1 /* 2 * Copyright 2018 Advanced Micro Devices, Inc. 3 * All Rights Reserved. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the 7 * "Software"), to deal in the Software without restriction, including 8 * without limitation the rights to use, copy, modify, merge, publish, 9 * distribute, sub license, and/or sell copies of the Software, and to 10 * permit persons to whom the Software is furnished to do so, subject to 11 * the following conditions: 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 19 * USE OR OTHER DEALINGS IN THE SOFTWARE. 20 * 21 * The above copyright notice and this permission notice (including the 22 * next paragraph) shall be included in all copies or substantial portions 23 * of the Software. 24 * 25 */ 26 27 #include <linux/io-64-nonatomic-lo-hi.h> 28 #ifdef CONFIG_X86 29 #include <asm/hypervisor.h> 30 #endif 31 32 #include "amdgpu.h" 33 #include "amdgpu_gmc.h" 34 #include "amdgpu_ras.h" 35 #include "amdgpu_reset.h" 36 #include "amdgpu_xgmi.h" 37 38 #include <drm/drm_drv.h> 39 #include <drm/ttm/ttm_tt.h> 40 41 /** 42 * amdgpu_gmc_pdb0_alloc - allocate vram for pdb0 43 * 44 * @adev: amdgpu_device pointer 45 * 46 * Allocate video memory for pdb0 and map it for CPU access 47 * Returns 0 for success, error for failure. 48 */ 49 int amdgpu_gmc_pdb0_alloc(struct amdgpu_device *adev) 50 { 51 int r; 52 struct amdgpu_bo_param bp; 53 u64 vram_size = adev->gmc.xgmi.node_segment_size * adev->gmc.xgmi.num_physical_nodes; 54 uint32_t pde0_page_shift = adev->gmc.vmid0_page_table_block_size + 21; 55 uint32_t npdes = (vram_size + (1ULL << pde0_page_shift) - 1) >> pde0_page_shift; 56 57 memset(&bp, 0, sizeof(bp)); 58 bp.size = PAGE_ALIGN((npdes + 1) * 8); 59 bp.byte_align = PAGE_SIZE; 60 bp.domain = AMDGPU_GEM_DOMAIN_VRAM; 61 bp.flags = AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED | 62 AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS; 63 bp.type = ttm_bo_type_kernel; 64 bp.resv = NULL; 65 bp.bo_ptr_size = sizeof(struct amdgpu_bo); 66 67 r = amdgpu_bo_create(adev, &bp, &adev->gmc.pdb0_bo); 68 if (r) 69 return r; 70 71 r = amdgpu_bo_reserve(adev->gmc.pdb0_bo, false); 72 if (unlikely(r != 0)) 73 goto bo_reserve_failure; 74 75 r = amdgpu_bo_pin(adev->gmc.pdb0_bo, AMDGPU_GEM_DOMAIN_VRAM); 76 if (r) 77 goto bo_pin_failure; 78 r = amdgpu_bo_kmap(adev->gmc.pdb0_bo, &adev->gmc.ptr_pdb0); 79 if (r) 80 goto bo_kmap_failure; 81 82 amdgpu_bo_unreserve(adev->gmc.pdb0_bo); 83 return 0; 84 85 bo_kmap_failure: 86 amdgpu_bo_unpin(adev->gmc.pdb0_bo); 87 bo_pin_failure: 88 amdgpu_bo_unreserve(adev->gmc.pdb0_bo); 89 bo_reserve_failure: 90 amdgpu_bo_unref(&adev->gmc.pdb0_bo); 91 return r; 92 } 93 94 /** 95 * amdgpu_gmc_get_pde_for_bo - get the PDE for a BO 96 * 97 * @bo: the BO to get the PDE for 98 * @level: the level in the PD hirarchy 99 * @addr: resulting addr 100 * @flags: resulting flags 101 * 102 * Get the address and flags to be used for a PDE (Page Directory Entry). 103 */ 104 void amdgpu_gmc_get_pde_for_bo(struct amdgpu_bo *bo, int level, 105 uint64_t *addr, uint64_t *flags) 106 { 107 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 108 109 switch (bo->tbo.resource->mem_type) { 110 case TTM_PL_TT: 111 *addr = bo->tbo.ttm->dma_address[0]; 112 break; 113 case TTM_PL_VRAM: 114 *addr = amdgpu_bo_gpu_offset(bo); 115 break; 116 default: 117 *addr = 0; 118 break; 119 } 120 *flags = amdgpu_ttm_tt_pde_flags(bo->tbo.ttm, bo->tbo.resource); 121 amdgpu_gmc_get_vm_pde(adev, level, addr, flags); 122 } 123 124 /* 125 * amdgpu_gmc_pd_addr - return the address of the root directory 126 */ 127 uint64_t amdgpu_gmc_pd_addr(struct amdgpu_bo *bo) 128 { 129 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 130 uint64_t pd_addr; 131 132 /* TODO: move that into ASIC specific code */ 133 if (adev->asic_type >= CHIP_VEGA10) { 134 uint64_t flags = AMDGPU_PTE_VALID; 135 136 amdgpu_gmc_get_pde_for_bo(bo, -1, &pd_addr, &flags); 137 pd_addr |= flags; 138 } else { 139 pd_addr = amdgpu_bo_gpu_offset(bo); 140 } 141 return pd_addr; 142 } 143 144 /** 145 * amdgpu_gmc_set_pte_pde - update the page tables using CPU 146 * 147 * @adev: amdgpu_device pointer 148 * @cpu_pt_addr: cpu address of the page table 149 * @gpu_page_idx: entry in the page table to update 150 * @addr: dst addr to write into pte/pde 151 * @flags: access flags 152 * 153 * Update the page tables using CPU. 154 */ 155 int amdgpu_gmc_set_pte_pde(struct amdgpu_device *adev, void *cpu_pt_addr, 156 uint32_t gpu_page_idx, uint64_t addr, 157 uint64_t flags) 158 { 159 void __iomem *ptr = (void *)cpu_pt_addr; 160 uint64_t value; 161 162 /* 163 * The following is for PTE only. GART does not have PDEs. 164 */ 165 value = addr & 0x0000FFFFFFFFF000ULL; 166 value |= flags; 167 writeq(value, ptr + (gpu_page_idx * 8)); 168 169 return 0; 170 } 171 172 /** 173 * amdgpu_gmc_agp_addr - return the address in the AGP address space 174 * 175 * @bo: TTM BO which needs the address, must be in GTT domain 176 * 177 * Tries to figure out how to access the BO through the AGP aperture. Returns 178 * AMDGPU_BO_INVALID_OFFSET if that is not possible. 179 */ 180 uint64_t amdgpu_gmc_agp_addr(struct ttm_buffer_object *bo) 181 { 182 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 183 184 if (!bo->ttm) 185 return AMDGPU_BO_INVALID_OFFSET; 186 187 if (bo->ttm->num_pages != 1 || bo->ttm->caching == ttm_cached) 188 return AMDGPU_BO_INVALID_OFFSET; 189 190 if (bo->ttm->dma_address[0] + PAGE_SIZE >= adev->gmc.agp_size) 191 return AMDGPU_BO_INVALID_OFFSET; 192 193 return adev->gmc.agp_start + bo->ttm->dma_address[0]; 194 } 195 196 /** 197 * amdgpu_gmc_vram_location - try to find VRAM location 198 * 199 * @adev: amdgpu device structure holding all necessary information 200 * @mc: memory controller structure holding memory information 201 * @base: base address at which to put VRAM 202 * 203 * Function will try to place VRAM at base address provided 204 * as parameter. 205 */ 206 void amdgpu_gmc_vram_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc, 207 u64 base) 208 { 209 uint64_t vis_limit = (uint64_t)amdgpu_vis_vram_limit << 20; 210 uint64_t limit = (uint64_t)amdgpu_vram_limit << 20; 211 212 mc->vram_start = base; 213 mc->vram_end = mc->vram_start + mc->mc_vram_size - 1; 214 if (limit < mc->real_vram_size) 215 mc->real_vram_size = limit; 216 217 if (vis_limit && vis_limit < mc->visible_vram_size) 218 mc->visible_vram_size = vis_limit; 219 220 if (mc->real_vram_size < mc->visible_vram_size) 221 mc->visible_vram_size = mc->real_vram_size; 222 223 if (mc->xgmi.num_physical_nodes == 0) { 224 mc->fb_start = mc->vram_start; 225 mc->fb_end = mc->vram_end; 226 } 227 dev_info(adev->dev, "VRAM: %lluM 0x%016llX - 0x%016llX (%lluM used)\n", 228 mc->mc_vram_size >> 20, mc->vram_start, 229 mc->vram_end, mc->real_vram_size >> 20); 230 } 231 232 /** amdgpu_gmc_sysvm_location - place vram and gart in sysvm aperture 233 * 234 * @adev: amdgpu device structure holding all necessary information 235 * @mc: memory controller structure holding memory information 236 * 237 * This function is only used if use GART for FB translation. In such 238 * case, we use sysvm aperture (vmid0 page tables) for both vram 239 * and gart (aka system memory) access. 240 * 241 * GPUVM (and our organization of vmid0 page tables) require sysvm 242 * aperture to be placed at a location aligned with 8 times of native 243 * page size. For example, if vm_context0_cntl.page_table_block_size 244 * is 12, then native page size is 8G (2M*2^12), sysvm should start 245 * with a 64G aligned address. For simplicity, we just put sysvm at 246 * address 0. So vram start at address 0 and gart is right after vram. 247 */ 248 void amdgpu_gmc_sysvm_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc) 249 { 250 u64 hive_vram_start = 0; 251 u64 hive_vram_end = mc->xgmi.node_segment_size * mc->xgmi.num_physical_nodes - 1; 252 mc->vram_start = mc->xgmi.node_segment_size * mc->xgmi.physical_node_id; 253 mc->vram_end = mc->vram_start + mc->xgmi.node_segment_size - 1; 254 mc->gart_start = hive_vram_end + 1; 255 mc->gart_end = mc->gart_start + mc->gart_size - 1; 256 mc->fb_start = hive_vram_start; 257 mc->fb_end = hive_vram_end; 258 dev_info(adev->dev, "VRAM: %lluM 0x%016llX - 0x%016llX (%lluM used)\n", 259 mc->mc_vram_size >> 20, mc->vram_start, 260 mc->vram_end, mc->real_vram_size >> 20); 261 dev_info(adev->dev, "GART: %lluM 0x%016llX - 0x%016llX\n", 262 mc->gart_size >> 20, mc->gart_start, mc->gart_end); 263 } 264 265 /** 266 * amdgpu_gmc_gart_location - try to find GART location 267 * 268 * @adev: amdgpu device structure holding all necessary information 269 * @mc: memory controller structure holding memory information 270 * @gart_placement: GART placement policy with respect to VRAM 271 * 272 * Function will place try to place GART before or after VRAM. 273 * If GART size is bigger than space left then we ajust GART size. 274 * Thus function will never fails. 275 */ 276 void amdgpu_gmc_gart_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc, 277 enum amdgpu_gart_placement gart_placement) 278 { 279 const uint64_t four_gb = 0x100000000ULL; 280 u64 size_af, size_bf; 281 /*To avoid the hole, limit the max mc address to AMDGPU_GMC_HOLE_START*/ 282 u64 max_mc_address = min(adev->gmc.mc_mask, AMDGPU_GMC_HOLE_START - 1); 283 284 /* VCE doesn't like it when BOs cross a 4GB segment, so align 285 * the GART base on a 4GB boundary as well. 286 */ 287 size_bf = mc->fb_start; 288 size_af = max_mc_address + 1 - ALIGN(mc->fb_end + 1, four_gb); 289 290 if (mc->gart_size > max(size_bf, size_af)) { 291 dev_warn(adev->dev, "limiting GART\n"); 292 mc->gart_size = max(size_bf, size_af); 293 } 294 295 switch (gart_placement) { 296 case AMDGPU_GART_PLACEMENT_HIGH: 297 mc->gart_start = max_mc_address - mc->gart_size + 1; 298 break; 299 case AMDGPU_GART_PLACEMENT_LOW: 300 mc->gart_start = 0; 301 break; 302 case AMDGPU_GART_PLACEMENT_BEST_FIT: 303 default: 304 if ((size_bf >= mc->gart_size && size_bf < size_af) || 305 (size_af < mc->gart_size)) 306 mc->gart_start = 0; 307 else 308 mc->gart_start = max_mc_address - mc->gart_size + 1; 309 break; 310 } 311 312 mc->gart_start &= ~(four_gb - 1); 313 mc->gart_end = mc->gart_start + mc->gart_size - 1; 314 dev_info(adev->dev, "GART: %lluM 0x%016llX - 0x%016llX\n", 315 mc->gart_size >> 20, mc->gart_start, mc->gart_end); 316 } 317 318 /** 319 * amdgpu_gmc_agp_location - try to find AGP location 320 * @adev: amdgpu device structure holding all necessary information 321 * @mc: memory controller structure holding memory information 322 * 323 * Function will place try to find a place for the AGP BAR in the MC address 324 * space. 325 * 326 * AGP BAR will be assigned the largest available hole in the address space. 327 * Should be called after VRAM and GART locations are setup. 328 */ 329 void amdgpu_gmc_agp_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc) 330 { 331 const uint64_t sixteen_gb = 1ULL << 34; 332 const uint64_t sixteen_gb_mask = ~(sixteen_gb - 1); 333 u64 size_af, size_bf; 334 335 if (mc->fb_start > mc->gart_start) { 336 size_bf = (mc->fb_start & sixteen_gb_mask) - 337 ALIGN(mc->gart_end + 1, sixteen_gb); 338 size_af = mc->mc_mask + 1 - ALIGN(mc->fb_end + 1, sixteen_gb); 339 } else { 340 size_bf = mc->fb_start & sixteen_gb_mask; 341 size_af = (mc->gart_start & sixteen_gb_mask) - 342 ALIGN(mc->fb_end + 1, sixteen_gb); 343 } 344 345 if (size_bf > size_af) { 346 mc->agp_start = (mc->fb_start - size_bf) & sixteen_gb_mask; 347 mc->agp_size = size_bf; 348 } else { 349 mc->agp_start = ALIGN(mc->fb_end + 1, sixteen_gb); 350 mc->agp_size = size_af; 351 } 352 353 mc->agp_end = mc->agp_start + mc->agp_size - 1; 354 dev_info(adev->dev, "AGP: %lluM 0x%016llX - 0x%016llX\n", 355 mc->agp_size >> 20, mc->agp_start, mc->agp_end); 356 } 357 358 /** 359 * amdgpu_gmc_set_agp_default - Set the default AGP aperture value. 360 * @adev: amdgpu device structure holding all necessary information 361 * @mc: memory controller structure holding memory information 362 * 363 * To disable the AGP aperture, you need to set the start to a larger 364 * value than the end. This function sets the default value which 365 * can then be overridden using amdgpu_gmc_agp_location() if you want 366 * to enable the AGP aperture on a specific chip. 367 * 368 */ 369 void amdgpu_gmc_set_agp_default(struct amdgpu_device *adev, 370 struct amdgpu_gmc *mc) 371 { 372 mc->agp_start = 0xffffffffffff; 373 mc->agp_end = 0; 374 mc->agp_size = 0; 375 } 376 377 /** 378 * amdgpu_gmc_fault_key - get hask key from vm fault address and pasid 379 * 380 * @addr: 48 bit physical address, page aligned (36 significant bits) 381 * @pasid: 16 bit process address space identifier 382 */ 383 static inline uint64_t amdgpu_gmc_fault_key(uint64_t addr, uint16_t pasid) 384 { 385 return addr << 4 | pasid; 386 } 387 388 /** 389 * amdgpu_gmc_filter_faults - filter VM faults 390 * 391 * @adev: amdgpu device structure 392 * @ih: interrupt ring that the fault received from 393 * @addr: address of the VM fault 394 * @pasid: PASID of the process causing the fault 395 * @timestamp: timestamp of the fault 396 * 397 * Returns: 398 * True if the fault was filtered and should not be processed further. 399 * False if the fault is a new one and needs to be handled. 400 */ 401 bool amdgpu_gmc_filter_faults(struct amdgpu_device *adev, 402 struct amdgpu_ih_ring *ih, uint64_t addr, 403 uint16_t pasid, uint64_t timestamp) 404 { 405 struct amdgpu_gmc *gmc = &adev->gmc; 406 uint64_t stamp, key = amdgpu_gmc_fault_key(addr, pasid); 407 struct amdgpu_gmc_fault *fault; 408 uint32_t hash; 409 410 /* Stale retry fault if timestamp goes backward */ 411 if (amdgpu_ih_ts_after(timestamp, ih->processed_timestamp)) 412 return true; 413 414 /* If we don't have space left in the ring buffer return immediately */ 415 stamp = max(timestamp, AMDGPU_GMC_FAULT_TIMEOUT + 1) - 416 AMDGPU_GMC_FAULT_TIMEOUT; 417 if (gmc->fault_ring[gmc->last_fault].timestamp >= stamp) 418 return true; 419 420 /* Try to find the fault in the hash */ 421 hash = hash_64(key, AMDGPU_GMC_FAULT_HASH_ORDER); 422 fault = &gmc->fault_ring[gmc->fault_hash[hash].idx]; 423 while (fault->timestamp >= stamp) { 424 uint64_t tmp; 425 426 if (atomic64_read(&fault->key) == key) { 427 /* 428 * if we get a fault which is already present in 429 * the fault_ring and the timestamp of 430 * the fault is after the expired timestamp, 431 * then this is a new fault that needs to be added 432 * into the fault ring. 433 */ 434 if (fault->timestamp_expiry != 0 && 435 amdgpu_ih_ts_after(fault->timestamp_expiry, 436 timestamp)) 437 break; 438 else 439 return true; 440 } 441 442 tmp = fault->timestamp; 443 fault = &gmc->fault_ring[fault->next]; 444 445 /* Check if the entry was reused */ 446 if (fault->timestamp >= tmp) 447 break; 448 } 449 450 /* Add the fault to the ring */ 451 fault = &gmc->fault_ring[gmc->last_fault]; 452 atomic64_set(&fault->key, key); 453 fault->timestamp = timestamp; 454 455 /* And update the hash */ 456 fault->next = gmc->fault_hash[hash].idx; 457 gmc->fault_hash[hash].idx = gmc->last_fault++; 458 return false; 459 } 460 461 /** 462 * amdgpu_gmc_filter_faults_remove - remove address from VM faults filter 463 * 464 * @adev: amdgpu device structure 465 * @addr: address of the VM fault 466 * @pasid: PASID of the process causing the fault 467 * 468 * Remove the address from fault filter, then future vm fault on this address 469 * will pass to retry fault handler to recover. 470 */ 471 void amdgpu_gmc_filter_faults_remove(struct amdgpu_device *adev, uint64_t addr, 472 uint16_t pasid) 473 { 474 struct amdgpu_gmc *gmc = &adev->gmc; 475 uint64_t key = amdgpu_gmc_fault_key(addr, pasid); 476 struct amdgpu_ih_ring *ih; 477 struct amdgpu_gmc_fault *fault; 478 uint32_t last_wptr; 479 uint64_t last_ts; 480 uint32_t hash; 481 uint64_t tmp; 482 483 if (adev->irq.retry_cam_enabled) 484 return; 485 486 ih = &adev->irq.ih1; 487 /* Get the WPTR of the last entry in IH ring */ 488 last_wptr = amdgpu_ih_get_wptr(adev, ih); 489 /* Order wptr with ring data. */ 490 rmb(); 491 /* Get the timetamp of the last entry in IH ring */ 492 last_ts = amdgpu_ih_decode_iv_ts(adev, ih, last_wptr, -1); 493 494 hash = hash_64(key, AMDGPU_GMC_FAULT_HASH_ORDER); 495 fault = &gmc->fault_ring[gmc->fault_hash[hash].idx]; 496 do { 497 if (atomic64_read(&fault->key) == key) { 498 /* 499 * Update the timestamp when this fault 500 * expired. 501 */ 502 fault->timestamp_expiry = last_ts; 503 break; 504 } 505 506 tmp = fault->timestamp; 507 fault = &gmc->fault_ring[fault->next]; 508 } while (fault->timestamp < tmp); 509 } 510 511 int amdgpu_gmc_ras_sw_init(struct amdgpu_device *adev) 512 { 513 int r; 514 515 /* umc ras block */ 516 r = amdgpu_umc_ras_sw_init(adev); 517 if (r) 518 return r; 519 520 /* mmhub ras block */ 521 r = amdgpu_mmhub_ras_sw_init(adev); 522 if (r) 523 return r; 524 525 /* hdp ras block */ 526 r = amdgpu_hdp_ras_sw_init(adev); 527 if (r) 528 return r; 529 530 /* mca.x ras block */ 531 r = amdgpu_mca_mp0_ras_sw_init(adev); 532 if (r) 533 return r; 534 535 r = amdgpu_mca_mp1_ras_sw_init(adev); 536 if (r) 537 return r; 538 539 r = amdgpu_mca_mpio_ras_sw_init(adev); 540 if (r) 541 return r; 542 543 /* xgmi ras block */ 544 r = amdgpu_xgmi_ras_sw_init(adev); 545 if (r) 546 return r; 547 548 return 0; 549 } 550 551 int amdgpu_gmc_ras_late_init(struct amdgpu_device *adev) 552 { 553 return 0; 554 } 555 556 void amdgpu_gmc_ras_fini(struct amdgpu_device *adev) 557 { 558 559 } 560 561 /* 562 * The latest engine allocation on gfx9/10 is: 563 * Engine 2, 3: firmware 564 * Engine 0, 1, 4~16: amdgpu ring, 565 * subject to change when ring number changes 566 * Engine 17: Gart flushes 567 */ 568 #define AMDGPU_VMHUB_INV_ENG_BITMAP 0x1FFF3 569 570 int amdgpu_gmc_allocate_vm_inv_eng(struct amdgpu_device *adev) 571 { 572 struct amdgpu_ring *ring; 573 unsigned vm_inv_engs[AMDGPU_MAX_VMHUBS] = {0}; 574 unsigned i; 575 unsigned vmhub, inv_eng; 576 577 /* init the vm inv eng for all vmhubs */ 578 for_each_set_bit(i, adev->vmhubs_mask, AMDGPU_MAX_VMHUBS) { 579 vm_inv_engs[i] = AMDGPU_VMHUB_INV_ENG_BITMAP; 580 /* reserve engine 5 for firmware */ 581 if (adev->enable_mes) 582 vm_inv_engs[i] &= ~(1 << 5); 583 /* reserve mmhub engine 3 for firmware */ 584 if (adev->enable_umsch_mm) 585 vm_inv_engs[i] &= ~(1 << 3); 586 } 587 588 for (i = 0; i < adev->num_rings; ++i) { 589 ring = adev->rings[i]; 590 vmhub = ring->vm_hub; 591 592 if (ring == &adev->mes.ring[0] || 593 ring == &adev->mes.ring[1] || 594 ring == &adev->umsch_mm.ring) 595 continue; 596 597 inv_eng = ffs(vm_inv_engs[vmhub]); 598 if (!inv_eng) { 599 dev_err(adev->dev, "no VM inv eng for ring %s\n", 600 ring->name); 601 return -EINVAL; 602 } 603 604 ring->vm_inv_eng = inv_eng - 1; 605 vm_inv_engs[vmhub] &= ~(1 << ring->vm_inv_eng); 606 607 dev_info(adev->dev, "ring %s uses VM inv eng %u on hub %u\n", 608 ring->name, ring->vm_inv_eng, ring->vm_hub); 609 } 610 611 return 0; 612 } 613 614 void amdgpu_gmc_flush_gpu_tlb(struct amdgpu_device *adev, uint32_t vmid, 615 uint32_t vmhub, uint32_t flush_type) 616 { 617 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 618 struct amdgpu_vmhub *hub = &adev->vmhub[vmhub]; 619 struct dma_fence *fence; 620 struct amdgpu_job *job; 621 int r; 622 623 if (!hub->sdma_invalidation_workaround || vmid || 624 !adev->mman.buffer_funcs_enabled || !adev->ib_pool_ready || 625 !ring->sched.ready) { 626 /* 627 * A GPU reset should flush all TLBs anyway, so no need to do 628 * this while one is ongoing. 629 */ 630 if (!down_read_trylock(&adev->reset_domain->sem)) 631 return; 632 633 if (adev->gmc.flush_tlb_needs_extra_type_2) 634 adev->gmc.gmc_funcs->flush_gpu_tlb(adev, vmid, 635 vmhub, 2); 636 637 if (adev->gmc.flush_tlb_needs_extra_type_0 && flush_type == 2) 638 adev->gmc.gmc_funcs->flush_gpu_tlb(adev, vmid, 639 vmhub, 0); 640 641 adev->gmc.gmc_funcs->flush_gpu_tlb(adev, vmid, vmhub, 642 flush_type); 643 up_read(&adev->reset_domain->sem); 644 return; 645 } 646 647 /* The SDMA on Navi 1x has a bug which can theoretically result in memory 648 * corruption if an invalidation happens at the same time as an VA 649 * translation. Avoid this by doing the invalidation from the SDMA 650 * itself at least for GART. 651 */ 652 mutex_lock(&adev->mman.gtt_window_lock); 653 r = amdgpu_job_alloc_with_ib(ring->adev, &adev->mman.high_pr, 654 AMDGPU_FENCE_OWNER_UNDEFINED, 655 16 * 4, AMDGPU_IB_POOL_IMMEDIATE, 656 &job); 657 if (r) 658 goto error_alloc; 659 660 job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gart.bo); 661 job->vm_needs_flush = true; 662 job->ibs->ptr[job->ibs->length_dw++] = ring->funcs->nop; 663 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 664 fence = amdgpu_job_submit(job); 665 mutex_unlock(&adev->mman.gtt_window_lock); 666 667 dma_fence_wait(fence, false); 668 dma_fence_put(fence); 669 670 return; 671 672 error_alloc: 673 mutex_unlock(&adev->mman.gtt_window_lock); 674 dev_err(adev->dev, "Error flushing GPU TLB using the SDMA (%d)!\n", r); 675 } 676 677 int amdgpu_gmc_flush_gpu_tlb_pasid(struct amdgpu_device *adev, uint16_t pasid, 678 uint32_t flush_type, bool all_hub, 679 uint32_t inst) 680 { 681 u32 usec_timeout = amdgpu_sriov_vf(adev) ? SRIOV_USEC_TIMEOUT : 682 adev->usec_timeout; 683 struct amdgpu_ring *ring = &adev->gfx.kiq[inst].ring; 684 struct amdgpu_kiq *kiq = &adev->gfx.kiq[inst]; 685 unsigned int ndw; 686 int r; 687 uint32_t seq; 688 689 /* 690 * A GPU reset should flush all TLBs anyway, so no need to do 691 * this while one is ongoing. 692 */ 693 if (!down_read_trylock(&adev->reset_domain->sem)) 694 return 0; 695 696 if (!adev->gmc.flush_pasid_uses_kiq || !ring->sched.ready) { 697 if (adev->gmc.flush_tlb_needs_extra_type_2) 698 adev->gmc.gmc_funcs->flush_gpu_tlb_pasid(adev, pasid, 699 2, all_hub, 700 inst); 701 702 if (adev->gmc.flush_tlb_needs_extra_type_0 && flush_type == 2) 703 adev->gmc.gmc_funcs->flush_gpu_tlb_pasid(adev, pasid, 704 0, all_hub, 705 inst); 706 707 adev->gmc.gmc_funcs->flush_gpu_tlb_pasid(adev, pasid, 708 flush_type, all_hub, 709 inst); 710 r = 0; 711 } else { 712 /* 2 dwords flush + 8 dwords fence */ 713 ndw = kiq->pmf->invalidate_tlbs_size + 8; 714 715 if (adev->gmc.flush_tlb_needs_extra_type_2) 716 ndw += kiq->pmf->invalidate_tlbs_size; 717 718 if (adev->gmc.flush_tlb_needs_extra_type_0) 719 ndw += kiq->pmf->invalidate_tlbs_size; 720 721 spin_lock(&adev->gfx.kiq[inst].ring_lock); 722 r = amdgpu_ring_alloc(ring, ndw); 723 if (r) { 724 spin_unlock(&adev->gfx.kiq[inst].ring_lock); 725 goto error_unlock_reset; 726 } 727 if (adev->gmc.flush_tlb_needs_extra_type_2) 728 kiq->pmf->kiq_invalidate_tlbs(ring, pasid, 2, all_hub); 729 730 if (flush_type == 2 && adev->gmc.flush_tlb_needs_extra_type_0) 731 kiq->pmf->kiq_invalidate_tlbs(ring, pasid, 0, all_hub); 732 733 kiq->pmf->kiq_invalidate_tlbs(ring, pasid, flush_type, all_hub); 734 r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT); 735 if (r) { 736 amdgpu_ring_undo(ring); 737 spin_unlock(&adev->gfx.kiq[inst].ring_lock); 738 goto error_unlock_reset; 739 } 740 741 amdgpu_ring_commit(ring); 742 spin_unlock(&adev->gfx.kiq[inst].ring_lock); 743 if (amdgpu_fence_wait_polling(ring, seq, usec_timeout) < 1) { 744 dev_err(adev->dev, "timeout waiting for kiq fence\n"); 745 r = -ETIME; 746 } 747 } 748 749 error_unlock_reset: 750 up_read(&adev->reset_domain->sem); 751 return r; 752 } 753 754 void amdgpu_gmc_fw_reg_write_reg_wait(struct amdgpu_device *adev, 755 uint32_t reg0, uint32_t reg1, 756 uint32_t ref, uint32_t mask, 757 uint32_t xcc_inst) 758 { 759 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_inst]; 760 struct amdgpu_ring *ring = &kiq->ring; 761 signed long r, cnt = 0; 762 unsigned long flags; 763 uint32_t seq; 764 765 if (adev->mes.ring[0].sched.ready) { 766 amdgpu_mes_reg_write_reg_wait(adev, reg0, reg1, 767 ref, mask); 768 return; 769 } 770 771 spin_lock_irqsave(&kiq->ring_lock, flags); 772 amdgpu_ring_alloc(ring, 32); 773 amdgpu_ring_emit_reg_write_reg_wait(ring, reg0, reg1, 774 ref, mask); 775 r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT); 776 if (r) 777 goto failed_undo; 778 779 amdgpu_ring_commit(ring); 780 spin_unlock_irqrestore(&kiq->ring_lock, flags); 781 782 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); 783 784 /* don't wait anymore for IRQ context */ 785 if (r < 1 && in_interrupt()) 786 goto failed_kiq; 787 788 might_sleep(); 789 while (r < 1 && cnt++ < MAX_KIQ_REG_TRY && 790 !amdgpu_reset_pending(adev->reset_domain)) { 791 792 msleep(MAX_KIQ_REG_BAILOUT_INTERVAL); 793 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); 794 } 795 796 if (cnt > MAX_KIQ_REG_TRY) 797 goto failed_kiq; 798 799 return; 800 801 failed_undo: 802 amdgpu_ring_undo(ring); 803 spin_unlock_irqrestore(&kiq->ring_lock, flags); 804 failed_kiq: 805 dev_err(adev->dev, "failed to write reg %x wait reg %x\n", reg0, reg1); 806 } 807 808 /** 809 * amdgpu_gmc_tmz_set -- check and set if a device supports TMZ 810 * @adev: amdgpu_device pointer 811 * 812 * Check and set if an the device @adev supports Trusted Memory 813 * Zones (TMZ). 814 */ 815 void amdgpu_gmc_tmz_set(struct amdgpu_device *adev) 816 { 817 switch (amdgpu_ip_version(adev, GC_HWIP, 0)) { 818 /* RAVEN */ 819 case IP_VERSION(9, 2, 2): 820 case IP_VERSION(9, 1, 0): 821 /* RENOIR looks like RAVEN */ 822 case IP_VERSION(9, 3, 0): 823 /* GC 10.3.7 */ 824 case IP_VERSION(10, 3, 7): 825 /* GC 11.0.1 */ 826 case IP_VERSION(11, 0, 1): 827 if (amdgpu_tmz == 0) { 828 adev->gmc.tmz_enabled = false; 829 dev_info(adev->dev, 830 "Trusted Memory Zone (TMZ) feature disabled (cmd line)\n"); 831 } else { 832 adev->gmc.tmz_enabled = true; 833 dev_info(adev->dev, 834 "Trusted Memory Zone (TMZ) feature enabled\n"); 835 } 836 break; 837 case IP_VERSION(10, 1, 10): 838 case IP_VERSION(10, 1, 1): 839 case IP_VERSION(10, 1, 2): 840 case IP_VERSION(10, 1, 3): 841 case IP_VERSION(10, 3, 0): 842 case IP_VERSION(10, 3, 2): 843 case IP_VERSION(10, 3, 4): 844 case IP_VERSION(10, 3, 5): 845 case IP_VERSION(10, 3, 6): 846 /* VANGOGH */ 847 case IP_VERSION(10, 3, 1): 848 /* YELLOW_CARP*/ 849 case IP_VERSION(10, 3, 3): 850 case IP_VERSION(11, 0, 4): 851 case IP_VERSION(11, 5, 0): 852 case IP_VERSION(11, 5, 1): 853 case IP_VERSION(11, 5, 2): 854 /* Don't enable it by default yet. 855 */ 856 if (amdgpu_tmz < 1) { 857 adev->gmc.tmz_enabled = false; 858 dev_info(adev->dev, 859 "Trusted Memory Zone (TMZ) feature disabled as experimental (default)\n"); 860 } else { 861 adev->gmc.tmz_enabled = true; 862 dev_info(adev->dev, 863 "Trusted Memory Zone (TMZ) feature enabled as experimental (cmd line)\n"); 864 } 865 break; 866 default: 867 adev->gmc.tmz_enabled = false; 868 dev_info(adev->dev, 869 "Trusted Memory Zone (TMZ) feature not supported\n"); 870 break; 871 } 872 } 873 874 /** 875 * amdgpu_gmc_noretry_set -- set per asic noretry defaults 876 * @adev: amdgpu_device pointer 877 * 878 * Set a per asic default for the no-retry parameter. 879 * 880 */ 881 void amdgpu_gmc_noretry_set(struct amdgpu_device *adev) 882 { 883 struct amdgpu_gmc *gmc = &adev->gmc; 884 uint32_t gc_ver = amdgpu_ip_version(adev, GC_HWIP, 0); 885 bool noretry_default = (gc_ver == IP_VERSION(9, 0, 1) || 886 gc_ver == IP_VERSION(9, 4, 0) || 887 gc_ver == IP_VERSION(9, 4, 1) || 888 gc_ver == IP_VERSION(9, 4, 2) || 889 gc_ver == IP_VERSION(9, 4, 3) || 890 gc_ver == IP_VERSION(9, 4, 4) || 891 gc_ver >= IP_VERSION(10, 3, 0)); 892 893 if (!amdgpu_sriov_xnack_support(adev)) 894 gmc->noretry = 1; 895 else 896 gmc->noretry = (amdgpu_noretry == -1) ? noretry_default : amdgpu_noretry; 897 } 898 899 void amdgpu_gmc_set_vm_fault_masks(struct amdgpu_device *adev, int hub_type, 900 bool enable) 901 { 902 struct amdgpu_vmhub *hub; 903 u32 tmp, reg, i; 904 905 hub = &adev->vmhub[hub_type]; 906 for (i = 0; i < 16; i++) { 907 reg = hub->vm_context0_cntl + hub->ctx_distance * i; 908 909 tmp = (hub_type == AMDGPU_GFXHUB(0)) ? 910 RREG32_SOC15_IP(GC, reg) : 911 RREG32_SOC15_IP(MMHUB, reg); 912 913 if (enable) 914 tmp |= hub->vm_cntx_cntl_vm_fault; 915 else 916 tmp &= ~hub->vm_cntx_cntl_vm_fault; 917 918 (hub_type == AMDGPU_GFXHUB(0)) ? 919 WREG32_SOC15_IP(GC, reg, tmp) : 920 WREG32_SOC15_IP(MMHUB, reg, tmp); 921 } 922 } 923 924 void amdgpu_gmc_get_vbios_allocations(struct amdgpu_device *adev) 925 { 926 unsigned size; 927 928 /* 929 * Some ASICs need to reserve a region of video memory to avoid access 930 * from driver 931 */ 932 adev->mman.stolen_reserved_offset = 0; 933 adev->mman.stolen_reserved_size = 0; 934 935 /* 936 * TODO: 937 * Currently there is a bug where some memory client outside 938 * of the driver writes to first 8M of VRAM on S3 resume, 939 * this overrides GART which by default gets placed in first 8M and 940 * causes VM_FAULTS once GTT is accessed. 941 * Keep the stolen memory reservation until the while this is not solved. 942 */ 943 switch (adev->asic_type) { 944 case CHIP_VEGA10: 945 adev->mman.keep_stolen_vga_memory = true; 946 /* 947 * VEGA10 SRIOV VF with MS_HYPERV host needs some firmware reserved area. 948 */ 949 #ifdef CONFIG_X86 950 if (amdgpu_sriov_vf(adev) && hypervisor_is_type(X86_HYPER_MS_HYPERV)) { 951 adev->mman.stolen_reserved_offset = 0x500000; 952 adev->mman.stolen_reserved_size = 0x200000; 953 } 954 #endif 955 break; 956 case CHIP_RAVEN: 957 case CHIP_RENOIR: 958 adev->mman.keep_stolen_vga_memory = true; 959 break; 960 default: 961 adev->mman.keep_stolen_vga_memory = false; 962 break; 963 } 964 965 if (amdgpu_sriov_vf(adev) || 966 !amdgpu_device_has_display_hardware(adev)) { 967 size = 0; 968 } else { 969 size = amdgpu_gmc_get_vbios_fb_size(adev); 970 971 if (adev->mman.keep_stolen_vga_memory) 972 size = max(size, (unsigned)AMDGPU_VBIOS_VGA_ALLOCATION); 973 } 974 975 /* set to 0 if the pre-OS buffer uses up most of vram */ 976 if ((adev->gmc.real_vram_size - size) < (8 * 1024 * 1024)) 977 size = 0; 978 979 if (size > AMDGPU_VBIOS_VGA_ALLOCATION) { 980 adev->mman.stolen_vga_size = AMDGPU_VBIOS_VGA_ALLOCATION; 981 adev->mman.stolen_extended_size = size - adev->mman.stolen_vga_size; 982 } else { 983 adev->mman.stolen_vga_size = size; 984 adev->mman.stolen_extended_size = 0; 985 } 986 } 987 988 /** 989 * amdgpu_gmc_init_pdb0 - initialize PDB0 990 * 991 * @adev: amdgpu_device pointer 992 * 993 * This function is only used when GART page table is used 994 * for FB address translatioin. In such a case, we construct 995 * a 2-level system VM page table: PDB0->PTB, to cover both 996 * VRAM of the hive and system memory. 997 * 998 * PDB0 is static, initialized once on driver initialization. 999 * The first n entries of PDB0 are used as PTE by setting 1000 * P bit to 1, pointing to VRAM. The n+1'th entry points 1001 * to a big PTB covering system memory. 1002 * 1003 */ 1004 void amdgpu_gmc_init_pdb0(struct amdgpu_device *adev) 1005 { 1006 int i; 1007 uint64_t flags = adev->gart.gart_pte_flags; //TODO it is UC. explore NC/RW? 1008 /* Each PDE0 (used as PTE) covers (2^vmid0_page_table_block_size)*2M 1009 */ 1010 u64 vram_size = adev->gmc.xgmi.node_segment_size * adev->gmc.xgmi.num_physical_nodes; 1011 u64 pde0_page_size = (1ULL<<adev->gmc.vmid0_page_table_block_size)<<21; 1012 u64 vram_addr = adev->vm_manager.vram_base_offset - 1013 adev->gmc.xgmi.physical_node_id * adev->gmc.xgmi.node_segment_size; 1014 u64 vram_end = vram_addr + vram_size; 1015 u64 gart_ptb_gpu_pa = amdgpu_gmc_vram_pa(adev, adev->gart.bo); 1016 int idx; 1017 1018 if (!drm_dev_enter(adev_to_drm(adev), &idx)) 1019 return; 1020 1021 flags |= AMDGPU_PTE_VALID | AMDGPU_PTE_READABLE; 1022 flags |= AMDGPU_PTE_WRITEABLE; 1023 flags |= AMDGPU_PTE_SNOOPED; 1024 flags |= AMDGPU_PTE_FRAG((adev->gmc.vmid0_page_table_block_size + 9*1)); 1025 flags |= AMDGPU_PDE_PTE_FLAG(adev); 1026 1027 /* The first n PDE0 entries are used as PTE, 1028 * pointing to vram 1029 */ 1030 for (i = 0; vram_addr < vram_end; i++, vram_addr += pde0_page_size) 1031 amdgpu_gmc_set_pte_pde(adev, adev->gmc.ptr_pdb0, i, vram_addr, flags); 1032 1033 /* The n+1'th PDE0 entry points to a huge 1034 * PTB who has more than 512 entries each 1035 * pointing to a 4K system page 1036 */ 1037 flags = AMDGPU_PTE_VALID; 1038 flags |= AMDGPU_PTE_SNOOPED | AMDGPU_PDE_BFS_FLAG(adev, 0); 1039 /* Requires gart_ptb_gpu_pa to be 4K aligned */ 1040 amdgpu_gmc_set_pte_pde(adev, adev->gmc.ptr_pdb0, i, gart_ptb_gpu_pa, flags); 1041 drm_dev_exit(idx); 1042 } 1043 1044 /** 1045 * amdgpu_gmc_vram_mc2pa - calculate vram buffer's physical address from MC 1046 * address 1047 * 1048 * @adev: amdgpu_device pointer 1049 * @mc_addr: MC address of buffer 1050 */ 1051 uint64_t amdgpu_gmc_vram_mc2pa(struct amdgpu_device *adev, uint64_t mc_addr) 1052 { 1053 return mc_addr - adev->gmc.vram_start + adev->vm_manager.vram_base_offset; 1054 } 1055 1056 /** 1057 * amdgpu_gmc_vram_pa - calculate vram buffer object's physical address from 1058 * GPU's view 1059 * 1060 * @adev: amdgpu_device pointer 1061 * @bo: amdgpu buffer object 1062 */ 1063 uint64_t amdgpu_gmc_vram_pa(struct amdgpu_device *adev, struct amdgpu_bo *bo) 1064 { 1065 return amdgpu_gmc_vram_mc2pa(adev, amdgpu_bo_gpu_offset(bo)); 1066 } 1067 1068 /** 1069 * amdgpu_gmc_vram_cpu_pa - calculate vram buffer object's physical address 1070 * from CPU's view 1071 * 1072 * @adev: amdgpu_device pointer 1073 * @bo: amdgpu buffer object 1074 */ 1075 uint64_t amdgpu_gmc_vram_cpu_pa(struct amdgpu_device *adev, struct amdgpu_bo *bo) 1076 { 1077 return amdgpu_bo_gpu_offset(bo) - adev->gmc.vram_start + adev->gmc.aper_base; 1078 } 1079 1080 int amdgpu_gmc_vram_checking(struct amdgpu_device *adev) 1081 { 1082 struct amdgpu_bo *vram_bo = NULL; 1083 uint64_t vram_gpu = 0; 1084 void *vram_ptr = NULL; 1085 1086 int ret, size = 0x100000; 1087 uint8_t cptr[10]; 1088 1089 ret = amdgpu_bo_create_kernel(adev, size, PAGE_SIZE, 1090 AMDGPU_GEM_DOMAIN_VRAM, 1091 &vram_bo, 1092 &vram_gpu, 1093 &vram_ptr); 1094 if (ret) 1095 return ret; 1096 1097 memset(vram_ptr, 0x86, size); 1098 memset(cptr, 0x86, 10); 1099 1100 /** 1101 * Check the start, the mid, and the end of the memory if the content of 1102 * each byte is the pattern "0x86". If yes, we suppose the vram bo is 1103 * workable. 1104 * 1105 * Note: If check the each byte of whole 1M bo, it will cost too many 1106 * seconds, so here, we just pick up three parts for emulation. 1107 */ 1108 ret = memcmp(vram_ptr, cptr, 10); 1109 if (ret) { 1110 ret = -EIO; 1111 goto release_buffer; 1112 } 1113 1114 ret = memcmp(vram_ptr + (size / 2), cptr, 10); 1115 if (ret) { 1116 ret = -EIO; 1117 goto release_buffer; 1118 } 1119 1120 ret = memcmp(vram_ptr + size - 10, cptr, 10); 1121 if (ret) { 1122 ret = -EIO; 1123 goto release_buffer; 1124 } 1125 1126 release_buffer: 1127 amdgpu_bo_free_kernel(&vram_bo, &vram_gpu, 1128 &vram_ptr); 1129 1130 return ret; 1131 } 1132 1133 static ssize_t current_memory_partition_show( 1134 struct device *dev, struct device_attribute *addr, char *buf) 1135 { 1136 struct drm_device *ddev = dev_get_drvdata(dev); 1137 struct amdgpu_device *adev = drm_to_adev(ddev); 1138 enum amdgpu_memory_partition mode; 1139 1140 mode = adev->gmc.gmc_funcs->query_mem_partition_mode(adev); 1141 switch (mode) { 1142 case AMDGPU_NPS1_PARTITION_MODE: 1143 return sysfs_emit(buf, "NPS1\n"); 1144 case AMDGPU_NPS2_PARTITION_MODE: 1145 return sysfs_emit(buf, "NPS2\n"); 1146 case AMDGPU_NPS3_PARTITION_MODE: 1147 return sysfs_emit(buf, "NPS3\n"); 1148 case AMDGPU_NPS4_PARTITION_MODE: 1149 return sysfs_emit(buf, "NPS4\n"); 1150 case AMDGPU_NPS6_PARTITION_MODE: 1151 return sysfs_emit(buf, "NPS6\n"); 1152 case AMDGPU_NPS8_PARTITION_MODE: 1153 return sysfs_emit(buf, "NPS8\n"); 1154 default: 1155 return sysfs_emit(buf, "UNKNOWN\n"); 1156 } 1157 } 1158 1159 static DEVICE_ATTR_RO(current_memory_partition); 1160 1161 int amdgpu_gmc_sysfs_init(struct amdgpu_device *adev) 1162 { 1163 if (!adev->gmc.gmc_funcs->query_mem_partition_mode) 1164 return 0; 1165 1166 return device_create_file(adev->dev, 1167 &dev_attr_current_memory_partition); 1168 } 1169 1170 void amdgpu_gmc_sysfs_fini(struct amdgpu_device *adev) 1171 { 1172 device_remove_file(adev->dev, &dev_attr_current_memory_partition); 1173 } 1174 1175 int amdgpu_gmc_get_nps_memranges(struct amdgpu_device *adev, 1176 struct amdgpu_mem_partition_info *mem_ranges, 1177 int exp_ranges) 1178 { 1179 struct amdgpu_gmc_memrange *ranges; 1180 int range_cnt, ret, i, j; 1181 uint32_t nps_type; 1182 1183 if (!mem_ranges) 1184 return -EINVAL; 1185 1186 ret = amdgpu_discovery_get_nps_info(adev, &nps_type, &ranges, 1187 &range_cnt); 1188 1189 if (ret) 1190 return ret; 1191 1192 /* TODO: For now, expect ranges and partition count to be the same. 1193 * Adjust if there are holes expected in any NPS domain. 1194 */ 1195 if (range_cnt != exp_ranges) { 1196 dev_warn( 1197 adev->dev, 1198 "NPS config mismatch - expected ranges: %d discovery - nps mode: %d, nps ranges: %d", 1199 exp_ranges, nps_type, range_cnt); 1200 ret = -EINVAL; 1201 goto err; 1202 } 1203 1204 for (i = 0; i < exp_ranges; ++i) { 1205 if (ranges[i].base_address >= ranges[i].limit_address) { 1206 dev_warn( 1207 adev->dev, 1208 "Invalid NPS range - nps mode: %d, range[%d]: base: %llx limit: %llx", 1209 nps_type, i, ranges[i].base_address, 1210 ranges[i].limit_address); 1211 ret = -EINVAL; 1212 goto err; 1213 } 1214 1215 /* Check for overlaps, not expecting any now */ 1216 for (j = i - 1; j >= 0; j--) { 1217 if (max(ranges[j].base_address, 1218 ranges[i].base_address) <= 1219 min(ranges[j].limit_address, 1220 ranges[i].limit_address)) { 1221 dev_warn( 1222 adev->dev, 1223 "overlapping ranges detected [ %llx - %llx ] | [%llx - %llx]", 1224 ranges[j].base_address, 1225 ranges[j].limit_address, 1226 ranges[i].base_address, 1227 ranges[i].limit_address); 1228 ret = -EINVAL; 1229 goto err; 1230 } 1231 } 1232 1233 mem_ranges[i].range.fpfn = 1234 (ranges[i].base_address - 1235 adev->vm_manager.vram_base_offset) >> 1236 AMDGPU_GPU_PAGE_SHIFT; 1237 mem_ranges[i].range.lpfn = 1238 (ranges[i].limit_address - 1239 adev->vm_manager.vram_base_offset) >> 1240 AMDGPU_GPU_PAGE_SHIFT; 1241 mem_ranges[i].size = 1242 ranges[i].limit_address - ranges[i].base_address + 1; 1243 } 1244 1245 err: 1246 kfree(ranges); 1247 1248 return ret; 1249 } 1250