xref: /linux/drivers/gpu/drm/amd/amdgpu/amdgpu_gmc.c (revision 4fe1fdcc230189bdeb3a0d3fd49ef52416099c8c)
1 /*
2  * Copyright 2018 Advanced Micro Devices, Inc.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 
27 #include <linux/io-64-nonatomic-lo-hi.h>
28 
29 #include "amdgpu.h"
30 #include "amdgpu_gmc.h"
31 #include "amdgpu_ras.h"
32 #include "amdgpu_xgmi.h"
33 
34 /**
35  * amdgpu_gmc_pdb0_alloc - allocate vram for pdb0
36  *
37  * @adev: amdgpu_device pointer
38  *
39  * Allocate video memory for pdb0 and map it for CPU access
40  * Returns 0 for success, error for failure.
41  */
42 int amdgpu_gmc_pdb0_alloc(struct amdgpu_device *adev)
43 {
44 	int r;
45 	struct amdgpu_bo_param bp;
46 	u64 vram_size = adev->gmc.xgmi.node_segment_size * adev->gmc.xgmi.num_physical_nodes;
47 	uint32_t pde0_page_shift = adev->gmc.vmid0_page_table_block_size + 21;
48 	uint32_t npdes = (vram_size + (1ULL << pde0_page_shift) -1) >> pde0_page_shift;
49 
50 	memset(&bp, 0, sizeof(bp));
51 	bp.size = PAGE_ALIGN((npdes + 1) * 8);
52 	bp.byte_align = PAGE_SIZE;
53 	bp.domain = AMDGPU_GEM_DOMAIN_VRAM;
54 	bp.flags = AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED |
55 		AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS;
56 	bp.type = ttm_bo_type_kernel;
57 	bp.resv = NULL;
58 	bp.bo_ptr_size = sizeof(struct amdgpu_bo);
59 
60 	r = amdgpu_bo_create(adev, &bp, &adev->gmc.pdb0_bo);
61 	if (r)
62 		return r;
63 
64 	r = amdgpu_bo_reserve(adev->gmc.pdb0_bo, false);
65 	if (unlikely(r != 0))
66 		goto bo_reserve_failure;
67 
68 	r = amdgpu_bo_pin(adev->gmc.pdb0_bo, AMDGPU_GEM_DOMAIN_VRAM);
69 	if (r)
70 		goto bo_pin_failure;
71 	r = amdgpu_bo_kmap(adev->gmc.pdb0_bo, &adev->gmc.ptr_pdb0);
72 	if (r)
73 		goto bo_kmap_failure;
74 
75 	amdgpu_bo_unreserve(adev->gmc.pdb0_bo);
76 	return 0;
77 
78 bo_kmap_failure:
79 	amdgpu_bo_unpin(adev->gmc.pdb0_bo);
80 bo_pin_failure:
81 	amdgpu_bo_unreserve(adev->gmc.pdb0_bo);
82 bo_reserve_failure:
83 	amdgpu_bo_unref(&adev->gmc.pdb0_bo);
84 	return r;
85 }
86 
87 /**
88  * amdgpu_gmc_get_pde_for_bo - get the PDE for a BO
89  *
90  * @bo: the BO to get the PDE for
91  * @level: the level in the PD hirarchy
92  * @addr: resulting addr
93  * @flags: resulting flags
94  *
95  * Get the address and flags to be used for a PDE (Page Directory Entry).
96  */
97 void amdgpu_gmc_get_pde_for_bo(struct amdgpu_bo *bo, int level,
98 			       uint64_t *addr, uint64_t *flags)
99 {
100 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
101 
102 	switch (bo->tbo.mem.mem_type) {
103 	case TTM_PL_TT:
104 		*addr = bo->tbo.ttm->dma_address[0];
105 		break;
106 	case TTM_PL_VRAM:
107 		*addr = amdgpu_bo_gpu_offset(bo);
108 		break;
109 	default:
110 		*addr = 0;
111 		break;
112 	}
113 	*flags = amdgpu_ttm_tt_pde_flags(bo->tbo.ttm, &bo->tbo.mem);
114 	amdgpu_gmc_get_vm_pde(adev, level, addr, flags);
115 }
116 
117 /*
118  * amdgpu_gmc_pd_addr - return the address of the root directory
119  */
120 uint64_t amdgpu_gmc_pd_addr(struct amdgpu_bo *bo)
121 {
122 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
123 	uint64_t pd_addr;
124 
125 	/* TODO: move that into ASIC specific code */
126 	if (adev->asic_type >= CHIP_VEGA10) {
127 		uint64_t flags = AMDGPU_PTE_VALID;
128 
129 		amdgpu_gmc_get_pde_for_bo(bo, -1, &pd_addr, &flags);
130 		pd_addr |= flags;
131 	} else {
132 		pd_addr = amdgpu_bo_gpu_offset(bo);
133 	}
134 	return pd_addr;
135 }
136 
137 /**
138  * amdgpu_gmc_set_pte_pde - update the page tables using CPU
139  *
140  * @adev: amdgpu_device pointer
141  * @cpu_pt_addr: cpu address of the page table
142  * @gpu_page_idx: entry in the page table to update
143  * @addr: dst addr to write into pte/pde
144  * @flags: access flags
145  *
146  * Update the page tables using CPU.
147  */
148 int amdgpu_gmc_set_pte_pde(struct amdgpu_device *adev, void *cpu_pt_addr,
149 				uint32_t gpu_page_idx, uint64_t addr,
150 				uint64_t flags)
151 {
152 	void __iomem *ptr = (void *)cpu_pt_addr;
153 	uint64_t value;
154 
155 	/*
156 	 * The following is for PTE only. GART does not have PDEs.
157 	*/
158 	value = addr & 0x0000FFFFFFFFF000ULL;
159 	value |= flags;
160 	writeq(value, ptr + (gpu_page_idx * 8));
161 	return 0;
162 }
163 
164 /**
165  * amdgpu_gmc_agp_addr - return the address in the AGP address space
166  *
167  * @bo: TTM BO which needs the address, must be in GTT domain
168  *
169  * Tries to figure out how to access the BO through the AGP aperture. Returns
170  * AMDGPU_BO_INVALID_OFFSET if that is not possible.
171  */
172 uint64_t amdgpu_gmc_agp_addr(struct ttm_buffer_object *bo)
173 {
174 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
175 
176 	if (bo->ttm->num_pages != 1 || bo->ttm->caching == ttm_cached)
177 		return AMDGPU_BO_INVALID_OFFSET;
178 
179 	if (bo->ttm->dma_address[0] + PAGE_SIZE >= adev->gmc.agp_size)
180 		return AMDGPU_BO_INVALID_OFFSET;
181 
182 	return adev->gmc.agp_start + bo->ttm->dma_address[0];
183 }
184 
185 /**
186  * amdgpu_gmc_vram_location - try to find VRAM location
187  *
188  * @adev: amdgpu device structure holding all necessary information
189  * @mc: memory controller structure holding memory information
190  * @base: base address at which to put VRAM
191  *
192  * Function will try to place VRAM at base address provided
193  * as parameter.
194  */
195 void amdgpu_gmc_vram_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc,
196 			      u64 base)
197 {
198 	uint64_t limit = (uint64_t)amdgpu_vram_limit << 20;
199 
200 	mc->vram_start = base;
201 	mc->vram_end = mc->vram_start + mc->mc_vram_size - 1;
202 	if (limit && limit < mc->real_vram_size)
203 		mc->real_vram_size = limit;
204 
205 	if (mc->xgmi.num_physical_nodes == 0) {
206 		mc->fb_start = mc->vram_start;
207 		mc->fb_end = mc->vram_end;
208 	}
209 	dev_info(adev->dev, "VRAM: %lluM 0x%016llX - 0x%016llX (%lluM used)\n",
210 			mc->mc_vram_size >> 20, mc->vram_start,
211 			mc->vram_end, mc->real_vram_size >> 20);
212 }
213 
214 /** amdgpu_gmc_sysvm_location - place vram and gart in sysvm aperture
215  *
216  * @adev: amdgpu device structure holding all necessary information
217  * @mc: memory controller structure holding memory information
218  *
219  * This function is only used if use GART for FB translation. In such
220  * case, we use sysvm aperture (vmid0 page tables) for both vram
221  * and gart (aka system memory) access.
222  *
223  * GPUVM (and our organization of vmid0 page tables) require sysvm
224  * aperture to be placed at a location aligned with 8 times of native
225  * page size. For example, if vm_context0_cntl.page_table_block_size
226  * is 12, then native page size is 8G (2M*2^12), sysvm should start
227  * with a 64G aligned address. For simplicity, we just put sysvm at
228  * address 0. So vram start at address 0 and gart is right after vram.
229  */
230 void amdgpu_gmc_sysvm_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc)
231 {
232 	u64 hive_vram_start = 0;
233 	u64 hive_vram_end = mc->xgmi.node_segment_size * mc->xgmi.num_physical_nodes - 1;
234 	mc->vram_start = mc->xgmi.node_segment_size * mc->xgmi.physical_node_id;
235 	mc->vram_end = mc->vram_start + mc->xgmi.node_segment_size - 1;
236 	mc->gart_start = hive_vram_end + 1;
237 	mc->gart_end = mc->gart_start + mc->gart_size - 1;
238 	mc->fb_start = hive_vram_start;
239 	mc->fb_end = hive_vram_end;
240 	dev_info(adev->dev, "VRAM: %lluM 0x%016llX - 0x%016llX (%lluM used)\n",
241 			mc->mc_vram_size >> 20, mc->vram_start,
242 			mc->vram_end, mc->real_vram_size >> 20);
243 	dev_info(adev->dev, "GART: %lluM 0x%016llX - 0x%016llX\n",
244 			mc->gart_size >> 20, mc->gart_start, mc->gart_end);
245 }
246 
247 /**
248  * amdgpu_gmc_gart_location - try to find GART location
249  *
250  * @adev: amdgpu device structure holding all necessary information
251  * @mc: memory controller structure holding memory information
252  *
253  * Function will place try to place GART before or after VRAM.
254  * If GART size is bigger than space left then we ajust GART size.
255  * Thus function will never fails.
256  */
257 void amdgpu_gmc_gart_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc)
258 {
259 	const uint64_t four_gb = 0x100000000ULL;
260 	u64 size_af, size_bf;
261 	/*To avoid the hole, limit the max mc address to AMDGPU_GMC_HOLE_START*/
262 	u64 max_mc_address = min(adev->gmc.mc_mask, AMDGPU_GMC_HOLE_START - 1);
263 
264 	/* VCE doesn't like it when BOs cross a 4GB segment, so align
265 	 * the GART base on a 4GB boundary as well.
266 	 */
267 	size_bf = mc->fb_start;
268 	size_af = max_mc_address + 1 - ALIGN(mc->fb_end + 1, four_gb);
269 
270 	if (mc->gart_size > max(size_bf, size_af)) {
271 		dev_warn(adev->dev, "limiting GART\n");
272 		mc->gart_size = max(size_bf, size_af);
273 	}
274 
275 	if ((size_bf >= mc->gart_size && size_bf < size_af) ||
276 	    (size_af < mc->gart_size))
277 		mc->gart_start = 0;
278 	else
279 		mc->gart_start = max_mc_address - mc->gart_size + 1;
280 
281 	mc->gart_start &= ~(four_gb - 1);
282 	mc->gart_end = mc->gart_start + mc->gart_size - 1;
283 	dev_info(adev->dev, "GART: %lluM 0x%016llX - 0x%016llX\n",
284 			mc->gart_size >> 20, mc->gart_start, mc->gart_end);
285 }
286 
287 /**
288  * amdgpu_gmc_agp_location - try to find AGP location
289  * @adev: amdgpu device structure holding all necessary information
290  * @mc: memory controller structure holding memory information
291  *
292  * Function will place try to find a place for the AGP BAR in the MC address
293  * space.
294  *
295  * AGP BAR will be assigned the largest available hole in the address space.
296  * Should be called after VRAM and GART locations are setup.
297  */
298 void amdgpu_gmc_agp_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc)
299 {
300 	const uint64_t sixteen_gb = 1ULL << 34;
301 	const uint64_t sixteen_gb_mask = ~(sixteen_gb - 1);
302 	u64 size_af, size_bf;
303 
304 	if (amdgpu_sriov_vf(adev)) {
305 		mc->agp_start = 0xffffffffffff;
306 		mc->agp_end = 0x0;
307 		mc->agp_size = 0;
308 
309 		return;
310 	}
311 
312 	if (mc->fb_start > mc->gart_start) {
313 		size_bf = (mc->fb_start & sixteen_gb_mask) -
314 			ALIGN(mc->gart_end + 1, sixteen_gb);
315 		size_af = mc->mc_mask + 1 - ALIGN(mc->fb_end + 1, sixteen_gb);
316 	} else {
317 		size_bf = mc->fb_start & sixteen_gb_mask;
318 		size_af = (mc->gart_start & sixteen_gb_mask) -
319 			ALIGN(mc->fb_end + 1, sixteen_gb);
320 	}
321 
322 	if (size_bf > size_af) {
323 		mc->agp_start = (mc->fb_start - size_bf) & sixteen_gb_mask;
324 		mc->agp_size = size_bf;
325 	} else {
326 		mc->agp_start = ALIGN(mc->fb_end + 1, sixteen_gb);
327 		mc->agp_size = size_af;
328 	}
329 
330 	mc->agp_end = mc->agp_start + mc->agp_size - 1;
331 	dev_info(adev->dev, "AGP: %lluM 0x%016llX - 0x%016llX\n",
332 			mc->agp_size >> 20, mc->agp_start, mc->agp_end);
333 }
334 
335 /**
336  * amdgpu_gmc_filter_faults - filter VM faults
337  *
338  * @adev: amdgpu device structure
339  * @addr: address of the VM fault
340  * @pasid: PASID of the process causing the fault
341  * @timestamp: timestamp of the fault
342  *
343  * Returns:
344  * True if the fault was filtered and should not be processed further.
345  * False if the fault is a new one and needs to be handled.
346  */
347 bool amdgpu_gmc_filter_faults(struct amdgpu_device *adev, uint64_t addr,
348 			      uint16_t pasid, uint64_t timestamp)
349 {
350 	struct amdgpu_gmc *gmc = &adev->gmc;
351 
352 	uint64_t stamp, key = addr << 4 | pasid;
353 	struct amdgpu_gmc_fault *fault;
354 	uint32_t hash;
355 
356 	/* If we don't have space left in the ring buffer return immediately */
357 	stamp = max(timestamp, AMDGPU_GMC_FAULT_TIMEOUT + 1) -
358 		AMDGPU_GMC_FAULT_TIMEOUT;
359 	if (gmc->fault_ring[gmc->last_fault].timestamp >= stamp)
360 		return true;
361 
362 	/* Try to find the fault in the hash */
363 	hash = hash_64(key, AMDGPU_GMC_FAULT_HASH_ORDER);
364 	fault = &gmc->fault_ring[gmc->fault_hash[hash].idx];
365 	while (fault->timestamp >= stamp) {
366 		uint64_t tmp;
367 
368 		if (fault->key == key)
369 			return true;
370 
371 		tmp = fault->timestamp;
372 		fault = &gmc->fault_ring[fault->next];
373 
374 		/* Check if the entry was reused */
375 		if (fault->timestamp >= tmp)
376 			break;
377 	}
378 
379 	/* Add the fault to the ring */
380 	fault = &gmc->fault_ring[gmc->last_fault];
381 	fault->key = key;
382 	fault->timestamp = timestamp;
383 
384 	/* And update the hash */
385 	fault->next = gmc->fault_hash[hash].idx;
386 	gmc->fault_hash[hash].idx = gmc->last_fault++;
387 	return false;
388 }
389 
390 int amdgpu_gmc_ras_late_init(struct amdgpu_device *adev)
391 {
392 	int r;
393 
394 	if (adev->umc.funcs && adev->umc.funcs->ras_late_init) {
395 		r = adev->umc.funcs->ras_late_init(adev);
396 		if (r)
397 			return r;
398 	}
399 
400 	if (adev->mmhub.funcs && adev->mmhub.funcs->ras_late_init) {
401 		r = adev->mmhub.funcs->ras_late_init(adev);
402 		if (r)
403 			return r;
404 	}
405 
406 	return amdgpu_xgmi_ras_late_init(adev);
407 }
408 
409 void amdgpu_gmc_ras_fini(struct amdgpu_device *adev)
410 {
411 	amdgpu_umc_ras_fini(adev);
412 	amdgpu_mmhub_ras_fini(adev);
413 	amdgpu_xgmi_ras_fini(adev);
414 }
415 
416 	/*
417 	 * The latest engine allocation on gfx9/10 is:
418 	 * Engine 2, 3: firmware
419 	 * Engine 0, 1, 4~16: amdgpu ring,
420 	 *                    subject to change when ring number changes
421 	 * Engine 17: Gart flushes
422 	 */
423 #define GFXHUB_FREE_VM_INV_ENGS_BITMAP		0x1FFF3
424 #define MMHUB_FREE_VM_INV_ENGS_BITMAP		0x1FFF3
425 
426 int amdgpu_gmc_allocate_vm_inv_eng(struct amdgpu_device *adev)
427 {
428 	struct amdgpu_ring *ring;
429 	unsigned vm_inv_engs[AMDGPU_MAX_VMHUBS] =
430 		{GFXHUB_FREE_VM_INV_ENGS_BITMAP, MMHUB_FREE_VM_INV_ENGS_BITMAP,
431 		GFXHUB_FREE_VM_INV_ENGS_BITMAP};
432 	unsigned i;
433 	unsigned vmhub, inv_eng;
434 
435 	for (i = 0; i < adev->num_rings; ++i) {
436 		ring = adev->rings[i];
437 		vmhub = ring->funcs->vmhub;
438 
439 		if (ring == &adev->mes.ring)
440 			continue;
441 
442 		inv_eng = ffs(vm_inv_engs[vmhub]);
443 		if (!inv_eng) {
444 			dev_err(adev->dev, "no VM inv eng for ring %s\n",
445 				ring->name);
446 			return -EINVAL;
447 		}
448 
449 		ring->vm_inv_eng = inv_eng - 1;
450 		vm_inv_engs[vmhub] &= ~(1 << ring->vm_inv_eng);
451 
452 		dev_info(adev->dev, "ring %s uses VM inv eng %u on hub %u\n",
453 			 ring->name, ring->vm_inv_eng, ring->funcs->vmhub);
454 	}
455 
456 	return 0;
457 }
458 
459 /**
460  * amdgpu_tmz_set -- check and set if a device supports TMZ
461  * @adev: amdgpu_device pointer
462  *
463  * Check and set if an the device @adev supports Trusted Memory
464  * Zones (TMZ).
465  */
466 void amdgpu_gmc_tmz_set(struct amdgpu_device *adev)
467 {
468 	switch (adev->asic_type) {
469 	case CHIP_RAVEN:
470 		if (amdgpu_tmz == 0) {
471 			adev->gmc.tmz_enabled = false;
472 			dev_info(adev->dev,
473 				 "Trusted Memory Zone (TMZ) feature disabled (cmd line)\n");
474 		} else {
475 			adev->gmc.tmz_enabled = true;
476 			dev_info(adev->dev,
477 				 "Trusted Memory Zone (TMZ) feature enabled\n");
478 		}
479 		break;
480 	case CHIP_RENOIR:
481 	case CHIP_NAVI10:
482 	case CHIP_NAVI14:
483 	case CHIP_NAVI12:
484 	case CHIP_VANGOGH:
485 		/* Don't enable it by default yet.
486 		 */
487 		if (amdgpu_tmz < 1) {
488 			adev->gmc.tmz_enabled = false;
489 			dev_info(adev->dev,
490 				 "Trusted Memory Zone (TMZ) feature disabled as experimental (default)\n");
491 		} else {
492 			adev->gmc.tmz_enabled = true;
493 			dev_info(adev->dev,
494 				 "Trusted Memory Zone (TMZ) feature enabled as experimental (cmd line)\n");
495 		}
496 		break;
497 	default:
498 		adev->gmc.tmz_enabled = false;
499 		dev_warn(adev->dev,
500 			 "Trusted Memory Zone (TMZ) feature not supported\n");
501 		break;
502 	}
503 }
504 
505 /**
506  * amdgpu_noretry_set -- set per asic noretry defaults
507  * @adev: amdgpu_device pointer
508  *
509  * Set a per asic default for the no-retry parameter.
510  *
511  */
512 void amdgpu_gmc_noretry_set(struct amdgpu_device *adev)
513 {
514 	struct amdgpu_gmc *gmc = &adev->gmc;
515 
516 	switch (adev->asic_type) {
517 	case CHIP_VEGA10:
518 	case CHIP_VEGA20:
519 	case CHIP_ARCTURUS:
520 	case CHIP_ALDEBARAN:
521 		/*
522 		 * noretry = 0 will cause kfd page fault tests fail
523 		 * for some ASICs, so set default to 1 for these ASICs.
524 		 */
525 		if (amdgpu_noretry == -1)
526 			gmc->noretry = 1;
527 		else
528 			gmc->noretry = amdgpu_noretry;
529 		break;
530 	case CHIP_RAVEN:
531 	default:
532 		/* Raven currently has issues with noretry
533 		 * regardless of what we decide for other
534 		 * asics, we should leave raven with
535 		 * noretry = 0 until we root cause the
536 		 * issues.
537 		 *
538 		 * default this to 0 for now, but we may want
539 		 * to change this in the future for certain
540 		 * GPUs as it can increase performance in
541 		 * certain cases.
542 		 */
543 		if (amdgpu_noretry == -1)
544 			gmc->noretry = 0;
545 		else
546 			gmc->noretry = amdgpu_noretry;
547 		break;
548 	}
549 }
550 
551 void amdgpu_gmc_set_vm_fault_masks(struct amdgpu_device *adev, int hub_type,
552 				   bool enable)
553 {
554 	struct amdgpu_vmhub *hub;
555 	u32 tmp, reg, i;
556 
557 	hub = &adev->vmhub[hub_type];
558 	for (i = 0; i < 16; i++) {
559 		reg = hub->vm_context0_cntl + hub->ctx_distance * i;
560 
561 		tmp = RREG32(reg);
562 		if (enable)
563 			tmp |= hub->vm_cntx_cntl_vm_fault;
564 		else
565 			tmp &= ~hub->vm_cntx_cntl_vm_fault;
566 
567 		WREG32(reg, tmp);
568 	}
569 }
570 
571 void amdgpu_gmc_get_vbios_allocations(struct amdgpu_device *adev)
572 {
573 	unsigned size;
574 
575 	/*
576 	 * TODO:
577 	 * Currently there is a bug where some memory client outside
578 	 * of the driver writes to first 8M of VRAM on S3 resume,
579 	 * this overrides GART which by default gets placed in first 8M and
580 	 * causes VM_FAULTS once GTT is accessed.
581 	 * Keep the stolen memory reservation until the while this is not solved.
582 	 */
583 	switch (adev->asic_type) {
584 	case CHIP_VEGA10:
585 	case CHIP_RAVEN:
586 	case CHIP_RENOIR:
587 		adev->mman.keep_stolen_vga_memory = true;
588 		break;
589 	default:
590 		adev->mman.keep_stolen_vga_memory = false;
591 		break;
592 	}
593 
594 	if (amdgpu_sriov_vf(adev) ||
595 	    !amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_DCE)) {
596 		size = 0;
597 	} else {
598 		size = amdgpu_gmc_get_vbios_fb_size(adev);
599 
600 		if (adev->mman.keep_stolen_vga_memory)
601 			size = max(size, (unsigned)AMDGPU_VBIOS_VGA_ALLOCATION);
602 	}
603 
604 	/* set to 0 if the pre-OS buffer uses up most of vram */
605 	if ((adev->gmc.real_vram_size - size) < (8 * 1024 * 1024))
606 		size = 0;
607 
608 	if (size > AMDGPU_VBIOS_VGA_ALLOCATION) {
609 		adev->mman.stolen_vga_size = AMDGPU_VBIOS_VGA_ALLOCATION;
610 		adev->mman.stolen_extended_size = size - adev->mman.stolen_vga_size;
611 	} else {
612 		adev->mman.stolen_vga_size = size;
613 		adev->mman.stolen_extended_size = 0;
614 	}
615 }
616 
617 /**
618  * amdgpu_gmc_init_pdb0 - initialize PDB0
619  *
620  * @adev: amdgpu_device pointer
621  *
622  * This function is only used when GART page table is used
623  * for FB address translatioin. In such a case, we construct
624  * a 2-level system VM page table: PDB0->PTB, to cover both
625  * VRAM of the hive and system memory.
626  *
627  * PDB0 is static, initialized once on driver initialization.
628  * The first n entries of PDB0 are used as PTE by setting
629  * P bit to 1, pointing to VRAM. The n+1'th entry points
630  * to a big PTB covering system memory.
631  *
632  */
633 void amdgpu_gmc_init_pdb0(struct amdgpu_device *adev)
634 {
635 	int i;
636 	uint64_t flags = adev->gart.gart_pte_flags; //TODO it is UC. explore NC/RW?
637 	/* Each PDE0 (used as PTE) covers (2^vmid0_page_table_block_size)*2M
638 	 */
639 	u64 vram_size = adev->gmc.xgmi.node_segment_size * adev->gmc.xgmi.num_physical_nodes;
640 	u64 pde0_page_size = (1ULL<<adev->gmc.vmid0_page_table_block_size)<<21;
641 	u64 vram_addr = adev->vm_manager.vram_base_offset -
642 		adev->gmc.xgmi.physical_node_id * adev->gmc.xgmi.node_segment_size;
643 	u64 vram_end = vram_addr + vram_size;
644 	u64 gart_ptb_gpu_pa = amdgpu_bo_gpu_offset(adev->gart.bo) +
645 		adev->vm_manager.vram_base_offset - adev->gmc.vram_start;
646 
647 	flags |= AMDGPU_PTE_VALID | AMDGPU_PTE_READABLE;
648 	flags |= AMDGPU_PTE_WRITEABLE;
649 	flags |= AMDGPU_PTE_SNOOPED;
650 	flags |= AMDGPU_PTE_FRAG((adev->gmc.vmid0_page_table_block_size + 9*1));
651 	flags |= AMDGPU_PDE_PTE;
652 
653 	/* The first n PDE0 entries are used as PTE,
654 	 * pointing to vram
655 	 */
656 	for (i = 0; vram_addr < vram_end; i++, vram_addr += pde0_page_size)
657 		amdgpu_gmc_set_pte_pde(adev, adev->gmc.ptr_pdb0, i, vram_addr, flags);
658 
659 	/* The n+1'th PDE0 entry points to a huge
660 	 * PTB who has more than 512 entries each
661 	 * pointing to a 4K system page
662 	 */
663 	flags = AMDGPU_PTE_VALID;
664 	flags |= AMDGPU_PDE_BFS(0) | AMDGPU_PTE_SNOOPED;
665 	/* Requires gart_ptb_gpu_pa to be 4K aligned */
666 	amdgpu_gmc_set_pte_pde(adev, adev->gmc.ptr_pdb0, i, gart_ptb_gpu_pa, flags);
667 }
668