1 /* 2 * Copyright 2014 Advanced Micro Devices, Inc. 3 * Copyright 2008 Red Hat Inc. 4 * Copyright 2009 Jerome Glisse. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 * 24 */ 25 26 #include <linux/firmware.h> 27 #include <linux/pm_runtime.h> 28 29 #include "amdgpu.h" 30 #include "amdgpu_gfx.h" 31 #include "amdgpu_rlc.h" 32 #include "amdgpu_ras.h" 33 #include "amdgpu_reset.h" 34 #include "amdgpu_xcp.h" 35 #include "amdgpu_xgmi.h" 36 37 /* delay 0.1 second to enable gfx off feature */ 38 #define GFX_OFF_DELAY_ENABLE msecs_to_jiffies(100) 39 40 #define GFX_OFF_NO_DELAY 0 41 42 /* 43 * GPU GFX IP block helpers function. 44 */ 45 46 int amdgpu_gfx_mec_queue_to_bit(struct amdgpu_device *adev, int mec, 47 int pipe, int queue) 48 { 49 int bit = 0; 50 51 bit += mec * adev->gfx.mec.num_pipe_per_mec 52 * adev->gfx.mec.num_queue_per_pipe; 53 bit += pipe * adev->gfx.mec.num_queue_per_pipe; 54 bit += queue; 55 56 return bit; 57 } 58 59 void amdgpu_queue_mask_bit_to_mec_queue(struct amdgpu_device *adev, int bit, 60 int *mec, int *pipe, int *queue) 61 { 62 *queue = bit % adev->gfx.mec.num_queue_per_pipe; 63 *pipe = (bit / adev->gfx.mec.num_queue_per_pipe) 64 % adev->gfx.mec.num_pipe_per_mec; 65 *mec = (bit / adev->gfx.mec.num_queue_per_pipe) 66 / adev->gfx.mec.num_pipe_per_mec; 67 68 } 69 70 bool amdgpu_gfx_is_mec_queue_enabled(struct amdgpu_device *adev, 71 int xcc_id, int mec, int pipe, int queue) 72 { 73 return test_bit(amdgpu_gfx_mec_queue_to_bit(adev, mec, pipe, queue), 74 adev->gfx.mec_bitmap[xcc_id].queue_bitmap); 75 } 76 77 int amdgpu_gfx_me_queue_to_bit(struct amdgpu_device *adev, 78 int me, int pipe, int queue) 79 { 80 int bit = 0; 81 82 bit += me * adev->gfx.me.num_pipe_per_me 83 * adev->gfx.me.num_queue_per_pipe; 84 bit += pipe * adev->gfx.me.num_queue_per_pipe; 85 bit += queue; 86 87 return bit; 88 } 89 90 void amdgpu_gfx_bit_to_me_queue(struct amdgpu_device *adev, int bit, 91 int *me, int *pipe, int *queue) 92 { 93 *queue = bit % adev->gfx.me.num_queue_per_pipe; 94 *pipe = (bit / adev->gfx.me.num_queue_per_pipe) 95 % adev->gfx.me.num_pipe_per_me; 96 *me = (bit / adev->gfx.me.num_queue_per_pipe) 97 / adev->gfx.me.num_pipe_per_me; 98 } 99 100 bool amdgpu_gfx_is_me_queue_enabled(struct amdgpu_device *adev, 101 int me, int pipe, int queue) 102 { 103 return test_bit(amdgpu_gfx_me_queue_to_bit(adev, me, pipe, queue), 104 adev->gfx.me.queue_bitmap); 105 } 106 107 /** 108 * amdgpu_gfx_parse_disable_cu - Parse the disable_cu module parameter 109 * 110 * @mask: array in which the per-shader array disable masks will be stored 111 * @max_se: number of SEs 112 * @max_sh: number of SHs 113 * 114 * The bitmask of CUs to be disabled in the shader array determined by se and 115 * sh is stored in mask[se * max_sh + sh]. 116 */ 117 void amdgpu_gfx_parse_disable_cu(unsigned int *mask, unsigned int max_se, unsigned int max_sh) 118 { 119 unsigned int se, sh, cu; 120 const char *p; 121 122 memset(mask, 0, sizeof(*mask) * max_se * max_sh); 123 124 if (!amdgpu_disable_cu || !*amdgpu_disable_cu) 125 return; 126 127 p = amdgpu_disable_cu; 128 for (;;) { 129 char *next; 130 int ret = sscanf(p, "%u.%u.%u", &se, &sh, &cu); 131 132 if (ret < 3) { 133 DRM_ERROR("amdgpu: could not parse disable_cu\n"); 134 return; 135 } 136 137 if (se < max_se && sh < max_sh && cu < 16) { 138 DRM_INFO("amdgpu: disabling CU %u.%u.%u\n", se, sh, cu); 139 mask[se * max_sh + sh] |= 1u << cu; 140 } else { 141 DRM_ERROR("amdgpu: disable_cu %u.%u.%u is out of range\n", 142 se, sh, cu); 143 } 144 145 next = strchr(p, ','); 146 if (!next) 147 break; 148 p = next + 1; 149 } 150 } 151 152 static bool amdgpu_gfx_is_graphics_multipipe_capable(struct amdgpu_device *adev) 153 { 154 return amdgpu_async_gfx_ring && adev->gfx.me.num_pipe_per_me > 1; 155 } 156 157 static bool amdgpu_gfx_is_compute_multipipe_capable(struct amdgpu_device *adev) 158 { 159 if (amdgpu_compute_multipipe != -1) { 160 DRM_INFO("amdgpu: forcing compute pipe policy %d\n", 161 amdgpu_compute_multipipe); 162 return amdgpu_compute_multipipe == 1; 163 } 164 165 if (amdgpu_ip_version(adev, GC_HWIP, 0) > IP_VERSION(9, 0, 0)) 166 return true; 167 168 /* FIXME: spreading the queues across pipes causes perf regressions 169 * on POLARIS11 compute workloads */ 170 if (adev->asic_type == CHIP_POLARIS11) 171 return false; 172 173 return adev->gfx.mec.num_mec > 1; 174 } 175 176 bool amdgpu_gfx_is_high_priority_graphics_queue(struct amdgpu_device *adev, 177 struct amdgpu_ring *ring) 178 { 179 int queue = ring->queue; 180 int pipe = ring->pipe; 181 182 /* Policy: use pipe1 queue0 as high priority graphics queue if we 183 * have more than one gfx pipe. 184 */ 185 if (amdgpu_gfx_is_graphics_multipipe_capable(adev) && 186 adev->gfx.num_gfx_rings > 1 && pipe == 1 && queue == 0) { 187 int me = ring->me; 188 int bit; 189 190 bit = amdgpu_gfx_me_queue_to_bit(adev, me, pipe, queue); 191 if (ring == &adev->gfx.gfx_ring[bit]) 192 return true; 193 } 194 195 return false; 196 } 197 198 bool amdgpu_gfx_is_high_priority_compute_queue(struct amdgpu_device *adev, 199 struct amdgpu_ring *ring) 200 { 201 /* Policy: use 1st queue as high priority compute queue if we 202 * have more than one compute queue. 203 */ 204 if (adev->gfx.num_compute_rings > 1 && 205 ring == &adev->gfx.compute_ring[0]) 206 return true; 207 208 return false; 209 } 210 211 void amdgpu_gfx_compute_queue_acquire(struct amdgpu_device *adev) 212 { 213 int i, j, queue, pipe; 214 bool multipipe_policy = amdgpu_gfx_is_compute_multipipe_capable(adev); 215 int max_queues_per_mec = min(adev->gfx.mec.num_pipe_per_mec * 216 adev->gfx.mec.num_queue_per_pipe, 217 adev->gfx.num_compute_rings); 218 int num_xcc = adev->gfx.xcc_mask ? NUM_XCC(adev->gfx.xcc_mask) : 1; 219 220 if (multipipe_policy) { 221 /* policy: make queues evenly cross all pipes on MEC1 only 222 * for multiple xcc, just use the original policy for simplicity */ 223 for (j = 0; j < num_xcc; j++) { 224 for (i = 0; i < max_queues_per_mec; i++) { 225 pipe = i % adev->gfx.mec.num_pipe_per_mec; 226 queue = (i / adev->gfx.mec.num_pipe_per_mec) % 227 adev->gfx.mec.num_queue_per_pipe; 228 229 set_bit(pipe * adev->gfx.mec.num_queue_per_pipe + queue, 230 adev->gfx.mec_bitmap[j].queue_bitmap); 231 } 232 } 233 } else { 234 /* policy: amdgpu owns all queues in the given pipe */ 235 for (j = 0; j < num_xcc; j++) { 236 for (i = 0; i < max_queues_per_mec; ++i) 237 set_bit(i, adev->gfx.mec_bitmap[j].queue_bitmap); 238 } 239 } 240 241 for (j = 0; j < num_xcc; j++) { 242 dev_dbg(adev->dev, "mec queue bitmap weight=%d\n", 243 bitmap_weight(adev->gfx.mec_bitmap[j].queue_bitmap, AMDGPU_MAX_COMPUTE_QUEUES)); 244 } 245 } 246 247 void amdgpu_gfx_graphics_queue_acquire(struct amdgpu_device *adev) 248 { 249 int i, queue, pipe; 250 bool multipipe_policy = amdgpu_gfx_is_graphics_multipipe_capable(adev); 251 int max_queues_per_me = adev->gfx.me.num_pipe_per_me * 252 adev->gfx.me.num_queue_per_pipe; 253 254 if (multipipe_policy) { 255 /* policy: amdgpu owns the first queue per pipe at this stage 256 * will extend to mulitple queues per pipe later */ 257 for (i = 0; i < max_queues_per_me; i++) { 258 pipe = i % adev->gfx.me.num_pipe_per_me; 259 queue = (i / adev->gfx.me.num_pipe_per_me) % 260 adev->gfx.me.num_queue_per_pipe; 261 262 set_bit(pipe * adev->gfx.me.num_queue_per_pipe + queue, 263 adev->gfx.me.queue_bitmap); 264 } 265 } else { 266 for (i = 0; i < max_queues_per_me; ++i) 267 set_bit(i, adev->gfx.me.queue_bitmap); 268 } 269 270 /* update the number of active graphics rings */ 271 adev->gfx.num_gfx_rings = 272 bitmap_weight(adev->gfx.me.queue_bitmap, AMDGPU_MAX_GFX_QUEUES); 273 } 274 275 static int amdgpu_gfx_kiq_acquire(struct amdgpu_device *adev, 276 struct amdgpu_ring *ring, int xcc_id) 277 { 278 int queue_bit; 279 int mec, pipe, queue; 280 281 queue_bit = adev->gfx.mec.num_mec 282 * adev->gfx.mec.num_pipe_per_mec 283 * adev->gfx.mec.num_queue_per_pipe; 284 285 while (--queue_bit >= 0) { 286 if (test_bit(queue_bit, adev->gfx.mec_bitmap[xcc_id].queue_bitmap)) 287 continue; 288 289 amdgpu_queue_mask_bit_to_mec_queue(adev, queue_bit, &mec, &pipe, &queue); 290 291 /* 292 * 1. Using pipes 2/3 from MEC 2 seems cause problems. 293 * 2. It must use queue id 0, because CGPG_IDLE/SAVE/LOAD/RUN 294 * only can be issued on queue 0. 295 */ 296 if ((mec == 1 && pipe > 1) || queue != 0) 297 continue; 298 299 ring->me = mec + 1; 300 ring->pipe = pipe; 301 ring->queue = queue; 302 303 return 0; 304 } 305 306 dev_err(adev->dev, "Failed to find a queue for KIQ\n"); 307 return -EINVAL; 308 } 309 310 int amdgpu_gfx_kiq_init_ring(struct amdgpu_device *adev, int xcc_id) 311 { 312 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 313 struct amdgpu_irq_src *irq = &kiq->irq; 314 struct amdgpu_ring *ring = &kiq->ring; 315 int r = 0; 316 317 spin_lock_init(&kiq->ring_lock); 318 319 ring->adev = NULL; 320 ring->ring_obj = NULL; 321 ring->use_doorbell = true; 322 ring->xcc_id = xcc_id; 323 ring->vm_hub = AMDGPU_GFXHUB(xcc_id); 324 ring->doorbell_index = 325 (adev->doorbell_index.kiq + 326 xcc_id * adev->doorbell_index.xcc_doorbell_range) 327 << 1; 328 329 r = amdgpu_gfx_kiq_acquire(adev, ring, xcc_id); 330 if (r) 331 return r; 332 333 ring->eop_gpu_addr = kiq->eop_gpu_addr; 334 ring->no_scheduler = true; 335 snprintf(ring->name, sizeof(ring->name), "kiq_%hhu.%hhu.%hhu.%hhu", 336 (unsigned char)xcc_id, (unsigned char)ring->me, 337 (unsigned char)ring->pipe, (unsigned char)ring->queue); 338 r = amdgpu_ring_init(adev, ring, 1024, irq, AMDGPU_CP_KIQ_IRQ_DRIVER0, 339 AMDGPU_RING_PRIO_DEFAULT, NULL); 340 if (r) 341 dev_warn(adev->dev, "(%d) failed to init kiq ring\n", r); 342 343 return r; 344 } 345 346 void amdgpu_gfx_kiq_free_ring(struct amdgpu_ring *ring) 347 { 348 amdgpu_ring_fini(ring); 349 } 350 351 void amdgpu_gfx_kiq_fini(struct amdgpu_device *adev, int xcc_id) 352 { 353 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 354 355 amdgpu_bo_free_kernel(&kiq->eop_obj, &kiq->eop_gpu_addr, NULL); 356 } 357 358 int amdgpu_gfx_kiq_init(struct amdgpu_device *adev, 359 unsigned int hpd_size, int xcc_id) 360 { 361 int r; 362 u32 *hpd; 363 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 364 365 r = amdgpu_bo_create_kernel(adev, hpd_size, PAGE_SIZE, 366 AMDGPU_GEM_DOMAIN_GTT, &kiq->eop_obj, 367 &kiq->eop_gpu_addr, (void **)&hpd); 368 if (r) { 369 dev_warn(adev->dev, "failed to create KIQ bo (%d).\n", r); 370 return r; 371 } 372 373 memset(hpd, 0, hpd_size); 374 375 r = amdgpu_bo_reserve(kiq->eop_obj, true); 376 if (unlikely(r != 0)) 377 dev_warn(adev->dev, "(%d) reserve kiq eop bo failed\n", r); 378 amdgpu_bo_kunmap(kiq->eop_obj); 379 amdgpu_bo_unreserve(kiq->eop_obj); 380 381 return 0; 382 } 383 384 /* create MQD for each compute/gfx queue */ 385 int amdgpu_gfx_mqd_sw_init(struct amdgpu_device *adev, 386 unsigned int mqd_size, int xcc_id) 387 { 388 int r, i, j; 389 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 390 struct amdgpu_ring *ring = &kiq->ring; 391 u32 domain = AMDGPU_GEM_DOMAIN_GTT; 392 393 #if !defined(CONFIG_ARM) && !defined(CONFIG_ARM64) 394 /* Only enable on gfx10 and 11 for now to avoid changing behavior on older chips */ 395 if (amdgpu_ip_version(adev, GC_HWIP, 0) >= IP_VERSION(10, 0, 0)) 396 domain |= AMDGPU_GEM_DOMAIN_VRAM; 397 #endif 398 399 /* create MQD for KIQ */ 400 if (!adev->enable_mes_kiq && !ring->mqd_obj) { 401 /* originaly the KIQ MQD is put in GTT domain, but for SRIOV VRAM domain is a must 402 * otherwise hypervisor trigger SAVE_VF fail after driver unloaded which mean MQD 403 * deallocated and gart_unbind, to strict diverage we decide to use VRAM domain for 404 * KIQ MQD no matter SRIOV or Bare-metal 405 */ 406 r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE, 407 AMDGPU_GEM_DOMAIN_VRAM | 408 AMDGPU_GEM_DOMAIN_GTT, 409 &ring->mqd_obj, 410 &ring->mqd_gpu_addr, 411 &ring->mqd_ptr); 412 if (r) { 413 dev_warn(adev->dev, "failed to create ring mqd ob (%d)", r); 414 return r; 415 } 416 417 /* prepare MQD backup */ 418 kiq->mqd_backup = kmalloc(mqd_size, GFP_KERNEL); 419 if (!kiq->mqd_backup) { 420 dev_warn(adev->dev, 421 "no memory to create MQD backup for ring %s\n", ring->name); 422 return -ENOMEM; 423 } 424 } 425 426 if (adev->asic_type >= CHIP_NAVI10 && amdgpu_async_gfx_ring) { 427 /* create MQD for each KGQ */ 428 for (i = 0; i < adev->gfx.num_gfx_rings; i++) { 429 ring = &adev->gfx.gfx_ring[i]; 430 if (!ring->mqd_obj) { 431 r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE, 432 domain, &ring->mqd_obj, 433 &ring->mqd_gpu_addr, &ring->mqd_ptr); 434 if (r) { 435 dev_warn(adev->dev, "failed to create ring mqd bo (%d)", r); 436 return r; 437 } 438 439 ring->mqd_size = mqd_size; 440 /* prepare MQD backup */ 441 adev->gfx.me.mqd_backup[i] = kmalloc(mqd_size, GFP_KERNEL); 442 if (!adev->gfx.me.mqd_backup[i]) { 443 dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name); 444 return -ENOMEM; 445 } 446 } 447 } 448 } 449 450 /* create MQD for each KCQ */ 451 for (i = 0; i < adev->gfx.num_compute_rings; i++) { 452 j = i + xcc_id * adev->gfx.num_compute_rings; 453 ring = &adev->gfx.compute_ring[j]; 454 if (!ring->mqd_obj) { 455 r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE, 456 domain, &ring->mqd_obj, 457 &ring->mqd_gpu_addr, &ring->mqd_ptr); 458 if (r) { 459 dev_warn(adev->dev, "failed to create ring mqd bo (%d)", r); 460 return r; 461 } 462 463 ring->mqd_size = mqd_size; 464 /* prepare MQD backup */ 465 adev->gfx.mec.mqd_backup[j] = kmalloc(mqd_size, GFP_KERNEL); 466 if (!adev->gfx.mec.mqd_backup[j]) { 467 dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name); 468 return -ENOMEM; 469 } 470 } 471 } 472 473 return 0; 474 } 475 476 void amdgpu_gfx_mqd_sw_fini(struct amdgpu_device *adev, int xcc_id) 477 { 478 struct amdgpu_ring *ring = NULL; 479 int i, j; 480 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 481 482 if (adev->asic_type >= CHIP_NAVI10 && amdgpu_async_gfx_ring) { 483 for (i = 0; i < adev->gfx.num_gfx_rings; i++) { 484 ring = &adev->gfx.gfx_ring[i]; 485 kfree(adev->gfx.me.mqd_backup[i]); 486 amdgpu_bo_free_kernel(&ring->mqd_obj, 487 &ring->mqd_gpu_addr, 488 &ring->mqd_ptr); 489 } 490 } 491 492 for (i = 0; i < adev->gfx.num_compute_rings; i++) { 493 j = i + xcc_id * adev->gfx.num_compute_rings; 494 ring = &adev->gfx.compute_ring[j]; 495 kfree(adev->gfx.mec.mqd_backup[j]); 496 amdgpu_bo_free_kernel(&ring->mqd_obj, 497 &ring->mqd_gpu_addr, 498 &ring->mqd_ptr); 499 } 500 501 ring = &kiq->ring; 502 kfree(kiq->mqd_backup); 503 amdgpu_bo_free_kernel(&ring->mqd_obj, 504 &ring->mqd_gpu_addr, 505 &ring->mqd_ptr); 506 } 507 508 int amdgpu_gfx_disable_kcq(struct amdgpu_device *adev, int xcc_id) 509 { 510 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 511 struct amdgpu_ring *kiq_ring = &kiq->ring; 512 int i, r = 0; 513 int j; 514 515 if (adev->enable_mes) { 516 for (i = 0; i < adev->gfx.num_compute_rings; i++) { 517 j = i + xcc_id * adev->gfx.num_compute_rings; 518 amdgpu_mes_unmap_legacy_queue(adev, 519 &adev->gfx.compute_ring[j], 520 RESET_QUEUES, 0, 0); 521 } 522 return 0; 523 } 524 525 if (!kiq->pmf || !kiq->pmf->kiq_unmap_queues) 526 return -EINVAL; 527 528 spin_lock(&kiq->ring_lock); 529 if (amdgpu_ring_alloc(kiq_ring, kiq->pmf->unmap_queues_size * 530 adev->gfx.num_compute_rings)) { 531 spin_unlock(&kiq->ring_lock); 532 return -ENOMEM; 533 } 534 535 for (i = 0; i < adev->gfx.num_compute_rings; i++) { 536 j = i + xcc_id * adev->gfx.num_compute_rings; 537 kiq->pmf->kiq_unmap_queues(kiq_ring, 538 &adev->gfx.compute_ring[j], 539 RESET_QUEUES, 0, 0); 540 } 541 542 /** 543 * This is workaround: only skip kiq_ring test 544 * during ras recovery in suspend stage for gfx9.4.3 545 */ 546 if ((amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 3) || 547 amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 4)) && 548 amdgpu_ras_in_recovery(adev)) { 549 spin_unlock(&kiq->ring_lock); 550 return 0; 551 } 552 553 if (kiq_ring->sched.ready && !adev->job_hang) 554 r = amdgpu_ring_test_helper(kiq_ring); 555 spin_unlock(&kiq->ring_lock); 556 557 return r; 558 } 559 560 int amdgpu_gfx_disable_kgq(struct amdgpu_device *adev, int xcc_id) 561 { 562 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 563 struct amdgpu_ring *kiq_ring = &kiq->ring; 564 int i, r = 0; 565 int j; 566 567 if (adev->enable_mes) { 568 if (amdgpu_gfx_is_master_xcc(adev, xcc_id)) { 569 for (i = 0; i < adev->gfx.num_gfx_rings; i++) { 570 j = i + xcc_id * adev->gfx.num_gfx_rings; 571 amdgpu_mes_unmap_legacy_queue(adev, 572 &adev->gfx.gfx_ring[j], 573 PREEMPT_QUEUES, 0, 0); 574 } 575 } 576 return 0; 577 } 578 579 if (!kiq->pmf || !kiq->pmf->kiq_unmap_queues) 580 return -EINVAL; 581 582 spin_lock(&kiq->ring_lock); 583 if (amdgpu_gfx_is_master_xcc(adev, xcc_id)) { 584 if (amdgpu_ring_alloc(kiq_ring, kiq->pmf->unmap_queues_size * 585 adev->gfx.num_gfx_rings)) { 586 spin_unlock(&kiq->ring_lock); 587 return -ENOMEM; 588 } 589 590 for (i = 0; i < adev->gfx.num_gfx_rings; i++) { 591 j = i + xcc_id * adev->gfx.num_gfx_rings; 592 kiq->pmf->kiq_unmap_queues(kiq_ring, 593 &adev->gfx.gfx_ring[j], 594 PREEMPT_QUEUES, 0, 0); 595 } 596 } 597 598 if (adev->gfx.kiq[0].ring.sched.ready && !adev->job_hang) 599 r = amdgpu_ring_test_helper(kiq_ring); 600 spin_unlock(&kiq->ring_lock); 601 602 return r; 603 } 604 605 int amdgpu_queue_mask_bit_to_set_resource_bit(struct amdgpu_device *adev, 606 int queue_bit) 607 { 608 int mec, pipe, queue; 609 int set_resource_bit = 0; 610 611 amdgpu_queue_mask_bit_to_mec_queue(adev, queue_bit, &mec, &pipe, &queue); 612 613 set_resource_bit = mec * 4 * 8 + pipe * 8 + queue; 614 615 return set_resource_bit; 616 } 617 618 static int amdgpu_gfx_mes_enable_kcq(struct amdgpu_device *adev, int xcc_id) 619 { 620 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 621 struct amdgpu_ring *kiq_ring = &kiq->ring; 622 uint64_t queue_mask = ~0ULL; 623 int r, i, j; 624 625 amdgpu_device_flush_hdp(adev, NULL); 626 627 if (!adev->enable_uni_mes) { 628 spin_lock(&kiq->ring_lock); 629 r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->set_resources_size); 630 if (r) { 631 dev_err(adev->dev, "Failed to lock KIQ (%d).\n", r); 632 spin_unlock(&kiq->ring_lock); 633 return r; 634 } 635 636 kiq->pmf->kiq_set_resources(kiq_ring, queue_mask); 637 r = amdgpu_ring_test_helper(kiq_ring); 638 spin_unlock(&kiq->ring_lock); 639 if (r) 640 dev_err(adev->dev, "KIQ failed to set resources\n"); 641 } 642 643 for (i = 0; i < adev->gfx.num_compute_rings; i++) { 644 j = i + xcc_id * adev->gfx.num_compute_rings; 645 r = amdgpu_mes_map_legacy_queue(adev, 646 &adev->gfx.compute_ring[j]); 647 if (r) { 648 dev_err(adev->dev, "failed to map compute queue\n"); 649 return r; 650 } 651 } 652 653 return 0; 654 } 655 656 int amdgpu_gfx_enable_kcq(struct amdgpu_device *adev, int xcc_id) 657 { 658 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 659 struct amdgpu_ring *kiq_ring = &kiq->ring; 660 uint64_t queue_mask = 0; 661 int r, i, j; 662 663 if (adev->enable_mes) 664 return amdgpu_gfx_mes_enable_kcq(adev, xcc_id); 665 666 if (!kiq->pmf || !kiq->pmf->kiq_map_queues || !kiq->pmf->kiq_set_resources) 667 return -EINVAL; 668 669 for (i = 0; i < AMDGPU_MAX_COMPUTE_QUEUES; ++i) { 670 if (!test_bit(i, adev->gfx.mec_bitmap[xcc_id].queue_bitmap)) 671 continue; 672 673 /* This situation may be hit in the future if a new HW 674 * generation exposes more than 64 queues. If so, the 675 * definition of queue_mask needs updating */ 676 if (WARN_ON(i > (sizeof(queue_mask)*8))) { 677 DRM_ERROR("Invalid KCQ enabled: %d\n", i); 678 break; 679 } 680 681 queue_mask |= (1ull << amdgpu_queue_mask_bit_to_set_resource_bit(adev, i)); 682 } 683 684 amdgpu_device_flush_hdp(adev, NULL); 685 686 DRM_INFO("kiq ring mec %d pipe %d q %d\n", kiq_ring->me, kiq_ring->pipe, 687 kiq_ring->queue); 688 689 spin_lock(&kiq->ring_lock); 690 r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->map_queues_size * 691 adev->gfx.num_compute_rings + 692 kiq->pmf->set_resources_size); 693 if (r) { 694 DRM_ERROR("Failed to lock KIQ (%d).\n", r); 695 spin_unlock(&kiq->ring_lock); 696 return r; 697 } 698 699 kiq->pmf->kiq_set_resources(kiq_ring, queue_mask); 700 for (i = 0; i < adev->gfx.num_compute_rings; i++) { 701 j = i + xcc_id * adev->gfx.num_compute_rings; 702 kiq->pmf->kiq_map_queues(kiq_ring, 703 &adev->gfx.compute_ring[j]); 704 } 705 706 r = amdgpu_ring_test_helper(kiq_ring); 707 spin_unlock(&kiq->ring_lock); 708 if (r) 709 DRM_ERROR("KCQ enable failed\n"); 710 711 return r; 712 } 713 714 int amdgpu_gfx_enable_kgq(struct amdgpu_device *adev, int xcc_id) 715 { 716 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 717 struct amdgpu_ring *kiq_ring = &kiq->ring; 718 int r, i, j; 719 720 if (!kiq->pmf || !kiq->pmf->kiq_map_queues) 721 return -EINVAL; 722 723 amdgpu_device_flush_hdp(adev, NULL); 724 725 if (adev->enable_mes) { 726 for (i = 0; i < adev->gfx.num_gfx_rings; i++) { 727 j = i + xcc_id * adev->gfx.num_gfx_rings; 728 r = amdgpu_mes_map_legacy_queue(adev, 729 &adev->gfx.gfx_ring[j]); 730 if (r) { 731 DRM_ERROR("failed to map gfx queue\n"); 732 return r; 733 } 734 } 735 736 return 0; 737 } 738 739 spin_lock(&kiq->ring_lock); 740 /* No need to map kcq on the slave */ 741 if (amdgpu_gfx_is_master_xcc(adev, xcc_id)) { 742 r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->map_queues_size * 743 adev->gfx.num_gfx_rings); 744 if (r) { 745 DRM_ERROR("Failed to lock KIQ (%d).\n", r); 746 spin_unlock(&kiq->ring_lock); 747 return r; 748 } 749 750 for (i = 0; i < adev->gfx.num_gfx_rings; i++) { 751 j = i + xcc_id * adev->gfx.num_gfx_rings; 752 kiq->pmf->kiq_map_queues(kiq_ring, 753 &adev->gfx.gfx_ring[j]); 754 } 755 } 756 757 r = amdgpu_ring_test_helper(kiq_ring); 758 spin_unlock(&kiq->ring_lock); 759 if (r) 760 DRM_ERROR("KGQ enable failed\n"); 761 762 return r; 763 } 764 765 /* amdgpu_gfx_off_ctrl - Handle gfx off feature enable/disable 766 * 767 * @adev: amdgpu_device pointer 768 * @bool enable true: enable gfx off feature, false: disable gfx off feature 769 * 770 * 1. gfx off feature will be enabled by gfx ip after gfx cg gp enabled. 771 * 2. other client can send request to disable gfx off feature, the request should be honored. 772 * 3. other client can cancel their request of disable gfx off feature 773 * 4. other client should not send request to enable gfx off feature before disable gfx off feature. 774 */ 775 776 void amdgpu_gfx_off_ctrl(struct amdgpu_device *adev, bool enable) 777 { 778 unsigned long delay = GFX_OFF_DELAY_ENABLE; 779 780 if (!(adev->pm.pp_feature & PP_GFXOFF_MASK)) 781 return; 782 783 mutex_lock(&adev->gfx.gfx_off_mutex); 784 785 if (enable) { 786 /* If the count is already 0, it means there's an imbalance bug somewhere. 787 * Note that the bug may be in a different caller than the one which triggers the 788 * WARN_ON_ONCE. 789 */ 790 if (WARN_ON_ONCE(adev->gfx.gfx_off_req_count == 0)) 791 goto unlock; 792 793 adev->gfx.gfx_off_req_count--; 794 795 if (adev->gfx.gfx_off_req_count == 0 && 796 !adev->gfx.gfx_off_state) { 797 /* If going to s2idle, no need to wait */ 798 if (adev->in_s0ix) { 799 if (!amdgpu_dpm_set_powergating_by_smu(adev, 800 AMD_IP_BLOCK_TYPE_GFX, true)) 801 adev->gfx.gfx_off_state = true; 802 } else { 803 schedule_delayed_work(&adev->gfx.gfx_off_delay_work, 804 delay); 805 } 806 } 807 } else { 808 if (adev->gfx.gfx_off_req_count == 0) { 809 cancel_delayed_work_sync(&adev->gfx.gfx_off_delay_work); 810 811 if (adev->gfx.gfx_off_state && 812 !amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_GFX, false)) { 813 adev->gfx.gfx_off_state = false; 814 815 if (adev->gfx.funcs->init_spm_golden) { 816 dev_dbg(adev->dev, 817 "GFXOFF is disabled, re-init SPM golden settings\n"); 818 amdgpu_gfx_init_spm_golden(adev); 819 } 820 } 821 } 822 823 adev->gfx.gfx_off_req_count++; 824 } 825 826 unlock: 827 mutex_unlock(&adev->gfx.gfx_off_mutex); 828 } 829 830 int amdgpu_set_gfx_off_residency(struct amdgpu_device *adev, bool value) 831 { 832 int r = 0; 833 834 mutex_lock(&adev->gfx.gfx_off_mutex); 835 836 r = amdgpu_dpm_set_residency_gfxoff(adev, value); 837 838 mutex_unlock(&adev->gfx.gfx_off_mutex); 839 840 return r; 841 } 842 843 int amdgpu_get_gfx_off_residency(struct amdgpu_device *adev, u32 *value) 844 { 845 int r = 0; 846 847 mutex_lock(&adev->gfx.gfx_off_mutex); 848 849 r = amdgpu_dpm_get_residency_gfxoff(adev, value); 850 851 mutex_unlock(&adev->gfx.gfx_off_mutex); 852 853 return r; 854 } 855 856 int amdgpu_get_gfx_off_entrycount(struct amdgpu_device *adev, u64 *value) 857 { 858 int r = 0; 859 860 mutex_lock(&adev->gfx.gfx_off_mutex); 861 862 r = amdgpu_dpm_get_entrycount_gfxoff(adev, value); 863 864 mutex_unlock(&adev->gfx.gfx_off_mutex); 865 866 return r; 867 } 868 869 int amdgpu_get_gfx_off_status(struct amdgpu_device *adev, uint32_t *value) 870 { 871 872 int r = 0; 873 874 mutex_lock(&adev->gfx.gfx_off_mutex); 875 876 r = amdgpu_dpm_get_status_gfxoff(adev, value); 877 878 mutex_unlock(&adev->gfx.gfx_off_mutex); 879 880 return r; 881 } 882 883 int amdgpu_gfx_ras_late_init(struct amdgpu_device *adev, struct ras_common_if *ras_block) 884 { 885 int r; 886 887 if (amdgpu_ras_is_supported(adev, ras_block->block)) { 888 if (!amdgpu_persistent_edc_harvesting_supported(adev)) { 889 r = amdgpu_ras_reset_error_status(adev, AMDGPU_RAS_BLOCK__GFX); 890 if (r) 891 return r; 892 } 893 894 r = amdgpu_ras_block_late_init(adev, ras_block); 895 if (r) 896 return r; 897 898 if (adev->gfx.cp_ecc_error_irq.funcs) { 899 r = amdgpu_irq_get(adev, &adev->gfx.cp_ecc_error_irq, 0); 900 if (r) 901 goto late_fini; 902 } 903 } else { 904 amdgpu_ras_feature_enable_on_boot(adev, ras_block, 0); 905 } 906 907 return 0; 908 late_fini: 909 amdgpu_ras_block_late_fini(adev, ras_block); 910 return r; 911 } 912 913 int amdgpu_gfx_ras_sw_init(struct amdgpu_device *adev) 914 { 915 int err = 0; 916 struct amdgpu_gfx_ras *ras = NULL; 917 918 /* adev->gfx.ras is NULL, which means gfx does not 919 * support ras function, then do nothing here. 920 */ 921 if (!adev->gfx.ras) 922 return 0; 923 924 ras = adev->gfx.ras; 925 926 err = amdgpu_ras_register_ras_block(adev, &ras->ras_block); 927 if (err) { 928 dev_err(adev->dev, "Failed to register gfx ras block!\n"); 929 return err; 930 } 931 932 strcpy(ras->ras_block.ras_comm.name, "gfx"); 933 ras->ras_block.ras_comm.block = AMDGPU_RAS_BLOCK__GFX; 934 ras->ras_block.ras_comm.type = AMDGPU_RAS_ERROR__MULTI_UNCORRECTABLE; 935 adev->gfx.ras_if = &ras->ras_block.ras_comm; 936 937 /* If not define special ras_late_init function, use gfx default ras_late_init */ 938 if (!ras->ras_block.ras_late_init) 939 ras->ras_block.ras_late_init = amdgpu_gfx_ras_late_init; 940 941 /* If not defined special ras_cb function, use default ras_cb */ 942 if (!ras->ras_block.ras_cb) 943 ras->ras_block.ras_cb = amdgpu_gfx_process_ras_data_cb; 944 945 return 0; 946 } 947 948 int amdgpu_gfx_poison_consumption_handler(struct amdgpu_device *adev, 949 struct amdgpu_iv_entry *entry) 950 { 951 if (adev->gfx.ras && adev->gfx.ras->poison_consumption_handler) 952 return adev->gfx.ras->poison_consumption_handler(adev, entry); 953 954 return 0; 955 } 956 957 int amdgpu_gfx_process_ras_data_cb(struct amdgpu_device *adev, 958 void *err_data, 959 struct amdgpu_iv_entry *entry) 960 { 961 /* TODO ue will trigger an interrupt. 962 * 963 * When “Full RAS” is enabled, the per-IP interrupt sources should 964 * be disabled and the driver should only look for the aggregated 965 * interrupt via sync flood 966 */ 967 if (!amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__GFX)) { 968 kgd2kfd_set_sram_ecc_flag(adev->kfd.dev); 969 if (adev->gfx.ras && adev->gfx.ras->ras_block.hw_ops && 970 adev->gfx.ras->ras_block.hw_ops->query_ras_error_count) 971 adev->gfx.ras->ras_block.hw_ops->query_ras_error_count(adev, err_data); 972 amdgpu_ras_reset_gpu(adev); 973 } 974 return AMDGPU_RAS_SUCCESS; 975 } 976 977 int amdgpu_gfx_cp_ecc_error_irq(struct amdgpu_device *adev, 978 struct amdgpu_irq_src *source, 979 struct amdgpu_iv_entry *entry) 980 { 981 struct ras_common_if *ras_if = adev->gfx.ras_if; 982 struct ras_dispatch_if ih_data = { 983 .entry = entry, 984 }; 985 986 if (!ras_if) 987 return 0; 988 989 ih_data.head = *ras_if; 990 991 DRM_ERROR("CP ECC ERROR IRQ\n"); 992 amdgpu_ras_interrupt_dispatch(adev, &ih_data); 993 return 0; 994 } 995 996 void amdgpu_gfx_ras_error_func(struct amdgpu_device *adev, 997 void *ras_error_status, 998 void (*func)(struct amdgpu_device *adev, void *ras_error_status, 999 int xcc_id)) 1000 { 1001 int i; 1002 int num_xcc = adev->gfx.xcc_mask ? NUM_XCC(adev->gfx.xcc_mask) : 1; 1003 uint32_t xcc_mask = GENMASK(num_xcc - 1, 0); 1004 struct ras_err_data *err_data = (struct ras_err_data *)ras_error_status; 1005 1006 if (err_data) { 1007 err_data->ue_count = 0; 1008 err_data->ce_count = 0; 1009 } 1010 1011 for_each_inst(i, xcc_mask) 1012 func(adev, ras_error_status, i); 1013 } 1014 1015 uint32_t amdgpu_kiq_rreg(struct amdgpu_device *adev, uint32_t reg, uint32_t xcc_id) 1016 { 1017 signed long r, cnt = 0; 1018 unsigned long flags; 1019 uint32_t seq, reg_val_offs = 0, value = 0; 1020 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 1021 struct amdgpu_ring *ring = &kiq->ring; 1022 1023 if (amdgpu_device_skip_hw_access(adev)) 1024 return 0; 1025 1026 if (adev->mes.ring[0].sched.ready) 1027 return amdgpu_mes_rreg(adev, reg); 1028 1029 BUG_ON(!ring->funcs->emit_rreg); 1030 1031 spin_lock_irqsave(&kiq->ring_lock, flags); 1032 if (amdgpu_device_wb_get(adev, ®_val_offs)) { 1033 pr_err("critical bug! too many kiq readers\n"); 1034 goto failed_unlock; 1035 } 1036 r = amdgpu_ring_alloc(ring, 32); 1037 if (r) 1038 goto failed_unlock; 1039 1040 amdgpu_ring_emit_rreg(ring, reg, reg_val_offs); 1041 r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT); 1042 if (r) 1043 goto failed_undo; 1044 1045 amdgpu_ring_commit(ring); 1046 spin_unlock_irqrestore(&kiq->ring_lock, flags); 1047 1048 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); 1049 1050 /* don't wait anymore for gpu reset case because this way may 1051 * block gpu_recover() routine forever, e.g. this virt_kiq_rreg 1052 * is triggered in TTM and ttm_bo_lock_delayed_workqueue() will 1053 * never return if we keep waiting in virt_kiq_rreg, which cause 1054 * gpu_recover() hang there. 1055 * 1056 * also don't wait anymore for IRQ context 1057 * */ 1058 if (r < 1 && (amdgpu_in_reset(adev) || in_interrupt())) 1059 goto failed_kiq_read; 1060 1061 might_sleep(); 1062 while (r < 1 && cnt++ < MAX_KIQ_REG_TRY) { 1063 msleep(MAX_KIQ_REG_BAILOUT_INTERVAL); 1064 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); 1065 } 1066 1067 if (cnt > MAX_KIQ_REG_TRY) 1068 goto failed_kiq_read; 1069 1070 mb(); 1071 value = adev->wb.wb[reg_val_offs]; 1072 amdgpu_device_wb_free(adev, reg_val_offs); 1073 return value; 1074 1075 failed_undo: 1076 amdgpu_ring_undo(ring); 1077 failed_unlock: 1078 spin_unlock_irqrestore(&kiq->ring_lock, flags); 1079 failed_kiq_read: 1080 if (reg_val_offs) 1081 amdgpu_device_wb_free(adev, reg_val_offs); 1082 dev_err(adev->dev, "failed to read reg:%x\n", reg); 1083 return ~0; 1084 } 1085 1086 void amdgpu_kiq_wreg(struct amdgpu_device *adev, uint32_t reg, uint32_t v, uint32_t xcc_id) 1087 { 1088 signed long r, cnt = 0; 1089 unsigned long flags; 1090 uint32_t seq; 1091 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 1092 struct amdgpu_ring *ring = &kiq->ring; 1093 1094 BUG_ON(!ring->funcs->emit_wreg); 1095 1096 if (amdgpu_device_skip_hw_access(adev)) 1097 return; 1098 1099 if (adev->mes.ring[0].sched.ready) { 1100 amdgpu_mes_wreg(adev, reg, v); 1101 return; 1102 } 1103 1104 spin_lock_irqsave(&kiq->ring_lock, flags); 1105 r = amdgpu_ring_alloc(ring, 32); 1106 if (r) 1107 goto failed_unlock; 1108 1109 amdgpu_ring_emit_wreg(ring, reg, v); 1110 r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT); 1111 if (r) 1112 goto failed_undo; 1113 1114 amdgpu_ring_commit(ring); 1115 spin_unlock_irqrestore(&kiq->ring_lock, flags); 1116 1117 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); 1118 1119 /* don't wait anymore for gpu reset case because this way may 1120 * block gpu_recover() routine forever, e.g. this virt_kiq_rreg 1121 * is triggered in TTM and ttm_bo_lock_delayed_workqueue() will 1122 * never return if we keep waiting in virt_kiq_rreg, which cause 1123 * gpu_recover() hang there. 1124 * 1125 * also don't wait anymore for IRQ context 1126 * */ 1127 if (r < 1 && (amdgpu_in_reset(adev) || in_interrupt())) 1128 goto failed_kiq_write; 1129 1130 might_sleep(); 1131 while (r < 1 && cnt++ < MAX_KIQ_REG_TRY) { 1132 1133 msleep(MAX_KIQ_REG_BAILOUT_INTERVAL); 1134 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); 1135 } 1136 1137 if (cnt > MAX_KIQ_REG_TRY) 1138 goto failed_kiq_write; 1139 1140 return; 1141 1142 failed_undo: 1143 amdgpu_ring_undo(ring); 1144 failed_unlock: 1145 spin_unlock_irqrestore(&kiq->ring_lock, flags); 1146 failed_kiq_write: 1147 dev_err(adev->dev, "failed to write reg:%x\n", reg); 1148 } 1149 1150 int amdgpu_gfx_get_num_kcq(struct amdgpu_device *adev) 1151 { 1152 if (amdgpu_num_kcq == -1) { 1153 return 8; 1154 } else if (amdgpu_num_kcq > 8 || amdgpu_num_kcq < 0) { 1155 dev_warn(adev->dev, "set kernel compute queue number to 8 due to invalid parameter provided by user\n"); 1156 return 8; 1157 } 1158 return amdgpu_num_kcq; 1159 } 1160 1161 void amdgpu_gfx_cp_init_microcode(struct amdgpu_device *adev, 1162 uint32_t ucode_id) 1163 { 1164 const struct gfx_firmware_header_v1_0 *cp_hdr; 1165 const struct gfx_firmware_header_v2_0 *cp_hdr_v2_0; 1166 struct amdgpu_firmware_info *info = NULL; 1167 const struct firmware *ucode_fw; 1168 unsigned int fw_size; 1169 1170 switch (ucode_id) { 1171 case AMDGPU_UCODE_ID_CP_PFP: 1172 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1173 adev->gfx.pfp_fw->data; 1174 adev->gfx.pfp_fw_version = 1175 le32_to_cpu(cp_hdr->header.ucode_version); 1176 adev->gfx.pfp_feature_version = 1177 le32_to_cpu(cp_hdr->ucode_feature_version); 1178 ucode_fw = adev->gfx.pfp_fw; 1179 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes); 1180 break; 1181 case AMDGPU_UCODE_ID_CP_RS64_PFP: 1182 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) 1183 adev->gfx.pfp_fw->data; 1184 adev->gfx.pfp_fw_version = 1185 le32_to_cpu(cp_hdr_v2_0->header.ucode_version); 1186 adev->gfx.pfp_feature_version = 1187 le32_to_cpu(cp_hdr_v2_0->ucode_feature_version); 1188 ucode_fw = adev->gfx.pfp_fw; 1189 fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes); 1190 break; 1191 case AMDGPU_UCODE_ID_CP_RS64_PFP_P0_STACK: 1192 case AMDGPU_UCODE_ID_CP_RS64_PFP_P1_STACK: 1193 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) 1194 adev->gfx.pfp_fw->data; 1195 ucode_fw = adev->gfx.pfp_fw; 1196 fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes); 1197 break; 1198 case AMDGPU_UCODE_ID_CP_ME: 1199 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1200 adev->gfx.me_fw->data; 1201 adev->gfx.me_fw_version = 1202 le32_to_cpu(cp_hdr->header.ucode_version); 1203 adev->gfx.me_feature_version = 1204 le32_to_cpu(cp_hdr->ucode_feature_version); 1205 ucode_fw = adev->gfx.me_fw; 1206 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes); 1207 break; 1208 case AMDGPU_UCODE_ID_CP_RS64_ME: 1209 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) 1210 adev->gfx.me_fw->data; 1211 adev->gfx.me_fw_version = 1212 le32_to_cpu(cp_hdr_v2_0->header.ucode_version); 1213 adev->gfx.me_feature_version = 1214 le32_to_cpu(cp_hdr_v2_0->ucode_feature_version); 1215 ucode_fw = adev->gfx.me_fw; 1216 fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes); 1217 break; 1218 case AMDGPU_UCODE_ID_CP_RS64_ME_P0_STACK: 1219 case AMDGPU_UCODE_ID_CP_RS64_ME_P1_STACK: 1220 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) 1221 adev->gfx.me_fw->data; 1222 ucode_fw = adev->gfx.me_fw; 1223 fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes); 1224 break; 1225 case AMDGPU_UCODE_ID_CP_CE: 1226 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1227 adev->gfx.ce_fw->data; 1228 adev->gfx.ce_fw_version = 1229 le32_to_cpu(cp_hdr->header.ucode_version); 1230 adev->gfx.ce_feature_version = 1231 le32_to_cpu(cp_hdr->ucode_feature_version); 1232 ucode_fw = adev->gfx.ce_fw; 1233 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes); 1234 break; 1235 case AMDGPU_UCODE_ID_CP_MEC1: 1236 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1237 adev->gfx.mec_fw->data; 1238 adev->gfx.mec_fw_version = 1239 le32_to_cpu(cp_hdr->header.ucode_version); 1240 adev->gfx.mec_feature_version = 1241 le32_to_cpu(cp_hdr->ucode_feature_version); 1242 ucode_fw = adev->gfx.mec_fw; 1243 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes) - 1244 le32_to_cpu(cp_hdr->jt_size) * 4; 1245 break; 1246 case AMDGPU_UCODE_ID_CP_MEC1_JT: 1247 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1248 adev->gfx.mec_fw->data; 1249 ucode_fw = adev->gfx.mec_fw; 1250 fw_size = le32_to_cpu(cp_hdr->jt_size) * 4; 1251 break; 1252 case AMDGPU_UCODE_ID_CP_MEC2: 1253 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1254 adev->gfx.mec2_fw->data; 1255 adev->gfx.mec2_fw_version = 1256 le32_to_cpu(cp_hdr->header.ucode_version); 1257 adev->gfx.mec2_feature_version = 1258 le32_to_cpu(cp_hdr->ucode_feature_version); 1259 ucode_fw = adev->gfx.mec2_fw; 1260 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes) - 1261 le32_to_cpu(cp_hdr->jt_size) * 4; 1262 break; 1263 case AMDGPU_UCODE_ID_CP_MEC2_JT: 1264 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1265 adev->gfx.mec2_fw->data; 1266 ucode_fw = adev->gfx.mec2_fw; 1267 fw_size = le32_to_cpu(cp_hdr->jt_size) * 4; 1268 break; 1269 case AMDGPU_UCODE_ID_CP_RS64_MEC: 1270 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) 1271 adev->gfx.mec_fw->data; 1272 adev->gfx.mec_fw_version = 1273 le32_to_cpu(cp_hdr_v2_0->header.ucode_version); 1274 adev->gfx.mec_feature_version = 1275 le32_to_cpu(cp_hdr_v2_0->ucode_feature_version); 1276 ucode_fw = adev->gfx.mec_fw; 1277 fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes); 1278 break; 1279 case AMDGPU_UCODE_ID_CP_RS64_MEC_P0_STACK: 1280 case AMDGPU_UCODE_ID_CP_RS64_MEC_P1_STACK: 1281 case AMDGPU_UCODE_ID_CP_RS64_MEC_P2_STACK: 1282 case AMDGPU_UCODE_ID_CP_RS64_MEC_P3_STACK: 1283 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) 1284 adev->gfx.mec_fw->data; 1285 ucode_fw = adev->gfx.mec_fw; 1286 fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes); 1287 break; 1288 default: 1289 dev_err(adev->dev, "Invalid ucode id %u\n", ucode_id); 1290 return; 1291 } 1292 1293 if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) { 1294 info = &adev->firmware.ucode[ucode_id]; 1295 info->ucode_id = ucode_id; 1296 info->fw = ucode_fw; 1297 adev->firmware.fw_size += ALIGN(fw_size, PAGE_SIZE); 1298 } 1299 } 1300 1301 bool amdgpu_gfx_is_master_xcc(struct amdgpu_device *adev, int xcc_id) 1302 { 1303 return !(xcc_id % (adev->gfx.num_xcc_per_xcp ? 1304 adev->gfx.num_xcc_per_xcp : 1)); 1305 } 1306 1307 static ssize_t amdgpu_gfx_get_current_compute_partition(struct device *dev, 1308 struct device_attribute *addr, 1309 char *buf) 1310 { 1311 struct drm_device *ddev = dev_get_drvdata(dev); 1312 struct amdgpu_device *adev = drm_to_adev(ddev); 1313 int mode; 1314 1315 mode = amdgpu_xcp_query_partition_mode(adev->xcp_mgr, 1316 AMDGPU_XCP_FL_NONE); 1317 1318 return sysfs_emit(buf, "%s\n", amdgpu_gfx_compute_mode_desc(mode)); 1319 } 1320 1321 static ssize_t amdgpu_gfx_set_compute_partition(struct device *dev, 1322 struct device_attribute *addr, 1323 const char *buf, size_t count) 1324 { 1325 struct drm_device *ddev = dev_get_drvdata(dev); 1326 struct amdgpu_device *adev = drm_to_adev(ddev); 1327 enum amdgpu_gfx_partition mode; 1328 int ret = 0, num_xcc; 1329 1330 num_xcc = NUM_XCC(adev->gfx.xcc_mask); 1331 if (num_xcc % 2 != 0) 1332 return -EINVAL; 1333 1334 if (!strncasecmp("SPX", buf, strlen("SPX"))) { 1335 mode = AMDGPU_SPX_PARTITION_MODE; 1336 } else if (!strncasecmp("DPX", buf, strlen("DPX"))) { 1337 /* 1338 * DPX mode needs AIDs to be in multiple of 2. 1339 * Each AID connects 2 XCCs. 1340 */ 1341 if (num_xcc%4) 1342 return -EINVAL; 1343 mode = AMDGPU_DPX_PARTITION_MODE; 1344 } else if (!strncasecmp("TPX", buf, strlen("TPX"))) { 1345 if (num_xcc != 6) 1346 return -EINVAL; 1347 mode = AMDGPU_TPX_PARTITION_MODE; 1348 } else if (!strncasecmp("QPX", buf, strlen("QPX"))) { 1349 if (num_xcc != 8) 1350 return -EINVAL; 1351 mode = AMDGPU_QPX_PARTITION_MODE; 1352 } else if (!strncasecmp("CPX", buf, strlen("CPX"))) { 1353 mode = AMDGPU_CPX_PARTITION_MODE; 1354 } else { 1355 return -EINVAL; 1356 } 1357 1358 ret = amdgpu_xcp_switch_partition_mode(adev->xcp_mgr, mode); 1359 1360 if (ret) 1361 return ret; 1362 1363 return count; 1364 } 1365 1366 static ssize_t amdgpu_gfx_get_available_compute_partition(struct device *dev, 1367 struct device_attribute *addr, 1368 char *buf) 1369 { 1370 struct drm_device *ddev = dev_get_drvdata(dev); 1371 struct amdgpu_device *adev = drm_to_adev(ddev); 1372 char *supported_partition; 1373 1374 /* TBD */ 1375 switch (NUM_XCC(adev->gfx.xcc_mask)) { 1376 case 8: 1377 supported_partition = "SPX, DPX, QPX, CPX"; 1378 break; 1379 case 6: 1380 supported_partition = "SPX, TPX, CPX"; 1381 break; 1382 case 4: 1383 supported_partition = "SPX, DPX, CPX"; 1384 break; 1385 /* this seems only existing in emulation phase */ 1386 case 2: 1387 supported_partition = "SPX, CPX"; 1388 break; 1389 default: 1390 supported_partition = "Not supported"; 1391 break; 1392 } 1393 1394 return sysfs_emit(buf, "%s\n", supported_partition); 1395 } 1396 1397 static int amdgpu_gfx_run_cleaner_shader_job(struct amdgpu_ring *ring) 1398 { 1399 struct amdgpu_device *adev = ring->adev; 1400 long timeout = msecs_to_jiffies(1000); 1401 struct dma_fence *f = NULL; 1402 struct amdgpu_job *job; 1403 struct amdgpu_ib *ib; 1404 int i, r; 1405 1406 r = amdgpu_job_alloc_with_ib(adev, NULL, NULL, 1407 64, AMDGPU_IB_POOL_DIRECT, 1408 &job); 1409 if (r) 1410 goto err; 1411 1412 job->enforce_isolation = true; 1413 1414 ib = &job->ibs[0]; 1415 for (i = 0; i <= ring->funcs->align_mask; ++i) 1416 ib->ptr[i] = ring->funcs->nop; 1417 ib->length_dw = ring->funcs->align_mask + 1; 1418 1419 r = amdgpu_job_submit_direct(job, ring, &f); 1420 if (r) 1421 goto err_free; 1422 1423 r = dma_fence_wait_timeout(f, false, timeout); 1424 if (r == 0) 1425 r = -ETIMEDOUT; 1426 else if (r > 0) 1427 r = 0; 1428 1429 amdgpu_ib_free(adev, ib, f); 1430 dma_fence_put(f); 1431 1432 return 0; 1433 1434 err_free: 1435 amdgpu_job_free(job); 1436 amdgpu_ib_free(adev, ib, f); 1437 err: 1438 return r; 1439 } 1440 1441 static int amdgpu_gfx_run_cleaner_shader(struct amdgpu_device *adev, int xcp_id) 1442 { 1443 int num_xcc = NUM_XCC(adev->gfx.xcc_mask); 1444 struct amdgpu_ring *ring; 1445 int num_xcc_to_clear; 1446 int i, r, xcc_id; 1447 1448 if (adev->gfx.num_xcc_per_xcp) 1449 num_xcc_to_clear = adev->gfx.num_xcc_per_xcp; 1450 else 1451 num_xcc_to_clear = 1; 1452 1453 for (xcc_id = 0; xcc_id < num_xcc; xcc_id++) { 1454 for (i = 0; i < adev->gfx.num_compute_rings; i++) { 1455 ring = &adev->gfx.compute_ring[i + xcc_id * adev->gfx.num_compute_rings]; 1456 if ((ring->xcp_id == xcp_id) && ring->sched.ready) { 1457 r = amdgpu_gfx_run_cleaner_shader_job(ring); 1458 if (r) 1459 return r; 1460 num_xcc_to_clear--; 1461 break; 1462 } 1463 } 1464 } 1465 1466 if (num_xcc_to_clear) 1467 return -ENOENT; 1468 1469 return 0; 1470 } 1471 1472 static ssize_t amdgpu_gfx_set_run_cleaner_shader(struct device *dev, 1473 struct device_attribute *attr, 1474 const char *buf, 1475 size_t count) 1476 { 1477 struct drm_device *ddev = dev_get_drvdata(dev); 1478 struct amdgpu_device *adev = drm_to_adev(ddev); 1479 int ret; 1480 long value; 1481 1482 if (amdgpu_in_reset(adev)) 1483 return -EPERM; 1484 if (adev->in_suspend && !adev->in_runpm) 1485 return -EPERM; 1486 1487 ret = kstrtol(buf, 0, &value); 1488 1489 if (ret) 1490 return -EINVAL; 1491 1492 if (value < 0) 1493 return -EINVAL; 1494 1495 if (adev->xcp_mgr) { 1496 if (value >= adev->xcp_mgr->num_xcps) 1497 return -EINVAL; 1498 } else { 1499 if (value > 1) 1500 return -EINVAL; 1501 } 1502 1503 ret = pm_runtime_get_sync(ddev->dev); 1504 if (ret < 0) { 1505 pm_runtime_put_autosuspend(ddev->dev); 1506 return ret; 1507 } 1508 1509 ret = amdgpu_gfx_run_cleaner_shader(adev, value); 1510 1511 pm_runtime_mark_last_busy(ddev->dev); 1512 pm_runtime_put_autosuspend(ddev->dev); 1513 1514 if (ret) 1515 return ret; 1516 1517 return count; 1518 } 1519 1520 static ssize_t amdgpu_gfx_get_enforce_isolation(struct device *dev, 1521 struct device_attribute *attr, 1522 char *buf) 1523 { 1524 struct drm_device *ddev = dev_get_drvdata(dev); 1525 struct amdgpu_device *adev = drm_to_adev(ddev); 1526 int i; 1527 ssize_t size = 0; 1528 1529 if (adev->xcp_mgr) { 1530 for (i = 0; i < adev->xcp_mgr->num_xcps; i++) { 1531 size += sysfs_emit_at(buf, size, "%u", adev->enforce_isolation[i]); 1532 if (i < (adev->xcp_mgr->num_xcps - 1)) 1533 size += sysfs_emit_at(buf, size, " "); 1534 } 1535 buf[size++] = '\n'; 1536 } else { 1537 size = sysfs_emit_at(buf, 0, "%u\n", adev->enforce_isolation[0]); 1538 } 1539 1540 return size; 1541 } 1542 1543 static ssize_t amdgpu_gfx_set_enforce_isolation(struct device *dev, 1544 struct device_attribute *attr, 1545 const char *buf, size_t count) 1546 { 1547 struct drm_device *ddev = dev_get_drvdata(dev); 1548 struct amdgpu_device *adev = drm_to_adev(ddev); 1549 long partition_values[MAX_XCP] = {0}; 1550 int ret, i, num_partitions; 1551 const char *input_buf = buf; 1552 1553 for (i = 0; i < (adev->xcp_mgr ? adev->xcp_mgr->num_xcps : 1); i++) { 1554 ret = sscanf(input_buf, "%ld", &partition_values[i]); 1555 if (ret <= 0) 1556 break; 1557 1558 /* Move the pointer to the next value in the string */ 1559 input_buf = strchr(input_buf, ' '); 1560 if (input_buf) { 1561 input_buf++; 1562 } else { 1563 i++; 1564 break; 1565 } 1566 } 1567 num_partitions = i; 1568 1569 if (adev->xcp_mgr && num_partitions != adev->xcp_mgr->num_xcps) 1570 return -EINVAL; 1571 1572 if (!adev->xcp_mgr && num_partitions != 1) 1573 return -EINVAL; 1574 1575 for (i = 0; i < num_partitions; i++) { 1576 if (partition_values[i] != 0 && partition_values[i] != 1) 1577 return -EINVAL; 1578 } 1579 1580 mutex_lock(&adev->enforce_isolation_mutex); 1581 1582 for (i = 0; i < num_partitions; i++) { 1583 if (adev->enforce_isolation[i] && !partition_values[i]) { 1584 /* Going from enabled to disabled */ 1585 amdgpu_vmid_free_reserved(adev, AMDGPU_GFXHUB(i)); 1586 } else if (!adev->enforce_isolation[i] && partition_values[i]) { 1587 /* Going from disabled to enabled */ 1588 amdgpu_vmid_alloc_reserved(adev, AMDGPU_GFXHUB(i)); 1589 } 1590 adev->enforce_isolation[i] = partition_values[i]; 1591 } 1592 1593 mutex_unlock(&adev->enforce_isolation_mutex); 1594 1595 return count; 1596 } 1597 1598 static DEVICE_ATTR(run_cleaner_shader, 0200, 1599 NULL, amdgpu_gfx_set_run_cleaner_shader); 1600 1601 static DEVICE_ATTR(enforce_isolation, 0644, 1602 amdgpu_gfx_get_enforce_isolation, 1603 amdgpu_gfx_set_enforce_isolation); 1604 1605 static DEVICE_ATTR(current_compute_partition, 0644, 1606 amdgpu_gfx_get_current_compute_partition, 1607 amdgpu_gfx_set_compute_partition); 1608 1609 static DEVICE_ATTR(available_compute_partition, 0444, 1610 amdgpu_gfx_get_available_compute_partition, NULL); 1611 1612 int amdgpu_gfx_sysfs_init(struct amdgpu_device *adev) 1613 { 1614 int r; 1615 1616 r = device_create_file(adev->dev, &dev_attr_current_compute_partition); 1617 if (r) 1618 return r; 1619 1620 r = device_create_file(adev->dev, &dev_attr_available_compute_partition); 1621 1622 return r; 1623 } 1624 1625 void amdgpu_gfx_sysfs_fini(struct amdgpu_device *adev) 1626 { 1627 device_remove_file(adev->dev, &dev_attr_current_compute_partition); 1628 device_remove_file(adev->dev, &dev_attr_available_compute_partition); 1629 } 1630 1631 int amdgpu_gfx_sysfs_isolation_shader_init(struct amdgpu_device *adev) 1632 { 1633 int r; 1634 1635 if (!amdgpu_sriov_vf(adev)) { 1636 r = device_create_file(adev->dev, &dev_attr_enforce_isolation); 1637 if (r) 1638 return r; 1639 } 1640 1641 r = device_create_file(adev->dev, &dev_attr_run_cleaner_shader); 1642 if (r) 1643 return r; 1644 1645 return 0; 1646 } 1647 1648 void amdgpu_gfx_sysfs_isolation_shader_fini(struct amdgpu_device *adev) 1649 { 1650 if (!amdgpu_sriov_vf(adev)) 1651 device_remove_file(adev->dev, &dev_attr_enforce_isolation); 1652 device_remove_file(adev->dev, &dev_attr_run_cleaner_shader); 1653 } 1654 1655 int amdgpu_gfx_cleaner_shader_sw_init(struct amdgpu_device *adev, 1656 unsigned int cleaner_shader_size) 1657 { 1658 if (!adev->gfx.enable_cleaner_shader) 1659 return -EOPNOTSUPP; 1660 1661 return amdgpu_bo_create_kernel(adev, cleaner_shader_size, PAGE_SIZE, 1662 AMDGPU_GEM_DOMAIN_VRAM | AMDGPU_GEM_DOMAIN_GTT, 1663 &adev->gfx.cleaner_shader_obj, 1664 &adev->gfx.cleaner_shader_gpu_addr, 1665 (void **)&adev->gfx.cleaner_shader_cpu_ptr); 1666 } 1667 1668 void amdgpu_gfx_cleaner_shader_sw_fini(struct amdgpu_device *adev) 1669 { 1670 if (!adev->gfx.enable_cleaner_shader) 1671 return; 1672 1673 amdgpu_bo_free_kernel(&adev->gfx.cleaner_shader_obj, 1674 &adev->gfx.cleaner_shader_gpu_addr, 1675 (void **)&adev->gfx.cleaner_shader_cpu_ptr); 1676 } 1677 1678 void amdgpu_gfx_cleaner_shader_init(struct amdgpu_device *adev, 1679 unsigned int cleaner_shader_size, 1680 const void *cleaner_shader_ptr) 1681 { 1682 if (!adev->gfx.enable_cleaner_shader) 1683 return; 1684 1685 if (adev->gfx.cleaner_shader_cpu_ptr && cleaner_shader_ptr) 1686 memcpy_toio(adev->gfx.cleaner_shader_cpu_ptr, cleaner_shader_ptr, 1687 cleaner_shader_size); 1688 } 1689 1690 /** 1691 * amdgpu_gfx_kfd_sch_ctrl - Control the KFD scheduler from the KGD (Graphics Driver) 1692 * @adev: amdgpu_device pointer 1693 * @idx: Index of the scheduler to control 1694 * @enable: Whether to enable or disable the KFD scheduler 1695 * 1696 * This function is used to control the KFD (Kernel Fusion Driver) scheduler 1697 * from the KGD. It is part of the cleaner shader feature. This function plays 1698 * a key role in enforcing process isolation on the GPU. 1699 * 1700 * The function uses a reference count mechanism (kfd_sch_req_count) to keep 1701 * track of the number of requests to enable the KFD scheduler. When a request 1702 * to enable the KFD scheduler is made, the reference count is decremented. 1703 * When the reference count reaches zero, a delayed work is scheduled to 1704 * enforce isolation after a delay of GFX_SLICE_PERIOD. 1705 * 1706 * When a request to disable the KFD scheduler is made, the function first 1707 * checks if the reference count is zero. If it is, it cancels the delayed work 1708 * for enforcing isolation and checks if the KFD scheduler is active. If the 1709 * KFD scheduler is active, it sends a request to stop the KFD scheduler and 1710 * sets the KFD scheduler state to inactive. Then, it increments the reference 1711 * count. 1712 * 1713 * The function is synchronized using the kfd_sch_mutex to ensure that the KFD 1714 * scheduler state and reference count are updated atomically. 1715 * 1716 * Note: If the reference count is already zero when a request to enable the 1717 * KFD scheduler is made, it means there's an imbalance bug somewhere. The 1718 * function triggers a warning in this case. 1719 */ 1720 static void amdgpu_gfx_kfd_sch_ctrl(struct amdgpu_device *adev, u32 idx, 1721 bool enable) 1722 { 1723 mutex_lock(&adev->gfx.kfd_sch_mutex); 1724 1725 if (enable) { 1726 /* If the count is already 0, it means there's an imbalance bug somewhere. 1727 * Note that the bug may be in a different caller than the one which triggers the 1728 * WARN_ON_ONCE. 1729 */ 1730 if (WARN_ON_ONCE(adev->gfx.kfd_sch_req_count[idx] == 0)) { 1731 dev_err(adev->dev, "Attempted to enable KFD scheduler when reference count is already zero\n"); 1732 goto unlock; 1733 } 1734 1735 adev->gfx.kfd_sch_req_count[idx]--; 1736 1737 if (adev->gfx.kfd_sch_req_count[idx] == 0 && 1738 adev->gfx.kfd_sch_inactive[idx]) { 1739 schedule_delayed_work(&adev->gfx.enforce_isolation[idx].work, 1740 GFX_SLICE_PERIOD); 1741 } 1742 } else { 1743 if (adev->gfx.kfd_sch_req_count[idx] == 0) { 1744 cancel_delayed_work_sync(&adev->gfx.enforce_isolation[idx].work); 1745 if (!adev->gfx.kfd_sch_inactive[idx]) { 1746 amdgpu_amdkfd_stop_sched(adev, idx); 1747 adev->gfx.kfd_sch_inactive[idx] = true; 1748 } 1749 } 1750 1751 adev->gfx.kfd_sch_req_count[idx]++; 1752 } 1753 1754 unlock: 1755 mutex_unlock(&adev->gfx.kfd_sch_mutex); 1756 } 1757 1758 /** 1759 * amdgpu_gfx_enforce_isolation_handler - work handler for enforcing shader isolation 1760 * 1761 * @work: work_struct. 1762 * 1763 * This function is the work handler for enforcing shader isolation on AMD GPUs. 1764 * It counts the number of emitted fences for each GFX and compute ring. If there 1765 * are any fences, it schedules the `enforce_isolation_work` to be run after a 1766 * delay of `GFX_SLICE_PERIOD`. If there are no fences, it signals the Kernel Fusion 1767 * Driver (KFD) to resume the runqueue. The function is synchronized using the 1768 * `enforce_isolation_mutex`. 1769 */ 1770 void amdgpu_gfx_enforce_isolation_handler(struct work_struct *work) 1771 { 1772 struct amdgpu_isolation_work *isolation_work = 1773 container_of(work, struct amdgpu_isolation_work, work.work); 1774 struct amdgpu_device *adev = isolation_work->adev; 1775 u32 i, idx, fences = 0; 1776 1777 if (isolation_work->xcp_id == AMDGPU_XCP_NO_PARTITION) 1778 idx = 0; 1779 else 1780 idx = isolation_work->xcp_id; 1781 1782 if (idx >= MAX_XCP) 1783 return; 1784 1785 mutex_lock(&adev->enforce_isolation_mutex); 1786 for (i = 0; i < AMDGPU_MAX_GFX_RINGS; ++i) { 1787 if (isolation_work->xcp_id == adev->gfx.gfx_ring[i].xcp_id) 1788 fences += amdgpu_fence_count_emitted(&adev->gfx.gfx_ring[i]); 1789 } 1790 for (i = 0; i < (AMDGPU_MAX_COMPUTE_RINGS * AMDGPU_MAX_GC_INSTANCES); ++i) { 1791 if (isolation_work->xcp_id == adev->gfx.compute_ring[i].xcp_id) 1792 fences += amdgpu_fence_count_emitted(&adev->gfx.compute_ring[i]); 1793 } 1794 if (fences) { 1795 schedule_delayed_work(&adev->gfx.enforce_isolation[idx].work, 1796 GFX_SLICE_PERIOD); 1797 } else { 1798 /* Tell KFD to resume the runqueue */ 1799 if (adev->kfd.init_complete) { 1800 WARN_ON_ONCE(!adev->gfx.kfd_sch_inactive[idx]); 1801 WARN_ON_ONCE(adev->gfx.kfd_sch_req_count[idx]); 1802 amdgpu_amdkfd_start_sched(adev, idx); 1803 adev->gfx.kfd_sch_inactive[idx] = false; 1804 } 1805 } 1806 mutex_unlock(&adev->enforce_isolation_mutex); 1807 } 1808 1809 void amdgpu_gfx_enforce_isolation_ring_begin_use(struct amdgpu_ring *ring) 1810 { 1811 struct amdgpu_device *adev = ring->adev; 1812 u32 idx; 1813 1814 if (!adev->gfx.enable_cleaner_shader) 1815 return; 1816 1817 if (ring->xcp_id == AMDGPU_XCP_NO_PARTITION) 1818 idx = 0; 1819 else 1820 idx = ring->xcp_id; 1821 1822 if (idx >= MAX_XCP) 1823 return; 1824 1825 mutex_lock(&adev->enforce_isolation_mutex); 1826 if (adev->enforce_isolation[idx]) { 1827 if (adev->kfd.init_complete) 1828 amdgpu_gfx_kfd_sch_ctrl(adev, idx, false); 1829 } 1830 mutex_unlock(&adev->enforce_isolation_mutex); 1831 } 1832 1833 void amdgpu_gfx_enforce_isolation_ring_end_use(struct amdgpu_ring *ring) 1834 { 1835 struct amdgpu_device *adev = ring->adev; 1836 u32 idx; 1837 1838 if (!adev->gfx.enable_cleaner_shader) 1839 return; 1840 1841 if (ring->xcp_id == AMDGPU_XCP_NO_PARTITION) 1842 idx = 0; 1843 else 1844 idx = ring->xcp_id; 1845 1846 if (idx >= MAX_XCP) 1847 return; 1848 1849 mutex_lock(&adev->enforce_isolation_mutex); 1850 if (adev->enforce_isolation[idx]) { 1851 if (adev->kfd.init_complete) 1852 amdgpu_gfx_kfd_sch_ctrl(adev, idx, true); 1853 } 1854 mutex_unlock(&adev->enforce_isolation_mutex); 1855 } 1856