xref: /linux/drivers/gpu/drm/amd/amdgpu/amdgpu_gfx.c (revision b30d7a77c53ec04a6d94683d7680ec406b7f3ac8)
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  * Copyright 2008 Red Hat Inc.
4  * Copyright 2009 Jerome Glisse.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  *
24  */
25 
26 #include <linux/firmware.h>
27 #include "amdgpu.h"
28 #include "amdgpu_gfx.h"
29 #include "amdgpu_rlc.h"
30 #include "amdgpu_ras.h"
31 #include "amdgpu_xcp.h"
32 
33 /* delay 0.1 second to enable gfx off feature */
34 #define GFX_OFF_DELAY_ENABLE         msecs_to_jiffies(100)
35 
36 #define GFX_OFF_NO_DELAY 0
37 
38 /*
39  * GPU GFX IP block helpers function.
40  */
41 
42 int amdgpu_gfx_mec_queue_to_bit(struct amdgpu_device *adev, int mec,
43 				int pipe, int queue)
44 {
45 	int bit = 0;
46 
47 	bit += mec * adev->gfx.mec.num_pipe_per_mec
48 		* adev->gfx.mec.num_queue_per_pipe;
49 	bit += pipe * adev->gfx.mec.num_queue_per_pipe;
50 	bit += queue;
51 
52 	return bit;
53 }
54 
55 void amdgpu_queue_mask_bit_to_mec_queue(struct amdgpu_device *adev, int bit,
56 				 int *mec, int *pipe, int *queue)
57 {
58 	*queue = bit % adev->gfx.mec.num_queue_per_pipe;
59 	*pipe = (bit / adev->gfx.mec.num_queue_per_pipe)
60 		% adev->gfx.mec.num_pipe_per_mec;
61 	*mec = (bit / adev->gfx.mec.num_queue_per_pipe)
62 	       / adev->gfx.mec.num_pipe_per_mec;
63 
64 }
65 
66 bool amdgpu_gfx_is_mec_queue_enabled(struct amdgpu_device *adev,
67 				     int xcc_id, int mec, int pipe, int queue)
68 {
69 	return test_bit(amdgpu_gfx_mec_queue_to_bit(adev, mec, pipe, queue),
70 			adev->gfx.mec_bitmap[xcc_id].queue_bitmap);
71 }
72 
73 int amdgpu_gfx_me_queue_to_bit(struct amdgpu_device *adev,
74 			       int me, int pipe, int queue)
75 {
76 	int bit = 0;
77 
78 	bit += me * adev->gfx.me.num_pipe_per_me
79 		* adev->gfx.me.num_queue_per_pipe;
80 	bit += pipe * adev->gfx.me.num_queue_per_pipe;
81 	bit += queue;
82 
83 	return bit;
84 }
85 
86 void amdgpu_gfx_bit_to_me_queue(struct amdgpu_device *adev, int bit,
87 				int *me, int *pipe, int *queue)
88 {
89 	*queue = bit % adev->gfx.me.num_queue_per_pipe;
90 	*pipe = (bit / adev->gfx.me.num_queue_per_pipe)
91 		% adev->gfx.me.num_pipe_per_me;
92 	*me = (bit / adev->gfx.me.num_queue_per_pipe)
93 		/ adev->gfx.me.num_pipe_per_me;
94 }
95 
96 bool amdgpu_gfx_is_me_queue_enabled(struct amdgpu_device *adev,
97 				    int me, int pipe, int queue)
98 {
99 	return test_bit(amdgpu_gfx_me_queue_to_bit(adev, me, pipe, queue),
100 			adev->gfx.me.queue_bitmap);
101 }
102 
103 /**
104  * amdgpu_gfx_parse_disable_cu - Parse the disable_cu module parameter
105  *
106  * @mask: array in which the per-shader array disable masks will be stored
107  * @max_se: number of SEs
108  * @max_sh: number of SHs
109  *
110  * The bitmask of CUs to be disabled in the shader array determined by se and
111  * sh is stored in mask[se * max_sh + sh].
112  */
113 void amdgpu_gfx_parse_disable_cu(unsigned *mask, unsigned max_se, unsigned max_sh)
114 {
115 	unsigned se, sh, cu;
116 	const char *p;
117 
118 	memset(mask, 0, sizeof(*mask) * max_se * max_sh);
119 
120 	if (!amdgpu_disable_cu || !*amdgpu_disable_cu)
121 		return;
122 
123 	p = amdgpu_disable_cu;
124 	for (;;) {
125 		char *next;
126 		int ret = sscanf(p, "%u.%u.%u", &se, &sh, &cu);
127 		if (ret < 3) {
128 			DRM_ERROR("amdgpu: could not parse disable_cu\n");
129 			return;
130 		}
131 
132 		if (se < max_se && sh < max_sh && cu < 16) {
133 			DRM_INFO("amdgpu: disabling CU %u.%u.%u\n", se, sh, cu);
134 			mask[se * max_sh + sh] |= 1u << cu;
135 		} else {
136 			DRM_ERROR("amdgpu: disable_cu %u.%u.%u is out of range\n",
137 				  se, sh, cu);
138 		}
139 
140 		next = strchr(p, ',');
141 		if (!next)
142 			break;
143 		p = next + 1;
144 	}
145 }
146 
147 static bool amdgpu_gfx_is_graphics_multipipe_capable(struct amdgpu_device *adev)
148 {
149 	return amdgpu_async_gfx_ring && adev->gfx.me.num_pipe_per_me > 1;
150 }
151 
152 static bool amdgpu_gfx_is_compute_multipipe_capable(struct amdgpu_device *adev)
153 {
154 	if (amdgpu_compute_multipipe != -1) {
155 		DRM_INFO("amdgpu: forcing compute pipe policy %d\n",
156 			 amdgpu_compute_multipipe);
157 		return amdgpu_compute_multipipe == 1;
158 	}
159 
160 	if (adev->ip_versions[GC_HWIP][0] > IP_VERSION(9, 0, 0))
161 		return true;
162 
163 	/* FIXME: spreading the queues across pipes causes perf regressions
164 	 * on POLARIS11 compute workloads */
165 	if (adev->asic_type == CHIP_POLARIS11)
166 		return false;
167 
168 	return adev->gfx.mec.num_mec > 1;
169 }
170 
171 bool amdgpu_gfx_is_high_priority_graphics_queue(struct amdgpu_device *adev,
172 						struct amdgpu_ring *ring)
173 {
174 	int queue = ring->queue;
175 	int pipe = ring->pipe;
176 
177 	/* Policy: use pipe1 queue0 as high priority graphics queue if we
178 	 * have more than one gfx pipe.
179 	 */
180 	if (amdgpu_gfx_is_graphics_multipipe_capable(adev) &&
181 	    adev->gfx.num_gfx_rings > 1 && pipe == 1 && queue == 0) {
182 		int me = ring->me;
183 		int bit;
184 
185 		bit = amdgpu_gfx_me_queue_to_bit(adev, me, pipe, queue);
186 		if (ring == &adev->gfx.gfx_ring[bit])
187 			return true;
188 	}
189 
190 	return false;
191 }
192 
193 bool amdgpu_gfx_is_high_priority_compute_queue(struct amdgpu_device *adev,
194 					       struct amdgpu_ring *ring)
195 {
196 	/* Policy: use 1st queue as high priority compute queue if we
197 	 * have more than one compute queue.
198 	 */
199 	if (adev->gfx.num_compute_rings > 1 &&
200 	    ring == &adev->gfx.compute_ring[0])
201 		return true;
202 
203 	return false;
204 }
205 
206 void amdgpu_gfx_compute_queue_acquire(struct amdgpu_device *adev)
207 {
208 	int i, j, queue, pipe;
209 	bool multipipe_policy = amdgpu_gfx_is_compute_multipipe_capable(adev);
210 	int max_queues_per_mec = min(adev->gfx.mec.num_pipe_per_mec *
211 				     adev->gfx.mec.num_queue_per_pipe,
212 				     adev->gfx.num_compute_rings);
213 	int num_xcc = adev->gfx.xcc_mask ? NUM_XCC(adev->gfx.xcc_mask) : 1;
214 
215 	if (multipipe_policy) {
216 		/* policy: make queues evenly cross all pipes on MEC1 only
217 		 * for multiple xcc, just use the original policy for simplicity */
218 		for (j = 0; j < num_xcc; j++) {
219 			for (i = 0; i < max_queues_per_mec; i++) {
220 				pipe = i % adev->gfx.mec.num_pipe_per_mec;
221 				queue = (i / adev->gfx.mec.num_pipe_per_mec) %
222 					 adev->gfx.mec.num_queue_per_pipe;
223 
224 				set_bit(pipe * adev->gfx.mec.num_queue_per_pipe + queue,
225 					adev->gfx.mec_bitmap[j].queue_bitmap);
226 			}
227 		}
228 	} else {
229 		/* policy: amdgpu owns all queues in the given pipe */
230 		for (j = 0; j < num_xcc; j++) {
231 			for (i = 0; i < max_queues_per_mec; ++i)
232 				set_bit(i, adev->gfx.mec_bitmap[j].queue_bitmap);
233 		}
234 	}
235 
236 	for (j = 0; j < num_xcc; j++) {
237 		dev_dbg(adev->dev, "mec queue bitmap weight=%d\n",
238 			bitmap_weight(adev->gfx.mec_bitmap[j].queue_bitmap, AMDGPU_MAX_COMPUTE_QUEUES));
239 	}
240 }
241 
242 void amdgpu_gfx_graphics_queue_acquire(struct amdgpu_device *adev)
243 {
244 	int i, queue, pipe;
245 	bool multipipe_policy = amdgpu_gfx_is_graphics_multipipe_capable(adev);
246 	int max_queues_per_me = adev->gfx.me.num_pipe_per_me *
247 					adev->gfx.me.num_queue_per_pipe;
248 
249 	if (multipipe_policy) {
250 		/* policy: amdgpu owns the first queue per pipe at this stage
251 		 * will extend to mulitple queues per pipe later */
252 		for (i = 0; i < max_queues_per_me; i++) {
253 			pipe = i % adev->gfx.me.num_pipe_per_me;
254 			queue = (i / adev->gfx.me.num_pipe_per_me) %
255 				adev->gfx.me.num_queue_per_pipe;
256 
257 			set_bit(pipe * adev->gfx.me.num_queue_per_pipe + queue,
258 				adev->gfx.me.queue_bitmap);
259 		}
260 	} else {
261 		for (i = 0; i < max_queues_per_me; ++i)
262 			set_bit(i, adev->gfx.me.queue_bitmap);
263 	}
264 
265 	/* update the number of active graphics rings */
266 	adev->gfx.num_gfx_rings =
267 		bitmap_weight(adev->gfx.me.queue_bitmap, AMDGPU_MAX_GFX_QUEUES);
268 }
269 
270 static int amdgpu_gfx_kiq_acquire(struct amdgpu_device *adev,
271 				  struct amdgpu_ring *ring, int xcc_id)
272 {
273 	int queue_bit;
274 	int mec, pipe, queue;
275 
276 	queue_bit = adev->gfx.mec.num_mec
277 		    * adev->gfx.mec.num_pipe_per_mec
278 		    * adev->gfx.mec.num_queue_per_pipe;
279 
280 	while (--queue_bit >= 0) {
281 		if (test_bit(queue_bit, adev->gfx.mec_bitmap[xcc_id].queue_bitmap))
282 			continue;
283 
284 		amdgpu_queue_mask_bit_to_mec_queue(adev, queue_bit, &mec, &pipe, &queue);
285 
286 		/*
287 		 * 1. Using pipes 2/3 from MEC 2 seems cause problems.
288 		 * 2. It must use queue id 0, because CGPG_IDLE/SAVE/LOAD/RUN
289 		 * only can be issued on queue 0.
290 		 */
291 		if ((mec == 1 && pipe > 1) || queue != 0)
292 			continue;
293 
294 		ring->me = mec + 1;
295 		ring->pipe = pipe;
296 		ring->queue = queue;
297 
298 		return 0;
299 	}
300 
301 	dev_err(adev->dev, "Failed to find a queue for KIQ\n");
302 	return -EINVAL;
303 }
304 
305 int amdgpu_gfx_kiq_init_ring(struct amdgpu_device *adev,
306 			     struct amdgpu_ring *ring,
307 			     struct amdgpu_irq_src *irq, int xcc_id)
308 {
309 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
310 	int r = 0;
311 
312 	spin_lock_init(&kiq->ring_lock);
313 
314 	ring->adev = NULL;
315 	ring->ring_obj = NULL;
316 	ring->use_doorbell = true;
317 	ring->xcc_id = xcc_id;
318 	ring->vm_hub = AMDGPU_GFXHUB(xcc_id);
319 	ring->doorbell_index =
320 		(adev->doorbell_index.kiq +
321 		 xcc_id * adev->doorbell_index.xcc_doorbell_range)
322 		<< 1;
323 
324 	r = amdgpu_gfx_kiq_acquire(adev, ring, xcc_id);
325 	if (r)
326 		return r;
327 
328 	ring->eop_gpu_addr = kiq->eop_gpu_addr;
329 	ring->no_scheduler = true;
330 	sprintf(ring->name, "kiq_%d.%d.%d.%d", xcc_id, ring->me, ring->pipe, ring->queue);
331 	r = amdgpu_ring_init(adev, ring, 1024, irq, AMDGPU_CP_KIQ_IRQ_DRIVER0,
332 			     AMDGPU_RING_PRIO_DEFAULT, NULL);
333 	if (r)
334 		dev_warn(adev->dev, "(%d) failed to init kiq ring\n", r);
335 
336 	return r;
337 }
338 
339 void amdgpu_gfx_kiq_free_ring(struct amdgpu_ring *ring)
340 {
341 	amdgpu_ring_fini(ring);
342 }
343 
344 void amdgpu_gfx_kiq_fini(struct amdgpu_device *adev, int xcc_id)
345 {
346 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
347 
348 	amdgpu_bo_free_kernel(&kiq->eop_obj, &kiq->eop_gpu_addr, NULL);
349 }
350 
351 int amdgpu_gfx_kiq_init(struct amdgpu_device *adev,
352 			unsigned hpd_size, int xcc_id)
353 {
354 	int r;
355 	u32 *hpd;
356 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
357 
358 	r = amdgpu_bo_create_kernel(adev, hpd_size, PAGE_SIZE,
359 				    AMDGPU_GEM_DOMAIN_GTT, &kiq->eop_obj,
360 				    &kiq->eop_gpu_addr, (void **)&hpd);
361 	if (r) {
362 		dev_warn(adev->dev, "failed to create KIQ bo (%d).\n", r);
363 		return r;
364 	}
365 
366 	memset(hpd, 0, hpd_size);
367 
368 	r = amdgpu_bo_reserve(kiq->eop_obj, true);
369 	if (unlikely(r != 0))
370 		dev_warn(adev->dev, "(%d) reserve kiq eop bo failed\n", r);
371 	amdgpu_bo_kunmap(kiq->eop_obj);
372 	amdgpu_bo_unreserve(kiq->eop_obj);
373 
374 	return 0;
375 }
376 
377 /* create MQD for each compute/gfx queue */
378 int amdgpu_gfx_mqd_sw_init(struct amdgpu_device *adev,
379 			   unsigned mqd_size, int xcc_id)
380 {
381 	int r, i, j;
382 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
383 	struct amdgpu_ring *ring = &kiq->ring;
384 	u32 domain = AMDGPU_GEM_DOMAIN_GTT;
385 
386 	/* Only enable on gfx10 and 11 for now to avoid changing behavior on older chips */
387 	if (adev->ip_versions[GC_HWIP][0] >= IP_VERSION(10, 0, 0))
388 		domain |= AMDGPU_GEM_DOMAIN_VRAM;
389 
390 	/* create MQD for KIQ */
391 	if (!adev->enable_mes_kiq && !ring->mqd_obj) {
392 		/* originaly the KIQ MQD is put in GTT domain, but for SRIOV VRAM domain is a must
393 		 * otherwise hypervisor trigger SAVE_VF fail after driver unloaded which mean MQD
394 		 * deallocated and gart_unbind, to strict diverage we decide to use VRAM domain for
395 		 * KIQ MQD no matter SRIOV or Bare-metal
396 		 */
397 		r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE,
398 					    AMDGPU_GEM_DOMAIN_VRAM |
399 					    AMDGPU_GEM_DOMAIN_GTT,
400 					    &ring->mqd_obj,
401 					    &ring->mqd_gpu_addr,
402 					    &ring->mqd_ptr);
403 		if (r) {
404 			dev_warn(adev->dev, "failed to create ring mqd ob (%d)", r);
405 			return r;
406 		}
407 
408 		/* prepare MQD backup */
409 		kiq->mqd_backup = kmalloc(mqd_size, GFP_KERNEL);
410 		if (!kiq->mqd_backup)
411 				dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name);
412 	}
413 
414 	if (adev->asic_type >= CHIP_NAVI10 && amdgpu_async_gfx_ring) {
415 		/* create MQD for each KGQ */
416 		for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
417 			ring = &adev->gfx.gfx_ring[i];
418 			if (!ring->mqd_obj) {
419 				r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE,
420 							    domain, &ring->mqd_obj,
421 							    &ring->mqd_gpu_addr, &ring->mqd_ptr);
422 				if (r) {
423 					dev_warn(adev->dev, "failed to create ring mqd bo (%d)", r);
424 					return r;
425 				}
426 
427 				ring->mqd_size = mqd_size;
428 				/* prepare MQD backup */
429 				adev->gfx.me.mqd_backup[i] = kmalloc(mqd_size, GFP_KERNEL);
430 				if (!adev->gfx.me.mqd_backup[i])
431 					dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name);
432 			}
433 		}
434 	}
435 
436 	/* create MQD for each KCQ */
437 	for (i = 0; i < adev->gfx.num_compute_rings; i++) {
438 		j = i + xcc_id * adev->gfx.num_compute_rings;
439 		ring = &adev->gfx.compute_ring[j];
440 		if (!ring->mqd_obj) {
441 			r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE,
442 						    domain, &ring->mqd_obj,
443 						    &ring->mqd_gpu_addr, &ring->mqd_ptr);
444 			if (r) {
445 				dev_warn(adev->dev, "failed to create ring mqd bo (%d)", r);
446 				return r;
447 			}
448 
449 			ring->mqd_size = mqd_size;
450 			/* prepare MQD backup */
451 			adev->gfx.mec.mqd_backup[j] = kmalloc(mqd_size, GFP_KERNEL);
452 			if (!adev->gfx.mec.mqd_backup[j])
453 				dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name);
454 		}
455 	}
456 
457 	return 0;
458 }
459 
460 void amdgpu_gfx_mqd_sw_fini(struct amdgpu_device *adev, int xcc_id)
461 {
462 	struct amdgpu_ring *ring = NULL;
463 	int i, j;
464 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
465 
466 	if (adev->asic_type >= CHIP_NAVI10 && amdgpu_async_gfx_ring) {
467 		for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
468 			ring = &adev->gfx.gfx_ring[i];
469 			kfree(adev->gfx.me.mqd_backup[i]);
470 			amdgpu_bo_free_kernel(&ring->mqd_obj,
471 					      &ring->mqd_gpu_addr,
472 					      &ring->mqd_ptr);
473 		}
474 	}
475 
476 	for (i = 0; i < adev->gfx.num_compute_rings; i++) {
477 		j = i + xcc_id * adev->gfx.num_compute_rings;
478 		ring = &adev->gfx.compute_ring[j];
479 		kfree(adev->gfx.mec.mqd_backup[j]);
480 		amdgpu_bo_free_kernel(&ring->mqd_obj,
481 				      &ring->mqd_gpu_addr,
482 				      &ring->mqd_ptr);
483 	}
484 
485 	ring = &kiq->ring;
486 	kfree(kiq->mqd_backup);
487 	amdgpu_bo_free_kernel(&ring->mqd_obj,
488 			      &ring->mqd_gpu_addr,
489 			      &ring->mqd_ptr);
490 }
491 
492 int amdgpu_gfx_disable_kcq(struct amdgpu_device *adev, int xcc_id)
493 {
494 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
495 	struct amdgpu_ring *kiq_ring = &kiq->ring;
496 	int i, r = 0;
497 	int j;
498 
499 	if (!kiq->pmf || !kiq->pmf->kiq_unmap_queues)
500 		return -EINVAL;
501 
502 	spin_lock(&kiq->ring_lock);
503 	if (amdgpu_ring_alloc(kiq_ring, kiq->pmf->unmap_queues_size *
504 					adev->gfx.num_compute_rings)) {
505 		spin_unlock(&kiq->ring_lock);
506 		return -ENOMEM;
507 	}
508 
509 	for (i = 0; i < adev->gfx.num_compute_rings; i++) {
510 		j = i + xcc_id * adev->gfx.num_compute_rings;
511 		kiq->pmf->kiq_unmap_queues(kiq_ring,
512 					   &adev->gfx.compute_ring[j],
513 					   RESET_QUEUES, 0, 0);
514 	}
515 
516 	if (kiq_ring->sched.ready && !adev->job_hang)
517 		r = amdgpu_ring_test_helper(kiq_ring);
518 	spin_unlock(&kiq->ring_lock);
519 
520 	return r;
521 }
522 
523 int amdgpu_gfx_disable_kgq(struct amdgpu_device *adev, int xcc_id)
524 {
525 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
526 	struct amdgpu_ring *kiq_ring = &kiq->ring;
527 	int i, r = 0;
528 	int j;
529 
530 	if (!kiq->pmf || !kiq->pmf->kiq_unmap_queues)
531 		return -EINVAL;
532 
533 	spin_lock(&kiq->ring_lock);
534 	if (amdgpu_gfx_is_master_xcc(adev, xcc_id)) {
535 		if (amdgpu_ring_alloc(kiq_ring, kiq->pmf->unmap_queues_size *
536 						adev->gfx.num_gfx_rings)) {
537 			spin_unlock(&kiq->ring_lock);
538 			return -ENOMEM;
539 		}
540 
541 		for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
542 			j = i + xcc_id * adev->gfx.num_gfx_rings;
543 			kiq->pmf->kiq_unmap_queues(kiq_ring,
544 						   &adev->gfx.gfx_ring[j],
545 						   PREEMPT_QUEUES, 0, 0);
546 		}
547 	}
548 
549 	if (adev->gfx.kiq[0].ring.sched.ready && !adev->job_hang)
550 		r = amdgpu_ring_test_helper(kiq_ring);
551 	spin_unlock(&kiq->ring_lock);
552 
553 	return r;
554 }
555 
556 int amdgpu_queue_mask_bit_to_set_resource_bit(struct amdgpu_device *adev,
557 					int queue_bit)
558 {
559 	int mec, pipe, queue;
560 	int set_resource_bit = 0;
561 
562 	amdgpu_queue_mask_bit_to_mec_queue(adev, queue_bit, &mec, &pipe, &queue);
563 
564 	set_resource_bit = mec * 4 * 8 + pipe * 8 + queue;
565 
566 	return set_resource_bit;
567 }
568 
569 int amdgpu_gfx_enable_kcq(struct amdgpu_device *adev, int xcc_id)
570 {
571 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
572 	struct amdgpu_ring *kiq_ring = &kiq->ring;
573 	uint64_t queue_mask = 0;
574 	int r, i, j;
575 
576 	if (!kiq->pmf || !kiq->pmf->kiq_map_queues || !kiq->pmf->kiq_set_resources)
577 		return -EINVAL;
578 
579 	for (i = 0; i < AMDGPU_MAX_COMPUTE_QUEUES; ++i) {
580 		if (!test_bit(i, adev->gfx.mec_bitmap[xcc_id].queue_bitmap))
581 			continue;
582 
583 		/* This situation may be hit in the future if a new HW
584 		 * generation exposes more than 64 queues. If so, the
585 		 * definition of queue_mask needs updating */
586 		if (WARN_ON(i > (sizeof(queue_mask)*8))) {
587 			DRM_ERROR("Invalid KCQ enabled: %d\n", i);
588 			break;
589 		}
590 
591 		queue_mask |= (1ull << amdgpu_queue_mask_bit_to_set_resource_bit(adev, i));
592 	}
593 
594 	DRM_INFO("kiq ring mec %d pipe %d q %d\n", kiq_ring->me, kiq_ring->pipe,
595 							kiq_ring->queue);
596 	amdgpu_device_flush_hdp(adev, NULL);
597 
598 	spin_lock(&kiq->ring_lock);
599 	r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->map_queues_size *
600 					adev->gfx.num_compute_rings +
601 					kiq->pmf->set_resources_size);
602 	if (r) {
603 		DRM_ERROR("Failed to lock KIQ (%d).\n", r);
604 		spin_unlock(&kiq->ring_lock);
605 		return r;
606 	}
607 
608 	if (adev->enable_mes)
609 		queue_mask = ~0ULL;
610 
611 	kiq->pmf->kiq_set_resources(kiq_ring, queue_mask);
612 	for (i = 0; i < adev->gfx.num_compute_rings; i++) {
613 		j = i + xcc_id * adev->gfx.num_compute_rings;
614 			kiq->pmf->kiq_map_queues(kiq_ring,
615 						 &adev->gfx.compute_ring[j]);
616 	}
617 
618 	r = amdgpu_ring_test_helper(kiq_ring);
619 	spin_unlock(&kiq->ring_lock);
620 	if (r)
621 		DRM_ERROR("KCQ enable failed\n");
622 
623 	return r;
624 }
625 
626 int amdgpu_gfx_enable_kgq(struct amdgpu_device *adev, int xcc_id)
627 {
628 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
629 	struct amdgpu_ring *kiq_ring = &kiq->ring;
630 	int r, i, j;
631 
632 	if (!kiq->pmf || !kiq->pmf->kiq_map_queues)
633 		return -EINVAL;
634 
635 	amdgpu_device_flush_hdp(adev, NULL);
636 
637 	spin_lock(&kiq->ring_lock);
638 	/* No need to map kcq on the slave */
639 	if (amdgpu_gfx_is_master_xcc(adev, xcc_id)) {
640 		r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->map_queues_size *
641 						adev->gfx.num_gfx_rings);
642 		if (r) {
643 			DRM_ERROR("Failed to lock KIQ (%d).\n", r);
644 			spin_unlock(&kiq->ring_lock);
645 			return r;
646 		}
647 
648 		for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
649 			j = i + xcc_id * adev->gfx.num_gfx_rings;
650 			kiq->pmf->kiq_map_queues(kiq_ring,
651 						 &adev->gfx.gfx_ring[j]);
652 		}
653 	}
654 
655 	r = amdgpu_ring_test_helper(kiq_ring);
656 	spin_unlock(&kiq->ring_lock);
657 	if (r)
658 		DRM_ERROR("KCQ enable failed\n");
659 
660 	return r;
661 }
662 
663 /* amdgpu_gfx_off_ctrl - Handle gfx off feature enable/disable
664  *
665  * @adev: amdgpu_device pointer
666  * @bool enable true: enable gfx off feature, false: disable gfx off feature
667  *
668  * 1. gfx off feature will be enabled by gfx ip after gfx cg gp enabled.
669  * 2. other client can send request to disable gfx off feature, the request should be honored.
670  * 3. other client can cancel their request of disable gfx off feature
671  * 4. other client should not send request to enable gfx off feature before disable gfx off feature.
672  */
673 
674 void amdgpu_gfx_off_ctrl(struct amdgpu_device *adev, bool enable)
675 {
676 	unsigned long delay = GFX_OFF_DELAY_ENABLE;
677 
678 	if (!(adev->pm.pp_feature & PP_GFXOFF_MASK))
679 		return;
680 
681 	mutex_lock(&adev->gfx.gfx_off_mutex);
682 
683 	if (enable) {
684 		/* If the count is already 0, it means there's an imbalance bug somewhere.
685 		 * Note that the bug may be in a different caller than the one which triggers the
686 		 * WARN_ON_ONCE.
687 		 */
688 		if (WARN_ON_ONCE(adev->gfx.gfx_off_req_count == 0))
689 			goto unlock;
690 
691 		adev->gfx.gfx_off_req_count--;
692 
693 		if (adev->gfx.gfx_off_req_count == 0 &&
694 		    !adev->gfx.gfx_off_state) {
695 			/* If going to s2idle, no need to wait */
696 			if (adev->in_s0ix) {
697 				if (!amdgpu_dpm_set_powergating_by_smu(adev,
698 						AMD_IP_BLOCK_TYPE_GFX, true))
699 					adev->gfx.gfx_off_state = true;
700 			} else {
701 				schedule_delayed_work(&adev->gfx.gfx_off_delay_work,
702 					      delay);
703 			}
704 		}
705 	} else {
706 		if (adev->gfx.gfx_off_req_count == 0) {
707 			cancel_delayed_work_sync(&adev->gfx.gfx_off_delay_work);
708 
709 			if (adev->gfx.gfx_off_state &&
710 			    !amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_GFX, false)) {
711 				adev->gfx.gfx_off_state = false;
712 
713 				if (adev->gfx.funcs->init_spm_golden) {
714 					dev_dbg(adev->dev,
715 						"GFXOFF is disabled, re-init SPM golden settings\n");
716 					amdgpu_gfx_init_spm_golden(adev);
717 				}
718 			}
719 		}
720 
721 		adev->gfx.gfx_off_req_count++;
722 	}
723 
724 unlock:
725 	mutex_unlock(&adev->gfx.gfx_off_mutex);
726 }
727 
728 int amdgpu_set_gfx_off_residency(struct amdgpu_device *adev, bool value)
729 {
730 	int r = 0;
731 
732 	mutex_lock(&adev->gfx.gfx_off_mutex);
733 
734 	r = amdgpu_dpm_set_residency_gfxoff(adev, value);
735 
736 	mutex_unlock(&adev->gfx.gfx_off_mutex);
737 
738 	return r;
739 }
740 
741 int amdgpu_get_gfx_off_residency(struct amdgpu_device *adev, u32 *value)
742 {
743 	int r = 0;
744 
745 	mutex_lock(&adev->gfx.gfx_off_mutex);
746 
747 	r = amdgpu_dpm_get_residency_gfxoff(adev, value);
748 
749 	mutex_unlock(&adev->gfx.gfx_off_mutex);
750 
751 	return r;
752 }
753 
754 int amdgpu_get_gfx_off_entrycount(struct amdgpu_device *adev, u64 *value)
755 {
756 	int r = 0;
757 
758 	mutex_lock(&adev->gfx.gfx_off_mutex);
759 
760 	r = amdgpu_dpm_get_entrycount_gfxoff(adev, value);
761 
762 	mutex_unlock(&adev->gfx.gfx_off_mutex);
763 
764 	return r;
765 }
766 
767 int amdgpu_get_gfx_off_status(struct amdgpu_device *adev, uint32_t *value)
768 {
769 
770 	int r = 0;
771 
772 	mutex_lock(&adev->gfx.gfx_off_mutex);
773 
774 	r = amdgpu_dpm_get_status_gfxoff(adev, value);
775 
776 	mutex_unlock(&adev->gfx.gfx_off_mutex);
777 
778 	return r;
779 }
780 
781 int amdgpu_gfx_ras_late_init(struct amdgpu_device *adev, struct ras_common_if *ras_block)
782 {
783 	int r;
784 
785 	if (amdgpu_ras_is_supported(adev, ras_block->block)) {
786 		if (!amdgpu_persistent_edc_harvesting_supported(adev))
787 			amdgpu_ras_reset_error_status(adev, AMDGPU_RAS_BLOCK__GFX);
788 
789 		r = amdgpu_ras_block_late_init(adev, ras_block);
790 		if (r)
791 			return r;
792 
793 		if (adev->gfx.cp_ecc_error_irq.funcs) {
794 			r = amdgpu_irq_get(adev, &adev->gfx.cp_ecc_error_irq, 0);
795 			if (r)
796 				goto late_fini;
797 		}
798 	} else {
799 		amdgpu_ras_feature_enable_on_boot(adev, ras_block, 0);
800 	}
801 
802 	return 0;
803 late_fini:
804 	amdgpu_ras_block_late_fini(adev, ras_block);
805 	return r;
806 }
807 
808 int amdgpu_gfx_ras_sw_init(struct amdgpu_device *adev)
809 {
810 	int err = 0;
811 	struct amdgpu_gfx_ras *ras = NULL;
812 
813 	/* adev->gfx.ras is NULL, which means gfx does not
814 	 * support ras function, then do nothing here.
815 	 */
816 	if (!adev->gfx.ras)
817 		return 0;
818 
819 	ras = adev->gfx.ras;
820 
821 	err = amdgpu_ras_register_ras_block(adev, &ras->ras_block);
822 	if (err) {
823 		dev_err(adev->dev, "Failed to register gfx ras block!\n");
824 		return err;
825 	}
826 
827 	strcpy(ras->ras_block.ras_comm.name, "gfx");
828 	ras->ras_block.ras_comm.block = AMDGPU_RAS_BLOCK__GFX;
829 	ras->ras_block.ras_comm.type = AMDGPU_RAS_ERROR__MULTI_UNCORRECTABLE;
830 	adev->gfx.ras_if = &ras->ras_block.ras_comm;
831 
832 	/* If not define special ras_late_init function, use gfx default ras_late_init */
833 	if (!ras->ras_block.ras_late_init)
834 		ras->ras_block.ras_late_init = amdgpu_gfx_ras_late_init;
835 
836 	/* If not defined special ras_cb function, use default ras_cb */
837 	if (!ras->ras_block.ras_cb)
838 		ras->ras_block.ras_cb = amdgpu_gfx_process_ras_data_cb;
839 
840 	return 0;
841 }
842 
843 int amdgpu_gfx_poison_consumption_handler(struct amdgpu_device *adev,
844 						struct amdgpu_iv_entry *entry)
845 {
846 	if (adev->gfx.ras && adev->gfx.ras->poison_consumption_handler)
847 		return adev->gfx.ras->poison_consumption_handler(adev, entry);
848 
849 	return 0;
850 }
851 
852 int amdgpu_gfx_process_ras_data_cb(struct amdgpu_device *adev,
853 		void *err_data,
854 		struct amdgpu_iv_entry *entry)
855 {
856 	/* TODO ue will trigger an interrupt.
857 	 *
858 	 * When “Full RAS” is enabled, the per-IP interrupt sources should
859 	 * be disabled and the driver should only look for the aggregated
860 	 * interrupt via sync flood
861 	 */
862 	if (!amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__GFX)) {
863 		kgd2kfd_set_sram_ecc_flag(adev->kfd.dev);
864 		if (adev->gfx.ras && adev->gfx.ras->ras_block.hw_ops &&
865 		    adev->gfx.ras->ras_block.hw_ops->query_ras_error_count)
866 			adev->gfx.ras->ras_block.hw_ops->query_ras_error_count(adev, err_data);
867 		amdgpu_ras_reset_gpu(adev);
868 	}
869 	return AMDGPU_RAS_SUCCESS;
870 }
871 
872 int amdgpu_gfx_cp_ecc_error_irq(struct amdgpu_device *adev,
873 				  struct amdgpu_irq_src *source,
874 				  struct amdgpu_iv_entry *entry)
875 {
876 	struct ras_common_if *ras_if = adev->gfx.ras_if;
877 	struct ras_dispatch_if ih_data = {
878 		.entry = entry,
879 	};
880 
881 	if (!ras_if)
882 		return 0;
883 
884 	ih_data.head = *ras_if;
885 
886 	DRM_ERROR("CP ECC ERROR IRQ\n");
887 	amdgpu_ras_interrupt_dispatch(adev, &ih_data);
888 	return 0;
889 }
890 
891 void amdgpu_gfx_ras_error_func(struct amdgpu_device *adev,
892 		void *ras_error_status,
893 		void (*func)(struct amdgpu_device *adev, void *ras_error_status,
894 				int xcc_id))
895 {
896 	int i;
897 	int num_xcc = adev->gfx.xcc_mask ? NUM_XCC(adev->gfx.xcc_mask) : 1;
898 	uint32_t xcc_mask = GENMASK(num_xcc - 1, 0);
899 	struct ras_err_data *err_data = (struct ras_err_data *)ras_error_status;
900 
901 	if (err_data) {
902 		err_data->ue_count = 0;
903 		err_data->ce_count = 0;
904 	}
905 
906 	for_each_inst(i, xcc_mask)
907 		func(adev, ras_error_status, i);
908 }
909 
910 uint32_t amdgpu_kiq_rreg(struct amdgpu_device *adev, uint32_t reg)
911 {
912 	signed long r, cnt = 0;
913 	unsigned long flags;
914 	uint32_t seq, reg_val_offs = 0, value = 0;
915 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[0];
916 	struct amdgpu_ring *ring = &kiq->ring;
917 
918 	if (amdgpu_device_skip_hw_access(adev))
919 		return 0;
920 
921 	if (adev->mes.ring.sched.ready)
922 		return amdgpu_mes_rreg(adev, reg);
923 
924 	BUG_ON(!ring->funcs->emit_rreg);
925 
926 	spin_lock_irqsave(&kiq->ring_lock, flags);
927 	if (amdgpu_device_wb_get(adev, &reg_val_offs)) {
928 		pr_err("critical bug! too many kiq readers\n");
929 		goto failed_unlock;
930 	}
931 	amdgpu_ring_alloc(ring, 32);
932 	amdgpu_ring_emit_rreg(ring, reg, reg_val_offs);
933 	r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT);
934 	if (r)
935 		goto failed_undo;
936 
937 	amdgpu_ring_commit(ring);
938 	spin_unlock_irqrestore(&kiq->ring_lock, flags);
939 
940 	r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
941 
942 	/* don't wait anymore for gpu reset case because this way may
943 	 * block gpu_recover() routine forever, e.g. this virt_kiq_rreg
944 	 * is triggered in TTM and ttm_bo_lock_delayed_workqueue() will
945 	 * never return if we keep waiting in virt_kiq_rreg, which cause
946 	 * gpu_recover() hang there.
947 	 *
948 	 * also don't wait anymore for IRQ context
949 	 * */
950 	if (r < 1 && (amdgpu_in_reset(adev) || in_interrupt()))
951 		goto failed_kiq_read;
952 
953 	might_sleep();
954 	while (r < 1 && cnt++ < MAX_KIQ_REG_TRY) {
955 		msleep(MAX_KIQ_REG_BAILOUT_INTERVAL);
956 		r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
957 	}
958 
959 	if (cnt > MAX_KIQ_REG_TRY)
960 		goto failed_kiq_read;
961 
962 	mb();
963 	value = adev->wb.wb[reg_val_offs];
964 	amdgpu_device_wb_free(adev, reg_val_offs);
965 	return value;
966 
967 failed_undo:
968 	amdgpu_ring_undo(ring);
969 failed_unlock:
970 	spin_unlock_irqrestore(&kiq->ring_lock, flags);
971 failed_kiq_read:
972 	if (reg_val_offs)
973 		amdgpu_device_wb_free(adev, reg_val_offs);
974 	dev_err(adev->dev, "failed to read reg:%x\n", reg);
975 	return ~0;
976 }
977 
978 void amdgpu_kiq_wreg(struct amdgpu_device *adev, uint32_t reg, uint32_t v)
979 {
980 	signed long r, cnt = 0;
981 	unsigned long flags;
982 	uint32_t seq;
983 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[0];
984 	struct amdgpu_ring *ring = &kiq->ring;
985 
986 	BUG_ON(!ring->funcs->emit_wreg);
987 
988 	if (amdgpu_device_skip_hw_access(adev))
989 		return;
990 
991 	if (adev->mes.ring.sched.ready) {
992 		amdgpu_mes_wreg(adev, reg, v);
993 		return;
994 	}
995 
996 	spin_lock_irqsave(&kiq->ring_lock, flags);
997 	amdgpu_ring_alloc(ring, 32);
998 	amdgpu_ring_emit_wreg(ring, reg, v);
999 	r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT);
1000 	if (r)
1001 		goto failed_undo;
1002 
1003 	amdgpu_ring_commit(ring);
1004 	spin_unlock_irqrestore(&kiq->ring_lock, flags);
1005 
1006 	r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
1007 
1008 	/* don't wait anymore for gpu reset case because this way may
1009 	 * block gpu_recover() routine forever, e.g. this virt_kiq_rreg
1010 	 * is triggered in TTM and ttm_bo_lock_delayed_workqueue() will
1011 	 * never return if we keep waiting in virt_kiq_rreg, which cause
1012 	 * gpu_recover() hang there.
1013 	 *
1014 	 * also don't wait anymore for IRQ context
1015 	 * */
1016 	if (r < 1 && (amdgpu_in_reset(adev) || in_interrupt()))
1017 		goto failed_kiq_write;
1018 
1019 	might_sleep();
1020 	while (r < 1 && cnt++ < MAX_KIQ_REG_TRY) {
1021 
1022 		msleep(MAX_KIQ_REG_BAILOUT_INTERVAL);
1023 		r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
1024 	}
1025 
1026 	if (cnt > MAX_KIQ_REG_TRY)
1027 		goto failed_kiq_write;
1028 
1029 	return;
1030 
1031 failed_undo:
1032 	amdgpu_ring_undo(ring);
1033 	spin_unlock_irqrestore(&kiq->ring_lock, flags);
1034 failed_kiq_write:
1035 	dev_err(adev->dev, "failed to write reg:%x\n", reg);
1036 }
1037 
1038 int amdgpu_gfx_get_num_kcq(struct amdgpu_device *adev)
1039 {
1040 	if (amdgpu_num_kcq == -1) {
1041 		return 8;
1042 	} else if (amdgpu_num_kcq > 8 || amdgpu_num_kcq < 0) {
1043 		dev_warn(adev->dev, "set kernel compute queue number to 8 due to invalid parameter provided by user\n");
1044 		return 8;
1045 	}
1046 	return amdgpu_num_kcq;
1047 }
1048 
1049 void amdgpu_gfx_cp_init_microcode(struct amdgpu_device *adev,
1050 				  uint32_t ucode_id)
1051 {
1052 	const struct gfx_firmware_header_v1_0 *cp_hdr;
1053 	const struct gfx_firmware_header_v2_0 *cp_hdr_v2_0;
1054 	struct amdgpu_firmware_info *info = NULL;
1055 	const struct firmware *ucode_fw;
1056 	unsigned int fw_size;
1057 
1058 	switch (ucode_id) {
1059 	case AMDGPU_UCODE_ID_CP_PFP:
1060 		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1061 			adev->gfx.pfp_fw->data;
1062 		adev->gfx.pfp_fw_version =
1063 			le32_to_cpu(cp_hdr->header.ucode_version);
1064 		adev->gfx.pfp_feature_version =
1065 			le32_to_cpu(cp_hdr->ucode_feature_version);
1066 		ucode_fw = adev->gfx.pfp_fw;
1067 		fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes);
1068 		break;
1069 	case AMDGPU_UCODE_ID_CP_RS64_PFP:
1070 		cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1071 			adev->gfx.pfp_fw->data;
1072 		adev->gfx.pfp_fw_version =
1073 			le32_to_cpu(cp_hdr_v2_0->header.ucode_version);
1074 		adev->gfx.pfp_feature_version =
1075 			le32_to_cpu(cp_hdr_v2_0->ucode_feature_version);
1076 		ucode_fw = adev->gfx.pfp_fw;
1077 		fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes);
1078 		break;
1079 	case AMDGPU_UCODE_ID_CP_RS64_PFP_P0_STACK:
1080 	case AMDGPU_UCODE_ID_CP_RS64_PFP_P1_STACK:
1081 		cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1082 			adev->gfx.pfp_fw->data;
1083 		ucode_fw = adev->gfx.pfp_fw;
1084 		fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes);
1085 		break;
1086 	case AMDGPU_UCODE_ID_CP_ME:
1087 		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1088 			adev->gfx.me_fw->data;
1089 		adev->gfx.me_fw_version =
1090 			le32_to_cpu(cp_hdr->header.ucode_version);
1091 		adev->gfx.me_feature_version =
1092 			le32_to_cpu(cp_hdr->ucode_feature_version);
1093 		ucode_fw = adev->gfx.me_fw;
1094 		fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes);
1095 		break;
1096 	case AMDGPU_UCODE_ID_CP_RS64_ME:
1097 		cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1098 			adev->gfx.me_fw->data;
1099 		adev->gfx.me_fw_version =
1100 			le32_to_cpu(cp_hdr_v2_0->header.ucode_version);
1101 		adev->gfx.me_feature_version =
1102 			le32_to_cpu(cp_hdr_v2_0->ucode_feature_version);
1103 		ucode_fw = adev->gfx.me_fw;
1104 		fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes);
1105 		break;
1106 	case AMDGPU_UCODE_ID_CP_RS64_ME_P0_STACK:
1107 	case AMDGPU_UCODE_ID_CP_RS64_ME_P1_STACK:
1108 		cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1109 			adev->gfx.me_fw->data;
1110 		ucode_fw = adev->gfx.me_fw;
1111 		fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes);
1112 		break;
1113 	case AMDGPU_UCODE_ID_CP_CE:
1114 		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1115 			adev->gfx.ce_fw->data;
1116 		adev->gfx.ce_fw_version =
1117 			le32_to_cpu(cp_hdr->header.ucode_version);
1118 		adev->gfx.ce_feature_version =
1119 			le32_to_cpu(cp_hdr->ucode_feature_version);
1120 		ucode_fw = adev->gfx.ce_fw;
1121 		fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes);
1122 		break;
1123 	case AMDGPU_UCODE_ID_CP_MEC1:
1124 		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1125 			adev->gfx.mec_fw->data;
1126 		adev->gfx.mec_fw_version =
1127 			le32_to_cpu(cp_hdr->header.ucode_version);
1128 		adev->gfx.mec_feature_version =
1129 			le32_to_cpu(cp_hdr->ucode_feature_version);
1130 		ucode_fw = adev->gfx.mec_fw;
1131 		fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes) -
1132 			  le32_to_cpu(cp_hdr->jt_size) * 4;
1133 		break;
1134 	case AMDGPU_UCODE_ID_CP_MEC1_JT:
1135 		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1136 			adev->gfx.mec_fw->data;
1137 		ucode_fw = adev->gfx.mec_fw;
1138 		fw_size = le32_to_cpu(cp_hdr->jt_size) * 4;
1139 		break;
1140 	case AMDGPU_UCODE_ID_CP_MEC2:
1141 		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1142 			adev->gfx.mec2_fw->data;
1143 		adev->gfx.mec2_fw_version =
1144 			le32_to_cpu(cp_hdr->header.ucode_version);
1145 		adev->gfx.mec2_feature_version =
1146 			le32_to_cpu(cp_hdr->ucode_feature_version);
1147 		ucode_fw = adev->gfx.mec2_fw;
1148 		fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes) -
1149 			  le32_to_cpu(cp_hdr->jt_size) * 4;
1150 		break;
1151 	case AMDGPU_UCODE_ID_CP_MEC2_JT:
1152 		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1153 			adev->gfx.mec2_fw->data;
1154 		ucode_fw = adev->gfx.mec2_fw;
1155 		fw_size = le32_to_cpu(cp_hdr->jt_size) * 4;
1156 		break;
1157 	case AMDGPU_UCODE_ID_CP_RS64_MEC:
1158 		cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1159 			adev->gfx.mec_fw->data;
1160 		adev->gfx.mec_fw_version =
1161 			le32_to_cpu(cp_hdr_v2_0->header.ucode_version);
1162 		adev->gfx.mec_feature_version =
1163 			le32_to_cpu(cp_hdr_v2_0->ucode_feature_version);
1164 		ucode_fw = adev->gfx.mec_fw;
1165 		fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes);
1166 		break;
1167 	case AMDGPU_UCODE_ID_CP_RS64_MEC_P0_STACK:
1168 	case AMDGPU_UCODE_ID_CP_RS64_MEC_P1_STACK:
1169 	case AMDGPU_UCODE_ID_CP_RS64_MEC_P2_STACK:
1170 	case AMDGPU_UCODE_ID_CP_RS64_MEC_P3_STACK:
1171 		cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1172 			adev->gfx.mec_fw->data;
1173 		ucode_fw = adev->gfx.mec_fw;
1174 		fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes);
1175 		break;
1176 	default:
1177 		break;
1178 	}
1179 
1180 	if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
1181 		info = &adev->firmware.ucode[ucode_id];
1182 		info->ucode_id = ucode_id;
1183 		info->fw = ucode_fw;
1184 		adev->firmware.fw_size += ALIGN(fw_size, PAGE_SIZE);
1185 	}
1186 }
1187 
1188 bool amdgpu_gfx_is_master_xcc(struct amdgpu_device *adev, int xcc_id)
1189 {
1190 	return !(xcc_id % (adev->gfx.num_xcc_per_xcp ?
1191 			adev->gfx.num_xcc_per_xcp : 1));
1192 }
1193 
1194 static ssize_t amdgpu_gfx_get_current_compute_partition(struct device *dev,
1195 						struct device_attribute *addr,
1196 						char *buf)
1197 {
1198 	struct drm_device *ddev = dev_get_drvdata(dev);
1199 	struct amdgpu_device *adev = drm_to_adev(ddev);
1200 	int mode;
1201 
1202 	mode = amdgpu_xcp_query_partition_mode(adev->xcp_mgr,
1203 					       AMDGPU_XCP_FL_NONE);
1204 
1205 	return sysfs_emit(buf, "%s\n", amdgpu_gfx_compute_mode_desc(mode));
1206 }
1207 
1208 static ssize_t amdgpu_gfx_set_compute_partition(struct device *dev,
1209 						struct device_attribute *addr,
1210 						const char *buf, size_t count)
1211 {
1212 	struct drm_device *ddev = dev_get_drvdata(dev);
1213 	struct amdgpu_device *adev = drm_to_adev(ddev);
1214 	enum amdgpu_gfx_partition mode;
1215 	int ret = 0, num_xcc;
1216 
1217 	num_xcc = NUM_XCC(adev->gfx.xcc_mask);
1218 	if (num_xcc % 2 != 0)
1219 		return -EINVAL;
1220 
1221 	if (!strncasecmp("SPX", buf, strlen("SPX"))) {
1222 		mode = AMDGPU_SPX_PARTITION_MODE;
1223 	} else if (!strncasecmp("DPX", buf, strlen("DPX"))) {
1224 		/*
1225 		 * DPX mode needs AIDs to be in multiple of 2.
1226 		 * Each AID connects 2 XCCs.
1227 		 */
1228 		if (num_xcc%4)
1229 			return -EINVAL;
1230 		mode = AMDGPU_DPX_PARTITION_MODE;
1231 	} else if (!strncasecmp("TPX", buf, strlen("TPX"))) {
1232 		if (num_xcc != 6)
1233 			return -EINVAL;
1234 		mode = AMDGPU_TPX_PARTITION_MODE;
1235 	} else if (!strncasecmp("QPX", buf, strlen("QPX"))) {
1236 		if (num_xcc != 8)
1237 			return -EINVAL;
1238 		mode = AMDGPU_QPX_PARTITION_MODE;
1239 	} else if (!strncasecmp("CPX", buf, strlen("CPX"))) {
1240 		mode = AMDGPU_CPX_PARTITION_MODE;
1241 	} else {
1242 		return -EINVAL;
1243 	}
1244 
1245 	ret = amdgpu_xcp_switch_partition_mode(adev->xcp_mgr, mode);
1246 
1247 	if (ret)
1248 		return ret;
1249 
1250 	return count;
1251 }
1252 
1253 static ssize_t amdgpu_gfx_get_available_compute_partition(struct device *dev,
1254 						struct device_attribute *addr,
1255 						char *buf)
1256 {
1257 	struct drm_device *ddev = dev_get_drvdata(dev);
1258 	struct amdgpu_device *adev = drm_to_adev(ddev);
1259 	char *supported_partition;
1260 
1261 	/* TBD */
1262 	switch (NUM_XCC(adev->gfx.xcc_mask)) {
1263 	case 8:
1264 		supported_partition = "SPX, DPX, QPX, CPX";
1265 		break;
1266 	case 6:
1267 		supported_partition = "SPX, TPX, CPX";
1268 		break;
1269 	case 4:
1270 		supported_partition = "SPX, DPX, CPX";
1271 		break;
1272 	/* this seems only existing in emulation phase */
1273 	case 2:
1274 		supported_partition = "SPX, CPX";
1275 		break;
1276 	default:
1277 		supported_partition = "Not supported";
1278 		break;
1279 	}
1280 
1281 	return sysfs_emit(buf, "%s\n", supported_partition);
1282 }
1283 
1284 static DEVICE_ATTR(current_compute_partition, S_IRUGO | S_IWUSR,
1285 		   amdgpu_gfx_get_current_compute_partition,
1286 		   amdgpu_gfx_set_compute_partition);
1287 
1288 static DEVICE_ATTR(available_compute_partition, S_IRUGO,
1289 		   amdgpu_gfx_get_available_compute_partition, NULL);
1290 
1291 int amdgpu_gfx_sysfs_init(struct amdgpu_device *adev)
1292 {
1293 	int r;
1294 
1295 	r = device_create_file(adev->dev, &dev_attr_current_compute_partition);
1296 	if (r)
1297 		return r;
1298 
1299 	r = device_create_file(adev->dev, &dev_attr_available_compute_partition);
1300 
1301 	return r;
1302 }
1303 
1304 void amdgpu_gfx_sysfs_fini(struct amdgpu_device *adev)
1305 {
1306 	device_remove_file(adev->dev, &dev_attr_current_compute_partition);
1307 	device_remove_file(adev->dev, &dev_attr_available_compute_partition);
1308 }
1309