1 /* 2 * Copyright 2018 Advanced Micro Devices, Inc. 3 * All Rights Reserved. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the 7 * "Software"), to deal in the Software without restriction, including 8 * without limitation the rights to use, copy, modify, merge, publish, 9 * distribute, sub license, and/or sell copies of the Software, and to 10 * permit persons to whom the Software is furnished to do so, subject to 11 * the following conditions: 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 19 * USE OR OTHER DEALINGS IN THE SOFTWARE. 20 * 21 * The above copyright notice and this permission notice (including the 22 * next paragraph) shall be included in all copies or substantial portions 23 * of the Software. 24 * 25 */ 26 27 #include <linux/io-64-nonatomic-lo-hi.h> 28 #ifdef CONFIG_X86 29 #include <asm/hypervisor.h> 30 #endif 31 32 #include "amdgpu.h" 33 #include "amdgpu_gmc.h" 34 #include "amdgpu_ras.h" 35 #include "amdgpu_reset.h" 36 #include "amdgpu_xgmi.h" 37 38 #include <drm/drm_drv.h> 39 #include <drm/ttm/ttm_tt.h> 40 41 static const u64 four_gb = 0x100000000ULL; 42 43 bool amdgpu_gmc_is_pdb0_enabled(struct amdgpu_device *adev) 44 { 45 return adev->gmc.xgmi.connected_to_cpu || amdgpu_virt_xgmi_migrate_enabled(adev); 46 } 47 48 /** 49 * amdgpu_gmc_pdb0_alloc - allocate vram for pdb0 50 * 51 * @adev: amdgpu_device pointer 52 * 53 * Allocate video memory for pdb0 and map it for CPU access 54 * Returns 0 for success, error for failure. 55 */ 56 int amdgpu_gmc_pdb0_alloc(struct amdgpu_device *adev) 57 { 58 int r; 59 struct amdgpu_bo_param bp; 60 u64 vram_size = adev->gmc.xgmi.node_segment_size * adev->gmc.xgmi.num_physical_nodes; 61 uint32_t pde0_page_shift = adev->gmc.vmid0_page_table_block_size + 21; 62 uint32_t npdes = (vram_size + (1ULL << pde0_page_shift) - 1) >> pde0_page_shift; 63 64 memset(&bp, 0, sizeof(bp)); 65 bp.size = PAGE_ALIGN((npdes + 1) * 8); 66 bp.byte_align = PAGE_SIZE; 67 bp.domain = AMDGPU_GEM_DOMAIN_VRAM; 68 bp.flags = AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED | 69 AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS; 70 bp.type = ttm_bo_type_kernel; 71 bp.resv = NULL; 72 bp.bo_ptr_size = sizeof(struct amdgpu_bo); 73 74 r = amdgpu_bo_create(adev, &bp, &adev->gmc.pdb0_bo); 75 if (r) 76 return r; 77 78 r = amdgpu_bo_reserve(adev->gmc.pdb0_bo, false); 79 if (unlikely(r != 0)) 80 goto bo_reserve_failure; 81 82 r = amdgpu_bo_pin(adev->gmc.pdb0_bo, AMDGPU_GEM_DOMAIN_VRAM); 83 if (r) 84 goto bo_pin_failure; 85 r = amdgpu_bo_kmap(adev->gmc.pdb0_bo, &adev->gmc.ptr_pdb0); 86 if (r) 87 goto bo_kmap_failure; 88 89 amdgpu_bo_unreserve(adev->gmc.pdb0_bo); 90 return 0; 91 92 bo_kmap_failure: 93 amdgpu_bo_unpin(adev->gmc.pdb0_bo); 94 bo_pin_failure: 95 amdgpu_bo_unreserve(adev->gmc.pdb0_bo); 96 bo_reserve_failure: 97 amdgpu_bo_unref(&adev->gmc.pdb0_bo); 98 return r; 99 } 100 101 /** 102 * amdgpu_gmc_get_pde_for_bo - get the PDE for a BO 103 * 104 * @bo: the BO to get the PDE for 105 * @level: the level in the PD hirarchy 106 * @addr: resulting addr 107 * @flags: resulting flags 108 * 109 * Get the address and flags to be used for a PDE (Page Directory Entry). 110 */ 111 void amdgpu_gmc_get_pde_for_bo(struct amdgpu_bo *bo, int level, 112 uint64_t *addr, uint64_t *flags) 113 { 114 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 115 116 switch (bo->tbo.resource->mem_type) { 117 case TTM_PL_TT: 118 *addr = bo->tbo.ttm->dma_address[0]; 119 break; 120 case TTM_PL_VRAM: 121 *addr = amdgpu_bo_gpu_offset(bo); 122 break; 123 default: 124 *addr = 0; 125 break; 126 } 127 *flags = amdgpu_ttm_tt_pde_flags(bo->tbo.ttm, bo->tbo.resource); 128 amdgpu_gmc_get_vm_pde(adev, level, addr, flags); 129 } 130 131 /* 132 * amdgpu_gmc_pd_addr - return the address of the root directory 133 */ 134 uint64_t amdgpu_gmc_pd_addr(struct amdgpu_bo *bo) 135 { 136 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 137 uint64_t pd_addr; 138 139 /* TODO: move that into ASIC specific code */ 140 if (adev->asic_type >= CHIP_VEGA10) { 141 uint64_t flags = AMDGPU_PTE_VALID; 142 143 amdgpu_gmc_get_pde_for_bo(bo, -1, &pd_addr, &flags); 144 pd_addr |= flags; 145 } else { 146 pd_addr = amdgpu_bo_gpu_offset(bo); 147 } 148 return pd_addr; 149 } 150 151 /** 152 * amdgpu_gmc_set_pte_pde - update the page tables using CPU 153 * 154 * @adev: amdgpu_device pointer 155 * @cpu_pt_addr: cpu address of the page table 156 * @gpu_page_idx: entry in the page table to update 157 * @addr: dst addr to write into pte/pde 158 * @flags: access flags 159 * 160 * Update the page tables using CPU. 161 */ 162 int amdgpu_gmc_set_pte_pde(struct amdgpu_device *adev, void *cpu_pt_addr, 163 uint32_t gpu_page_idx, uint64_t addr, 164 uint64_t flags) 165 { 166 void __iomem *ptr = (void *)cpu_pt_addr; 167 uint64_t value; 168 169 /* 170 * The following is for PTE only. GART does not have PDEs. 171 */ 172 value = addr & 0x0000FFFFFFFFF000ULL; 173 value |= flags; 174 writeq(value, ptr + (gpu_page_idx * 8)); 175 176 return 0; 177 } 178 179 /** 180 * amdgpu_gmc_agp_addr - return the address in the AGP address space 181 * 182 * @bo: TTM BO which needs the address, must be in GTT domain 183 * 184 * Tries to figure out how to access the BO through the AGP aperture. Returns 185 * AMDGPU_BO_INVALID_OFFSET if that is not possible. 186 */ 187 uint64_t amdgpu_gmc_agp_addr(struct ttm_buffer_object *bo) 188 { 189 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 190 191 if (!bo->ttm) 192 return AMDGPU_BO_INVALID_OFFSET; 193 194 if (bo->ttm->num_pages != 1 || bo->ttm->caching == ttm_cached) 195 return AMDGPU_BO_INVALID_OFFSET; 196 197 if (bo->ttm->dma_address[0] + PAGE_SIZE >= adev->gmc.agp_size) 198 return AMDGPU_BO_INVALID_OFFSET; 199 200 return adev->gmc.agp_start + bo->ttm->dma_address[0]; 201 } 202 203 /** 204 * amdgpu_gmc_vram_location - try to find VRAM location 205 * 206 * @adev: amdgpu device structure holding all necessary information 207 * @mc: memory controller structure holding memory information 208 * @base: base address at which to put VRAM 209 * 210 * Function will try to place VRAM at base address provided 211 * as parameter. 212 */ 213 void amdgpu_gmc_vram_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc, 214 u64 base) 215 { 216 uint64_t vis_limit = (uint64_t)amdgpu_vis_vram_limit << 20; 217 uint64_t limit = (uint64_t)amdgpu_vram_limit << 20; 218 219 mc->vram_start = base; 220 mc->vram_end = mc->vram_start + mc->mc_vram_size - 1; 221 if (limit < mc->real_vram_size) 222 mc->real_vram_size = limit; 223 224 if (vis_limit && vis_limit < mc->visible_vram_size) 225 mc->visible_vram_size = vis_limit; 226 227 if (mc->real_vram_size < mc->visible_vram_size) 228 mc->visible_vram_size = mc->real_vram_size; 229 230 if (mc->xgmi.num_physical_nodes == 0) { 231 mc->fb_start = mc->vram_start; 232 mc->fb_end = mc->vram_end; 233 } 234 dev_info(adev->dev, "VRAM: %lluM 0x%016llX - 0x%016llX (%lluM used)\n", 235 mc->mc_vram_size >> 20, mc->vram_start, 236 mc->vram_end, mc->real_vram_size >> 20); 237 } 238 239 /** amdgpu_gmc_sysvm_location - place vram and gart in sysvm aperture 240 * 241 * @adev: amdgpu device structure holding all necessary information 242 * @mc: memory controller structure holding memory information 243 * 244 * This function is only used if use GART for FB translation. In such 245 * case, we use sysvm aperture (vmid0 page tables) for both vram 246 * and gart (aka system memory) access. 247 * 248 * GPUVM (and our organization of vmid0 page tables) require sysvm 249 * aperture to be placed at a location aligned with 8 times of native 250 * page size. For example, if vm_context0_cntl.page_table_block_size 251 * is 12, then native page size is 8G (2M*2^12), sysvm should start 252 * with a 64G aligned address. For simplicity, we just put sysvm at 253 * address 0. So vram start at address 0 and gart is right after vram. 254 */ 255 void amdgpu_gmc_sysvm_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc) 256 { 257 u64 hive_vram_start = 0; 258 u64 hive_vram_end = mc->xgmi.node_segment_size * mc->xgmi.num_physical_nodes - 1; 259 mc->vram_start = mc->xgmi.node_segment_size * mc->xgmi.physical_node_id; 260 mc->vram_end = mc->vram_start + mc->xgmi.node_segment_size - 1; 261 /* node_segment_size may not 4GB aligned on SRIOV, align up is needed. */ 262 mc->gart_start = ALIGN(hive_vram_end + 1, four_gb); 263 mc->gart_end = mc->gart_start + mc->gart_size - 1; 264 if (amdgpu_virt_xgmi_migrate_enabled(adev)) { 265 /* set mc->vram_start to 0 to switch the returned GPU address of 266 * amdgpu_bo_create_reserved() from FB aperture to GART aperture. 267 */ 268 mc->vram_start = 0; 269 mc->vram_end = mc->vram_start + mc->mc_vram_size - 1; 270 mc->visible_vram_size = min(mc->visible_vram_size, mc->real_vram_size); 271 } else { 272 mc->fb_start = hive_vram_start; 273 mc->fb_end = hive_vram_end; 274 } 275 dev_info(adev->dev, "VRAM: %lluM 0x%016llX - 0x%016llX (%lluM used)\n", 276 mc->mc_vram_size >> 20, mc->vram_start, 277 mc->vram_end, mc->real_vram_size >> 20); 278 dev_info(adev->dev, "GART: %lluM 0x%016llX - 0x%016llX\n", 279 mc->gart_size >> 20, mc->gart_start, mc->gart_end); 280 } 281 282 /** 283 * amdgpu_gmc_gart_location - try to find GART location 284 * 285 * @adev: amdgpu device structure holding all necessary information 286 * @mc: memory controller structure holding memory information 287 * @gart_placement: GART placement policy with respect to VRAM 288 * 289 * Function will try to place GART before or after VRAM. 290 * If GART size is bigger than space left then we ajust GART size. 291 * Thus function will never fails. 292 */ 293 void amdgpu_gmc_gart_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc, 294 enum amdgpu_gart_placement gart_placement) 295 { 296 u64 size_af, size_bf; 297 /*To avoid the hole, limit the max mc address to AMDGPU_GMC_HOLE_START*/ 298 u64 max_mc_address = min(adev->gmc.mc_mask, AMDGPU_GMC_HOLE_START - 1); 299 300 /* VCE doesn't like it when BOs cross a 4GB segment, so align 301 * the GART base on a 4GB boundary as well. 302 */ 303 size_bf = mc->fb_start; 304 size_af = max_mc_address + 1 - ALIGN(mc->fb_end + 1, four_gb); 305 306 if (mc->gart_size > max(size_bf, size_af)) { 307 dev_warn(adev->dev, "limiting GART\n"); 308 mc->gart_size = max(size_bf, size_af); 309 } 310 311 switch (gart_placement) { 312 case AMDGPU_GART_PLACEMENT_HIGH: 313 mc->gart_start = max_mc_address - mc->gart_size + 1; 314 break; 315 case AMDGPU_GART_PLACEMENT_LOW: 316 mc->gart_start = 0; 317 break; 318 case AMDGPU_GART_PLACEMENT_BEST_FIT: 319 default: 320 if ((size_bf >= mc->gart_size && size_bf < size_af) || 321 (size_af < mc->gart_size)) 322 mc->gart_start = 0; 323 else 324 mc->gart_start = max_mc_address - mc->gart_size + 1; 325 break; 326 } 327 328 mc->gart_start &= ~(four_gb - 1); 329 mc->gart_end = mc->gart_start + mc->gart_size - 1; 330 dev_info(adev->dev, "GART: %lluM 0x%016llX - 0x%016llX\n", 331 mc->gart_size >> 20, mc->gart_start, mc->gart_end); 332 } 333 334 /** 335 * amdgpu_gmc_agp_location - try to find AGP location 336 * @adev: amdgpu device structure holding all necessary information 337 * @mc: memory controller structure holding memory information 338 * 339 * Function will place try to find a place for the AGP BAR in the MC address 340 * space. 341 * 342 * AGP BAR will be assigned the largest available hole in the address space. 343 * Should be called after VRAM and GART locations are setup. 344 */ 345 void amdgpu_gmc_agp_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc) 346 { 347 const uint64_t sixteen_gb = 1ULL << 34; 348 const uint64_t sixteen_gb_mask = ~(sixteen_gb - 1); 349 u64 size_af, size_bf; 350 351 if (mc->fb_start > mc->gart_start) { 352 size_bf = (mc->fb_start & sixteen_gb_mask) - 353 ALIGN(mc->gart_end + 1, sixteen_gb); 354 size_af = mc->mc_mask + 1 - ALIGN(mc->fb_end + 1, sixteen_gb); 355 } else { 356 size_bf = mc->fb_start & sixteen_gb_mask; 357 size_af = (mc->gart_start & sixteen_gb_mask) - 358 ALIGN(mc->fb_end + 1, sixteen_gb); 359 } 360 361 if (size_bf > size_af) { 362 mc->agp_start = (mc->fb_start - size_bf) & sixteen_gb_mask; 363 mc->agp_size = size_bf; 364 } else { 365 mc->agp_start = ALIGN(mc->fb_end + 1, sixteen_gb); 366 mc->agp_size = size_af; 367 } 368 369 mc->agp_end = mc->agp_start + mc->agp_size - 1; 370 dev_info(adev->dev, "AGP: %lluM 0x%016llX - 0x%016llX\n", 371 mc->agp_size >> 20, mc->agp_start, mc->agp_end); 372 } 373 374 /** 375 * amdgpu_gmc_set_agp_default - Set the default AGP aperture value. 376 * @adev: amdgpu device structure holding all necessary information 377 * @mc: memory controller structure holding memory information 378 * 379 * To disable the AGP aperture, you need to set the start to a larger 380 * value than the end. This function sets the default value which 381 * can then be overridden using amdgpu_gmc_agp_location() if you want 382 * to enable the AGP aperture on a specific chip. 383 * 384 */ 385 void amdgpu_gmc_set_agp_default(struct amdgpu_device *adev, 386 struct amdgpu_gmc *mc) 387 { 388 mc->agp_start = 0xffffffffffff; 389 mc->agp_end = 0; 390 mc->agp_size = 0; 391 } 392 393 /** 394 * amdgpu_gmc_fault_key - get hask key from vm fault address and pasid 395 * 396 * @addr: 48 bit physical address, page aligned (36 significant bits) 397 * @pasid: 16 bit process address space identifier 398 */ 399 static inline uint64_t amdgpu_gmc_fault_key(uint64_t addr, uint16_t pasid) 400 { 401 return addr << 4 | pasid; 402 } 403 404 /** 405 * amdgpu_gmc_filter_faults - filter VM faults 406 * 407 * @adev: amdgpu device structure 408 * @ih: interrupt ring that the fault received from 409 * @addr: address of the VM fault 410 * @pasid: PASID of the process causing the fault 411 * @timestamp: timestamp of the fault 412 * 413 * Returns: 414 * True if the fault was filtered and should not be processed further. 415 * False if the fault is a new one and needs to be handled. 416 */ 417 bool amdgpu_gmc_filter_faults(struct amdgpu_device *adev, 418 struct amdgpu_ih_ring *ih, uint64_t addr, 419 uint16_t pasid, uint64_t timestamp) 420 { 421 struct amdgpu_gmc *gmc = &adev->gmc; 422 uint64_t stamp, key = amdgpu_gmc_fault_key(addr, pasid); 423 struct amdgpu_gmc_fault *fault; 424 uint32_t hash; 425 426 /* Stale retry fault if timestamp goes backward */ 427 if (amdgpu_ih_ts_after(timestamp, ih->processed_timestamp)) 428 return true; 429 430 /* If we don't have space left in the ring buffer return immediately */ 431 stamp = max(timestamp, AMDGPU_GMC_FAULT_TIMEOUT + 1) - 432 AMDGPU_GMC_FAULT_TIMEOUT; 433 if (gmc->fault_ring[gmc->last_fault].timestamp >= stamp) 434 return true; 435 436 /* Try to find the fault in the hash */ 437 hash = hash_64(key, AMDGPU_GMC_FAULT_HASH_ORDER); 438 fault = &gmc->fault_ring[gmc->fault_hash[hash].idx]; 439 while (fault->timestamp >= stamp) { 440 uint64_t tmp; 441 442 if (atomic64_read(&fault->key) == key) { 443 /* 444 * if we get a fault which is already present in 445 * the fault_ring and the timestamp of 446 * the fault is after the expired timestamp, 447 * then this is a new fault that needs to be added 448 * into the fault ring. 449 */ 450 if (fault->timestamp_expiry != 0 && 451 amdgpu_ih_ts_after(fault->timestamp_expiry, 452 timestamp)) 453 break; 454 else 455 return true; 456 } 457 458 tmp = fault->timestamp; 459 fault = &gmc->fault_ring[fault->next]; 460 461 /* Check if the entry was reused */ 462 if (fault->timestamp >= tmp) 463 break; 464 } 465 466 /* Add the fault to the ring */ 467 fault = &gmc->fault_ring[gmc->last_fault]; 468 atomic64_set(&fault->key, key); 469 fault->timestamp = timestamp; 470 471 /* And update the hash */ 472 fault->next = gmc->fault_hash[hash].idx; 473 gmc->fault_hash[hash].idx = gmc->last_fault++; 474 return false; 475 } 476 477 /** 478 * amdgpu_gmc_filter_faults_remove - remove address from VM faults filter 479 * 480 * @adev: amdgpu device structure 481 * @addr: address of the VM fault 482 * @pasid: PASID of the process causing the fault 483 * 484 * Remove the address from fault filter, then future vm fault on this address 485 * will pass to retry fault handler to recover. 486 */ 487 void amdgpu_gmc_filter_faults_remove(struct amdgpu_device *adev, uint64_t addr, 488 uint16_t pasid) 489 { 490 struct amdgpu_gmc *gmc = &adev->gmc; 491 uint64_t key = amdgpu_gmc_fault_key(addr, pasid); 492 struct amdgpu_ih_ring *ih; 493 struct amdgpu_gmc_fault *fault; 494 uint32_t last_wptr; 495 uint64_t last_ts; 496 uint32_t hash; 497 uint64_t tmp; 498 499 if (adev->irq.retry_cam_enabled) 500 return; 501 502 ih = &adev->irq.ih1; 503 /* Get the WPTR of the last entry in IH ring */ 504 last_wptr = amdgpu_ih_get_wptr(adev, ih); 505 /* Order wptr with ring data. */ 506 rmb(); 507 /* Get the timetamp of the last entry in IH ring */ 508 last_ts = amdgpu_ih_decode_iv_ts(adev, ih, last_wptr, -1); 509 510 hash = hash_64(key, AMDGPU_GMC_FAULT_HASH_ORDER); 511 fault = &gmc->fault_ring[gmc->fault_hash[hash].idx]; 512 do { 513 if (atomic64_read(&fault->key) == key) { 514 /* 515 * Update the timestamp when this fault 516 * expired. 517 */ 518 fault->timestamp_expiry = last_ts; 519 break; 520 } 521 522 tmp = fault->timestamp; 523 fault = &gmc->fault_ring[fault->next]; 524 } while (fault->timestamp < tmp); 525 } 526 527 int amdgpu_gmc_ras_sw_init(struct amdgpu_device *adev) 528 { 529 int r; 530 531 /* umc ras block */ 532 r = amdgpu_umc_ras_sw_init(adev); 533 if (r) 534 return r; 535 536 /* mmhub ras block */ 537 r = amdgpu_mmhub_ras_sw_init(adev); 538 if (r) 539 return r; 540 541 /* hdp ras block */ 542 r = amdgpu_hdp_ras_sw_init(adev); 543 if (r) 544 return r; 545 546 /* mca.x ras block */ 547 r = amdgpu_mca_mp0_ras_sw_init(adev); 548 if (r) 549 return r; 550 551 r = amdgpu_mca_mp1_ras_sw_init(adev); 552 if (r) 553 return r; 554 555 r = amdgpu_mca_mpio_ras_sw_init(adev); 556 if (r) 557 return r; 558 559 /* xgmi ras block */ 560 r = amdgpu_xgmi_ras_sw_init(adev); 561 if (r) 562 return r; 563 564 return 0; 565 } 566 567 int amdgpu_gmc_ras_late_init(struct amdgpu_device *adev) 568 { 569 return 0; 570 } 571 572 void amdgpu_gmc_ras_fini(struct amdgpu_device *adev) 573 { 574 575 } 576 577 /* 578 * The latest engine allocation on gfx9/10 is: 579 * Engine 2, 3: firmware 580 * Engine 0, 1, 4~16: amdgpu ring, 581 * subject to change when ring number changes 582 * Engine 17: Gart flushes 583 */ 584 #define AMDGPU_VMHUB_INV_ENG_BITMAP 0x1FFF3 585 586 int amdgpu_gmc_allocate_vm_inv_eng(struct amdgpu_device *adev) 587 { 588 struct amdgpu_ring *ring; 589 unsigned vm_inv_engs[AMDGPU_MAX_VMHUBS] = {0}; 590 unsigned i; 591 unsigned vmhub, inv_eng; 592 struct amdgpu_ring *shared_ring; 593 594 /* init the vm inv eng for all vmhubs */ 595 for_each_set_bit(i, adev->vmhubs_mask, AMDGPU_MAX_VMHUBS) { 596 vm_inv_engs[i] = AMDGPU_VMHUB_INV_ENG_BITMAP; 597 /* reserve engine 5 for firmware */ 598 if (adev->enable_mes) 599 vm_inv_engs[i] &= ~(1 << 5); 600 /* reserve mmhub engine 3 for firmware */ 601 if (adev->enable_umsch_mm) 602 vm_inv_engs[i] &= ~(1 << 3); 603 } 604 605 for (i = 0; i < adev->num_rings; ++i) { 606 ring = adev->rings[i]; 607 vmhub = ring->vm_hub; 608 609 if (ring == &adev->mes.ring[0] || 610 ring == &adev->mes.ring[1] || 611 ring == &adev->umsch_mm.ring || 612 ring == &adev->cper.ring_buf) 613 continue; 614 615 /* Skip if the ring is a shared ring */ 616 if (amdgpu_sdma_is_shared_inv_eng(adev, ring)) 617 continue; 618 619 inv_eng = ffs(vm_inv_engs[vmhub]); 620 if (!inv_eng) { 621 dev_err(adev->dev, "no VM inv eng for ring %s\n", 622 ring->name); 623 return -EINVAL; 624 } 625 626 ring->vm_inv_eng = inv_eng - 1; 627 vm_inv_engs[vmhub] &= ~(1 << ring->vm_inv_eng); 628 629 dev_info(adev->dev, "ring %s uses VM inv eng %u on hub %u\n", 630 ring->name, ring->vm_inv_eng, ring->vm_hub); 631 /* SDMA has a special packet which allows it to use the same 632 * invalidation engine for all the rings in one instance. 633 * Therefore, we do not allocate a separate VM invalidation engine 634 * for SDMA page rings. Instead, they share the VM invalidation 635 * engine with the SDMA gfx ring. This change ensures efficient 636 * resource management and avoids the issue of insufficient VM 637 * invalidation engines. 638 */ 639 shared_ring = amdgpu_sdma_get_shared_ring(adev, ring); 640 if (shared_ring) { 641 shared_ring->vm_inv_eng = ring->vm_inv_eng; 642 dev_info(adev->dev, "ring %s shares VM invalidation engine %u with ring %s on hub %u\n", 643 ring->name, ring->vm_inv_eng, shared_ring->name, ring->vm_hub); 644 continue; 645 } 646 } 647 648 return 0; 649 } 650 651 void amdgpu_gmc_flush_gpu_tlb(struct amdgpu_device *adev, uint32_t vmid, 652 uint32_t vmhub, uint32_t flush_type) 653 { 654 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 655 struct amdgpu_vmhub *hub = &adev->vmhub[vmhub]; 656 struct dma_fence *fence; 657 struct amdgpu_job *job; 658 int r; 659 660 if (!hub->sdma_invalidation_workaround || vmid || 661 !adev->mman.buffer_funcs_enabled || !adev->ib_pool_ready || 662 !ring->sched.ready) { 663 /* 664 * A GPU reset should flush all TLBs anyway, so no need to do 665 * this while one is ongoing. 666 */ 667 if (!down_read_trylock(&adev->reset_domain->sem)) 668 return; 669 670 if (adev->gmc.flush_tlb_needs_extra_type_2) 671 adev->gmc.gmc_funcs->flush_gpu_tlb(adev, vmid, 672 vmhub, 2); 673 674 if (adev->gmc.flush_tlb_needs_extra_type_0 && flush_type == 2) 675 adev->gmc.gmc_funcs->flush_gpu_tlb(adev, vmid, 676 vmhub, 0); 677 678 adev->gmc.gmc_funcs->flush_gpu_tlb(adev, vmid, vmhub, 679 flush_type); 680 up_read(&adev->reset_domain->sem); 681 return; 682 } 683 684 /* The SDMA on Navi 1x has a bug which can theoretically result in memory 685 * corruption if an invalidation happens at the same time as an VA 686 * translation. Avoid this by doing the invalidation from the SDMA 687 * itself at least for GART. 688 */ 689 mutex_lock(&adev->mman.gtt_window_lock); 690 r = amdgpu_job_alloc_with_ib(ring->adev, &adev->mman.high_pr, 691 AMDGPU_FENCE_OWNER_UNDEFINED, 692 16 * 4, AMDGPU_IB_POOL_IMMEDIATE, 693 &job); 694 if (r) 695 goto error_alloc; 696 697 job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gart.bo); 698 job->vm_needs_flush = true; 699 job->ibs->ptr[job->ibs->length_dw++] = ring->funcs->nop; 700 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 701 fence = amdgpu_job_submit(job); 702 mutex_unlock(&adev->mman.gtt_window_lock); 703 704 dma_fence_wait(fence, false); 705 dma_fence_put(fence); 706 707 return; 708 709 error_alloc: 710 mutex_unlock(&adev->mman.gtt_window_lock); 711 dev_err(adev->dev, "Error flushing GPU TLB using the SDMA (%d)!\n", r); 712 } 713 714 int amdgpu_gmc_flush_gpu_tlb_pasid(struct amdgpu_device *adev, uint16_t pasid, 715 uint32_t flush_type, bool all_hub, 716 uint32_t inst) 717 { 718 struct amdgpu_ring *ring = &adev->gfx.kiq[inst].ring; 719 struct amdgpu_kiq *kiq = &adev->gfx.kiq[inst]; 720 unsigned int ndw; 721 int r, cnt = 0; 722 uint32_t seq; 723 724 /* 725 * A GPU reset should flush all TLBs anyway, so no need to do 726 * this while one is ongoing. 727 */ 728 if (!down_read_trylock(&adev->reset_domain->sem)) 729 return 0; 730 731 if (!adev->gmc.flush_pasid_uses_kiq || !ring->sched.ready) { 732 if (adev->gmc.flush_tlb_needs_extra_type_2) 733 adev->gmc.gmc_funcs->flush_gpu_tlb_pasid(adev, pasid, 734 2, all_hub, 735 inst); 736 737 if (adev->gmc.flush_tlb_needs_extra_type_0 && flush_type == 2) 738 adev->gmc.gmc_funcs->flush_gpu_tlb_pasid(adev, pasid, 739 0, all_hub, 740 inst); 741 742 adev->gmc.gmc_funcs->flush_gpu_tlb_pasid(adev, pasid, 743 flush_type, all_hub, 744 inst); 745 r = 0; 746 } else { 747 /* 2 dwords flush + 8 dwords fence */ 748 ndw = kiq->pmf->invalidate_tlbs_size + 8; 749 750 if (adev->gmc.flush_tlb_needs_extra_type_2) 751 ndw += kiq->pmf->invalidate_tlbs_size; 752 753 if (adev->gmc.flush_tlb_needs_extra_type_0) 754 ndw += kiq->pmf->invalidate_tlbs_size; 755 756 spin_lock(&adev->gfx.kiq[inst].ring_lock); 757 r = amdgpu_ring_alloc(ring, ndw); 758 if (r) { 759 spin_unlock(&adev->gfx.kiq[inst].ring_lock); 760 goto error_unlock_reset; 761 } 762 if (adev->gmc.flush_tlb_needs_extra_type_2) 763 kiq->pmf->kiq_invalidate_tlbs(ring, pasid, 2, all_hub); 764 765 if (flush_type == 2 && adev->gmc.flush_tlb_needs_extra_type_0) 766 kiq->pmf->kiq_invalidate_tlbs(ring, pasid, 0, all_hub); 767 768 kiq->pmf->kiq_invalidate_tlbs(ring, pasid, flush_type, all_hub); 769 r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT); 770 if (r) { 771 amdgpu_ring_undo(ring); 772 spin_unlock(&adev->gfx.kiq[inst].ring_lock); 773 goto error_unlock_reset; 774 } 775 776 amdgpu_ring_commit(ring); 777 spin_unlock(&adev->gfx.kiq[inst].ring_lock); 778 779 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); 780 781 might_sleep(); 782 while (r < 1 && cnt++ < MAX_KIQ_REG_TRY && 783 !amdgpu_reset_pending(adev->reset_domain)) { 784 msleep(MAX_KIQ_REG_BAILOUT_INTERVAL); 785 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); 786 } 787 788 if (cnt > MAX_KIQ_REG_TRY) { 789 dev_err(adev->dev, "timeout waiting for kiq fence\n"); 790 r = -ETIME; 791 } else 792 r = 0; 793 } 794 795 error_unlock_reset: 796 up_read(&adev->reset_domain->sem); 797 return r; 798 } 799 800 void amdgpu_gmc_fw_reg_write_reg_wait(struct amdgpu_device *adev, 801 uint32_t reg0, uint32_t reg1, 802 uint32_t ref, uint32_t mask, 803 uint32_t xcc_inst) 804 { 805 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_inst]; 806 struct amdgpu_ring *ring = &kiq->ring; 807 signed long r, cnt = 0; 808 unsigned long flags; 809 uint32_t seq; 810 811 if (adev->mes.ring[0].sched.ready) { 812 amdgpu_mes_reg_write_reg_wait(adev, reg0, reg1, 813 ref, mask); 814 return; 815 } 816 817 spin_lock_irqsave(&kiq->ring_lock, flags); 818 amdgpu_ring_alloc(ring, 32); 819 amdgpu_ring_emit_reg_write_reg_wait(ring, reg0, reg1, 820 ref, mask); 821 r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT); 822 if (r) 823 goto failed_undo; 824 825 amdgpu_ring_commit(ring); 826 spin_unlock_irqrestore(&kiq->ring_lock, flags); 827 828 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); 829 830 /* don't wait anymore for IRQ context */ 831 if (r < 1 && in_interrupt()) 832 goto failed_kiq; 833 834 might_sleep(); 835 while (r < 1 && cnt++ < MAX_KIQ_REG_TRY && 836 !amdgpu_reset_pending(adev->reset_domain)) { 837 838 msleep(MAX_KIQ_REG_BAILOUT_INTERVAL); 839 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); 840 } 841 842 if (cnt > MAX_KIQ_REG_TRY) 843 goto failed_kiq; 844 845 return; 846 847 failed_undo: 848 amdgpu_ring_undo(ring); 849 spin_unlock_irqrestore(&kiq->ring_lock, flags); 850 failed_kiq: 851 dev_err(adev->dev, "failed to write reg %x wait reg %x\n", reg0, reg1); 852 } 853 854 /** 855 * amdgpu_gmc_tmz_set -- check and set if a device supports TMZ 856 * @adev: amdgpu_device pointer 857 * 858 * Check and set if an the device @adev supports Trusted Memory 859 * Zones (TMZ). 860 */ 861 void amdgpu_gmc_tmz_set(struct amdgpu_device *adev) 862 { 863 switch (amdgpu_ip_version(adev, GC_HWIP, 0)) { 864 /* RAVEN */ 865 case IP_VERSION(9, 2, 2): 866 case IP_VERSION(9, 1, 0): 867 /* RENOIR looks like RAVEN */ 868 case IP_VERSION(9, 3, 0): 869 /* GC 10.3.7 */ 870 case IP_VERSION(10, 3, 7): 871 /* GC 11.0.1 */ 872 case IP_VERSION(11, 0, 1): 873 if (amdgpu_tmz == 0) { 874 adev->gmc.tmz_enabled = false; 875 dev_info(adev->dev, 876 "Trusted Memory Zone (TMZ) feature disabled (cmd line)\n"); 877 } else { 878 adev->gmc.tmz_enabled = true; 879 dev_info(adev->dev, 880 "Trusted Memory Zone (TMZ) feature enabled\n"); 881 } 882 break; 883 case IP_VERSION(10, 1, 10): 884 case IP_VERSION(10, 1, 1): 885 case IP_VERSION(10, 1, 2): 886 case IP_VERSION(10, 1, 3): 887 case IP_VERSION(10, 3, 0): 888 case IP_VERSION(10, 3, 2): 889 case IP_VERSION(10, 3, 4): 890 case IP_VERSION(10, 3, 5): 891 case IP_VERSION(10, 3, 6): 892 /* VANGOGH */ 893 case IP_VERSION(10, 3, 1): 894 /* YELLOW_CARP*/ 895 case IP_VERSION(10, 3, 3): 896 case IP_VERSION(11, 0, 4): 897 case IP_VERSION(11, 5, 0): 898 case IP_VERSION(11, 5, 1): 899 case IP_VERSION(11, 5, 2): 900 case IP_VERSION(11, 5, 3): 901 /* Don't enable it by default yet. 902 */ 903 if (amdgpu_tmz < 1) { 904 adev->gmc.tmz_enabled = false; 905 dev_info(adev->dev, 906 "Trusted Memory Zone (TMZ) feature disabled as experimental (default)\n"); 907 } else { 908 adev->gmc.tmz_enabled = true; 909 dev_info(adev->dev, 910 "Trusted Memory Zone (TMZ) feature enabled as experimental (cmd line)\n"); 911 } 912 break; 913 default: 914 adev->gmc.tmz_enabled = false; 915 dev_info(adev->dev, 916 "Trusted Memory Zone (TMZ) feature not supported\n"); 917 break; 918 } 919 } 920 921 /** 922 * amdgpu_gmc_noretry_set -- set per asic noretry defaults 923 * @adev: amdgpu_device pointer 924 * 925 * Set a per asic default for the no-retry parameter. 926 * 927 */ 928 void amdgpu_gmc_noretry_set(struct amdgpu_device *adev) 929 { 930 struct amdgpu_gmc *gmc = &adev->gmc; 931 uint32_t gc_ver = amdgpu_ip_version(adev, GC_HWIP, 0); 932 bool noretry_default = (gc_ver == IP_VERSION(9, 0, 1) || 933 gc_ver == IP_VERSION(9, 4, 0) || 934 gc_ver == IP_VERSION(9, 4, 1) || 935 gc_ver == IP_VERSION(9, 4, 2) || 936 gc_ver == IP_VERSION(9, 4, 3) || 937 gc_ver == IP_VERSION(9, 4, 4) || 938 gc_ver == IP_VERSION(9, 5, 0) || 939 gc_ver >= IP_VERSION(10, 3, 0)); 940 941 if (!amdgpu_sriov_xnack_support(adev)) 942 gmc->noretry = 1; 943 else 944 gmc->noretry = (amdgpu_noretry == -1) ? noretry_default : amdgpu_noretry; 945 } 946 947 void amdgpu_gmc_set_vm_fault_masks(struct amdgpu_device *adev, int hub_type, 948 bool enable) 949 { 950 struct amdgpu_vmhub *hub; 951 u32 tmp, reg, i; 952 953 hub = &adev->vmhub[hub_type]; 954 for (i = 0; i < 16; i++) { 955 reg = hub->vm_context0_cntl + hub->ctx_distance * i; 956 957 tmp = (hub_type == AMDGPU_GFXHUB(0)) ? 958 RREG32_SOC15_IP(GC, reg) : 959 RREG32_SOC15_IP(MMHUB, reg); 960 961 if (enable) 962 tmp |= hub->vm_cntx_cntl_vm_fault; 963 else 964 tmp &= ~hub->vm_cntx_cntl_vm_fault; 965 966 (hub_type == AMDGPU_GFXHUB(0)) ? 967 WREG32_SOC15_IP(GC, reg, tmp) : 968 WREG32_SOC15_IP(MMHUB, reg, tmp); 969 } 970 } 971 972 void amdgpu_gmc_get_vbios_allocations(struct amdgpu_device *adev) 973 { 974 unsigned size; 975 976 /* 977 * Some ASICs need to reserve a region of video memory to avoid access 978 * from driver 979 */ 980 adev->mman.stolen_reserved_offset = 0; 981 adev->mman.stolen_reserved_size = 0; 982 983 /* 984 * TODO: 985 * Currently there is a bug where some memory client outside 986 * of the driver writes to first 8M of VRAM on S3 resume, 987 * this overrides GART which by default gets placed in first 8M and 988 * causes VM_FAULTS once GTT is accessed. 989 * Keep the stolen memory reservation until the while this is not solved. 990 */ 991 switch (adev->asic_type) { 992 case CHIP_VEGA10: 993 adev->mman.keep_stolen_vga_memory = true; 994 /* 995 * VEGA10 SRIOV VF with MS_HYPERV host needs some firmware reserved area. 996 */ 997 #ifdef CONFIG_X86 998 if (amdgpu_sriov_vf(adev) && hypervisor_is_type(X86_HYPER_MS_HYPERV)) { 999 adev->mman.stolen_reserved_offset = 0x500000; 1000 adev->mman.stolen_reserved_size = 0x200000; 1001 } 1002 #endif 1003 break; 1004 case CHIP_RAVEN: 1005 case CHIP_RENOIR: 1006 adev->mman.keep_stolen_vga_memory = true; 1007 break; 1008 default: 1009 adev->mman.keep_stolen_vga_memory = false; 1010 break; 1011 } 1012 1013 if (amdgpu_sriov_vf(adev) || 1014 !amdgpu_device_has_display_hardware(adev)) { 1015 size = 0; 1016 } else { 1017 size = amdgpu_gmc_get_vbios_fb_size(adev); 1018 1019 if (adev->mman.keep_stolen_vga_memory) 1020 size = max(size, (unsigned)AMDGPU_VBIOS_VGA_ALLOCATION); 1021 } 1022 1023 /* set to 0 if the pre-OS buffer uses up most of vram */ 1024 if ((adev->gmc.real_vram_size - size) < (8 * 1024 * 1024)) 1025 size = 0; 1026 1027 if (size > AMDGPU_VBIOS_VGA_ALLOCATION) { 1028 adev->mman.stolen_vga_size = AMDGPU_VBIOS_VGA_ALLOCATION; 1029 adev->mman.stolen_extended_size = size - adev->mman.stolen_vga_size; 1030 } else { 1031 adev->mman.stolen_vga_size = size; 1032 adev->mman.stolen_extended_size = 0; 1033 } 1034 } 1035 1036 /** 1037 * amdgpu_gmc_init_pdb0 - initialize PDB0 1038 * 1039 * @adev: amdgpu_device pointer 1040 * 1041 * This function is only used when GART page table is used 1042 * for FB address translatioin. In such a case, we construct 1043 * a 2-level system VM page table: PDB0->PTB, to cover both 1044 * VRAM of the hive and system memory. 1045 * 1046 * PDB0 is static, initialized once on driver initialization. 1047 * The first n entries of PDB0 are used as PTE by setting 1048 * P bit to 1, pointing to VRAM. The n+1'th entry points 1049 * to a big PTB covering system memory. 1050 * 1051 */ 1052 void amdgpu_gmc_init_pdb0(struct amdgpu_device *adev) 1053 { 1054 int i; 1055 uint64_t flags = adev->gart.gart_pte_flags; //TODO it is UC. explore NC/RW? 1056 /* Each PDE0 (used as PTE) covers (2^vmid0_page_table_block_size)*2M 1057 */ 1058 u64 vram_size = adev->gmc.xgmi.node_segment_size * adev->gmc.xgmi.num_physical_nodes; 1059 u64 pde0_page_size = (1ULL<<adev->gmc.vmid0_page_table_block_size)<<21; 1060 u64 vram_addr, vram_end; 1061 u64 gart_ptb_gpu_pa = amdgpu_gmc_vram_pa(adev, adev->gart.bo); 1062 int idx; 1063 1064 if (!drm_dev_enter(adev_to_drm(adev), &idx)) 1065 return; 1066 1067 flags |= AMDGPU_PTE_VALID | AMDGPU_PTE_READABLE; 1068 flags |= AMDGPU_PTE_WRITEABLE; 1069 flags |= AMDGPU_PTE_SNOOPED; 1070 flags |= AMDGPU_PTE_FRAG((adev->gmc.vmid0_page_table_block_size + 9*1)); 1071 flags |= AMDGPU_PDE_PTE_FLAG(adev); 1072 1073 vram_addr = adev->vm_manager.vram_base_offset; 1074 if (!amdgpu_virt_xgmi_migrate_enabled(adev)) 1075 vram_addr -= adev->gmc.xgmi.physical_node_id * adev->gmc.xgmi.node_segment_size; 1076 vram_end = vram_addr + vram_size; 1077 1078 /* The first n PDE0 entries are used as PTE, 1079 * pointing to vram 1080 */ 1081 for (i = 0; vram_addr < vram_end; i++, vram_addr += pde0_page_size) 1082 amdgpu_gmc_set_pte_pde(adev, adev->gmc.ptr_pdb0, i, vram_addr, flags); 1083 1084 /* The n+1'th PDE0 entry points to a huge 1085 * PTB who has more than 512 entries each 1086 * pointing to a 4K system page 1087 */ 1088 flags = AMDGPU_PTE_VALID; 1089 flags |= AMDGPU_PTE_SNOOPED | AMDGPU_PDE_BFS_FLAG(adev, 0); 1090 /* Requires gart_ptb_gpu_pa to be 4K aligned */ 1091 amdgpu_gmc_set_pte_pde(adev, adev->gmc.ptr_pdb0, i, gart_ptb_gpu_pa, flags); 1092 drm_dev_exit(idx); 1093 } 1094 1095 /** 1096 * amdgpu_gmc_vram_mc2pa - calculate vram buffer's physical address from MC 1097 * address 1098 * 1099 * @adev: amdgpu_device pointer 1100 * @mc_addr: MC address of buffer 1101 */ 1102 uint64_t amdgpu_gmc_vram_mc2pa(struct amdgpu_device *adev, uint64_t mc_addr) 1103 { 1104 return mc_addr - adev->gmc.vram_start + adev->vm_manager.vram_base_offset; 1105 } 1106 1107 /** 1108 * amdgpu_gmc_vram_pa - calculate vram buffer object's physical address from 1109 * GPU's view 1110 * 1111 * @adev: amdgpu_device pointer 1112 * @bo: amdgpu buffer object 1113 */ 1114 uint64_t amdgpu_gmc_vram_pa(struct amdgpu_device *adev, struct amdgpu_bo *bo) 1115 { 1116 return amdgpu_gmc_vram_mc2pa(adev, amdgpu_bo_gpu_offset(bo)); 1117 } 1118 1119 int amdgpu_gmc_vram_checking(struct amdgpu_device *adev) 1120 { 1121 struct amdgpu_bo *vram_bo = NULL; 1122 uint64_t vram_gpu = 0; 1123 void *vram_ptr = NULL; 1124 1125 int ret, size = 0x100000; 1126 uint8_t cptr[10]; 1127 1128 ret = amdgpu_bo_create_kernel(adev, size, PAGE_SIZE, 1129 AMDGPU_GEM_DOMAIN_VRAM, 1130 &vram_bo, 1131 &vram_gpu, 1132 &vram_ptr); 1133 if (ret) 1134 return ret; 1135 1136 memset(vram_ptr, 0x86, size); 1137 memset(cptr, 0x86, 10); 1138 1139 /** 1140 * Check the start, the mid, and the end of the memory if the content of 1141 * each byte is the pattern "0x86". If yes, we suppose the vram bo is 1142 * workable. 1143 * 1144 * Note: If check the each byte of whole 1M bo, it will cost too many 1145 * seconds, so here, we just pick up three parts for emulation. 1146 */ 1147 ret = memcmp(vram_ptr, cptr, 10); 1148 if (ret) { 1149 ret = -EIO; 1150 goto release_buffer; 1151 } 1152 1153 ret = memcmp(vram_ptr + (size / 2), cptr, 10); 1154 if (ret) { 1155 ret = -EIO; 1156 goto release_buffer; 1157 } 1158 1159 ret = memcmp(vram_ptr + size - 10, cptr, 10); 1160 if (ret) { 1161 ret = -EIO; 1162 goto release_buffer; 1163 } 1164 1165 release_buffer: 1166 amdgpu_bo_free_kernel(&vram_bo, &vram_gpu, 1167 &vram_ptr); 1168 1169 return ret; 1170 } 1171 1172 static const char *nps_desc[] = { 1173 [AMDGPU_NPS1_PARTITION_MODE] = "NPS1", 1174 [AMDGPU_NPS2_PARTITION_MODE] = "NPS2", 1175 [AMDGPU_NPS3_PARTITION_MODE] = "NPS3", 1176 [AMDGPU_NPS4_PARTITION_MODE] = "NPS4", 1177 [AMDGPU_NPS6_PARTITION_MODE] = "NPS6", 1178 [AMDGPU_NPS8_PARTITION_MODE] = "NPS8", 1179 }; 1180 1181 static ssize_t available_memory_partition_show(struct device *dev, 1182 struct device_attribute *addr, 1183 char *buf) 1184 { 1185 struct drm_device *ddev = dev_get_drvdata(dev); 1186 struct amdgpu_device *adev = drm_to_adev(ddev); 1187 int size = 0, mode; 1188 char *sep = ""; 1189 1190 for_each_inst(mode, adev->gmc.supported_nps_modes) { 1191 size += sysfs_emit_at(buf, size, "%s%s", sep, nps_desc[mode]); 1192 sep = ", "; 1193 } 1194 size += sysfs_emit_at(buf, size, "\n"); 1195 1196 return size; 1197 } 1198 1199 static ssize_t current_memory_partition_store(struct device *dev, 1200 struct device_attribute *attr, 1201 const char *buf, size_t count) 1202 { 1203 struct drm_device *ddev = dev_get_drvdata(dev); 1204 struct amdgpu_device *adev = drm_to_adev(ddev); 1205 enum amdgpu_memory_partition mode; 1206 struct amdgpu_hive_info *hive; 1207 int i; 1208 1209 mode = UNKNOWN_MEMORY_PARTITION_MODE; 1210 for_each_inst(i, adev->gmc.supported_nps_modes) { 1211 if (!strncasecmp(nps_desc[i], buf, strlen(nps_desc[i]))) { 1212 mode = i; 1213 break; 1214 } 1215 } 1216 1217 if (mode == UNKNOWN_MEMORY_PARTITION_MODE) 1218 return -EINVAL; 1219 1220 if (mode == adev->gmc.gmc_funcs->query_mem_partition_mode(adev)) { 1221 dev_info( 1222 adev->dev, 1223 "requested NPS mode is same as current NPS mode, skipping\n"); 1224 return count; 1225 } 1226 1227 /* If device is part of hive, all devices in the hive should request the 1228 * same mode. Hence store the requested mode in hive. 1229 */ 1230 hive = amdgpu_get_xgmi_hive(adev); 1231 if (hive) { 1232 atomic_set(&hive->requested_nps_mode, mode); 1233 amdgpu_put_xgmi_hive(hive); 1234 } else { 1235 adev->gmc.requested_nps_mode = mode; 1236 } 1237 1238 dev_info( 1239 adev->dev, 1240 "NPS mode change requested, please remove and reload the driver\n"); 1241 1242 return count; 1243 } 1244 1245 static ssize_t current_memory_partition_show( 1246 struct device *dev, struct device_attribute *addr, char *buf) 1247 { 1248 struct drm_device *ddev = dev_get_drvdata(dev); 1249 struct amdgpu_device *adev = drm_to_adev(ddev); 1250 enum amdgpu_memory_partition mode; 1251 1252 /* Only minimal precaution taken to reject requests while in reset */ 1253 if (amdgpu_in_reset(adev)) 1254 return -EPERM; 1255 1256 mode = adev->gmc.gmc_funcs->query_mem_partition_mode(adev); 1257 if ((mode >= ARRAY_SIZE(nps_desc)) || 1258 (BIT(mode) & AMDGPU_ALL_NPS_MASK) != BIT(mode)) 1259 return sysfs_emit(buf, "UNKNOWN\n"); 1260 1261 return sysfs_emit(buf, "%s\n", nps_desc[mode]); 1262 } 1263 1264 static DEVICE_ATTR_RW(current_memory_partition); 1265 static DEVICE_ATTR_RO(available_memory_partition); 1266 1267 int amdgpu_gmc_sysfs_init(struct amdgpu_device *adev) 1268 { 1269 bool nps_switch_support; 1270 int r = 0; 1271 1272 if (!adev->gmc.gmc_funcs->query_mem_partition_mode) 1273 return 0; 1274 1275 nps_switch_support = (hweight32(adev->gmc.supported_nps_modes & 1276 AMDGPU_ALL_NPS_MASK) > 1); 1277 if (!nps_switch_support) 1278 dev_attr_current_memory_partition.attr.mode &= 1279 ~(S_IWUSR | S_IWGRP | S_IWOTH); 1280 else 1281 r = device_create_file(adev->dev, 1282 &dev_attr_available_memory_partition); 1283 1284 if (r) 1285 return r; 1286 1287 return device_create_file(adev->dev, 1288 &dev_attr_current_memory_partition); 1289 } 1290 1291 void amdgpu_gmc_sysfs_fini(struct amdgpu_device *adev) 1292 { 1293 if (!adev->gmc.gmc_funcs->query_mem_partition_mode) 1294 return; 1295 1296 device_remove_file(adev->dev, &dev_attr_current_memory_partition); 1297 device_remove_file(adev->dev, &dev_attr_available_memory_partition); 1298 } 1299 1300 int amdgpu_gmc_get_nps_memranges(struct amdgpu_device *adev, 1301 struct amdgpu_mem_partition_info *mem_ranges, 1302 uint8_t *exp_ranges) 1303 { 1304 struct amdgpu_gmc_memrange *ranges; 1305 int range_cnt, ret, i, j; 1306 uint32_t nps_type; 1307 bool refresh; 1308 1309 if (!mem_ranges || !exp_ranges) 1310 return -EINVAL; 1311 1312 refresh = (adev->init_lvl->level != AMDGPU_INIT_LEVEL_MINIMAL_XGMI) && 1313 (adev->gmc.reset_flags & AMDGPU_GMC_INIT_RESET_NPS); 1314 ret = amdgpu_discovery_get_nps_info(adev, &nps_type, &ranges, 1315 &range_cnt, refresh); 1316 1317 if (ret) 1318 return ret; 1319 1320 /* TODO: For now, expect ranges and partition count to be the same. 1321 * Adjust if there are holes expected in any NPS domain. 1322 */ 1323 if (*exp_ranges && (range_cnt != *exp_ranges)) { 1324 dev_warn( 1325 adev->dev, 1326 "NPS config mismatch - expected ranges: %d discovery - nps mode: %d, nps ranges: %d", 1327 *exp_ranges, nps_type, range_cnt); 1328 ret = -EINVAL; 1329 goto err; 1330 } 1331 1332 for (i = 0; i < range_cnt; ++i) { 1333 if (ranges[i].base_address >= ranges[i].limit_address) { 1334 dev_warn( 1335 adev->dev, 1336 "Invalid NPS range - nps mode: %d, range[%d]: base: %llx limit: %llx", 1337 nps_type, i, ranges[i].base_address, 1338 ranges[i].limit_address); 1339 ret = -EINVAL; 1340 goto err; 1341 } 1342 1343 /* Check for overlaps, not expecting any now */ 1344 for (j = i - 1; j >= 0; j--) { 1345 if (max(ranges[j].base_address, 1346 ranges[i].base_address) <= 1347 min(ranges[j].limit_address, 1348 ranges[i].limit_address)) { 1349 dev_warn( 1350 adev->dev, 1351 "overlapping ranges detected [ %llx - %llx ] | [%llx - %llx]", 1352 ranges[j].base_address, 1353 ranges[j].limit_address, 1354 ranges[i].base_address, 1355 ranges[i].limit_address); 1356 ret = -EINVAL; 1357 goto err; 1358 } 1359 } 1360 1361 mem_ranges[i].range.fpfn = 1362 (ranges[i].base_address - 1363 adev->vm_manager.vram_base_offset) >> 1364 AMDGPU_GPU_PAGE_SHIFT; 1365 mem_ranges[i].range.lpfn = 1366 (ranges[i].limit_address - 1367 adev->vm_manager.vram_base_offset) >> 1368 AMDGPU_GPU_PAGE_SHIFT; 1369 mem_ranges[i].size = 1370 ranges[i].limit_address - ranges[i].base_address + 1; 1371 } 1372 1373 if (!*exp_ranges) 1374 *exp_ranges = range_cnt; 1375 err: 1376 kfree(ranges); 1377 1378 return ret; 1379 } 1380 1381 int amdgpu_gmc_request_memory_partition(struct amdgpu_device *adev, 1382 int nps_mode) 1383 { 1384 /* Not supported on VF devices and APUs */ 1385 if (amdgpu_sriov_vf(adev) || (adev->flags & AMD_IS_APU)) 1386 return -EOPNOTSUPP; 1387 1388 if (!adev->psp.funcs) { 1389 dev_err(adev->dev, 1390 "PSP interface not available for nps mode change request"); 1391 return -EINVAL; 1392 } 1393 1394 return psp_memory_partition(&adev->psp, nps_mode); 1395 } 1396 1397 static inline bool amdgpu_gmc_need_nps_switch_req(struct amdgpu_device *adev, 1398 int req_nps_mode, 1399 int cur_nps_mode) 1400 { 1401 return (((BIT(req_nps_mode) & adev->gmc.supported_nps_modes) == 1402 BIT(req_nps_mode)) && 1403 req_nps_mode != cur_nps_mode); 1404 } 1405 1406 void amdgpu_gmc_prepare_nps_mode_change(struct amdgpu_device *adev) 1407 { 1408 int req_nps_mode, cur_nps_mode, r; 1409 struct amdgpu_hive_info *hive; 1410 1411 if (amdgpu_sriov_vf(adev) || !adev->gmc.supported_nps_modes || 1412 !adev->gmc.gmc_funcs->request_mem_partition_mode) 1413 return; 1414 1415 cur_nps_mode = adev->gmc.gmc_funcs->query_mem_partition_mode(adev); 1416 hive = amdgpu_get_xgmi_hive(adev); 1417 if (hive) { 1418 req_nps_mode = atomic_read(&hive->requested_nps_mode); 1419 if (!amdgpu_gmc_need_nps_switch_req(adev, req_nps_mode, 1420 cur_nps_mode)) { 1421 amdgpu_put_xgmi_hive(hive); 1422 return; 1423 } 1424 r = amdgpu_xgmi_request_nps_change(adev, hive, req_nps_mode); 1425 amdgpu_put_xgmi_hive(hive); 1426 goto out; 1427 } 1428 1429 req_nps_mode = adev->gmc.requested_nps_mode; 1430 if (!amdgpu_gmc_need_nps_switch_req(adev, req_nps_mode, cur_nps_mode)) 1431 return; 1432 1433 /* even if this fails, we should let driver unload w/o blocking */ 1434 r = adev->gmc.gmc_funcs->request_mem_partition_mode(adev, req_nps_mode); 1435 out: 1436 if (r) 1437 dev_err(adev->dev, "NPS mode change request failed\n"); 1438 else 1439 dev_info( 1440 adev->dev, 1441 "NPS mode change request done, reload driver to complete the change\n"); 1442 } 1443 1444 bool amdgpu_gmc_need_reset_on_init(struct amdgpu_device *adev) 1445 { 1446 if (adev->gmc.gmc_funcs->need_reset_on_init) 1447 return adev->gmc.gmc_funcs->need_reset_on_init(adev); 1448 1449 return false; 1450 } 1451 1452 enum amdgpu_memory_partition 1453 amdgpu_gmc_get_vf_memory_partition(struct amdgpu_device *adev) 1454 { 1455 switch (adev->gmc.num_mem_partitions) { 1456 case 0: 1457 return UNKNOWN_MEMORY_PARTITION_MODE; 1458 case 1: 1459 return AMDGPU_NPS1_PARTITION_MODE; 1460 case 2: 1461 return AMDGPU_NPS2_PARTITION_MODE; 1462 case 4: 1463 return AMDGPU_NPS4_PARTITION_MODE; 1464 case 8: 1465 return AMDGPU_NPS8_PARTITION_MODE; 1466 default: 1467 return AMDGPU_NPS1_PARTITION_MODE; 1468 } 1469 } 1470 1471 enum amdgpu_memory_partition 1472 amdgpu_gmc_get_memory_partition(struct amdgpu_device *adev, u32 *supp_modes) 1473 { 1474 enum amdgpu_memory_partition mode = UNKNOWN_MEMORY_PARTITION_MODE; 1475 1476 if (adev->nbio.funcs && 1477 adev->nbio.funcs->get_memory_partition_mode) 1478 mode = adev->nbio.funcs->get_memory_partition_mode(adev, 1479 supp_modes); 1480 else 1481 dev_warn(adev->dev, "memory partition mode query is not supported\n"); 1482 1483 return mode; 1484 } 1485 1486 enum amdgpu_memory_partition 1487 amdgpu_gmc_query_memory_partition(struct amdgpu_device *adev) 1488 { 1489 if (amdgpu_sriov_vf(adev)) 1490 return amdgpu_gmc_get_vf_memory_partition(adev); 1491 else 1492 return amdgpu_gmc_get_memory_partition(adev, NULL); 1493 } 1494 1495 static bool amdgpu_gmc_validate_partition_info(struct amdgpu_device *adev) 1496 { 1497 enum amdgpu_memory_partition mode; 1498 u32 supp_modes; 1499 bool valid; 1500 1501 mode = amdgpu_gmc_get_memory_partition(adev, &supp_modes); 1502 1503 /* Mode detected by hardware not present in supported modes */ 1504 if ((mode != UNKNOWN_MEMORY_PARTITION_MODE) && 1505 !(BIT(mode - 1) & supp_modes)) 1506 return false; 1507 1508 switch (mode) { 1509 case UNKNOWN_MEMORY_PARTITION_MODE: 1510 case AMDGPU_NPS1_PARTITION_MODE: 1511 valid = (adev->gmc.num_mem_partitions == 1); 1512 break; 1513 case AMDGPU_NPS2_PARTITION_MODE: 1514 valid = (adev->gmc.num_mem_partitions == 2); 1515 break; 1516 case AMDGPU_NPS4_PARTITION_MODE: 1517 valid = (adev->gmc.num_mem_partitions == 3 || 1518 adev->gmc.num_mem_partitions == 4); 1519 break; 1520 case AMDGPU_NPS8_PARTITION_MODE: 1521 valid = (adev->gmc.num_mem_partitions == 8); 1522 break; 1523 default: 1524 valid = false; 1525 } 1526 1527 return valid; 1528 } 1529 1530 static bool amdgpu_gmc_is_node_present(int *node_ids, int num_ids, int nid) 1531 { 1532 int i; 1533 1534 /* Check if node with id 'nid' is present in 'node_ids' array */ 1535 for (i = 0; i < num_ids; ++i) 1536 if (node_ids[i] == nid) 1537 return true; 1538 1539 return false; 1540 } 1541 1542 static void 1543 amdgpu_gmc_init_acpi_mem_ranges(struct amdgpu_device *adev, 1544 struct amdgpu_mem_partition_info *mem_ranges) 1545 { 1546 struct amdgpu_numa_info numa_info; 1547 int node_ids[AMDGPU_MAX_MEM_RANGES]; 1548 int num_ranges = 0, ret; 1549 int num_xcc, xcc_id; 1550 uint32_t xcc_mask; 1551 1552 num_xcc = NUM_XCC(adev->gfx.xcc_mask); 1553 xcc_mask = (1U << num_xcc) - 1; 1554 1555 for_each_inst(xcc_id, xcc_mask) { 1556 ret = amdgpu_acpi_get_mem_info(adev, xcc_id, &numa_info); 1557 if (ret) 1558 continue; 1559 1560 if (numa_info.nid == NUMA_NO_NODE) { 1561 mem_ranges[0].size = numa_info.size; 1562 mem_ranges[0].numa.node = numa_info.nid; 1563 num_ranges = 1; 1564 break; 1565 } 1566 1567 if (amdgpu_gmc_is_node_present(node_ids, num_ranges, 1568 numa_info.nid)) 1569 continue; 1570 1571 node_ids[num_ranges] = numa_info.nid; 1572 mem_ranges[num_ranges].numa.node = numa_info.nid; 1573 mem_ranges[num_ranges].size = numa_info.size; 1574 ++num_ranges; 1575 } 1576 1577 adev->gmc.num_mem_partitions = num_ranges; 1578 } 1579 1580 void amdgpu_gmc_init_sw_mem_ranges(struct amdgpu_device *adev, 1581 struct amdgpu_mem_partition_info *mem_ranges) 1582 { 1583 enum amdgpu_memory_partition mode; 1584 u32 start_addr = 0, size; 1585 int i, r, l; 1586 1587 mode = amdgpu_gmc_query_memory_partition(adev); 1588 1589 switch (mode) { 1590 case UNKNOWN_MEMORY_PARTITION_MODE: 1591 adev->gmc.num_mem_partitions = 0; 1592 break; 1593 case AMDGPU_NPS1_PARTITION_MODE: 1594 adev->gmc.num_mem_partitions = 1; 1595 break; 1596 case AMDGPU_NPS2_PARTITION_MODE: 1597 adev->gmc.num_mem_partitions = 2; 1598 break; 1599 case AMDGPU_NPS4_PARTITION_MODE: 1600 if (adev->flags & AMD_IS_APU) 1601 adev->gmc.num_mem_partitions = 3; 1602 else 1603 adev->gmc.num_mem_partitions = 4; 1604 break; 1605 case AMDGPU_NPS8_PARTITION_MODE: 1606 adev->gmc.num_mem_partitions = 8; 1607 break; 1608 default: 1609 adev->gmc.num_mem_partitions = 1; 1610 break; 1611 } 1612 1613 /* Use NPS range info, if populated */ 1614 r = amdgpu_gmc_get_nps_memranges(adev, mem_ranges, 1615 &adev->gmc.num_mem_partitions); 1616 if (!r) { 1617 l = 0; 1618 for (i = 1; i < adev->gmc.num_mem_partitions; ++i) { 1619 if (mem_ranges[i].range.lpfn > 1620 mem_ranges[i - 1].range.lpfn) 1621 l = i; 1622 } 1623 1624 } else { 1625 if (!adev->gmc.num_mem_partitions) { 1626 dev_warn(adev->dev, 1627 "Not able to detect NPS mode, fall back to NPS1\n"); 1628 adev->gmc.num_mem_partitions = 1; 1629 } 1630 /* Fallback to sw based calculation */ 1631 size = (adev->gmc.real_vram_size + SZ_16M) >> AMDGPU_GPU_PAGE_SHIFT; 1632 size /= adev->gmc.num_mem_partitions; 1633 1634 for (i = 0; i < adev->gmc.num_mem_partitions; ++i) { 1635 mem_ranges[i].range.fpfn = start_addr; 1636 mem_ranges[i].size = 1637 ((u64)size << AMDGPU_GPU_PAGE_SHIFT); 1638 mem_ranges[i].range.lpfn = start_addr + size - 1; 1639 start_addr += size; 1640 } 1641 1642 l = adev->gmc.num_mem_partitions - 1; 1643 } 1644 1645 /* Adjust the last one */ 1646 mem_ranges[l].range.lpfn = 1647 (adev->gmc.real_vram_size >> AMDGPU_GPU_PAGE_SHIFT) - 1; 1648 mem_ranges[l].size = 1649 adev->gmc.real_vram_size - 1650 ((u64)mem_ranges[l].range.fpfn << AMDGPU_GPU_PAGE_SHIFT); 1651 } 1652 1653 int amdgpu_gmc_init_mem_ranges(struct amdgpu_device *adev) 1654 { 1655 bool valid; 1656 1657 adev->gmc.mem_partitions = kcalloc(AMDGPU_MAX_MEM_RANGES, 1658 sizeof(struct amdgpu_mem_partition_info), 1659 GFP_KERNEL); 1660 if (!adev->gmc.mem_partitions) 1661 return -ENOMEM; 1662 1663 if (adev->gmc.is_app_apu) 1664 amdgpu_gmc_init_acpi_mem_ranges(adev, adev->gmc.mem_partitions); 1665 else 1666 amdgpu_gmc_init_sw_mem_ranges(adev, adev->gmc.mem_partitions); 1667 1668 if (amdgpu_sriov_vf(adev)) 1669 valid = true; 1670 else 1671 valid = amdgpu_gmc_validate_partition_info(adev); 1672 if (!valid) { 1673 /* TODO: handle invalid case */ 1674 dev_warn(adev->dev, 1675 "Mem ranges not matching with hardware config\n"); 1676 } 1677 1678 return 0; 1679 } 1680