * @mc: memory controller structure holding memory information 378 * 379 * To disable the AGP aperture, you need to set the start to a larger 380 * value than the end. This function sets the default value which 381 * can then be overridden using amdgpu_gmc_agp_location() if you want 382 * to enable the AGP aperture on a specific chip. 383 * 384 */ 385 void amdgpu_gmc_set_agp_default(struct amdgpu_device *adev, 386 struct amdgpu_gmc *mc) 387 { 388 mc->agp_start = 0xffffffffffff; 389 mc->agp_end = 0; 390 mc->agp_size = 0; 391 } 392 393 /** 394 * amdgpu_gmc_fault_key - get hask key from vm fault address and pasid 395 * 396 * @addr: 48 bit physical address, page aligned (36 significant bits) 397 * @pasid: 16 bit process address space identifier 398 */ 399 static inline uint64_t amdgpu_gmc_fault_key(uint64_t addr, uint16_t pasid) 400 { 401 return addr << 4 | pasid; 402 } 403 404 /** 405 * amdgpu_gmc_filter_faults - filter VM faults 406 * 407 * @adev: amdgpu device structure 408 * @ih: interrupt ring that the fault received from 409 * @addr: address of the VM fault 410 * @pasid: PASID of the process causing the fault 411 * @timestamp: timestamp of the fault 412 * 413 * Returns: 414 * True if the fault was filtered and should not be processed further. 415 * False if the fault is a new one and needs to be handled. 416 */ 417 bool amdgpu_gmc_filter_faults(struct amdgpu_device *adev, 418 struct amdgpu_ih_ring *ih, uint64_t addr, 419 uint16_t pasid, uint64_t timestamp) 420 { 421 struct amdgpu_gmc *gmc = &adev->gmc; 422 uint64_t stamp, key = amdgpu_gmc_fault_key(addr, pasid); 423 struct amdgpu_gmc_fault *fault; 424 uint32_t hash; 425 426 /* Stale retry fault if timestamp goes backward */ 427 if (amdgpu_ih_ts_after(timestamp, ih->processed_timestamp)) 428 return true; 429 430 /* If we don't have space left in the ring buffer return immediately */ 431 stamp = max(timestamp, AMDGPU_GMC_FAULT_TIMEOUT + 1) - 432 AMDGPU_GMC_FAULT_TIMEOUT; 433 if (gmc->fault_ring[gmc->last_fault].timestamp >= stamp) 434 return true; 435 436 /* Try to find the fault in the hash */ 437 hash = hash_64(key, AMDGPU_GMC_FAULT_HASH_ORDER); 438 fault = &gmc->fault_ring[gmc->fault_hash[hash].idx]; 439 while (fault->timestamp >= stamp) { 440 uint64_t tmp; 441 442 if (atomic64_read(&fault->key) == key) { 443 /* 444 * if we get a fault which is already present in 445 * the fault_ring and the timestamp of 446 * the fault is after the expired timestamp, 447 * then this is a new fault that needs to be added 448 * into the fault ring. 449 */ 450 if (fault->timestamp_expiry != 0 && 451 amdgpu_ih_ts_after(fault->timestamp_expiry, 452 timestamp)) 453 break; 454 else 455 return true; 456 } 457 458 tmp = fault->timestamp; 459 fault = &gmc->fault_ring[fault->next]; 460 461 /* Check if the entry was reused */ 462 if (fault->timestamp >= tmp) 463 break; 464 } 465 466 /* Add the fault to the ring */ 467 fault = &gmc->fault_ring[gmc->last_fault]; 468 atomic64_set(&fault->key, key); 469 fault->timestamp = timestamp; 470 471 /* And update the hash */ 472 fault->next = gmc->fault_hash[hash].idx; 473 gmc->fault_hash[hash].idx = gmc->last_fault++; 474 return false; 475 } 476 477 /** 478 * amdgpu_gmc_filter_faults_remove - remove address from VM faults filter 479 * 480 * @adev: amdgpu device structure 481 * @addr: address of the VM fault 482 * @pasid: PASID of the process causing the fault 483 * 484 * Remove the address from fault filter, then future vm fault on this address 485 * will pass to retry fault handler to recover. 486 */ 487 void amdgpu_gmc_filter_faults_remove(struct amdgpu_device *adev, uint64_t addr, 488 uint16_t pasid) 489 { 490 struct amdgpu_gmc *gmc = &adev->gmc; 491 uint64_t key = amdgpu_gmc_fault_key(addr, pasid); 492 struct amdgpu_ih_ring *ih; 493 struct amdgpu_gmc_fault *fault; 494 uint32_t last_wptr; 495 uint64_t last_ts; 496 uint32_t hash; 497 uint64_t tmp; 498 499 if (adev->irq.retry_cam_enabled) 500 return; 501 502 ih = &adev->irq.ih1; 503 /* Get the WPTR of the last entry in IH ring */ 504 last_wptr = amdgpu_ih_get_wptr(adev, ih); 505 /* Order wptr with ring data. */ 506 rmb(); 507 /* Get the timetamp of the last entry in IH ring */ 508 last_ts = amdgpu_ih_decode_iv_ts(adev, ih, last_wptr, -1); 509 510 hash = hash_64(key, AMDGPU_GMC_FAULT_HASH_ORDER); 511 fault = &gmc->fault_ring[gmc->fault_hash[hash].idx]; 512 do { 513 if (atomic64_read(&fault->key) == key) { 514 /* 515 * Update the timestamp when this fault 516 * expired. 517 */ 518 fault->timestamp_expiry = last_ts; 519 break; 520 } 521 522 tmp = fault->timestamp; 523 fault = &gmc->fault_ring[fault->next]; 524 } while (fault->timestamp < tmp); 525 } 526 527 int amdgpu_gmc_handle_retry_fault(struct amdgpu_device *adev, 528 struct amdgpu_iv_entry *entry, 529 u64 addr, 530 u32 cam_index, 531 u32 node_id, 532 bool write_fault) 533 { 534 int ret; 535 536 if (adev->irq.retry_cam_enabled) { 537 /* Delegate it to a different ring if the hardware hasn't 538 * already done it. 539 */ 540 if (entry->ih == &adev->irq.ih) { 541 amdgpu_irq_delegate(adev, entry, 8); 542 return 1; 543 } 544 545 ret = amdgpu_vm_handle_fault(adev, entry->pasid, entry->vmid, node_id, 546 addr, entry->timestamp, write_fault); 547 WDOORBELL32(adev->irq.retry_cam_doorbell_index, cam_index); 548 if (ret) 549 return 1; 550 } else { 551 /* Process it only if it's the first fault for this address */ 552 if (entry->ih != &adev->irq.ih_soft && 553 amdgpu_gmc_filter_faults(adev, entry->ih, addr, entry->pasid, 554 entry->timestamp)) 555 return 1; 556 557 /* Delegate it to a different ring if the hardware hasn't 558 * already done it. 559 */ 560 if (entry->ih == &adev->irq.ih) { 561 amdgpu_irq_delegate(adev, entry, 8); 562 return 1; 563 } 564 565 /* Try to handle the recoverable page faults by filling page 566 * tables 567 */ 568 if (amdgpu_vm_handle_fault(adev, entry->pasid, entry->vmid, node_id, 569 addr, entry->timestamp, write_fault)) 570 return 1; 571 } 572 return 0; 573 } 574 575 int amdgpu_gmc_ras_sw_init(struct amdgpu_device *adev) 576 { 577 int r; 578 579 /* umc ras block */ 580 r = amdgpu_umc_ras_sw_init(adev); 581 if (r) 582 return r; 583 584 /* mmhub ras block */ 585 r = amdgpu_mmhub_ras_sw_init(adev); 586 if (r) 587 return r; 588 589 /* hdp ras block */ 590 r = amdgpu_hdp_ras_sw_init(adev); 591 if (r) 592 return r; 593 594 /* mca.x ras block */ 595 r = amdgpu_mca_mp0_ras_sw_init(adev); 596 if (r) 597 return r; 598 599 r = amdgpu_mca_mp1_ras_sw_init(adev); 600 if (r) 601 return r; 602 603 r = amdgpu_mca_mpio_ras_sw_init(adev); 604 if (r) 605 return r; 606 607 /* xgmi ras block */ 608 r = amdgpu_xgmi_ras_sw_init(adev); 609 if (r) 610 return r; 611 612 return 0; 613 } 614 615 int amdgpu_gmc_ras_late_init(struct amdgpu_device *adev) 616 { 617 return 0; 618 } 619 620 void amdgpu_gmc_ras_fini(struct amdgpu_device *adev) 621 { 622 623 } 624 625 /* 626 * The latest engine allocation on gfx9/10 is: 627 * Engine 2, 3: firmware 628 * Engine 0, 1, 4~16: amdgpu ring, 629 * subject to change when ring number changes 630 * Engine 17: Gart flushes 631 */ 632 #define AMDGPU_VMHUB_INV_ENG_BITMAP 0x1FFF3 633 634 int amdgpu_gmc_allocate_vm_inv_eng(struct amdgpu_device *adev) 635 { 636 struct amdgpu_ring *ring; 637 unsigned vm_inv_engs[AMDGPU_MAX_VMHUBS] = {0}; 638 unsigned i; 639 unsigned vmhub, inv_eng; 640 struct amdgpu_ring *shared_ring; 641 642 /* init the vm inv eng for all vmhubs */ 643 for_each_set_bit(i, adev->vmhubs_mask, AMDGPU_MAX_VMHUBS) { 644 vm_inv_engs[i] = AMDGPU_VMHUB_INV_ENG_BITMAP; 645 /* reserve engine 5 for firmware */ 646 if (adev->enable_mes) 647 vm_inv_engs[i] &= ~(1 << 5); 648 /* reserve engine 6 for uni mes */ 649 if (adev->enable_uni_mes) 650 vm_inv_engs[i] &= ~(1 << 6); 651 /* reserve mmhub engine 3 for firmware */ 652 if (adev->enable_umsch_mm) 653 vm_inv_engs[i] &= ~(1 << 3); 654 } 655 656 for (i = 0; i < adev->num_rings; ++i) { 657 ring = adev->rings[i]; 658 vmhub = ring->vm_hub; 659 660 if (ring == &adev->mes.ring[0] || 661 ring == &adev->mes.ring[1] || 662 ring == &adev->umsch_mm.ring || 663 ring == &adev->cper.ring_buf) 664 continue; 665 666 /* Skip if the ring is a shared ring */ 667 if (amdgpu_sdma_is_shared_inv_eng(adev, ring)) 668 continue; 669 670 inv_eng = ffs(vm_inv_engs[vmhub]); 671 if (!inv_eng) { 672 dev_err(adev->dev, "no VM inv eng for ring %s\n", 673 ring->name); 674 return -EINVAL; 675 } 676 677 ring->vm_inv_eng = inv_eng - 1; 678 vm_inv_engs[vmhub] &= ~(1 << ring->vm_inv_eng); 679 680 dev_info(adev->dev, "ring %s uses VM inv eng %u on hub %u\n", 681 ring->name, ring->vm_inv_eng, ring->vm_hub); 682 /* SDMA has a special packet which allows it to use the same 683 * invalidation engine for all the rings in one instance. 684 * Therefore, we do not allocate a separate VM invalidation engine 685 * for SDMA page rings. Instead, they share the VM invalidation 686 * engine with the SDMA gfx ring. This change ensures efficient 687 * resource management and avoids the issue of insufficient VM 688 * invalidation engines. 689 */ 690 shared_ring = amdgpu_sdma_get_shared_ring(adev, ring); 691 if (shared_ring) { 692 shared_ring->vm_inv_eng = ring->vm_inv_eng; 693 dev_info(adev->dev, "ring %s shares VM invalidation engine %u with ring %s on hub %u\n", 694 ring->name, ring->vm_inv_eng, shared_ring->name, ring->vm_hub); 695 continue; 696 } 697 } 698 699 return 0; 700 } 701 702 void amdgpu_gmc_flush_gpu_tlb(struct amdgpu_device *adev, uint32_t vmid, 703 uint32_t vmhub, uint32_t flush_type) 704 { 705 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 706 struct amdgpu_vmhub *hub = &adev->vmhub[vmhub]; 707 struct dma_fence *fence; 708 struct amdgpu_job *job; 709 int r; 710 711 if (!hub->sdma_invalidation_workaround || vmid || 712 !adev->mman.buffer_funcs_enabled || !adev->ib_pool_ready || 713 !ring->sched.ready) { 714 /* 715 * A GPU reset should flush all TLBs anyway, so no need to do 716 * this while one is ongoing. 717 */ 718 if (!down_read_trylock(&adev->reset_domain->sem)) 719 return; 720 721 if (adev->gmc.flush_tlb_needs_extra_type_2) 722 adev->gmc.gmc_funcs->flush_gpu_tlb(adev, vmid, 723 vmhub, 2); 724 725 if (adev->gmc.flush_tlb_needs_extra_type_0 && flush_type == 2) 726 adev->gmc.gmc_funcs->flush_gpu_tlb(adev, vmid, 727 vmhub, 0); 728 729 adev->gmc.gmc_funcs->flush_gpu_tlb(adev, vmid, vmhub, 730 flush_type); 731 up_read(&adev->reset_domain->sem); 732 return; 733 } 734 735 /* The SDMA on Navi 1x has a bug which can theoretically result in memory 736 * corruption if an invalidation happens at the same time as an VA 737 * translation. Avoid this by doing the invalidation from the SDMA 738 * itself at least for GART. 739 */ 740 mutex_lock(&adev->mman.gtt_window_lock); 741 r = amdgpu_job_alloc_with_ib(ring->adev, &adev->mman.default_entity.base, 742 AMDGPU_FENCE_OWNER_UNDEFINED, 743 16 * 4, AMDGPU_IB_POOL_IMMEDIATE, 744 &job, AMDGPU_KERNEL_JOB_ID_FLUSH_GPU_TLB); 745 if (r) 746 goto error_alloc; 747 748 job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gart.bo); 749 job->vm_needs_flush = true; 750 job->ibs->ptr[job->ibs->length_dw++] = ring->funcs->nop; 751 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 752 fence = amdgpu_job_submit(job); 753 mutex_unlock(&adev->mman.gtt_window_lock); 754 755 dma_fence_wait(fence, false); 756 dma_fence_put(fence); 757 758 return; 759 760 error_alloc: 761 mutex_unlock(&adev->mman.gtt_window_lock); 762 dev_err(adev->dev, "Error flushing GPU TLB using the SDMA (%d)!\n", r); 763 } 764 765 int amdgpu_gmc_flush_gpu_tlb_pasid(struct amdgpu_device *adev, uint16_t pasid, 766 uint32_t flush_type, bool all_hub, 767 uint32_t inst) 768 { 769 struct amdgpu_ring *ring = &adev->gfx.kiq[inst].ring; 770 struct amdgpu_kiq *kiq = &adev->gfx.kiq[inst]; 771 unsigned int ndw; 772 int r, cnt = 0; 773 uint32_t seq; 774 775 /* 776 * A GPU reset should flush all TLBs anyway, so no need to do 777 * this while one is ongoing. 778 */ 779 if (!down_read_trylock(&adev->reset_domain->sem)) 780 return 0; 781 782 if (!adev->gmc.flush_pasid_uses_kiq || !ring->sched.ready) { 783 if (adev->gmc.flush_tlb_needs_extra_type_2) 784 adev->gmc.gmc_funcs->flush_gpu_tlb_pasid(adev, pasid, 785 2, all_hub, 786 inst); 787 788 if (adev->gmc.flush_tlb_needs_extra_type_0 && flush_type == 2) 789 adev->gmc.gmc_funcs->flush_gpu_tlb_pasid(adev, pasid, 790 0, all_hub, 791 inst); 792 793 adev->gmc.gmc_funcs->flush_gpu_tlb_pasid(adev, pasid, 794 flush_type, all_hub, 795 inst); 796 r = 0; 797 } else { 798 /* 2 dwords flush + 8 dwords fence */ 799 ndw = kiq->pmf->invalidate_tlbs_size + 8; 800 801 if (adev->gmc.flush_tlb_needs_extra_type_2) 802 ndw += kiq->pmf->invalidate_tlbs_size; 803 804 if (adev->gmc.flush_tlb_needs_extra_type_0) 805 ndw += kiq->pmf->invalidate_tlbs_size; 806 807 spin_lock(&adev->gfx.kiq[inst].ring_lock); 808 r = amdgpu_ring_alloc(ring, ndw); 809 if (r) { 810 spin_unlock(&adev->gfx.kiq[inst].ring_lock); 811 goto error_unlock_reset; 812 } 813 if (adev->gmc.flush_tlb_needs_extra_type_2) 814 kiq->pmf->kiq_invalidate_tlbs(ring, pasid, 2, all_hub); 815 816 if (flush_type == 2 && adev->gmc.flush_tlb_needs_extra_type_0) 817 kiq->pmf->kiq_invalidate_tlbs(ring, pasid, 0, all_hub); 818 819 kiq->pmf->kiq_invalidate_tlbs(ring, pasid, flush_type, all_hub); 820 r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT); 821 if (r) { 822 amdgpu_ring_undo(ring); 823 spin_unlock(&adev->gfx.kiq[inst].ring_lock); 824 goto error_unlock_reset; 825 } 826 827 amdgpu_ring_commit(ring); 828 spin_unlock(&adev->gfx.kiq[inst].ring_lock); 829 830 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); 831 832 might_sleep(); 833 while (r < 1 && cnt++ < MAX_KIQ_REG_TRY && 834 !amdgpu_reset_pending(adev->reset_domain)) { 835 msleep(MAX_KIQ_REG_BAILOUT_INTERVAL); 836 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); 837 } 838 839 if (cnt > MAX_KIQ_REG_TRY) { 840 dev_err(adev->dev, "timeout waiting for kiq fence\n"); 841 r = -ETIME; 842 } else 843 r = 0; 844 } 845 846 error_unlock_reset: 847 up_read(&adev->reset_domain->sem); 848 return r; 849 } 850 851 void amdgpu_gmc_fw_reg_write_reg_wait(struct amdgpu_device *adev, 852 uint32_t reg0, uint32_t reg1, 853 uint32_t ref, uint32_t mask, 854 uint32_t xcc_inst) 855 { 856 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_inst]; 857 struct amdgpu_ring *ring = &kiq->ring; 858 signed long r, cnt = 0; 859 unsigned long flags; 860 uint32_t seq; 861 862 if (adev->mes.ring[MES_PIPE_INST(xcc_inst, 0)].sched.ready) { 863 amdgpu_mes_reg_write_reg_wait(adev, reg0, reg1, 864 ref, mask, xcc_inst); 865 return; 866 } 867 868 spin_lock_irqsave(&kiq->ring_lock, flags); 869 amdgpu_ring_alloc(ring, 32); 870 amdgpu_ring_emit_reg_write_reg_wait(ring, reg0, reg1, 871 ref, mask); 872 r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT); 873 if (r) 874 goto failed_undo; 875 876 amdgpu_ring_commit(ring); 877 spin_unlock_irqrestore(&kiq->ring_lock, flags); 878 879 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); 880 881 /* don't wait anymore for IRQ context */ 882 if (r < 1 && in_interrupt()) 883 goto failed_kiq; 884 885 might_sleep(); 886 while (r < 1 && cnt++ < MAX_KIQ_REG_TRY && 887 !amdgpu_reset_pending(adev->reset_domain)) { 888 889 msleep(MAX_KIQ_REG_BAILOUT_INTERVAL); 890 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); 891 } 892 893 if (cnt > MAX_KIQ_REG_TRY) 894 goto failed_kiq; 895 896 return; 897 898 failed_undo: 899 amdgpu_ring_undo(ring); 900 spin_unlock_irqrestore(&kiq->ring_lock, flags); 901 failed_kiq: 902 dev_err(adev->dev, "failed to write reg %x wait reg %x\n", reg0, reg1); 903 } 904 905 /** 906 * amdgpu_gmc_tmz_set -- check and set if a device supports TMZ 907 * @adev: amdgpu_device pointer 908 * 909 * Check and set if an the device @adev supports Trusted Memory 910 * Zones (TMZ). 911 */ 912 void amdgpu_gmc_tmz_set(struct amdgpu_device *adev) 913 { 914 switch (amdgpu_ip_version(adev, GC_HWIP, 0)) { 915 /* RAVEN */ 916 case IP_VERSION(9, 2, 2): 917 case IP_VERSION(9, 1, 0): 918 /* RENOIR looks like RAVEN */ 919 case IP_VERSION(9, 3, 0): 920 /* GC 10.3.7 */ 921 case IP_VERSION(10, 3, 7): 922 /* GC 11.0.1 */ 923 case IP_VERSION(11, 0, 1): 924 if (amdgpu_tmz == 0) { 925 adev->gmc.tmz_enabled = false; 926 dev_info(adev->dev, 927 "Trusted Memory Zone (TMZ) feature disabled (cmd line)\n"); 928 } else { 929 adev->gmc.tmz_enabled = true; 930 dev_info(adev->dev, 931 "Trusted Memory Zone (TMZ) feature enabled\n"); 932 } 933 break; 934 case IP_VERSION(10, 1, 10): 935 case IP_VERSION(10, 1, 1): 936 case IP_VERSION(10, 1, 2): 937 case IP_VERSION(10, 1, 3): 938 case IP_VERSION(10, 3, 0): 939 case IP_VERSION(10, 3, 2): 940 case IP_VERSION(10, 3, 4): 941 case IP_VERSION(10, 3, 5): 942 case IP_VERSION(10, 3, 6): 943 /* VANGOGH */ 944 case IP_VERSION(10, 3, 1): 945 /* YELLOW_CARP*/ 946 case IP_VERSION(10, 3, 3): 947 case IP_VERSION(11, 0, 4): 948 case IP_VERSION(11, 5, 0): 949 case IP_VERSION(11, 5, 1): 950 case IP_VERSION(11, 5, 2): 951 case IP_VERSION(11, 5, 3): 952 case IP_VERSION(11, 5, 4): 953 /* Don't enable it by default yet. 954 */ 955 if (amdgpu_tmz < 1) { 956 adev->gmc.tmz_enabled = false; 957 dev_info(adev->dev, 958 "Trusted Memory Zone (TMZ) feature disabled as experimental (default)\n"); 959 } else { 960 adev->gmc.tmz_enabled = true; 961 dev_info(adev->dev, 962 "Trusted Memory Zone (TMZ) feature enabled as experimental (cmd line)\n"); 963 } 964 break; 965 default: 966 adev->gmc.tmz_enabled = false; 967 dev_info(adev->dev, 968 "Trusted Memory Zone (TMZ) feature not supported\n"); 969 break; 970 } 971 } 972 973 /** 974 * amdgpu_gmc_noretry_set -- set per asic noretry defaults 975 * @adev: amdgpu_device pointer 976 * 977 * Set a per asic default for the no-retry parameter. 978 * 979 */ 980 void amdgpu_gmc_noretry_set(struct amdgpu_device *adev) 981 { 982 struct amdgpu_gmc *gmc = &adev->gmc; 983 uint32_t gc_ver = amdgpu_ip_version(adev, GC_HWIP, 0); 984 bool noretry_default = (gc_ver == IP_VERSION(9, 0, 1) || 985 gc_ver == IP_VERSION(9, 4, 0) || 986 gc_ver == IP_VERSION(9, 4, 1) || 987 gc_ver == IP_VERSION(9, 4, 2) || 988 gc_ver == IP_VERSION(9, 4, 3) || 989 gc_ver == IP_VERSION(9, 4, 4) || 990 gc_ver == IP_VERSION(9, 5, 0) || 991 gc_ver >= IP_VERSION(10, 3, 0)); 992 993 if (!amdgpu_sriov_xnack_support(adev)) 994 gmc->noretry = 1; 995 else 996 gmc->noretry = (amdgpu_noretry == -1) ? noretry_default : amdgpu_noretry; 997 } 998 999 void amdgpu_gmc_set_vm_fault_masks(struct amdgpu_device *adev, int hub_type, 1000 bool enable) 1001 { 1002 struct amdgpu_vmhub *hub; 1003 u32 tmp, reg, i; 1004 1005 hub = &adev->vmhub[hub_type]; 1006 for (i = 0; i < 16; i++) { 1007 reg = hub->vm_context0_cntl + hub->ctx_distance * i; 1008 1009 tmp = (hub_type == AMDGPU_GFXHUB(0)) ? 1010 RREG32_SOC15_IP(GC, reg) : 1011 RREG32_SOC15_IP(MMHUB, reg); 1012 1013 if (enable) 1014 tmp |= hub->vm_cntx_cntl_vm_fault; 1015 else 1016 tmp &= ~hub->vm_cntx_cntl_vm_fault; 1017 1018 (hub_type == AMDGPU_GFXHUB(0)) ? 1019 WREG32_SOC15_IP(GC, reg, tmp) : 1020 WREG32_SOC15_IP(MMHUB, reg, tmp); 1021 } 1022 } 1023 1024 void amdgpu_gmc_get_vbios_allocations(struct amdgpu_device *adev) 1025 { 1026 unsigned size; 1027 1028 /* 1029 * Some ASICs need to reserve a region of video memory to avoid access 1030 * from driver 1031 */ 1032 adev->mman.stolen_reserved_offset = 0; 1033 adev->mman.stolen_reserved_size = 0; 1034 1035 /* 1036 * TODO: 1037 * Currently there is a bug where some memory client outside 1038 * of the driver writes to first 8M of VRAM on S3 resume, 1039 * this overrides GART which by default gets placed in first 8M and 1040 * causes VM_FAULTS once GTT is accessed. 1041 * Keep the stolen memory reservation until the while this is not solved. 1042 */ 1043 switch (adev->asic_type) { 1044 case CHIP_VEGA10: 1045 adev->mman.keep_stolen_vga_memory = true; 1046 /* 1047 * VEGA10 SRIOV VF with MS_HYPERV host needs some firmware reserved area. 1048 */ 1049 #ifdef CONFIG_X86 1050 if (amdgpu_sriov_vf(adev) && hypervisor_is_type(X86_HYPER_MS_HYPERV)) { 1051 adev->mman.stolen_reserved_offset = 0x500000; 1052 adev->mman.stolen_reserved_size = 0x200000; 1053 } 1054 #endif 1055 break; 1056 case CHIP_RAVEN: 1057 case CHIP_RENOIR: 1058 adev->mman.keep_stolen_vga_memory = true; 1059 break; 1060 default: 1061 adev->mman.keep_stolen_vga_memory = false; 1062 break; 1063 } 1064 1065 if (amdgpu_sriov_vf(adev) || 1066 !amdgpu_device_has_display_hardware(adev)) { 1067 size = 0; 1068 } else { 1069 size = amdgpu_gmc_get_vbios_fb_size(adev); 1070 1071 if (adev->mman.keep_stolen_vga_memory) 1072 size = max(size, (unsigned)AMDGPU_VBIOS_VGA_ALLOCATION); 1073 } 1074 1075 /* set to 0 if the pre-OS buffer uses up most of vram */ 1076 if ((adev->gmc.real_vram_size - size) < (8 * 1024 * 1024)) 1077 size = 0; 1078 1079 if (size > AMDGPU_VBIOS_VGA_ALLOCATION) { 1080 adev->mman.stolen_vga_size = AMDGPU_VBIOS_VGA_ALLOCATION; 1081 adev->mman.stolen_extended_size = size - adev->mman.stolen_vga_size; 1082 } else { 1083 adev->mman.stolen_vga_size = size; 1084 adev->mman.stolen_extended_size = 0; 1085 } 1086 } 1087 1088 /** 1089 * amdgpu_gmc_init_pdb0 - initialize PDB0 1090 * 1091 * @adev: amdgpu_device pointer 1092 * 1093 * This function is only used when GART page table is used 1094 * for FB address translatioin. In such a case, we construct 1095 * a 2-level system VM page table: PDB0->PTB, to cover both 1096 * VRAM of the hive and system memory. 1097 * 1098 * PDB0 is static, initialized once on driver initialization. 1099 * The first n entries of PDB0 are used as PTE by setting 1100 * P bit to 1, pointing to VRAM. The n+1'th entry points 1101 * to a big PTB covering system memory. 1102 * 1103 */ 1104 void amdgpu_gmc_init_pdb0(struct amdgpu_device *adev) 1105 { 1106 int i; 1107 uint64_t flags = adev->gart.gart_pte_flags; //TODO it is UC. explore NC/RW? 1108 /* Each PDE0 (used as PTE) covers (2^vmid0_page_table_block_size)*2M 1109 */ 1110 u64 vram_size = adev->gmc.xgmi.node_segment_size * adev->gmc.xgmi.num_physical_nodes; 1111 u64 pde0_page_size = (1ULL<<adev->gmc.vmid0_page_table_block_size)<<21; 1112 u64 vram_addr, vram_end; 1113 u64 gart_ptb_gpu_pa = amdgpu_gmc_vram_pa(adev, adev->gart.bo); 1114 int idx; 1115 1116 if (!drm_dev_enter(adev_to_drm(adev), &idx)) 1117 return; 1118 1119 flags |= AMDGPU_PTE_VALID | AMDGPU_PTE_READABLE; 1120 flags |= AMDGPU_PTE_WRITEABLE; 1121 flags |= AMDGPU_PTE_SNOOPED; 1122 flags |= AMDGPU_PTE_FRAG((adev->gmc.vmid0_page_table_block_size + 9*1)); 1123 flags |= AMDGPU_PDE_PTE_FLAG(adev); 1124 1125 vram_addr = adev->vm_manager.vram_base_offset; 1126 if (!amdgpu_virt_xgmi_migrate_enabled(adev)) 1127 vram_addr -= adev->gmc.xgmi.physical_node_id * adev->gmc.xgmi.node_segment_size; 1128 vram_end = vram_addr + vram_size; 1129 1130 /* The first n PDE0 entries are used as PTE, 1131 * pointing to vram 1132 */ 1133 for (i = 0; vram_addr < vram_end; i++, vram_addr += pde0_page_size) 1134 amdgpu_gmc_set_pte_pde(adev, adev->gmc.ptr_pdb0, i, vram_addr, flags); 1135 1136 /* The n+1'th PDE0 entry points to a huge 1137 * PTB who has more than 512 entries each 1138 * pointing to a 4K system page 1139 */ 1140 flags = AMDGPU_PTE_VALID; 1141 flags |= AMDGPU_PTE_SNOOPED | AMDGPU_PDE_BFS_FLAG(adev, 0); 1142 /* Requires gart_ptb_gpu_pa to be 4K aligned */ 1143 amdgpu_gmc_set_pte_pde(adev, adev->gmc.ptr_pdb0, i, gart_ptb_gpu_pa, flags); 1144 drm_dev_exit(idx); 1145 } 1146 1147 /** 1148 * amdgpu_gmc_vram_mc2pa - calculate vram buffer's physical address from MC 1149 * address 1150 * 1151 * @adev: amdgpu_device pointer 1152 * @mc_addr: MC address of buffer 1153 */ 1154 uint64_t amdgpu_gmc_vram_mc2pa(struct amdgpu_device *adev, uint64_t mc_addr) 1155 { 1156 return mc_addr - adev->gmc.vram_start + adev->vm_manager.vram_base_offset; 1157 } 1158 1159 /** 1160 * amdgpu_gmc_vram_pa - calculate vram buffer object's physical address from 1161 * GPU's view 1162 * 1163 * @adev: amdgpu_device pointer 1164 * @bo: amdgpu buffer object 1165 */ 1166 uint64_t amdgpu_gmc_vram_pa(struct amdgpu_device *adev, struct amdgpu_bo *bo) 1167 { 1168 return amdgpu_gmc_vram_mc2pa(adev, amdgpu_bo_gpu_offset(bo)); 1169 } 1170 1171 int amdgpu_gmc_vram_checking(struct amdgpu_device *adev) 1172 { 1173 struct amdgpu_bo *vram_bo = NULL; 1174 uint64_t vram_gpu = 0; 1175 void *vram_ptr = NULL; 1176 1177 int ret, size = 0x100000; 1178 uint8_t cptr[10]; 1179 1180 ret = amdgpu_bo_create_kernel(adev, size, PAGE_SIZE, 1181 AMDGPU_GEM_DOMAIN_VRAM, 1182 &vram_bo, 1183 &vram_gpu, 1184 &vram_ptr); 1185 if (ret) 1186 return ret; 1187 1188 memset(vram_ptr, 0x86, size); 1189 memset(cptr, 0x86, 10); 1190 1191 /** 1192 * Check the start, the mid, and the end of the memory if the content of 1193 * each byte is the pattern "0x86". If yes, we suppose the vram bo is 1194 * workable. 1195 * 1196 * Note: If check the each byte of whole 1M bo, it will cost too many 1197 * seconds, so here, we just pick up three parts for emulation. 1198 */ 1199 ret = memcmp(vram_ptr, cptr, 10); 1200 if (ret) { 1201 ret = -EIO; 1202 goto release_buffer; 1203 } 1204 1205 ret = memcmp(vram_ptr + (size / 2), cptr, 10); 1206 if (ret) { 1207 ret = -EIO; 1208 goto release_buffer; 1209 } 1210 1211 ret = memcmp(vram_ptr + size - 10, cptr, 10); 1212 if (ret) { 1213 ret = -EIO; 1214 goto release_buffer; 1215 } 1216 1217 release_buffer: 1218 amdgpu_bo_free_kernel(&vram_bo, &vram_gpu, 1219 &vram_ptr); 1220 1221 return ret; 1222 } 1223 1224 static const char *nps_desc[] = { 1225 [AMDGPU_NPS1_PARTITION_MODE] = "NPS1", 1226 [AMDGPU_NPS2_PARTITION_MODE] = "NPS2", 1227 [AMDGPU_NPS3_PARTITION_MODE] = "NPS3", 1228 [AMDGPU_NPS4_PARTITION_MODE] = "NPS4", 1229 [AMDGPU_NPS6_PARTITION_MODE] = "NPS6", 1230 [AMDGPU_NPS8_PARTITION_MODE] = "NPS8", 1231 }; 1232 1233 static ssize_t available_memory_partition_show(struct device *dev, 1234 struct device_attribute *addr, 1235 char *buf) 1236 { 1237 struct drm_device *ddev = dev_get_drvdata(dev); 1238 struct amdgpu_device *adev = drm_to_adev(ddev); 1239 int size = 0, mode; 1240 char *sep = ""; 1241 1242 for_each_inst(mode, adev->gmc.supported_nps_modes) { 1243 size += sysfs_emit_at(buf, size, "%s%s", sep, nps_desc[mode]); 1244 sep = ", "; 1245 } 1246 size += sysfs_emit_at(buf, size, "\n"); 1247 1248 return size; 1249 } 1250 1251 static ssize_t current_memory_partition_store(struct device *dev, 1252 struct device_attribute *attr, 1253 const char *buf, size_t count) 1254 { 1255 struct drm_device *ddev = dev_get_drvdata(dev); 1256 struct amdgpu_device *adev = drm_to_adev(ddev); 1257 enum amdgpu_memory_partition mode; 1258 struct amdgpu_hive_info *hive; 1259 int i; 1260 1261 mode = UNKNOWN_MEMORY_PARTITION_MODE; 1262 for_each_inst(i, adev->gmc.supported_nps_modes) { 1263 if (!strncasecmp(nps_desc[i], buf, strlen(nps_desc[i]))) { 1264 mode = i; 1265 break; 1266 } 1267 } 1268 1269 if (mode == UNKNOWN_MEMORY_PARTITION_MODE) 1270 return -EINVAL; 1271 1272 if (mode == adev->gmc.gmc_funcs->query_mem_partition_mode(adev)) { 1273 dev_info( 1274 adev->dev, 1275 "requested NPS mode is same as current NPS mode, skipping\n"); 1276 return count; 1277 } 1278 1279 /* If device is part of hive, all devices in the hive should request the 1280 * same mode. Hence store the requested mode in hive. 1281 */ 1282 hive = amdgpu_get_xgmi_hive(adev); 1283 if (hive) { 1284 atomic_set(&hive->requested_nps_mode, mode); 1285 amdgpu_put_xgmi_hive(hive); 1286 } else { 1287 adev->gmc.requested_nps_mode = mode; 1288 } 1289 1290 dev_info( 1291 adev->dev, 1292 "NPS mode change requested, please remove and reload the driver\n"); 1293 1294 return count; 1295 } 1296 1297 static ssize_t current_memory_partition_show( 1298 struct device *dev, struct device_attribute *addr, char *buf) 1299 { 1300 struct drm_device *ddev = dev_get_drvdata(dev); 1301 struct amdgpu_device *adev = drm_to_adev(ddev); 1302 enum amdgpu_memory_partition mode; 1303 1304 /* Only minimal precaution taken to reject requests while in reset */ 1305 if (amdgpu_in_reset(adev)) 1306 return -EPERM; 1307 1308 mode = adev->gmc.gmc_funcs->query_mem_partition_mode(adev); 1309 if ((mode >= ARRAY_SIZE(nps_desc)) || 1310 (BIT(mode) & AMDGPU_ALL_NPS_MASK) != BIT(mode)) 1311 return sysfs_emit(buf, "UNKNOWN\n"); 1312 1313 return sysfs_emit(buf, "%s\n", nps_desc[mode]); 1314 } 1315 1316 static DEVICE_ATTR_RW(current_memory_partition); 1317 static DEVICE_ATTR_RO(available_memory_partition); 1318 1319 int amdgpu_gmc_sysfs_init(struct amdgpu_device *adev) 1320 { 1321 bool nps_switch_support; 1322 int r = 0; 1323 1324 if (!adev->gmc.gmc_funcs->query_mem_partition_mode) 1325 return 0; 1326 1327 nps_switch_support = (hweight32(adev->gmc.supported_nps_modes & 1328 AMDGPU_ALL_NPS_MASK) > 1); 1329 if (!nps_switch_support) 1330 dev_attr_current_memory_partition.attr.mode &= 1331 ~(S_IWUSR | S_IWGRP | S_IWOTH); 1332 else 1333 r = device_create_file(adev->dev, 1334 &dev_attr_available_memory_partition); 1335 1336 if (r) 1337 return r; 1338 1339 return device_create_file(adev->dev, 1340 &dev_attr_current_memory_partition); 1341 } 1342 1343 void amdgpu_gmc_sysfs_fini(struct amdgpu_device *adev) 1344 { 1345 if (!adev->gmc.gmc_funcs->query_mem_partition_mode) 1346 return; 1347 1348 device_remove_file(adev->dev, &dev_attr_current_memory_partition); 1349 device_remove_file(adev->dev, &dev_attr_available_memory_partition); 1350 } 1351 1352 int amdgpu_gmc_get_nps_memranges(struct amdgpu_device *adev, 1353 struct amdgpu_mem_partition_info *mem_ranges, 1354 uint8_t *exp_ranges) 1355 { 1356 struct amdgpu_gmc_memrange *ranges; 1357 int range_cnt, ret, i, j; 1358 uint32_t nps_type; 1359 bool refresh; 1360 1361 if (!mem_ranges || !exp_ranges) 1362 return -EINVAL; 1363 1364 refresh = (adev->init_lvl->level != AMDGPU_INIT_LEVEL_MINIMAL_XGMI) && 1365 (adev->gmc.reset_flags & AMDGPU_GMC_INIT_RESET_NPS); 1366 ret = amdgpu_discovery_get_nps_info(adev, &nps_type, &ranges, 1367 &range_cnt, refresh); 1368 1369 if (ret) 1370 return ret; 1371 1372 /* TODO: For now, expect ranges and partition count to be the same. 1373 * Adjust if there are holes expected in any NPS domain. 1374 */ 1375 if (*exp_ranges && (range_cnt != *exp_ranges)) { 1376 dev_warn( 1377 adev->dev, 1378 "NPS config mismatch - expected ranges: %d discovery - nps mode: %d, nps ranges: %d", 1379 *exp_ranges, nps_type, range_cnt); 1380 ret = -EINVAL; 1381 goto err; 1382 } 1383 1384 for (i = 0; i < range_cnt; ++i) { 1385 if (ranges[i].base_address >= ranges[i].limit_address) { 1386 dev_warn( 1387 adev->dev, 1388 "Invalid NPS range - nps mode: %d, range[%d]: base: %llx limit: %llx", 1389 nps_type, i, ranges[i].base_address, 1390 ranges[i].limit_address); 1391 ret = -EINVAL; 1392 goto err; 1393 } 1394 1395 /* Check for overlaps, not expecting any now */ 1396 for (j = i - 1; j >= 0; j--) { 1397 if (max(ranges[j].base_address, 1398 ranges[i].base_address) <= 1399 min(ranges[j].limit_address, 1400 ranges[i].limit_address)) { 1401 dev_warn( 1402 adev->dev, 1403 "overlapping ranges detected [ %llx - %llx ] | [%llx - %llx]", 1404 ranges[j].base_address, 1405 ranges[j].limit_address, 1406 ranges[i].base_address, 1407 ranges[i].limit_address); 1408 ret = -EINVAL; 1409 goto err; 1410 } 1411 } 1412 1413 mem_ranges[i].range.fpfn = 1414 (ranges[i].base_address - 1415 adev->vm_manager.vram_base_offset) >> 1416 AMDGPU_GPU_PAGE_SHIFT; 1417 mem_ranges[i].range.lpfn = 1418 (ranges[i].limit_address - 1419 adev->vm_manager.vram_base_offset) >> 1420 AMDGPU_GPU_PAGE_SHIFT; 1421 mem_ranges[i].size = 1422 ranges[i].limit_address - ranges[i].base_address + 1; 1423 } 1424 1425 if (!*exp_ranges) 1426 *exp_ranges = range_cnt; 1427 err: 1428 kfree(ranges); 1429 1430 return ret; 1431 } 1432 1433 int amdgpu_gmc_request_memory_partition(struct amdgpu_device *adev, 1434 int nps_mode) 1435 { 1436 /* Not supported on VF devices and APUs */ 1437 if (amdgpu_sriov_vf(adev) || (adev->flags & AMD_IS_APU)) 1438 return -EOPNOTSUPP; 1439 1440 if (!adev->psp.funcs) { 1441 dev_err(adev->dev, 1442 "PSP interface not available for nps mode change request"); 1443 return -EINVAL; 1444 } 1445 1446 return psp_memory_partition(&adev->psp, nps_mode); 1447 } 1448 1449 static inline bool amdgpu_gmc_need_nps_switch_req(struct amdgpu_device *adev, 1450 int req_nps_mode, 1451 int cur_nps_mode) 1452 { 1453 return (((BIT(req_nps_mode) & adev->gmc.supported_nps_modes) == 1454 BIT(req_nps_mode)) && 1455 req_nps_mode != cur_nps_mode); 1456 } 1457 1458 void amdgpu_gmc_prepare_nps_mode_change(struct amdgpu_device *adev) 1459 { 1460 int req_nps_mode, cur_nps_mode, r; 1461 struct amdgpu_hive_info *hive; 1462 1463 if (amdgpu_sriov_vf(adev) || !adev->gmc.supported_nps_modes || 1464 !adev->gmc.gmc_funcs->request_mem_partition_mode) 1465 return; 1466 1467 cur_nps_mode = adev->gmc.gmc_funcs->query_mem_partition_mode(adev); 1468 hive = amdgpu_get_xgmi_hive(adev); 1469 if (hive) { 1470 req_nps_mode = atomic_read(&hive->requested_nps_mode); 1471 if (!amdgpu_gmc_need_nps_switch_req(adev, req_nps_mode, 1472 cur_nps_mode)) { 1473 amdgpu_put_xgmi_hive(hive); 1474 return; 1475 } 1476 r = amdgpu_xgmi_request_nps_change(adev, hive, req_nps_mode); 1477 amdgpu_put_xgmi_hive(hive); 1478 goto out; 1479 } 1480 1481 req_nps_mode = adev->gmc.requested_nps_mode; 1482 if (!amdgpu_gmc_need_nps_switch_req(adev, req_nps_mode, cur_nps_mode)) 1483 return; 1484 1485 /* even if this fails, we should let driver unload w/o blocking */ 1486 r = adev->gmc.gmc_funcs->request_mem_partition_mode(adev, req_nps_mode); 1487 out: 1488 if (r) 1489 dev_err(adev->dev, "NPS mode change request failed\n"); 1490 else 1491 dev_info( 1492 adev->dev, 1493 "NPS mode change request done, reload driver to complete the change\n"); 1494 } 1495 1496 bool amdgpu_gmc_need_reset_on_init(struct amdgpu_device *adev) 1497 { 1498 if (adev->gmc.gmc_funcs->need_reset_on_init) 1499 return adev->gmc.gmc_funcs->need_reset_on_init(adev); 1500 1501 return false; 1502 } 1503 1504 enum amdgpu_memory_partition 1505 amdgpu_gmc_get_vf_memory_partition(struct amdgpu_device *adev) 1506 { 1507 switch (adev->gmc.num_mem_partitions) { 1508 case 0: 1509 return UNKNOWN_MEMORY_PARTITION_MODE; 1510 case 1: 1511 return AMDGPU_NPS1_PARTITION_MODE; 1512 case 2: 1513 return AMDGPU_NPS2_PARTITION_MODE; 1514 case 4: 1515 return AMDGPU_NPS4_PARTITION_MODE; 1516 case 8: 1517 return AMDGPU_NPS8_PARTITION_MODE; 1518 default: 1519 return AMDGPU_NPS1_PARTITION_MODE; 1520 } 1521 } 1522 1523 enum amdgpu_memory_partition 1524 amdgpu_gmc_get_memory_partition(struct amdgpu_device *adev, u32 *supp_modes) 1525 { 1526 enum amdgpu_memory_partition mode = UNKNOWN_MEMORY_PARTITION_MODE; 1527 1528 if (adev->nbio.funcs && 1529 adev->nbio.funcs->get_memory_partition_mode) 1530 mode = adev->nbio.funcs->get_memory_partition_mode(adev, 1531 supp_modes); 1532 else 1533 dev_warn(adev->dev, "memory partition mode query is not supported\n"); 1534 1535 return mode; 1536 } 1537 1538 enum amdgpu_memory_partition 1539 amdgpu_gmc_query_memory_partition(struct amdgpu_device *adev) 1540 { 1541 if (amdgpu_sriov_vf(adev)) 1542 return amdgpu_gmc_get_vf_memory_partition(adev); 1543 else 1544 return amdgpu_gmc_get_memory_partition(adev, NULL); 1545 } 1546 1547 static bool amdgpu_gmc_validate_partition_info(struct amdgpu_device *adev) 1548 { 1549 enum amdgpu_memory_partition mode; 1550 u32 supp_modes; 1551 bool valid; 1552 1553 mode = amdgpu_gmc_get_memory_partition(adev, &supp_modes); 1554 1555 /* Mode detected by hardware not present in supported modes */ 1556 if ((mode != UNKNOWN_MEMORY_PARTITION_MODE) && 1557 !(BIT(mode - 1) & supp_modes)) 1558 return false; 1559 1560 switch (mode) { 1561 case UNKNOWN_MEMORY_PARTITION_MODE: 1562 case AMDGPU_NPS1_PARTITION_MODE: 1563 valid = (adev->gmc.num_mem_partitions == 1); 1564 break; 1565 case AMDGPU_NPS2_PARTITION_MODE: 1566 valid = (adev->gmc.num_mem_partitions == 2); 1567 break; 1568 case AMDGPU_NPS4_PARTITION_MODE: 1569 valid = (adev->gmc.num_mem_partitions == 3 || 1570 adev->gmc.num_mem_partitions == 4); 1571 break; 1572 case AMDGPU_NPS8_PARTITION_MODE: 1573 valid = (adev->gmc.num_mem_partitions == 8); 1574 break; 1575 default: 1576 valid = false; 1577 } 1578 1579 return valid; 1580 } 1581 1582 static bool amdgpu_gmc_is_node_present(int *node_ids, int num_ids, int nid) 1583 { 1584 int i; 1585 1586 /* Check if node with id 'nid' is present in 'node_ids' array */ 1587 for (i = 0; i < num_ids; ++i) 1588 if (node_ids[i] == nid) 1589 return true; 1590 1591 return false; 1592 } 1593 1594 static void 1595 amdgpu_gmc_init_acpi_mem_ranges(struct amdgpu_device *adev, 1596 struct amdgpu_mem_partition_info *mem_ranges) 1597 { 1598 struct amdgpu_numa_info numa_info; 1599 int node_ids[AMDGPU_MAX_MEM_RANGES]; 1600 int num_ranges = 0, ret; 1601 int num_xcc, xcc_id; 1602 uint32_t xcc_mask; 1603 1604 num_xcc = NUM_XCC(adev->gfx.xcc_mask); 1605 xcc_mask = (1U << num_xcc) - 1; 1606 1607 for_each_inst(xcc_id, xcc_mask) { 1608 ret = amdgpu_acpi_get_mem_info(adev, xcc_id, &numa_info); 1609 if (ret) 1610 continue; 1611 1612 if (numa_info.nid == NUMA_NO_NODE) { 1613 mem_ranges[0].size = numa_info.size; 1614 mem_ranges[0].numa.node = numa_info.nid; 1615 num_ranges = 1; 1616 break; 1617 } 1618 1619 if (amdgpu_gmc_is_node_present(node_ids, num_ranges, 1620 numa_info.nid)) 1621 continue; 1622 1623 node_ids[num_ranges] = numa_info.nid; 1624 mem_ranges[num_ranges].numa.node = numa_info.nid; 1625 mem_ranges[num_ranges].size = numa_info.size; 1626 ++num_ranges; 1627 } 1628 1629 adev->gmc.num_mem_partitions = num_ranges; 1630 } 1631 1632 void amdgpu_gmc_init_sw_mem_ranges(struct amdgpu_device *adev, 1633 struct amdgpu_mem_partition_info *mem_ranges) 1634 { 1635 enum amdgpu_memory_partition mode; 1636 u32 start_addr = 0, size; 1637 int i, r, l; 1638 1639 mode = amdgpu_gmc_query_memory_partition(adev); 1640 1641 switch (mode) { 1642 case UNKNOWN_MEMORY_PARTITION_MODE: 1643 adev->gmc.num_mem_partitions = 0; 1644 break; 1645 case AMDGPU_NPS1_PARTITION_MODE: 1646 adev->gmc.num_mem_partitions = 1; 1647 break; 1648 case AMDGPU_NPS2_PARTITION_MODE: 1649 adev->gmc.num_mem_partitions = 2; 1650 break; 1651 case AMDGPU_NPS4_PARTITION_MODE: 1652 if (adev->flags & AMD_IS_APU) 1653 adev->gmc.num_mem_partitions = 3; 1654 else 1655 adev->gmc.num_mem_partitions = 4; 1656 break; 1657 case AMDGPU_NPS8_PARTITION_MODE: 1658 adev->gmc.num_mem_partitions = 8; 1659 break; 1660 default: 1661 adev->gmc.num_mem_partitions = 1; 1662 break; 1663 } 1664 1665 /* Use NPS range info, if populated */ 1666 r = amdgpu_gmc_get_nps_memranges(adev, mem_ranges, 1667 &adev->gmc.num_mem_partitions); 1668 if (!r) { 1669 l = 0; 1670 for (i = 1; i < adev->gmc.num_mem_partitions; ++i) { 1671 if (mem_ranges[i].range.lpfn > 1672 mem_ranges[i - 1].range.lpfn) 1673 l = i; 1674 } 1675 1676 } else { 1677 if (!adev->gmc.num_mem_partitions) { 1678 dev_warn(adev->dev, 1679 "Not able to detect NPS mode, fall back to NPS1\n"); 1680 adev->gmc.num_mem_partitions = 1; 1681 } 1682 /* Fallback to sw based calculation */ 1683 size = (adev->gmc.real_vram_size + SZ_16M) >> AMDGPU_GPU_PAGE_SHIFT; 1684 size /= adev->gmc.num_mem_partitions; 1685 1686 for (i = 0; i < adev->gmc.num_mem_partitions; ++i) { 1687 mem_ranges[i].range.fpfn = start_addr; 1688 mem_ranges[i].size = 1689 ((u64)size << AMDGPU_GPU_PAGE_SHIFT); 1690 mem_ranges[i].range.lpfn = start_addr + size - 1; 1691 start_addr += size; 1692 } 1693 1694 l = adev->gmc.num_mem_partitions - 1; 1695 } 1696 1697 /* Adjust the last one */ 1698 mem_ranges[l].range.lpfn = 1699 (adev->gmc.real_vram_size >> AMDGPU_GPU_PAGE_SHIFT) - 1; 1700 mem_ranges[l].size = 1701 adev->gmc.real_vram_size - 1702 ((u64)mem_ranges[l].range.fpfn << AMDGPU_GPU_PAGE_SHIFT); 1703 } 1704 1705 int amdgpu_gmc_init_mem_ranges(struct amdgpu_device *adev) 1706 { 1707 bool valid; 1708 1709 adev->gmc.mem_partitions = kcalloc(AMDGPU_MAX_MEM_RANGES, 1710 sizeof(struct amdgpu_mem_partition_info), 1711 GFP_KERNEL); 1712 if (!adev->gmc.mem_partitions) 1713 return -ENOMEM; 1714 1715 if (adev->gmc.is_app_apu) 1716 amdgpu_gmc_init_acpi_mem_ranges(adev, adev->gmc.mem_partitions); 1717 else 1718 amdgpu_gmc_init_sw_mem_ranges(adev, adev->gmc.mem_partitions); 1719 1720 if (amdgpu_sriov_vf(adev)) 1721 valid = true; 1722 else 1723 valid = amdgpu_gmc_validate_partition_info(adev); 1724 if (!valid) { 1725 /* TODO: handle invalid case */ 1726 dev_warn(adev->dev, 1727 "Mem ranges not matching with hardware config\n"); 1728 } 1729 1730 return 0; 1731 } 1732