xref: /linux/drivers/gpu/drm/amd/amdgpu/amdgpu_gmc.c (revision 3d0fe49454652117522f60bfbefb978ba0e5300b)
1 /*
2  * Copyright 2018 Advanced Micro Devices, Inc.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 
27 #include <linux/io-64-nonatomic-lo-hi.h>
28 #ifdef CONFIG_X86
29 #include <asm/hypervisor.h>
30 #endif
31 
32 #include "amdgpu.h"
33 #include "amdgpu_gmc.h"
34 #include "amdgpu_ras.h"
35 #include "amdgpu_reset.h"
36 #include "amdgpu_xgmi.h"
37 
38 #include <drm/drm_drv.h>
39 #include <drm/ttm/ttm_tt.h>
40 
41 /**
42  * amdgpu_gmc_pdb0_alloc - allocate vram for pdb0
43  *
44  * @adev: amdgpu_device pointer
45  *
46  * Allocate video memory for pdb0 and map it for CPU access
47  * Returns 0 for success, error for failure.
48  */
49 int amdgpu_gmc_pdb0_alloc(struct amdgpu_device *adev)
50 {
51 	int r;
52 	struct amdgpu_bo_param bp;
53 	u64 vram_size = adev->gmc.xgmi.node_segment_size * adev->gmc.xgmi.num_physical_nodes;
54 	uint32_t pde0_page_shift = adev->gmc.vmid0_page_table_block_size + 21;
55 	uint32_t npdes = (vram_size + (1ULL << pde0_page_shift) -1) >> pde0_page_shift;
56 
57 	memset(&bp, 0, sizeof(bp));
58 	bp.size = PAGE_ALIGN((npdes + 1) * 8);
59 	bp.byte_align = PAGE_SIZE;
60 	bp.domain = AMDGPU_GEM_DOMAIN_VRAM;
61 	bp.flags = AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED |
62 		AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS;
63 	bp.type = ttm_bo_type_kernel;
64 	bp.resv = NULL;
65 	bp.bo_ptr_size = sizeof(struct amdgpu_bo);
66 
67 	r = amdgpu_bo_create(adev, &bp, &adev->gmc.pdb0_bo);
68 	if (r)
69 		return r;
70 
71 	r = amdgpu_bo_reserve(adev->gmc.pdb0_bo, false);
72 	if (unlikely(r != 0))
73 		goto bo_reserve_failure;
74 
75 	r = amdgpu_bo_pin(adev->gmc.pdb0_bo, AMDGPU_GEM_DOMAIN_VRAM);
76 	if (r)
77 		goto bo_pin_failure;
78 	r = amdgpu_bo_kmap(adev->gmc.pdb0_bo, &adev->gmc.ptr_pdb0);
79 	if (r)
80 		goto bo_kmap_failure;
81 
82 	amdgpu_bo_unreserve(adev->gmc.pdb0_bo);
83 	return 0;
84 
85 bo_kmap_failure:
86 	amdgpu_bo_unpin(adev->gmc.pdb0_bo);
87 bo_pin_failure:
88 	amdgpu_bo_unreserve(adev->gmc.pdb0_bo);
89 bo_reserve_failure:
90 	amdgpu_bo_unref(&adev->gmc.pdb0_bo);
91 	return r;
92 }
93 
94 /**
95  * amdgpu_gmc_get_pde_for_bo - get the PDE for a BO
96  *
97  * @bo: the BO to get the PDE for
98  * @level: the level in the PD hirarchy
99  * @addr: resulting addr
100  * @flags: resulting flags
101  *
102  * Get the address and flags to be used for a PDE (Page Directory Entry).
103  */
104 void amdgpu_gmc_get_pde_for_bo(struct amdgpu_bo *bo, int level,
105 			       uint64_t *addr, uint64_t *flags)
106 {
107 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
108 
109 	switch (bo->tbo.resource->mem_type) {
110 	case TTM_PL_TT:
111 		*addr = bo->tbo.ttm->dma_address[0];
112 		break;
113 	case TTM_PL_VRAM:
114 		*addr = amdgpu_bo_gpu_offset(bo);
115 		break;
116 	default:
117 		*addr = 0;
118 		break;
119 	}
120 	*flags = amdgpu_ttm_tt_pde_flags(bo->tbo.ttm, bo->tbo.resource);
121 	amdgpu_gmc_get_vm_pde(adev, level, addr, flags);
122 }
123 
124 /*
125  * amdgpu_gmc_pd_addr - return the address of the root directory
126  */
127 uint64_t amdgpu_gmc_pd_addr(struct amdgpu_bo *bo)
128 {
129 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
130 	uint64_t pd_addr;
131 
132 	/* TODO: move that into ASIC specific code */
133 	if (adev->asic_type >= CHIP_VEGA10) {
134 		uint64_t flags = AMDGPU_PTE_VALID;
135 
136 		amdgpu_gmc_get_pde_for_bo(bo, -1, &pd_addr, &flags);
137 		pd_addr |= flags;
138 	} else {
139 		pd_addr = amdgpu_bo_gpu_offset(bo);
140 	}
141 	return pd_addr;
142 }
143 
144 /**
145  * amdgpu_gmc_set_pte_pde - update the page tables using CPU
146  *
147  * @adev: amdgpu_device pointer
148  * @cpu_pt_addr: cpu address of the page table
149  * @gpu_page_idx: entry in the page table to update
150  * @addr: dst addr to write into pte/pde
151  * @flags: access flags
152  *
153  * Update the page tables using CPU.
154  */
155 int amdgpu_gmc_set_pte_pde(struct amdgpu_device *adev, void *cpu_pt_addr,
156 				uint32_t gpu_page_idx, uint64_t addr,
157 				uint64_t flags)
158 {
159 	void __iomem *ptr = (void *)cpu_pt_addr;
160 	uint64_t value;
161 
162 	/*
163 	 * The following is for PTE only. GART does not have PDEs.
164 	*/
165 	value = addr & 0x0000FFFFFFFFF000ULL;
166 	value |= flags;
167 	writeq(value, ptr + (gpu_page_idx * 8));
168 
169 	return 0;
170 }
171 
172 /**
173  * amdgpu_gmc_agp_addr - return the address in the AGP address space
174  *
175  * @bo: TTM BO which needs the address, must be in GTT domain
176  *
177  * Tries to figure out how to access the BO through the AGP aperture. Returns
178  * AMDGPU_BO_INVALID_OFFSET if that is not possible.
179  */
180 uint64_t amdgpu_gmc_agp_addr(struct ttm_buffer_object *bo)
181 {
182 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
183 
184 	if (bo->ttm->num_pages != 1 || bo->ttm->caching == ttm_cached)
185 		return AMDGPU_BO_INVALID_OFFSET;
186 
187 	if (bo->ttm->dma_address[0] + PAGE_SIZE >= adev->gmc.agp_size)
188 		return AMDGPU_BO_INVALID_OFFSET;
189 
190 	return adev->gmc.agp_start + bo->ttm->dma_address[0];
191 }
192 
193 /**
194  * amdgpu_gmc_vram_location - try to find VRAM location
195  *
196  * @adev: amdgpu device structure holding all necessary information
197  * @mc: memory controller structure holding memory information
198  * @base: base address at which to put VRAM
199  *
200  * Function will try to place VRAM at base address provided
201  * as parameter.
202  */
203 void amdgpu_gmc_vram_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc,
204 			      u64 base)
205 {
206 	uint64_t vis_limit = (uint64_t)amdgpu_vis_vram_limit << 20;
207 	uint64_t limit = (uint64_t)amdgpu_vram_limit << 20;
208 
209 	mc->vram_start = base;
210 	mc->vram_end = mc->vram_start + mc->mc_vram_size - 1;
211 	if (limit < mc->real_vram_size)
212 		mc->real_vram_size = limit;
213 
214 	if (vis_limit && vis_limit < mc->visible_vram_size)
215 		mc->visible_vram_size = vis_limit;
216 
217 	if (mc->real_vram_size < mc->visible_vram_size)
218 		mc->visible_vram_size = mc->real_vram_size;
219 
220 	if (mc->xgmi.num_physical_nodes == 0) {
221 		mc->fb_start = mc->vram_start;
222 		mc->fb_end = mc->vram_end;
223 	}
224 	dev_info(adev->dev, "VRAM: %lluM 0x%016llX - 0x%016llX (%lluM used)\n",
225 			mc->mc_vram_size >> 20, mc->vram_start,
226 			mc->vram_end, mc->real_vram_size >> 20);
227 }
228 
229 /** amdgpu_gmc_sysvm_location - place vram and gart in sysvm aperture
230  *
231  * @adev: amdgpu device structure holding all necessary information
232  * @mc: memory controller structure holding memory information
233  *
234  * This function is only used if use GART for FB translation. In such
235  * case, we use sysvm aperture (vmid0 page tables) for both vram
236  * and gart (aka system memory) access.
237  *
238  * GPUVM (and our organization of vmid0 page tables) require sysvm
239  * aperture to be placed at a location aligned with 8 times of native
240  * page size. For example, if vm_context0_cntl.page_table_block_size
241  * is 12, then native page size is 8G (2M*2^12), sysvm should start
242  * with a 64G aligned address. For simplicity, we just put sysvm at
243  * address 0. So vram start at address 0 and gart is right after vram.
244  */
245 void amdgpu_gmc_sysvm_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc)
246 {
247 	u64 hive_vram_start = 0;
248 	u64 hive_vram_end = mc->xgmi.node_segment_size * mc->xgmi.num_physical_nodes - 1;
249 	mc->vram_start = mc->xgmi.node_segment_size * mc->xgmi.physical_node_id;
250 	mc->vram_end = mc->vram_start + mc->xgmi.node_segment_size - 1;
251 	mc->gart_start = hive_vram_end + 1;
252 	mc->gart_end = mc->gart_start + mc->gart_size - 1;
253 	mc->fb_start = hive_vram_start;
254 	mc->fb_end = hive_vram_end;
255 	dev_info(adev->dev, "VRAM: %lluM 0x%016llX - 0x%016llX (%lluM used)\n",
256 			mc->mc_vram_size >> 20, mc->vram_start,
257 			mc->vram_end, mc->real_vram_size >> 20);
258 	dev_info(adev->dev, "GART: %lluM 0x%016llX - 0x%016llX\n",
259 			mc->gart_size >> 20, mc->gart_start, mc->gart_end);
260 }
261 
262 /**
263  * amdgpu_gmc_gart_location - try to find GART location
264  *
265  * @adev: amdgpu device structure holding all necessary information
266  * @mc: memory controller structure holding memory information
267  * @gart_placement: GART placement policy with respect to VRAM
268  *
269  * Function will place try to place GART before or after VRAM.
270  * If GART size is bigger than space left then we ajust GART size.
271  * Thus function will never fails.
272  */
273 void amdgpu_gmc_gart_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc,
274 			      enum amdgpu_gart_placement gart_placement)
275 {
276 	const uint64_t four_gb = 0x100000000ULL;
277 	u64 size_af, size_bf;
278 	/*To avoid the hole, limit the max mc address to AMDGPU_GMC_HOLE_START*/
279 	u64 max_mc_address = min(adev->gmc.mc_mask, AMDGPU_GMC_HOLE_START - 1);
280 
281 	/* VCE doesn't like it when BOs cross a 4GB segment, so align
282 	 * the GART base on a 4GB boundary as well.
283 	 */
284 	size_bf = mc->fb_start;
285 	size_af = max_mc_address + 1 - ALIGN(mc->fb_end + 1, four_gb);
286 
287 	if (mc->gart_size > max(size_bf, size_af)) {
288 		dev_warn(adev->dev, "limiting GART\n");
289 		mc->gart_size = max(size_bf, size_af);
290 	}
291 
292 	switch (gart_placement) {
293 	case AMDGPU_GART_PLACEMENT_HIGH:
294 		mc->gart_start = max_mc_address - mc->gart_size + 1;
295 		break;
296 	case AMDGPU_GART_PLACEMENT_LOW:
297 		mc->gart_start = 0;
298 		break;
299 	case AMDGPU_GART_PLACEMENT_BEST_FIT:
300 	default:
301 		if ((size_bf >= mc->gart_size && size_bf < size_af) ||
302 		    (size_af < mc->gart_size))
303 			mc->gart_start = 0;
304 		else
305 			mc->gart_start = max_mc_address - mc->gart_size + 1;
306 		break;
307 	}
308 
309 	mc->gart_start &= ~(four_gb - 1);
310 	mc->gart_end = mc->gart_start + mc->gart_size - 1;
311 	dev_info(adev->dev, "GART: %lluM 0x%016llX - 0x%016llX\n",
312 			mc->gart_size >> 20, mc->gart_start, mc->gart_end);
313 }
314 
315 /**
316  * amdgpu_gmc_agp_location - try to find AGP location
317  * @adev: amdgpu device structure holding all necessary information
318  * @mc: memory controller structure holding memory information
319  *
320  * Function will place try to find a place for the AGP BAR in the MC address
321  * space.
322  *
323  * AGP BAR will be assigned the largest available hole in the address space.
324  * Should be called after VRAM and GART locations are setup.
325  */
326 void amdgpu_gmc_agp_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc)
327 {
328 	const uint64_t sixteen_gb = 1ULL << 34;
329 	const uint64_t sixteen_gb_mask = ~(sixteen_gb - 1);
330 	u64 size_af, size_bf;
331 
332 	if (mc->fb_start > mc->gart_start) {
333 		size_bf = (mc->fb_start & sixteen_gb_mask) -
334 			ALIGN(mc->gart_end + 1, sixteen_gb);
335 		size_af = mc->mc_mask + 1 - ALIGN(mc->fb_end + 1, sixteen_gb);
336 	} else {
337 		size_bf = mc->fb_start & sixteen_gb_mask;
338 		size_af = (mc->gart_start & sixteen_gb_mask) -
339 			ALIGN(mc->fb_end + 1, sixteen_gb);
340 	}
341 
342 	if (size_bf > size_af) {
343 		mc->agp_start = (mc->fb_start - size_bf) & sixteen_gb_mask;
344 		mc->agp_size = size_bf;
345 	} else {
346 		mc->agp_start = ALIGN(mc->fb_end + 1, sixteen_gb);
347 		mc->agp_size = size_af;
348 	}
349 
350 	mc->agp_end = mc->agp_start + mc->agp_size - 1;
351 	dev_info(adev->dev, "AGP: %lluM 0x%016llX - 0x%016llX\n",
352 			mc->agp_size >> 20, mc->agp_start, mc->agp_end);
353 }
354 
355 /**
356  * amdgpu_gmc_set_agp_default - Set the default AGP aperture value.
357  * @adev: amdgpu device structure holding all necessary information
358  * @mc: memory controller structure holding memory information
359  *
360  * To disable the AGP aperture, you need to set the start to a larger
361  * value than the end.  This function sets the default value which
362  * can then be overridden using amdgpu_gmc_agp_location() if you want
363  * to enable the AGP aperture on a specific chip.
364  *
365  */
366 void amdgpu_gmc_set_agp_default(struct amdgpu_device *adev,
367 				struct amdgpu_gmc *mc)
368 {
369 	mc->agp_start = 0xffffffffffff;
370 	mc->agp_end = 0;
371 	mc->agp_size = 0;
372 }
373 
374 /**
375  * amdgpu_gmc_fault_key - get hask key from vm fault address and pasid
376  *
377  * @addr: 48 bit physical address, page aligned (36 significant bits)
378  * @pasid: 16 bit process address space identifier
379  */
380 static inline uint64_t amdgpu_gmc_fault_key(uint64_t addr, uint16_t pasid)
381 {
382 	return addr << 4 | pasid;
383 }
384 
385 /**
386  * amdgpu_gmc_filter_faults - filter VM faults
387  *
388  * @adev: amdgpu device structure
389  * @ih: interrupt ring that the fault received from
390  * @addr: address of the VM fault
391  * @pasid: PASID of the process causing the fault
392  * @timestamp: timestamp of the fault
393  *
394  * Returns:
395  * True if the fault was filtered and should not be processed further.
396  * False if the fault is a new one and needs to be handled.
397  */
398 bool amdgpu_gmc_filter_faults(struct amdgpu_device *adev,
399 			      struct amdgpu_ih_ring *ih, uint64_t addr,
400 			      uint16_t pasid, uint64_t timestamp)
401 {
402 	struct amdgpu_gmc *gmc = &adev->gmc;
403 	uint64_t stamp, key = amdgpu_gmc_fault_key(addr, pasid);
404 	struct amdgpu_gmc_fault *fault;
405 	uint32_t hash;
406 
407 	/* Stale retry fault if timestamp goes backward */
408 	if (amdgpu_ih_ts_after(timestamp, ih->processed_timestamp))
409 		return true;
410 
411 	/* If we don't have space left in the ring buffer return immediately */
412 	stamp = max(timestamp, AMDGPU_GMC_FAULT_TIMEOUT + 1) -
413 		AMDGPU_GMC_FAULT_TIMEOUT;
414 	if (gmc->fault_ring[gmc->last_fault].timestamp >= stamp)
415 		return true;
416 
417 	/* Try to find the fault in the hash */
418 	hash = hash_64(key, AMDGPU_GMC_FAULT_HASH_ORDER);
419 	fault = &gmc->fault_ring[gmc->fault_hash[hash].idx];
420 	while (fault->timestamp >= stamp) {
421 		uint64_t tmp;
422 
423 		if (atomic64_read(&fault->key) == key) {
424 			/*
425 			 * if we get a fault which is already present in
426 			 * the fault_ring and the timestamp of
427 			 * the fault is after the expired timestamp,
428 			 * then this is a new fault that needs to be added
429 			 * into the fault ring.
430 			 */
431 			if (fault->timestamp_expiry != 0 &&
432 			    amdgpu_ih_ts_after(fault->timestamp_expiry,
433 					       timestamp))
434 				break;
435 			else
436 				return true;
437 		}
438 
439 		tmp = fault->timestamp;
440 		fault = &gmc->fault_ring[fault->next];
441 
442 		/* Check if the entry was reused */
443 		if (fault->timestamp >= tmp)
444 			break;
445 	}
446 
447 	/* Add the fault to the ring */
448 	fault = &gmc->fault_ring[gmc->last_fault];
449 	atomic64_set(&fault->key, key);
450 	fault->timestamp = timestamp;
451 
452 	/* And update the hash */
453 	fault->next = gmc->fault_hash[hash].idx;
454 	gmc->fault_hash[hash].idx = gmc->last_fault++;
455 	return false;
456 }
457 
458 /**
459  * amdgpu_gmc_filter_faults_remove - remove address from VM faults filter
460  *
461  * @adev: amdgpu device structure
462  * @addr: address of the VM fault
463  * @pasid: PASID of the process causing the fault
464  *
465  * Remove the address from fault filter, then future vm fault on this address
466  * will pass to retry fault handler to recover.
467  */
468 void amdgpu_gmc_filter_faults_remove(struct amdgpu_device *adev, uint64_t addr,
469 				     uint16_t pasid)
470 {
471 	struct amdgpu_gmc *gmc = &adev->gmc;
472 	uint64_t key = amdgpu_gmc_fault_key(addr, pasid);
473 	struct amdgpu_ih_ring *ih;
474 	struct amdgpu_gmc_fault *fault;
475 	uint32_t last_wptr;
476 	uint64_t last_ts;
477 	uint32_t hash;
478 	uint64_t tmp;
479 
480 	if (adev->irq.retry_cam_enabled)
481 		return;
482 
483 	ih = &adev->irq.ih1;
484 	/* Get the WPTR of the last entry in IH ring */
485 	last_wptr = amdgpu_ih_get_wptr(adev, ih);
486 	/* Order wptr with ring data. */
487 	rmb();
488 	/* Get the timetamp of the last entry in IH ring */
489 	last_ts = amdgpu_ih_decode_iv_ts(adev, ih, last_wptr, -1);
490 
491 	hash = hash_64(key, AMDGPU_GMC_FAULT_HASH_ORDER);
492 	fault = &gmc->fault_ring[gmc->fault_hash[hash].idx];
493 	do {
494 		if (atomic64_read(&fault->key) == key) {
495 			/*
496 			 * Update the timestamp when this fault
497 			 * expired.
498 			 */
499 			fault->timestamp_expiry = last_ts;
500 			break;
501 		}
502 
503 		tmp = fault->timestamp;
504 		fault = &gmc->fault_ring[fault->next];
505 	} while (fault->timestamp < tmp);
506 }
507 
508 int amdgpu_gmc_ras_sw_init(struct amdgpu_device *adev)
509 {
510 	int r;
511 
512 	/* umc ras block */
513 	r = amdgpu_umc_ras_sw_init(adev);
514 	if (r)
515 		return r;
516 
517 	/* mmhub ras block */
518 	r = amdgpu_mmhub_ras_sw_init(adev);
519 	if (r)
520 		return r;
521 
522 	/* hdp ras block */
523 	r = amdgpu_hdp_ras_sw_init(adev);
524 	if (r)
525 		return r;
526 
527 	/* mca.x ras block */
528 	r = amdgpu_mca_mp0_ras_sw_init(adev);
529 	if (r)
530 		return r;
531 
532 	r = amdgpu_mca_mp1_ras_sw_init(adev);
533 	if (r)
534 		return r;
535 
536 	r = amdgpu_mca_mpio_ras_sw_init(adev);
537 	if (r)
538 		return r;
539 
540 	/* xgmi ras block */
541 	r = amdgpu_xgmi_ras_sw_init(adev);
542 	if (r)
543 		return r;
544 
545 	return 0;
546 }
547 
548 int amdgpu_gmc_ras_late_init(struct amdgpu_device *adev)
549 {
550 	return 0;
551 }
552 
553 void amdgpu_gmc_ras_fini(struct amdgpu_device *adev)
554 {
555 
556 }
557 
558 	/*
559 	 * The latest engine allocation on gfx9/10 is:
560 	 * Engine 2, 3: firmware
561 	 * Engine 0, 1, 4~16: amdgpu ring,
562 	 *                    subject to change when ring number changes
563 	 * Engine 17: Gart flushes
564 	 */
565 #define AMDGPU_VMHUB_INV_ENG_BITMAP		0x1FFF3
566 
567 int amdgpu_gmc_allocate_vm_inv_eng(struct amdgpu_device *adev)
568 {
569 	struct amdgpu_ring *ring;
570 	unsigned vm_inv_engs[AMDGPU_MAX_VMHUBS] = {0};
571 	unsigned i;
572 	unsigned vmhub, inv_eng;
573 
574 	/* init the vm inv eng for all vmhubs */
575 	for_each_set_bit(i, adev->vmhubs_mask, AMDGPU_MAX_VMHUBS) {
576 		vm_inv_engs[i] = AMDGPU_VMHUB_INV_ENG_BITMAP;
577 		/* reserve engine 5 for firmware */
578 		if (adev->enable_mes)
579 			vm_inv_engs[i] &= ~(1 << 5);
580 		/* reserve mmhub engine 3 for firmware */
581 		if (adev->enable_umsch_mm)
582 			vm_inv_engs[i] &= ~(1 << 3);
583 	}
584 
585 	for (i = 0; i < adev->num_rings; ++i) {
586 		ring = adev->rings[i];
587 		vmhub = ring->vm_hub;
588 
589 		if (ring == &adev->mes.ring ||
590 		    ring == &adev->umsch_mm.ring)
591 			continue;
592 
593 		inv_eng = ffs(vm_inv_engs[vmhub]);
594 		if (!inv_eng) {
595 			dev_err(adev->dev, "no VM inv eng for ring %s\n",
596 				ring->name);
597 			return -EINVAL;
598 		}
599 
600 		ring->vm_inv_eng = inv_eng - 1;
601 		vm_inv_engs[vmhub] &= ~(1 << ring->vm_inv_eng);
602 
603 		dev_info(adev->dev, "ring %s uses VM inv eng %u on hub %u\n",
604 			 ring->name, ring->vm_inv_eng, ring->vm_hub);
605 	}
606 
607 	return 0;
608 }
609 
610 void amdgpu_gmc_flush_gpu_tlb(struct amdgpu_device *adev, uint32_t vmid,
611 			      uint32_t vmhub, uint32_t flush_type)
612 {
613 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
614 	struct amdgpu_vmhub *hub = &adev->vmhub[vmhub];
615 	struct dma_fence *fence;
616 	struct amdgpu_job *job;
617 	int r;
618 
619 	if (!hub->sdma_invalidation_workaround || vmid ||
620 	    !adev->mman.buffer_funcs_enabled ||
621 	    !adev->ib_pool_ready || amdgpu_in_reset(adev) ||
622 	    !ring->sched.ready) {
623 
624 		/*
625 		 * A GPU reset should flush all TLBs anyway, so no need to do
626 		 * this while one is ongoing.
627 		 */
628 		if (!down_read_trylock(&adev->reset_domain->sem))
629 			return;
630 
631 		if (adev->gmc.flush_tlb_needs_extra_type_2)
632 			adev->gmc.gmc_funcs->flush_gpu_tlb(adev, vmid,
633 							   vmhub, 2);
634 
635 		if (adev->gmc.flush_tlb_needs_extra_type_0 && flush_type == 2)
636 			adev->gmc.gmc_funcs->flush_gpu_tlb(adev, vmid,
637 							   vmhub, 0);
638 
639 		adev->gmc.gmc_funcs->flush_gpu_tlb(adev, vmid, vmhub,
640 						   flush_type);
641 		up_read(&adev->reset_domain->sem);
642 		return;
643 	}
644 
645 	/* The SDMA on Navi 1x has a bug which can theoretically result in memory
646 	 * corruption if an invalidation happens at the same time as an VA
647 	 * translation. Avoid this by doing the invalidation from the SDMA
648 	 * itself at least for GART.
649 	 */
650 	mutex_lock(&adev->mman.gtt_window_lock);
651 	r = amdgpu_job_alloc_with_ib(ring->adev, &adev->mman.high_pr,
652 				     AMDGPU_FENCE_OWNER_UNDEFINED,
653 				     16 * 4, AMDGPU_IB_POOL_IMMEDIATE,
654 				     &job);
655 	if (r)
656 		goto error_alloc;
657 
658 	job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gart.bo);
659 	job->vm_needs_flush = true;
660 	job->ibs->ptr[job->ibs->length_dw++] = ring->funcs->nop;
661 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
662 	fence = amdgpu_job_submit(job);
663 	mutex_unlock(&adev->mman.gtt_window_lock);
664 
665 	dma_fence_wait(fence, false);
666 	dma_fence_put(fence);
667 
668 	return;
669 
670 error_alloc:
671 	mutex_unlock(&adev->mman.gtt_window_lock);
672 	dev_err(adev->dev, "Error flushing GPU TLB using the SDMA (%d)!\n", r);
673 }
674 
675 int amdgpu_gmc_flush_gpu_tlb_pasid(struct amdgpu_device *adev, uint16_t pasid,
676 				   uint32_t flush_type, bool all_hub,
677 				   uint32_t inst)
678 {
679 	u32 usec_timeout = amdgpu_sriov_vf(adev) ? SRIOV_USEC_TIMEOUT :
680 		adev->usec_timeout;
681 	struct amdgpu_ring *ring = &adev->gfx.kiq[inst].ring;
682 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[inst];
683 	unsigned int ndw;
684 	signed long r;
685 	uint32_t seq;
686 
687 	if (!adev->gmc.flush_pasid_uses_kiq || !ring->sched.ready ||
688 	    !down_read_trylock(&adev->reset_domain->sem)) {
689 
690 		if (adev->gmc.flush_tlb_needs_extra_type_2)
691 			adev->gmc.gmc_funcs->flush_gpu_tlb_pasid(adev, pasid,
692 								 2, all_hub,
693 								 inst);
694 
695 		if (adev->gmc.flush_tlb_needs_extra_type_0 && flush_type == 2)
696 			adev->gmc.gmc_funcs->flush_gpu_tlb_pasid(adev, pasid,
697 								 0, all_hub,
698 								 inst);
699 
700 		adev->gmc.gmc_funcs->flush_gpu_tlb_pasid(adev, pasid,
701 							 flush_type, all_hub,
702 							 inst);
703 		return 0;
704 	}
705 
706 	/* 2 dwords flush + 8 dwords fence */
707 	ndw = kiq->pmf->invalidate_tlbs_size + 8;
708 
709 	if (adev->gmc.flush_tlb_needs_extra_type_2)
710 		ndw += kiq->pmf->invalidate_tlbs_size;
711 
712 	if (adev->gmc.flush_tlb_needs_extra_type_0)
713 		ndw += kiq->pmf->invalidate_tlbs_size;
714 
715 	spin_lock(&adev->gfx.kiq[inst].ring_lock);
716 	amdgpu_ring_alloc(ring, ndw);
717 	if (adev->gmc.flush_tlb_needs_extra_type_2)
718 		kiq->pmf->kiq_invalidate_tlbs(ring, pasid, 2, all_hub);
719 
720 	if (flush_type == 2 && adev->gmc.flush_tlb_needs_extra_type_0)
721 		kiq->pmf->kiq_invalidate_tlbs(ring, pasid, 0, all_hub);
722 
723 	kiq->pmf->kiq_invalidate_tlbs(ring, pasid, flush_type, all_hub);
724 	r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT);
725 	if (r) {
726 		amdgpu_ring_undo(ring);
727 		spin_unlock(&adev->gfx.kiq[inst].ring_lock);
728 		goto error_unlock_reset;
729 	}
730 
731 	amdgpu_ring_commit(ring);
732 	spin_unlock(&adev->gfx.kiq[inst].ring_lock);
733 	r = amdgpu_fence_wait_polling(ring, seq, usec_timeout);
734 	if (r < 1) {
735 		dev_err(adev->dev, "wait for kiq fence error: %ld.\n", r);
736 		r = -ETIME;
737 		goto error_unlock_reset;
738 	}
739 	r = 0;
740 
741 error_unlock_reset:
742 	up_read(&adev->reset_domain->sem);
743 	return r;
744 }
745 
746 /**
747  * amdgpu_gmc_tmz_set -- check and set if a device supports TMZ
748  * @adev: amdgpu_device pointer
749  *
750  * Check and set if an the device @adev supports Trusted Memory
751  * Zones (TMZ).
752  */
753 void amdgpu_gmc_tmz_set(struct amdgpu_device *adev)
754 {
755 	switch (amdgpu_ip_version(adev, GC_HWIP, 0)) {
756 	/* RAVEN */
757 	case IP_VERSION(9, 2, 2):
758 	case IP_VERSION(9, 1, 0):
759 	/* RENOIR looks like RAVEN */
760 	case IP_VERSION(9, 3, 0):
761 	/* GC 10.3.7 */
762 	case IP_VERSION(10, 3, 7):
763 	/* GC 11.0.1 */
764 	case IP_VERSION(11, 0, 1):
765 		if (amdgpu_tmz == 0) {
766 			adev->gmc.tmz_enabled = false;
767 			dev_info(adev->dev,
768 				 "Trusted Memory Zone (TMZ) feature disabled (cmd line)\n");
769 		} else {
770 			adev->gmc.tmz_enabled = true;
771 			dev_info(adev->dev,
772 				 "Trusted Memory Zone (TMZ) feature enabled\n");
773 		}
774 		break;
775 	case IP_VERSION(10, 1, 10):
776 	case IP_VERSION(10, 1, 1):
777 	case IP_VERSION(10, 1, 2):
778 	case IP_VERSION(10, 1, 3):
779 	case IP_VERSION(10, 3, 0):
780 	case IP_VERSION(10, 3, 2):
781 	case IP_VERSION(10, 3, 4):
782 	case IP_VERSION(10, 3, 5):
783 	case IP_VERSION(10, 3, 6):
784 	/* VANGOGH */
785 	case IP_VERSION(10, 3, 1):
786 	/* YELLOW_CARP*/
787 	case IP_VERSION(10, 3, 3):
788 	case IP_VERSION(11, 0, 4):
789 	case IP_VERSION(11, 5, 0):
790 		/* Don't enable it by default yet.
791 		 */
792 		if (amdgpu_tmz < 1) {
793 			adev->gmc.tmz_enabled = false;
794 			dev_info(adev->dev,
795 				 "Trusted Memory Zone (TMZ) feature disabled as experimental (default)\n");
796 		} else {
797 			adev->gmc.tmz_enabled = true;
798 			dev_info(adev->dev,
799 				 "Trusted Memory Zone (TMZ) feature enabled as experimental (cmd line)\n");
800 		}
801 		break;
802 	default:
803 		adev->gmc.tmz_enabled = false;
804 		dev_info(adev->dev,
805 			 "Trusted Memory Zone (TMZ) feature not supported\n");
806 		break;
807 	}
808 }
809 
810 /**
811  * amdgpu_gmc_noretry_set -- set per asic noretry defaults
812  * @adev: amdgpu_device pointer
813  *
814  * Set a per asic default for the no-retry parameter.
815  *
816  */
817 void amdgpu_gmc_noretry_set(struct amdgpu_device *adev)
818 {
819 	struct amdgpu_gmc *gmc = &adev->gmc;
820 	uint32_t gc_ver = amdgpu_ip_version(adev, GC_HWIP, 0);
821 	bool noretry_default = (gc_ver == IP_VERSION(9, 0, 1) ||
822 				gc_ver == IP_VERSION(9, 3, 0) ||
823 				gc_ver == IP_VERSION(9, 4, 0) ||
824 				gc_ver == IP_VERSION(9, 4, 1) ||
825 				gc_ver == IP_VERSION(9, 4, 2) ||
826 				gc_ver == IP_VERSION(9, 4, 3) ||
827 				gc_ver >= IP_VERSION(10, 3, 0));
828 
829 	if (!amdgpu_sriov_xnack_support(adev))
830 		gmc->noretry = 1;
831 	else
832 		gmc->noretry = (amdgpu_noretry == -1) ? noretry_default : amdgpu_noretry;
833 }
834 
835 void amdgpu_gmc_set_vm_fault_masks(struct amdgpu_device *adev, int hub_type,
836 				   bool enable)
837 {
838 	struct amdgpu_vmhub *hub;
839 	u32 tmp, reg, i;
840 
841 	hub = &adev->vmhub[hub_type];
842 	for (i = 0; i < 16; i++) {
843 		reg = hub->vm_context0_cntl + hub->ctx_distance * i;
844 
845 		tmp = (hub_type == AMDGPU_GFXHUB(0)) ?
846 			RREG32_SOC15_IP(GC, reg) :
847 			RREG32_SOC15_IP(MMHUB, reg);
848 
849 		if (enable)
850 			tmp |= hub->vm_cntx_cntl_vm_fault;
851 		else
852 			tmp &= ~hub->vm_cntx_cntl_vm_fault;
853 
854 		(hub_type == AMDGPU_GFXHUB(0)) ?
855 			WREG32_SOC15_IP(GC, reg, tmp) :
856 			WREG32_SOC15_IP(MMHUB, reg, tmp);
857 	}
858 }
859 
860 void amdgpu_gmc_get_vbios_allocations(struct amdgpu_device *adev)
861 {
862 	unsigned size;
863 
864 	/*
865 	 * Some ASICs need to reserve a region of video memory to avoid access
866 	 * from driver
867 	 */
868 	adev->mman.stolen_reserved_offset = 0;
869 	adev->mman.stolen_reserved_size = 0;
870 
871 	/*
872 	 * TODO:
873 	 * Currently there is a bug where some memory client outside
874 	 * of the driver writes to first 8M of VRAM on S3 resume,
875 	 * this overrides GART which by default gets placed in first 8M and
876 	 * causes VM_FAULTS once GTT is accessed.
877 	 * Keep the stolen memory reservation until the while this is not solved.
878 	 */
879 	switch (adev->asic_type) {
880 	case CHIP_VEGA10:
881 		adev->mman.keep_stolen_vga_memory = true;
882 		/*
883 		 * VEGA10 SRIOV VF with MS_HYPERV host needs some firmware reserved area.
884 		 */
885 #ifdef CONFIG_X86
886 		if (amdgpu_sriov_vf(adev) && hypervisor_is_type(X86_HYPER_MS_HYPERV)) {
887 			adev->mman.stolen_reserved_offset = 0x500000;
888 			adev->mman.stolen_reserved_size = 0x200000;
889 		}
890 #endif
891 		break;
892 	case CHIP_RAVEN:
893 	case CHIP_RENOIR:
894 		adev->mman.keep_stolen_vga_memory = true;
895 		break;
896 	default:
897 		adev->mman.keep_stolen_vga_memory = false;
898 		break;
899 	}
900 
901 	if (amdgpu_sriov_vf(adev) ||
902 	    !amdgpu_device_has_display_hardware(adev)) {
903 		size = 0;
904 	} else {
905 		size = amdgpu_gmc_get_vbios_fb_size(adev);
906 
907 		if (adev->mman.keep_stolen_vga_memory)
908 			size = max(size, (unsigned)AMDGPU_VBIOS_VGA_ALLOCATION);
909 	}
910 
911 	/* set to 0 if the pre-OS buffer uses up most of vram */
912 	if ((adev->gmc.real_vram_size - size) < (8 * 1024 * 1024))
913 		size = 0;
914 
915 	if (size > AMDGPU_VBIOS_VGA_ALLOCATION) {
916 		adev->mman.stolen_vga_size = AMDGPU_VBIOS_VGA_ALLOCATION;
917 		adev->mman.stolen_extended_size = size - adev->mman.stolen_vga_size;
918 	} else {
919 		adev->mman.stolen_vga_size = size;
920 		adev->mman.stolen_extended_size = 0;
921 	}
922 }
923 
924 /**
925  * amdgpu_gmc_init_pdb0 - initialize PDB0
926  *
927  * @adev: amdgpu_device pointer
928  *
929  * This function is only used when GART page table is used
930  * for FB address translatioin. In such a case, we construct
931  * a 2-level system VM page table: PDB0->PTB, to cover both
932  * VRAM of the hive and system memory.
933  *
934  * PDB0 is static, initialized once on driver initialization.
935  * The first n entries of PDB0 are used as PTE by setting
936  * P bit to 1, pointing to VRAM. The n+1'th entry points
937  * to a big PTB covering system memory.
938  *
939  */
940 void amdgpu_gmc_init_pdb0(struct amdgpu_device *adev)
941 {
942 	int i;
943 	uint64_t flags = adev->gart.gart_pte_flags; //TODO it is UC. explore NC/RW?
944 	/* Each PDE0 (used as PTE) covers (2^vmid0_page_table_block_size)*2M
945 	 */
946 	u64 vram_size = adev->gmc.xgmi.node_segment_size * adev->gmc.xgmi.num_physical_nodes;
947 	u64 pde0_page_size = (1ULL<<adev->gmc.vmid0_page_table_block_size)<<21;
948 	u64 vram_addr = adev->vm_manager.vram_base_offset -
949 		adev->gmc.xgmi.physical_node_id * adev->gmc.xgmi.node_segment_size;
950 	u64 vram_end = vram_addr + vram_size;
951 	u64 gart_ptb_gpu_pa = amdgpu_gmc_vram_pa(adev, adev->gart.bo);
952 	int idx;
953 
954 	if (!drm_dev_enter(adev_to_drm(adev), &idx))
955 		return;
956 
957 	flags |= AMDGPU_PTE_VALID | AMDGPU_PTE_READABLE;
958 	flags |= AMDGPU_PTE_WRITEABLE;
959 	flags |= AMDGPU_PTE_SNOOPED;
960 	flags |= AMDGPU_PTE_FRAG((adev->gmc.vmid0_page_table_block_size + 9*1));
961 	flags |= AMDGPU_PDE_PTE;
962 
963 	/* The first n PDE0 entries are used as PTE,
964 	 * pointing to vram
965 	 */
966 	for (i = 0; vram_addr < vram_end; i++, vram_addr += pde0_page_size)
967 		amdgpu_gmc_set_pte_pde(adev, adev->gmc.ptr_pdb0, i, vram_addr, flags);
968 
969 	/* The n+1'th PDE0 entry points to a huge
970 	 * PTB who has more than 512 entries each
971 	 * pointing to a 4K system page
972 	 */
973 	flags = AMDGPU_PTE_VALID;
974 	flags |= AMDGPU_PDE_BFS(0) | AMDGPU_PTE_SNOOPED;
975 	/* Requires gart_ptb_gpu_pa to be 4K aligned */
976 	amdgpu_gmc_set_pte_pde(adev, adev->gmc.ptr_pdb0, i, gart_ptb_gpu_pa, flags);
977 	drm_dev_exit(idx);
978 }
979 
980 /**
981  * amdgpu_gmc_vram_mc2pa - calculate vram buffer's physical address from MC
982  * address
983  *
984  * @adev: amdgpu_device pointer
985  * @mc_addr: MC address of buffer
986  */
987 uint64_t amdgpu_gmc_vram_mc2pa(struct amdgpu_device *adev, uint64_t mc_addr)
988 {
989 	return mc_addr - adev->gmc.vram_start + adev->vm_manager.vram_base_offset;
990 }
991 
992 /**
993  * amdgpu_gmc_vram_pa - calculate vram buffer object's physical address from
994  * GPU's view
995  *
996  * @adev: amdgpu_device pointer
997  * @bo: amdgpu buffer object
998  */
999 uint64_t amdgpu_gmc_vram_pa(struct amdgpu_device *adev, struct amdgpu_bo *bo)
1000 {
1001 	return amdgpu_gmc_vram_mc2pa(adev, amdgpu_bo_gpu_offset(bo));
1002 }
1003 
1004 /**
1005  * amdgpu_gmc_vram_cpu_pa - calculate vram buffer object's physical address
1006  * from CPU's view
1007  *
1008  * @adev: amdgpu_device pointer
1009  * @bo: amdgpu buffer object
1010  */
1011 uint64_t amdgpu_gmc_vram_cpu_pa(struct amdgpu_device *adev, struct amdgpu_bo *bo)
1012 {
1013 	return amdgpu_bo_gpu_offset(bo) - adev->gmc.vram_start + adev->gmc.aper_base;
1014 }
1015 
1016 int amdgpu_gmc_vram_checking(struct amdgpu_device *adev)
1017 {
1018 	struct amdgpu_bo *vram_bo = NULL;
1019 	uint64_t vram_gpu = 0;
1020 	void *vram_ptr = NULL;
1021 
1022 	int ret, size = 0x100000;
1023 	uint8_t cptr[10];
1024 
1025 	ret = amdgpu_bo_create_kernel(adev, size, PAGE_SIZE,
1026 				AMDGPU_GEM_DOMAIN_VRAM,
1027 				&vram_bo,
1028 				&vram_gpu,
1029 				&vram_ptr);
1030 	if (ret)
1031 		return ret;
1032 
1033 	memset(vram_ptr, 0x86, size);
1034 	memset(cptr, 0x86, 10);
1035 
1036 	/**
1037 	 * Check the start, the mid, and the end of the memory if the content of
1038 	 * each byte is the pattern "0x86". If yes, we suppose the vram bo is
1039 	 * workable.
1040 	 *
1041 	 * Note: If check the each byte of whole 1M bo, it will cost too many
1042 	 * seconds, so here, we just pick up three parts for emulation.
1043 	 */
1044 	ret = memcmp(vram_ptr, cptr, 10);
1045 	if (ret)
1046 		return ret;
1047 
1048 	ret = memcmp(vram_ptr + (size / 2), cptr, 10);
1049 	if (ret)
1050 		return ret;
1051 
1052 	ret = memcmp(vram_ptr + size - 10, cptr, 10);
1053 	if (ret)
1054 		return ret;
1055 
1056 	amdgpu_bo_free_kernel(&vram_bo, &vram_gpu,
1057 			&vram_ptr);
1058 
1059 	return 0;
1060 }
1061 
1062 static ssize_t current_memory_partition_show(
1063 	struct device *dev, struct device_attribute *addr, char *buf)
1064 {
1065 	struct drm_device *ddev = dev_get_drvdata(dev);
1066 	struct amdgpu_device *adev = drm_to_adev(ddev);
1067 	enum amdgpu_memory_partition mode;
1068 
1069 	mode = adev->gmc.gmc_funcs->query_mem_partition_mode(adev);
1070 	switch (mode) {
1071 	case AMDGPU_NPS1_PARTITION_MODE:
1072 		return sysfs_emit(buf, "NPS1\n");
1073 	case AMDGPU_NPS2_PARTITION_MODE:
1074 		return sysfs_emit(buf, "NPS2\n");
1075 	case AMDGPU_NPS3_PARTITION_MODE:
1076 		return sysfs_emit(buf, "NPS3\n");
1077 	case AMDGPU_NPS4_PARTITION_MODE:
1078 		return sysfs_emit(buf, "NPS4\n");
1079 	case AMDGPU_NPS6_PARTITION_MODE:
1080 		return sysfs_emit(buf, "NPS6\n");
1081 	case AMDGPU_NPS8_PARTITION_MODE:
1082 		return sysfs_emit(buf, "NPS8\n");
1083 	default:
1084 		return sysfs_emit(buf, "UNKNOWN\n");
1085 	}
1086 
1087 	return sysfs_emit(buf, "UNKNOWN\n");
1088 }
1089 
1090 static DEVICE_ATTR_RO(current_memory_partition);
1091 
1092 int amdgpu_gmc_sysfs_init(struct amdgpu_device *adev)
1093 {
1094 	if (!adev->gmc.gmc_funcs->query_mem_partition_mode)
1095 		return 0;
1096 
1097 	return device_create_file(adev->dev,
1098 				  &dev_attr_current_memory_partition);
1099 }
1100 
1101 void amdgpu_gmc_sysfs_fini(struct amdgpu_device *adev)
1102 {
1103 	device_remove_file(adev->dev, &dev_attr_current_memory_partition);
1104 }
1105