1 /* 2 * Copyright 2014 Advanced Micro Devices, Inc. 3 * Copyright 2008 Red Hat Inc. 4 * Copyright 2009 Jerome Glisse. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 * 24 */ 25 26 #include <linux/firmware.h> 27 #include <linux/pm_runtime.h> 28 29 #include "amdgpu.h" 30 #include "amdgpu_gfx.h" 31 #include "amdgpu_rlc.h" 32 #include "amdgpu_ras.h" 33 #include "amdgpu_reset.h" 34 #include "amdgpu_xcp.h" 35 #include "amdgpu_xgmi.h" 36 37 /* delay 0.1 second to enable gfx off feature */ 38 #define GFX_OFF_DELAY_ENABLE msecs_to_jiffies(100) 39 40 #define GFX_OFF_NO_DELAY 0 41 42 /* 43 * GPU GFX IP block helpers function. 44 */ 45 46 int amdgpu_gfx_mec_queue_to_bit(struct amdgpu_device *adev, int mec, 47 int pipe, int queue) 48 { 49 int bit = 0; 50 51 bit += mec * adev->gfx.mec.num_pipe_per_mec 52 * adev->gfx.mec.num_queue_per_pipe; 53 bit += pipe * adev->gfx.mec.num_queue_per_pipe; 54 bit += queue; 55 56 return bit; 57 } 58 59 void amdgpu_queue_mask_bit_to_mec_queue(struct amdgpu_device *adev, int bit, 60 int *mec, int *pipe, int *queue) 61 { 62 *queue = bit % adev->gfx.mec.num_queue_per_pipe; 63 *pipe = (bit / adev->gfx.mec.num_queue_per_pipe) 64 % adev->gfx.mec.num_pipe_per_mec; 65 *mec = (bit / adev->gfx.mec.num_queue_per_pipe) 66 / adev->gfx.mec.num_pipe_per_mec; 67 68 } 69 70 bool amdgpu_gfx_is_mec_queue_enabled(struct amdgpu_device *adev, 71 int xcc_id, int mec, int pipe, int queue) 72 { 73 return test_bit(amdgpu_gfx_mec_queue_to_bit(adev, mec, pipe, queue), 74 adev->gfx.mec_bitmap[xcc_id].queue_bitmap); 75 } 76 77 int amdgpu_gfx_me_queue_to_bit(struct amdgpu_device *adev, 78 int me, int pipe, int queue) 79 { 80 int bit = 0; 81 82 bit += me * adev->gfx.me.num_pipe_per_me 83 * adev->gfx.me.num_queue_per_pipe; 84 bit += pipe * adev->gfx.me.num_queue_per_pipe; 85 bit += queue; 86 87 return bit; 88 } 89 90 bool amdgpu_gfx_is_me_queue_enabled(struct amdgpu_device *adev, 91 int me, int pipe, int queue) 92 { 93 return test_bit(amdgpu_gfx_me_queue_to_bit(adev, me, pipe, queue), 94 adev->gfx.me.queue_bitmap); 95 } 96 97 /** 98 * amdgpu_gfx_parse_disable_cu - Parse the disable_cu module parameter 99 * 100 * @mask: array in which the per-shader array disable masks will be stored 101 * @max_se: number of SEs 102 * @max_sh: number of SHs 103 * 104 * The bitmask of CUs to be disabled in the shader array determined by se and 105 * sh is stored in mask[se * max_sh + sh]. 106 */ 107 void amdgpu_gfx_parse_disable_cu(unsigned int *mask, unsigned int max_se, unsigned int max_sh) 108 { 109 unsigned int se, sh, cu; 110 const char *p; 111 112 memset(mask, 0, sizeof(*mask) * max_se * max_sh); 113 114 if (!amdgpu_disable_cu || !*amdgpu_disable_cu) 115 return; 116 117 p = amdgpu_disable_cu; 118 for (;;) { 119 char *next; 120 int ret = sscanf(p, "%u.%u.%u", &se, &sh, &cu); 121 122 if (ret < 3) { 123 DRM_ERROR("amdgpu: could not parse disable_cu\n"); 124 return; 125 } 126 127 if (se < max_se && sh < max_sh && cu < 16) { 128 DRM_INFO("amdgpu: disabling CU %u.%u.%u\n", se, sh, cu); 129 mask[se * max_sh + sh] |= 1u << cu; 130 } else { 131 DRM_ERROR("amdgpu: disable_cu %u.%u.%u is out of range\n", 132 se, sh, cu); 133 } 134 135 next = strchr(p, ','); 136 if (!next) 137 break; 138 p = next + 1; 139 } 140 } 141 142 static bool amdgpu_gfx_is_graphics_multipipe_capable(struct amdgpu_device *adev) 143 { 144 return amdgpu_async_gfx_ring && adev->gfx.me.num_pipe_per_me > 1; 145 } 146 147 static bool amdgpu_gfx_is_compute_multipipe_capable(struct amdgpu_device *adev) 148 { 149 if (amdgpu_compute_multipipe != -1) { 150 DRM_INFO("amdgpu: forcing compute pipe policy %d\n", 151 amdgpu_compute_multipipe); 152 return amdgpu_compute_multipipe == 1; 153 } 154 155 if (amdgpu_ip_version(adev, GC_HWIP, 0) > IP_VERSION(9, 0, 0)) 156 return true; 157 158 /* FIXME: spreading the queues across pipes causes perf regressions 159 * on POLARIS11 compute workloads */ 160 if (adev->asic_type == CHIP_POLARIS11) 161 return false; 162 163 return adev->gfx.mec.num_mec > 1; 164 } 165 166 bool amdgpu_gfx_is_high_priority_graphics_queue(struct amdgpu_device *adev, 167 struct amdgpu_ring *ring) 168 { 169 int queue = ring->queue; 170 int pipe = ring->pipe; 171 172 /* Policy: use pipe1 queue0 as high priority graphics queue if we 173 * have more than one gfx pipe. 174 */ 175 if (amdgpu_gfx_is_graphics_multipipe_capable(adev) && 176 adev->gfx.num_gfx_rings > 1 && pipe == 1 && queue == 0) { 177 int me = ring->me; 178 int bit; 179 180 bit = amdgpu_gfx_me_queue_to_bit(adev, me, pipe, queue); 181 if (ring == &adev->gfx.gfx_ring[bit]) 182 return true; 183 } 184 185 return false; 186 } 187 188 bool amdgpu_gfx_is_high_priority_compute_queue(struct amdgpu_device *adev, 189 struct amdgpu_ring *ring) 190 { 191 /* Policy: use 1st queue as high priority compute queue if we 192 * have more than one compute queue. 193 */ 194 if (adev->gfx.num_compute_rings > 1 && 195 ring == &adev->gfx.compute_ring[0]) 196 return true; 197 198 return false; 199 } 200 201 void amdgpu_gfx_compute_queue_acquire(struct amdgpu_device *adev) 202 { 203 int i, j, queue, pipe; 204 bool multipipe_policy = amdgpu_gfx_is_compute_multipipe_capable(adev); 205 int max_queues_per_mec = min(adev->gfx.mec.num_pipe_per_mec * 206 adev->gfx.mec.num_queue_per_pipe, 207 adev->gfx.num_compute_rings); 208 int num_xcc = adev->gfx.xcc_mask ? NUM_XCC(adev->gfx.xcc_mask) : 1; 209 210 if (multipipe_policy) { 211 /* policy: make queues evenly cross all pipes on MEC1 only 212 * for multiple xcc, just use the original policy for simplicity */ 213 for (j = 0; j < num_xcc; j++) { 214 for (i = 0; i < max_queues_per_mec; i++) { 215 pipe = i % adev->gfx.mec.num_pipe_per_mec; 216 queue = (i / adev->gfx.mec.num_pipe_per_mec) % 217 adev->gfx.mec.num_queue_per_pipe; 218 219 set_bit(pipe * adev->gfx.mec.num_queue_per_pipe + queue, 220 adev->gfx.mec_bitmap[j].queue_bitmap); 221 } 222 } 223 } else { 224 /* policy: amdgpu owns all queues in the given pipe */ 225 for (j = 0; j < num_xcc; j++) { 226 for (i = 0; i < max_queues_per_mec; ++i) 227 set_bit(i, adev->gfx.mec_bitmap[j].queue_bitmap); 228 } 229 } 230 231 for (j = 0; j < num_xcc; j++) { 232 dev_dbg(adev->dev, "mec queue bitmap weight=%d\n", 233 bitmap_weight(adev->gfx.mec_bitmap[j].queue_bitmap, AMDGPU_MAX_COMPUTE_QUEUES)); 234 } 235 } 236 237 void amdgpu_gfx_graphics_queue_acquire(struct amdgpu_device *adev) 238 { 239 int i, queue, pipe; 240 bool multipipe_policy = amdgpu_gfx_is_graphics_multipipe_capable(adev); 241 int max_queues_per_me = adev->gfx.me.num_pipe_per_me * 242 adev->gfx.me.num_queue_per_pipe; 243 244 if (multipipe_policy) { 245 /* policy: amdgpu owns the first queue per pipe at this stage 246 * will extend to mulitple queues per pipe later */ 247 for (i = 0; i < max_queues_per_me; i++) { 248 pipe = i % adev->gfx.me.num_pipe_per_me; 249 queue = (i / adev->gfx.me.num_pipe_per_me) % 250 adev->gfx.me.num_queue_per_pipe; 251 252 set_bit(pipe * adev->gfx.me.num_queue_per_pipe + queue, 253 adev->gfx.me.queue_bitmap); 254 } 255 } else { 256 for (i = 0; i < max_queues_per_me; ++i) 257 set_bit(i, adev->gfx.me.queue_bitmap); 258 } 259 260 /* update the number of active graphics rings */ 261 adev->gfx.num_gfx_rings = 262 bitmap_weight(adev->gfx.me.queue_bitmap, AMDGPU_MAX_GFX_QUEUES); 263 } 264 265 static int amdgpu_gfx_kiq_acquire(struct amdgpu_device *adev, 266 struct amdgpu_ring *ring, int xcc_id) 267 { 268 int queue_bit; 269 int mec, pipe, queue; 270 271 queue_bit = adev->gfx.mec.num_mec 272 * adev->gfx.mec.num_pipe_per_mec 273 * adev->gfx.mec.num_queue_per_pipe; 274 275 while (--queue_bit >= 0) { 276 if (test_bit(queue_bit, adev->gfx.mec_bitmap[xcc_id].queue_bitmap)) 277 continue; 278 279 amdgpu_queue_mask_bit_to_mec_queue(adev, queue_bit, &mec, &pipe, &queue); 280 281 /* 282 * 1. Using pipes 2/3 from MEC 2 seems cause problems. 283 * 2. It must use queue id 0, because CGPG_IDLE/SAVE/LOAD/RUN 284 * only can be issued on queue 0. 285 */ 286 if ((mec == 1 && pipe > 1) || queue != 0) 287 continue; 288 289 ring->me = mec + 1; 290 ring->pipe = pipe; 291 ring->queue = queue; 292 293 return 0; 294 } 295 296 dev_err(adev->dev, "Failed to find a queue for KIQ\n"); 297 return -EINVAL; 298 } 299 300 int amdgpu_gfx_kiq_init_ring(struct amdgpu_device *adev, int xcc_id) 301 { 302 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 303 struct amdgpu_irq_src *irq = &kiq->irq; 304 struct amdgpu_ring *ring = &kiq->ring; 305 int r = 0; 306 307 spin_lock_init(&kiq->ring_lock); 308 309 ring->adev = NULL; 310 ring->ring_obj = NULL; 311 ring->use_doorbell = true; 312 ring->xcc_id = xcc_id; 313 ring->vm_hub = AMDGPU_GFXHUB(xcc_id); 314 ring->doorbell_index = 315 (adev->doorbell_index.kiq + 316 xcc_id * adev->doorbell_index.xcc_doorbell_range) 317 << 1; 318 319 r = amdgpu_gfx_kiq_acquire(adev, ring, xcc_id); 320 if (r) 321 return r; 322 323 ring->eop_gpu_addr = kiq->eop_gpu_addr; 324 ring->no_scheduler = true; 325 snprintf(ring->name, sizeof(ring->name), "kiq_%hhu.%hhu.%hhu.%hhu", 326 (unsigned char)xcc_id, (unsigned char)ring->me, 327 (unsigned char)ring->pipe, (unsigned char)ring->queue); 328 r = amdgpu_ring_init(adev, ring, 1024, irq, AMDGPU_CP_KIQ_IRQ_DRIVER0, 329 AMDGPU_RING_PRIO_DEFAULT, NULL); 330 if (r) 331 dev_warn(adev->dev, "(%d) failed to init kiq ring\n", r); 332 333 return r; 334 } 335 336 void amdgpu_gfx_kiq_free_ring(struct amdgpu_ring *ring) 337 { 338 amdgpu_ring_fini(ring); 339 } 340 341 void amdgpu_gfx_kiq_fini(struct amdgpu_device *adev, int xcc_id) 342 { 343 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 344 345 amdgpu_bo_free_kernel(&kiq->eop_obj, &kiq->eop_gpu_addr, NULL); 346 } 347 348 int amdgpu_gfx_kiq_init(struct amdgpu_device *adev, 349 unsigned int hpd_size, int xcc_id) 350 { 351 int r; 352 u32 *hpd; 353 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 354 355 r = amdgpu_bo_create_kernel(adev, hpd_size, PAGE_SIZE, 356 AMDGPU_GEM_DOMAIN_GTT, &kiq->eop_obj, 357 &kiq->eop_gpu_addr, (void **)&hpd); 358 if (r) { 359 dev_warn(adev->dev, "failed to create KIQ bo (%d).\n", r); 360 return r; 361 } 362 363 memset(hpd, 0, hpd_size); 364 365 r = amdgpu_bo_reserve(kiq->eop_obj, true); 366 if (unlikely(r != 0)) 367 dev_warn(adev->dev, "(%d) reserve kiq eop bo failed\n", r); 368 amdgpu_bo_kunmap(kiq->eop_obj); 369 amdgpu_bo_unreserve(kiq->eop_obj); 370 371 return 0; 372 } 373 374 /* create MQD for each compute/gfx queue */ 375 int amdgpu_gfx_mqd_sw_init(struct amdgpu_device *adev, 376 unsigned int mqd_size, int xcc_id) 377 { 378 int r, i, j; 379 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 380 struct amdgpu_ring *ring = &kiq->ring; 381 u32 domain = AMDGPU_GEM_DOMAIN_GTT; 382 383 #if !defined(CONFIG_ARM) && !defined(CONFIG_ARM64) 384 /* Only enable on gfx10 and 11 for now to avoid changing behavior on older chips */ 385 if (amdgpu_ip_version(adev, GC_HWIP, 0) >= IP_VERSION(10, 0, 0)) 386 domain |= AMDGPU_GEM_DOMAIN_VRAM; 387 #endif 388 389 /* create MQD for KIQ */ 390 if (!adev->enable_mes_kiq && !ring->mqd_obj) { 391 /* originaly the KIQ MQD is put in GTT domain, but for SRIOV VRAM domain is a must 392 * otherwise hypervisor trigger SAVE_VF fail after driver unloaded which mean MQD 393 * deallocated and gart_unbind, to strict diverage we decide to use VRAM domain for 394 * KIQ MQD no matter SRIOV or Bare-metal 395 */ 396 r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE, 397 AMDGPU_GEM_DOMAIN_VRAM | 398 AMDGPU_GEM_DOMAIN_GTT, 399 &ring->mqd_obj, 400 &ring->mqd_gpu_addr, 401 &ring->mqd_ptr); 402 if (r) { 403 dev_warn(adev->dev, "failed to create ring mqd ob (%d)", r); 404 return r; 405 } 406 407 /* prepare MQD backup */ 408 kiq->mqd_backup = kzalloc(mqd_size, GFP_KERNEL); 409 if (!kiq->mqd_backup) { 410 dev_warn(adev->dev, 411 "no memory to create MQD backup for ring %s\n", ring->name); 412 return -ENOMEM; 413 } 414 } 415 416 if (adev->asic_type >= CHIP_NAVI10 && amdgpu_async_gfx_ring) { 417 /* create MQD for each KGQ */ 418 for (i = 0; i < adev->gfx.num_gfx_rings; i++) { 419 ring = &adev->gfx.gfx_ring[i]; 420 if (!ring->mqd_obj) { 421 r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE, 422 domain, &ring->mqd_obj, 423 &ring->mqd_gpu_addr, &ring->mqd_ptr); 424 if (r) { 425 dev_warn(adev->dev, "failed to create ring mqd bo (%d)", r); 426 return r; 427 } 428 429 ring->mqd_size = mqd_size; 430 /* prepare MQD backup */ 431 adev->gfx.me.mqd_backup[i] = kzalloc(mqd_size, GFP_KERNEL); 432 if (!adev->gfx.me.mqd_backup[i]) { 433 dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name); 434 return -ENOMEM; 435 } 436 } 437 } 438 } 439 440 /* create MQD for each KCQ */ 441 for (i = 0; i < adev->gfx.num_compute_rings; i++) { 442 j = i + xcc_id * adev->gfx.num_compute_rings; 443 ring = &adev->gfx.compute_ring[j]; 444 if (!ring->mqd_obj) { 445 r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE, 446 domain, &ring->mqd_obj, 447 &ring->mqd_gpu_addr, &ring->mqd_ptr); 448 if (r) { 449 dev_warn(adev->dev, "failed to create ring mqd bo (%d)", r); 450 return r; 451 } 452 453 ring->mqd_size = mqd_size; 454 /* prepare MQD backup */ 455 adev->gfx.mec.mqd_backup[j] = kzalloc(mqd_size, GFP_KERNEL); 456 if (!adev->gfx.mec.mqd_backup[j]) { 457 dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name); 458 return -ENOMEM; 459 } 460 } 461 } 462 463 return 0; 464 } 465 466 void amdgpu_gfx_mqd_sw_fini(struct amdgpu_device *adev, int xcc_id) 467 { 468 struct amdgpu_ring *ring = NULL; 469 int i, j; 470 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 471 472 if (adev->asic_type >= CHIP_NAVI10 && amdgpu_async_gfx_ring) { 473 for (i = 0; i < adev->gfx.num_gfx_rings; i++) { 474 ring = &adev->gfx.gfx_ring[i]; 475 kfree(adev->gfx.me.mqd_backup[i]); 476 amdgpu_bo_free_kernel(&ring->mqd_obj, 477 &ring->mqd_gpu_addr, 478 &ring->mqd_ptr); 479 } 480 } 481 482 for (i = 0; i < adev->gfx.num_compute_rings; i++) { 483 j = i + xcc_id * adev->gfx.num_compute_rings; 484 ring = &adev->gfx.compute_ring[j]; 485 kfree(adev->gfx.mec.mqd_backup[j]); 486 amdgpu_bo_free_kernel(&ring->mqd_obj, 487 &ring->mqd_gpu_addr, 488 &ring->mqd_ptr); 489 } 490 491 ring = &kiq->ring; 492 kfree(kiq->mqd_backup); 493 amdgpu_bo_free_kernel(&ring->mqd_obj, 494 &ring->mqd_gpu_addr, 495 &ring->mqd_ptr); 496 } 497 498 int amdgpu_gfx_disable_kcq(struct amdgpu_device *adev, int xcc_id) 499 { 500 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 501 struct amdgpu_ring *kiq_ring = &kiq->ring; 502 int i, r = 0; 503 int j; 504 505 if (adev->enable_mes) { 506 for (i = 0; i < adev->gfx.num_compute_rings; i++) { 507 j = i + xcc_id * adev->gfx.num_compute_rings; 508 amdgpu_mes_unmap_legacy_queue(adev, 509 &adev->gfx.compute_ring[j], 510 RESET_QUEUES, 0, 0); 511 } 512 return 0; 513 } 514 515 if (!kiq->pmf || !kiq->pmf->kiq_unmap_queues) 516 return -EINVAL; 517 518 if (!kiq_ring->sched.ready || adev->job_hang || amdgpu_in_reset(adev)) 519 return 0; 520 521 spin_lock(&kiq->ring_lock); 522 if (amdgpu_ring_alloc(kiq_ring, kiq->pmf->unmap_queues_size * 523 adev->gfx.num_compute_rings)) { 524 spin_unlock(&kiq->ring_lock); 525 return -ENOMEM; 526 } 527 528 for (i = 0; i < adev->gfx.num_compute_rings; i++) { 529 j = i + xcc_id * adev->gfx.num_compute_rings; 530 kiq->pmf->kiq_unmap_queues(kiq_ring, 531 &adev->gfx.compute_ring[j], 532 RESET_QUEUES, 0, 0); 533 } 534 /* Submit unmap queue packet */ 535 amdgpu_ring_commit(kiq_ring); 536 /* 537 * Ring test will do a basic scratch register change check. Just run 538 * this to ensure that unmap queues that is submitted before got 539 * processed successfully before returning. 540 */ 541 r = amdgpu_ring_test_helper(kiq_ring); 542 543 spin_unlock(&kiq->ring_lock); 544 545 return r; 546 } 547 548 int amdgpu_gfx_disable_kgq(struct amdgpu_device *adev, int xcc_id) 549 { 550 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 551 struct amdgpu_ring *kiq_ring = &kiq->ring; 552 int i, r = 0; 553 int j; 554 555 if (adev->enable_mes) { 556 if (amdgpu_gfx_is_master_xcc(adev, xcc_id)) { 557 for (i = 0; i < adev->gfx.num_gfx_rings; i++) { 558 j = i + xcc_id * adev->gfx.num_gfx_rings; 559 amdgpu_mes_unmap_legacy_queue(adev, 560 &adev->gfx.gfx_ring[j], 561 PREEMPT_QUEUES, 0, 0); 562 } 563 } 564 return 0; 565 } 566 567 if (!kiq->pmf || !kiq->pmf->kiq_unmap_queues) 568 return -EINVAL; 569 570 if (!adev->gfx.kiq[0].ring.sched.ready || adev->job_hang) 571 return 0; 572 573 if (amdgpu_gfx_is_master_xcc(adev, xcc_id)) { 574 spin_lock(&kiq->ring_lock); 575 if (amdgpu_ring_alloc(kiq_ring, kiq->pmf->unmap_queues_size * 576 adev->gfx.num_gfx_rings)) { 577 spin_unlock(&kiq->ring_lock); 578 return -ENOMEM; 579 } 580 581 for (i = 0; i < adev->gfx.num_gfx_rings; i++) { 582 j = i + xcc_id * adev->gfx.num_gfx_rings; 583 kiq->pmf->kiq_unmap_queues(kiq_ring, 584 &adev->gfx.gfx_ring[j], 585 PREEMPT_QUEUES, 0, 0); 586 } 587 /* Submit unmap queue packet */ 588 amdgpu_ring_commit(kiq_ring); 589 590 /* 591 * Ring test will do a basic scratch register change check. 592 * Just run this to ensure that unmap queues that is submitted 593 * before got processed successfully before returning. 594 */ 595 r = amdgpu_ring_test_helper(kiq_ring); 596 spin_unlock(&kiq->ring_lock); 597 } 598 599 return r; 600 } 601 602 int amdgpu_queue_mask_bit_to_set_resource_bit(struct amdgpu_device *adev, 603 int queue_bit) 604 { 605 int mec, pipe, queue; 606 int set_resource_bit = 0; 607 608 amdgpu_queue_mask_bit_to_mec_queue(adev, queue_bit, &mec, &pipe, &queue); 609 610 set_resource_bit = mec * 4 * 8 + pipe * 8 + queue; 611 612 return set_resource_bit; 613 } 614 615 static int amdgpu_gfx_mes_enable_kcq(struct amdgpu_device *adev, int xcc_id) 616 { 617 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 618 struct amdgpu_ring *kiq_ring = &kiq->ring; 619 uint64_t queue_mask = ~0ULL; 620 int r, i, j; 621 622 amdgpu_device_flush_hdp(adev, NULL); 623 624 if (!adev->enable_uni_mes) { 625 spin_lock(&kiq->ring_lock); 626 r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->set_resources_size); 627 if (r) { 628 dev_err(adev->dev, "Failed to lock KIQ (%d).\n", r); 629 spin_unlock(&kiq->ring_lock); 630 return r; 631 } 632 633 kiq->pmf->kiq_set_resources(kiq_ring, queue_mask); 634 r = amdgpu_ring_test_helper(kiq_ring); 635 spin_unlock(&kiq->ring_lock); 636 if (r) 637 dev_err(adev->dev, "KIQ failed to set resources\n"); 638 } 639 640 for (i = 0; i < adev->gfx.num_compute_rings; i++) { 641 j = i + xcc_id * adev->gfx.num_compute_rings; 642 r = amdgpu_mes_map_legacy_queue(adev, 643 &adev->gfx.compute_ring[j]); 644 if (r) { 645 dev_err(adev->dev, "failed to map compute queue\n"); 646 return r; 647 } 648 } 649 650 return 0; 651 } 652 653 int amdgpu_gfx_enable_kcq(struct amdgpu_device *adev, int xcc_id) 654 { 655 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 656 struct amdgpu_ring *kiq_ring = &kiq->ring; 657 uint64_t queue_mask = 0; 658 int r, i, j; 659 660 if (adev->mes.enable_legacy_queue_map) 661 return amdgpu_gfx_mes_enable_kcq(adev, xcc_id); 662 663 if (!kiq->pmf || !kiq->pmf->kiq_map_queues || !kiq->pmf->kiq_set_resources) 664 return -EINVAL; 665 666 for (i = 0; i < AMDGPU_MAX_COMPUTE_QUEUES; ++i) { 667 if (!test_bit(i, adev->gfx.mec_bitmap[xcc_id].queue_bitmap)) 668 continue; 669 670 /* This situation may be hit in the future if a new HW 671 * generation exposes more than 64 queues. If so, the 672 * definition of queue_mask needs updating */ 673 if (WARN_ON(i > (sizeof(queue_mask)*8))) { 674 DRM_ERROR("Invalid KCQ enabled: %d\n", i); 675 break; 676 } 677 678 queue_mask |= (1ull << amdgpu_queue_mask_bit_to_set_resource_bit(adev, i)); 679 } 680 681 amdgpu_device_flush_hdp(adev, NULL); 682 683 DRM_INFO("kiq ring mec %d pipe %d q %d\n", kiq_ring->me, kiq_ring->pipe, 684 kiq_ring->queue); 685 686 spin_lock(&kiq->ring_lock); 687 r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->map_queues_size * 688 adev->gfx.num_compute_rings + 689 kiq->pmf->set_resources_size); 690 if (r) { 691 DRM_ERROR("Failed to lock KIQ (%d).\n", r); 692 spin_unlock(&kiq->ring_lock); 693 return r; 694 } 695 696 kiq->pmf->kiq_set_resources(kiq_ring, queue_mask); 697 for (i = 0; i < adev->gfx.num_compute_rings; i++) { 698 j = i + xcc_id * adev->gfx.num_compute_rings; 699 kiq->pmf->kiq_map_queues(kiq_ring, 700 &adev->gfx.compute_ring[j]); 701 } 702 /* Submit map queue packet */ 703 amdgpu_ring_commit(kiq_ring); 704 /* 705 * Ring test will do a basic scratch register change check. Just run 706 * this to ensure that map queues that is submitted before got 707 * processed successfully before returning. 708 */ 709 r = amdgpu_ring_test_helper(kiq_ring); 710 spin_unlock(&kiq->ring_lock); 711 if (r) 712 DRM_ERROR("KCQ enable failed\n"); 713 714 return r; 715 } 716 717 int amdgpu_gfx_enable_kgq(struct amdgpu_device *adev, int xcc_id) 718 { 719 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 720 struct amdgpu_ring *kiq_ring = &kiq->ring; 721 int r, i, j; 722 723 if (!kiq->pmf || !kiq->pmf->kiq_map_queues) 724 return -EINVAL; 725 726 amdgpu_device_flush_hdp(adev, NULL); 727 728 if (adev->mes.enable_legacy_queue_map) { 729 for (i = 0; i < adev->gfx.num_gfx_rings; i++) { 730 j = i + xcc_id * adev->gfx.num_gfx_rings; 731 r = amdgpu_mes_map_legacy_queue(adev, 732 &adev->gfx.gfx_ring[j]); 733 if (r) { 734 DRM_ERROR("failed to map gfx queue\n"); 735 return r; 736 } 737 } 738 739 return 0; 740 } 741 742 spin_lock(&kiq->ring_lock); 743 /* No need to map kcq on the slave */ 744 if (amdgpu_gfx_is_master_xcc(adev, xcc_id)) { 745 r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->map_queues_size * 746 adev->gfx.num_gfx_rings); 747 if (r) { 748 DRM_ERROR("Failed to lock KIQ (%d).\n", r); 749 spin_unlock(&kiq->ring_lock); 750 return r; 751 } 752 753 for (i = 0; i < adev->gfx.num_gfx_rings; i++) { 754 j = i + xcc_id * adev->gfx.num_gfx_rings; 755 kiq->pmf->kiq_map_queues(kiq_ring, 756 &adev->gfx.gfx_ring[j]); 757 } 758 } 759 /* Submit map queue packet */ 760 amdgpu_ring_commit(kiq_ring); 761 /* 762 * Ring test will do a basic scratch register change check. Just run 763 * this to ensure that map queues that is submitted before got 764 * processed successfully before returning. 765 */ 766 r = amdgpu_ring_test_helper(kiq_ring); 767 spin_unlock(&kiq->ring_lock); 768 if (r) 769 DRM_ERROR("KGQ enable failed\n"); 770 771 return r; 772 } 773 774 /* amdgpu_gfx_off_ctrl - Handle gfx off feature enable/disable 775 * 776 * @adev: amdgpu_device pointer 777 * @bool enable true: enable gfx off feature, false: disable gfx off feature 778 * 779 * 1. gfx off feature will be enabled by gfx ip after gfx cg gp enabled. 780 * 2. other client can send request to disable gfx off feature, the request should be honored. 781 * 3. other client can cancel their request of disable gfx off feature 782 * 4. other client should not send request to enable gfx off feature before disable gfx off feature. 783 */ 784 785 void amdgpu_gfx_off_ctrl(struct amdgpu_device *adev, bool enable) 786 { 787 unsigned long delay = GFX_OFF_DELAY_ENABLE; 788 789 if (!(adev->pm.pp_feature & PP_GFXOFF_MASK)) 790 return; 791 792 mutex_lock(&adev->gfx.gfx_off_mutex); 793 794 if (enable) { 795 /* If the count is already 0, it means there's an imbalance bug somewhere. 796 * Note that the bug may be in a different caller than the one which triggers the 797 * WARN_ON_ONCE. 798 */ 799 if (WARN_ON_ONCE(adev->gfx.gfx_off_req_count == 0)) 800 goto unlock; 801 802 adev->gfx.gfx_off_req_count--; 803 804 if (adev->gfx.gfx_off_req_count == 0 && 805 !adev->gfx.gfx_off_state) { 806 /* If going to s2idle, no need to wait */ 807 if (adev->in_s0ix) { 808 if (!amdgpu_dpm_set_powergating_by_smu(adev, 809 AMD_IP_BLOCK_TYPE_GFX, true)) 810 adev->gfx.gfx_off_state = true; 811 } else { 812 schedule_delayed_work(&adev->gfx.gfx_off_delay_work, 813 delay); 814 } 815 } 816 } else { 817 if (adev->gfx.gfx_off_req_count == 0) { 818 cancel_delayed_work_sync(&adev->gfx.gfx_off_delay_work); 819 820 if (adev->gfx.gfx_off_state && 821 !amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_GFX, false)) { 822 adev->gfx.gfx_off_state = false; 823 824 if (adev->gfx.funcs->init_spm_golden) { 825 dev_dbg(adev->dev, 826 "GFXOFF is disabled, re-init SPM golden settings\n"); 827 amdgpu_gfx_init_spm_golden(adev); 828 } 829 } 830 } 831 832 adev->gfx.gfx_off_req_count++; 833 } 834 835 unlock: 836 mutex_unlock(&adev->gfx.gfx_off_mutex); 837 } 838 839 int amdgpu_set_gfx_off_residency(struct amdgpu_device *adev, bool value) 840 { 841 int r = 0; 842 843 mutex_lock(&adev->gfx.gfx_off_mutex); 844 845 r = amdgpu_dpm_set_residency_gfxoff(adev, value); 846 847 mutex_unlock(&adev->gfx.gfx_off_mutex); 848 849 return r; 850 } 851 852 int amdgpu_get_gfx_off_residency(struct amdgpu_device *adev, u32 *value) 853 { 854 int r = 0; 855 856 mutex_lock(&adev->gfx.gfx_off_mutex); 857 858 r = amdgpu_dpm_get_residency_gfxoff(adev, value); 859 860 mutex_unlock(&adev->gfx.gfx_off_mutex); 861 862 return r; 863 } 864 865 int amdgpu_get_gfx_off_entrycount(struct amdgpu_device *adev, u64 *value) 866 { 867 int r = 0; 868 869 mutex_lock(&adev->gfx.gfx_off_mutex); 870 871 r = amdgpu_dpm_get_entrycount_gfxoff(adev, value); 872 873 mutex_unlock(&adev->gfx.gfx_off_mutex); 874 875 return r; 876 } 877 878 int amdgpu_get_gfx_off_status(struct amdgpu_device *adev, uint32_t *value) 879 { 880 881 int r = 0; 882 883 mutex_lock(&adev->gfx.gfx_off_mutex); 884 885 r = amdgpu_dpm_get_status_gfxoff(adev, value); 886 887 mutex_unlock(&adev->gfx.gfx_off_mutex); 888 889 return r; 890 } 891 892 int amdgpu_gfx_ras_late_init(struct amdgpu_device *adev, struct ras_common_if *ras_block) 893 { 894 int r; 895 896 if (amdgpu_ras_is_supported(adev, ras_block->block)) { 897 if (!amdgpu_persistent_edc_harvesting_supported(adev)) { 898 r = amdgpu_ras_reset_error_status(adev, AMDGPU_RAS_BLOCK__GFX); 899 if (r) 900 return r; 901 } 902 903 r = amdgpu_ras_block_late_init(adev, ras_block); 904 if (r) 905 return r; 906 907 if (amdgpu_sriov_vf(adev)) 908 return r; 909 910 if (adev->gfx.cp_ecc_error_irq.funcs) { 911 r = amdgpu_irq_get(adev, &adev->gfx.cp_ecc_error_irq, 0); 912 if (r) 913 goto late_fini; 914 } 915 } else { 916 amdgpu_ras_feature_enable_on_boot(adev, ras_block, 0); 917 } 918 919 return 0; 920 late_fini: 921 amdgpu_ras_block_late_fini(adev, ras_block); 922 return r; 923 } 924 925 int amdgpu_gfx_ras_sw_init(struct amdgpu_device *adev) 926 { 927 int err = 0; 928 struct amdgpu_gfx_ras *ras = NULL; 929 930 /* adev->gfx.ras is NULL, which means gfx does not 931 * support ras function, then do nothing here. 932 */ 933 if (!adev->gfx.ras) 934 return 0; 935 936 ras = adev->gfx.ras; 937 938 err = amdgpu_ras_register_ras_block(adev, &ras->ras_block); 939 if (err) { 940 dev_err(adev->dev, "Failed to register gfx ras block!\n"); 941 return err; 942 } 943 944 strcpy(ras->ras_block.ras_comm.name, "gfx"); 945 ras->ras_block.ras_comm.block = AMDGPU_RAS_BLOCK__GFX; 946 ras->ras_block.ras_comm.type = AMDGPU_RAS_ERROR__MULTI_UNCORRECTABLE; 947 adev->gfx.ras_if = &ras->ras_block.ras_comm; 948 949 /* If not define special ras_late_init function, use gfx default ras_late_init */ 950 if (!ras->ras_block.ras_late_init) 951 ras->ras_block.ras_late_init = amdgpu_gfx_ras_late_init; 952 953 /* If not defined special ras_cb function, use default ras_cb */ 954 if (!ras->ras_block.ras_cb) 955 ras->ras_block.ras_cb = amdgpu_gfx_process_ras_data_cb; 956 957 return 0; 958 } 959 960 int amdgpu_gfx_poison_consumption_handler(struct amdgpu_device *adev, 961 struct amdgpu_iv_entry *entry) 962 { 963 if (adev->gfx.ras && adev->gfx.ras->poison_consumption_handler) 964 return adev->gfx.ras->poison_consumption_handler(adev, entry); 965 966 return 0; 967 } 968 969 int amdgpu_gfx_process_ras_data_cb(struct amdgpu_device *adev, 970 void *err_data, 971 struct amdgpu_iv_entry *entry) 972 { 973 /* TODO ue will trigger an interrupt. 974 * 975 * When “Full RAS” is enabled, the per-IP interrupt sources should 976 * be disabled and the driver should only look for the aggregated 977 * interrupt via sync flood 978 */ 979 if (!amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__GFX)) { 980 kgd2kfd_set_sram_ecc_flag(adev->kfd.dev); 981 if (adev->gfx.ras && adev->gfx.ras->ras_block.hw_ops && 982 adev->gfx.ras->ras_block.hw_ops->query_ras_error_count) 983 adev->gfx.ras->ras_block.hw_ops->query_ras_error_count(adev, err_data); 984 amdgpu_ras_reset_gpu(adev); 985 } 986 return AMDGPU_RAS_SUCCESS; 987 } 988 989 int amdgpu_gfx_cp_ecc_error_irq(struct amdgpu_device *adev, 990 struct amdgpu_irq_src *source, 991 struct amdgpu_iv_entry *entry) 992 { 993 struct ras_common_if *ras_if = adev->gfx.ras_if; 994 struct ras_dispatch_if ih_data = { 995 .entry = entry, 996 }; 997 998 if (!ras_if) 999 return 0; 1000 1001 ih_data.head = *ras_if; 1002 1003 DRM_ERROR("CP ECC ERROR IRQ\n"); 1004 amdgpu_ras_interrupt_dispatch(adev, &ih_data); 1005 return 0; 1006 } 1007 1008 void amdgpu_gfx_ras_error_func(struct amdgpu_device *adev, 1009 void *ras_error_status, 1010 void (*func)(struct amdgpu_device *adev, void *ras_error_status, 1011 int xcc_id)) 1012 { 1013 int i; 1014 int num_xcc = adev->gfx.xcc_mask ? NUM_XCC(adev->gfx.xcc_mask) : 1; 1015 uint32_t xcc_mask = GENMASK(num_xcc - 1, 0); 1016 struct ras_err_data *err_data = (struct ras_err_data *)ras_error_status; 1017 1018 if (err_data) { 1019 err_data->ue_count = 0; 1020 err_data->ce_count = 0; 1021 } 1022 1023 for_each_inst(i, xcc_mask) 1024 func(adev, ras_error_status, i); 1025 } 1026 1027 uint32_t amdgpu_kiq_rreg(struct amdgpu_device *adev, uint32_t reg, uint32_t xcc_id) 1028 { 1029 signed long r, cnt = 0; 1030 unsigned long flags; 1031 uint32_t seq, reg_val_offs = 0, value = 0; 1032 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 1033 struct amdgpu_ring *ring = &kiq->ring; 1034 1035 if (amdgpu_device_skip_hw_access(adev)) 1036 return 0; 1037 1038 if (adev->mes.ring[0].sched.ready) 1039 return amdgpu_mes_rreg(adev, reg); 1040 1041 BUG_ON(!ring->funcs->emit_rreg); 1042 1043 spin_lock_irqsave(&kiq->ring_lock, flags); 1044 if (amdgpu_device_wb_get(adev, ®_val_offs)) { 1045 pr_err("critical bug! too many kiq readers\n"); 1046 goto failed_unlock; 1047 } 1048 r = amdgpu_ring_alloc(ring, 32); 1049 if (r) 1050 goto failed_unlock; 1051 1052 amdgpu_ring_emit_rreg(ring, reg, reg_val_offs); 1053 r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT); 1054 if (r) 1055 goto failed_undo; 1056 1057 amdgpu_ring_commit(ring); 1058 spin_unlock_irqrestore(&kiq->ring_lock, flags); 1059 1060 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); 1061 1062 /* don't wait anymore for gpu reset case because this way may 1063 * block gpu_recover() routine forever, e.g. this virt_kiq_rreg 1064 * is triggered in TTM and ttm_bo_lock_delayed_workqueue() will 1065 * never return if we keep waiting in virt_kiq_rreg, which cause 1066 * gpu_recover() hang there. 1067 * 1068 * also don't wait anymore for IRQ context 1069 * */ 1070 if (r < 1 && (amdgpu_in_reset(adev) || in_interrupt())) 1071 goto failed_kiq_read; 1072 1073 might_sleep(); 1074 while (r < 1 && cnt++ < MAX_KIQ_REG_TRY) { 1075 msleep(MAX_KIQ_REG_BAILOUT_INTERVAL); 1076 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); 1077 } 1078 1079 if (cnt > MAX_KIQ_REG_TRY) 1080 goto failed_kiq_read; 1081 1082 mb(); 1083 value = adev->wb.wb[reg_val_offs]; 1084 amdgpu_device_wb_free(adev, reg_val_offs); 1085 return value; 1086 1087 failed_undo: 1088 amdgpu_ring_undo(ring); 1089 failed_unlock: 1090 spin_unlock_irqrestore(&kiq->ring_lock, flags); 1091 failed_kiq_read: 1092 if (reg_val_offs) 1093 amdgpu_device_wb_free(adev, reg_val_offs); 1094 dev_err(adev->dev, "failed to read reg:%x\n", reg); 1095 return ~0; 1096 } 1097 1098 void amdgpu_kiq_wreg(struct amdgpu_device *adev, uint32_t reg, uint32_t v, uint32_t xcc_id) 1099 { 1100 signed long r, cnt = 0; 1101 unsigned long flags; 1102 uint32_t seq; 1103 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 1104 struct amdgpu_ring *ring = &kiq->ring; 1105 1106 BUG_ON(!ring->funcs->emit_wreg); 1107 1108 if (amdgpu_device_skip_hw_access(adev)) 1109 return; 1110 1111 if (adev->mes.ring[0].sched.ready) { 1112 amdgpu_mes_wreg(adev, reg, v); 1113 return; 1114 } 1115 1116 spin_lock_irqsave(&kiq->ring_lock, flags); 1117 r = amdgpu_ring_alloc(ring, 32); 1118 if (r) 1119 goto failed_unlock; 1120 1121 amdgpu_ring_emit_wreg(ring, reg, v); 1122 r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT); 1123 if (r) 1124 goto failed_undo; 1125 1126 amdgpu_ring_commit(ring); 1127 spin_unlock_irqrestore(&kiq->ring_lock, flags); 1128 1129 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); 1130 1131 /* don't wait anymore for gpu reset case because this way may 1132 * block gpu_recover() routine forever, e.g. this virt_kiq_rreg 1133 * is triggered in TTM and ttm_bo_lock_delayed_workqueue() will 1134 * never return if we keep waiting in virt_kiq_rreg, which cause 1135 * gpu_recover() hang there. 1136 * 1137 * also don't wait anymore for IRQ context 1138 * */ 1139 if (r < 1 && (amdgpu_in_reset(adev) || in_interrupt())) 1140 goto failed_kiq_write; 1141 1142 might_sleep(); 1143 while (r < 1 && cnt++ < MAX_KIQ_REG_TRY) { 1144 1145 msleep(MAX_KIQ_REG_BAILOUT_INTERVAL); 1146 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); 1147 } 1148 1149 if (cnt > MAX_KIQ_REG_TRY) 1150 goto failed_kiq_write; 1151 1152 return; 1153 1154 failed_undo: 1155 amdgpu_ring_undo(ring); 1156 failed_unlock: 1157 spin_unlock_irqrestore(&kiq->ring_lock, flags); 1158 failed_kiq_write: 1159 dev_err(adev->dev, "failed to write reg:%x\n", reg); 1160 } 1161 1162 int amdgpu_gfx_get_num_kcq(struct amdgpu_device *adev) 1163 { 1164 if (amdgpu_num_kcq == -1) { 1165 return 8; 1166 } else if (amdgpu_num_kcq > 8 || amdgpu_num_kcq < 0) { 1167 dev_warn(adev->dev, "set kernel compute queue number to 8 due to invalid parameter provided by user\n"); 1168 return 8; 1169 } 1170 return amdgpu_num_kcq; 1171 } 1172 1173 void amdgpu_gfx_cp_init_microcode(struct amdgpu_device *adev, 1174 uint32_t ucode_id) 1175 { 1176 const struct gfx_firmware_header_v1_0 *cp_hdr; 1177 const struct gfx_firmware_header_v2_0 *cp_hdr_v2_0; 1178 struct amdgpu_firmware_info *info = NULL; 1179 const struct firmware *ucode_fw; 1180 unsigned int fw_size; 1181 1182 switch (ucode_id) { 1183 case AMDGPU_UCODE_ID_CP_PFP: 1184 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1185 adev->gfx.pfp_fw->data; 1186 adev->gfx.pfp_fw_version = 1187 le32_to_cpu(cp_hdr->header.ucode_version); 1188 adev->gfx.pfp_feature_version = 1189 le32_to_cpu(cp_hdr->ucode_feature_version); 1190 ucode_fw = adev->gfx.pfp_fw; 1191 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes); 1192 break; 1193 case AMDGPU_UCODE_ID_CP_RS64_PFP: 1194 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) 1195 adev->gfx.pfp_fw->data; 1196 adev->gfx.pfp_fw_version = 1197 le32_to_cpu(cp_hdr_v2_0->header.ucode_version); 1198 adev->gfx.pfp_feature_version = 1199 le32_to_cpu(cp_hdr_v2_0->ucode_feature_version); 1200 ucode_fw = adev->gfx.pfp_fw; 1201 fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes); 1202 break; 1203 case AMDGPU_UCODE_ID_CP_RS64_PFP_P0_STACK: 1204 case AMDGPU_UCODE_ID_CP_RS64_PFP_P1_STACK: 1205 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) 1206 adev->gfx.pfp_fw->data; 1207 ucode_fw = adev->gfx.pfp_fw; 1208 fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes); 1209 break; 1210 case AMDGPU_UCODE_ID_CP_ME: 1211 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1212 adev->gfx.me_fw->data; 1213 adev->gfx.me_fw_version = 1214 le32_to_cpu(cp_hdr->header.ucode_version); 1215 adev->gfx.me_feature_version = 1216 le32_to_cpu(cp_hdr->ucode_feature_version); 1217 ucode_fw = adev->gfx.me_fw; 1218 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes); 1219 break; 1220 case AMDGPU_UCODE_ID_CP_RS64_ME: 1221 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) 1222 adev->gfx.me_fw->data; 1223 adev->gfx.me_fw_version = 1224 le32_to_cpu(cp_hdr_v2_0->header.ucode_version); 1225 adev->gfx.me_feature_version = 1226 le32_to_cpu(cp_hdr_v2_0->ucode_feature_version); 1227 ucode_fw = adev->gfx.me_fw; 1228 fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes); 1229 break; 1230 case AMDGPU_UCODE_ID_CP_RS64_ME_P0_STACK: 1231 case AMDGPU_UCODE_ID_CP_RS64_ME_P1_STACK: 1232 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) 1233 adev->gfx.me_fw->data; 1234 ucode_fw = adev->gfx.me_fw; 1235 fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes); 1236 break; 1237 case AMDGPU_UCODE_ID_CP_CE: 1238 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1239 adev->gfx.ce_fw->data; 1240 adev->gfx.ce_fw_version = 1241 le32_to_cpu(cp_hdr->header.ucode_version); 1242 adev->gfx.ce_feature_version = 1243 le32_to_cpu(cp_hdr->ucode_feature_version); 1244 ucode_fw = adev->gfx.ce_fw; 1245 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes); 1246 break; 1247 case AMDGPU_UCODE_ID_CP_MEC1: 1248 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1249 adev->gfx.mec_fw->data; 1250 adev->gfx.mec_fw_version = 1251 le32_to_cpu(cp_hdr->header.ucode_version); 1252 adev->gfx.mec_feature_version = 1253 le32_to_cpu(cp_hdr->ucode_feature_version); 1254 ucode_fw = adev->gfx.mec_fw; 1255 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes) - 1256 le32_to_cpu(cp_hdr->jt_size) * 4; 1257 break; 1258 case AMDGPU_UCODE_ID_CP_MEC1_JT: 1259 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1260 adev->gfx.mec_fw->data; 1261 ucode_fw = adev->gfx.mec_fw; 1262 fw_size = le32_to_cpu(cp_hdr->jt_size) * 4; 1263 break; 1264 case AMDGPU_UCODE_ID_CP_MEC2: 1265 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1266 adev->gfx.mec2_fw->data; 1267 adev->gfx.mec2_fw_version = 1268 le32_to_cpu(cp_hdr->header.ucode_version); 1269 adev->gfx.mec2_feature_version = 1270 le32_to_cpu(cp_hdr->ucode_feature_version); 1271 ucode_fw = adev->gfx.mec2_fw; 1272 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes) - 1273 le32_to_cpu(cp_hdr->jt_size) * 4; 1274 break; 1275 case AMDGPU_UCODE_ID_CP_MEC2_JT: 1276 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1277 adev->gfx.mec2_fw->data; 1278 ucode_fw = adev->gfx.mec2_fw; 1279 fw_size = le32_to_cpu(cp_hdr->jt_size) * 4; 1280 break; 1281 case AMDGPU_UCODE_ID_CP_RS64_MEC: 1282 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) 1283 adev->gfx.mec_fw->data; 1284 adev->gfx.mec_fw_version = 1285 le32_to_cpu(cp_hdr_v2_0->header.ucode_version); 1286 adev->gfx.mec_feature_version = 1287 le32_to_cpu(cp_hdr_v2_0->ucode_feature_version); 1288 ucode_fw = adev->gfx.mec_fw; 1289 fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes); 1290 break; 1291 case AMDGPU_UCODE_ID_CP_RS64_MEC_P0_STACK: 1292 case AMDGPU_UCODE_ID_CP_RS64_MEC_P1_STACK: 1293 case AMDGPU_UCODE_ID_CP_RS64_MEC_P2_STACK: 1294 case AMDGPU_UCODE_ID_CP_RS64_MEC_P3_STACK: 1295 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) 1296 adev->gfx.mec_fw->data; 1297 ucode_fw = adev->gfx.mec_fw; 1298 fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes); 1299 break; 1300 default: 1301 dev_err(adev->dev, "Invalid ucode id %u\n", ucode_id); 1302 return; 1303 } 1304 1305 if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) { 1306 info = &adev->firmware.ucode[ucode_id]; 1307 info->ucode_id = ucode_id; 1308 info->fw = ucode_fw; 1309 adev->firmware.fw_size += ALIGN(fw_size, PAGE_SIZE); 1310 } 1311 } 1312 1313 bool amdgpu_gfx_is_master_xcc(struct amdgpu_device *adev, int xcc_id) 1314 { 1315 return !(xcc_id % (adev->gfx.num_xcc_per_xcp ? 1316 adev->gfx.num_xcc_per_xcp : 1)); 1317 } 1318 1319 static ssize_t amdgpu_gfx_get_current_compute_partition(struct device *dev, 1320 struct device_attribute *addr, 1321 char *buf) 1322 { 1323 struct drm_device *ddev = dev_get_drvdata(dev); 1324 struct amdgpu_device *adev = drm_to_adev(ddev); 1325 int mode; 1326 1327 mode = amdgpu_xcp_query_partition_mode(adev->xcp_mgr, 1328 AMDGPU_XCP_FL_NONE); 1329 1330 return sysfs_emit(buf, "%s\n", amdgpu_gfx_compute_mode_desc(mode)); 1331 } 1332 1333 static ssize_t amdgpu_gfx_set_compute_partition(struct device *dev, 1334 struct device_attribute *addr, 1335 const char *buf, size_t count) 1336 { 1337 struct drm_device *ddev = dev_get_drvdata(dev); 1338 struct amdgpu_device *adev = drm_to_adev(ddev); 1339 enum amdgpu_gfx_partition mode; 1340 int ret = 0, num_xcc; 1341 1342 num_xcc = NUM_XCC(adev->gfx.xcc_mask); 1343 if (num_xcc % 2 != 0) 1344 return -EINVAL; 1345 1346 if (!strncasecmp("SPX", buf, strlen("SPX"))) { 1347 mode = AMDGPU_SPX_PARTITION_MODE; 1348 } else if (!strncasecmp("DPX", buf, strlen("DPX"))) { 1349 /* 1350 * DPX mode needs AIDs to be in multiple of 2. 1351 * Each AID connects 2 XCCs. 1352 */ 1353 if (num_xcc%4) 1354 return -EINVAL; 1355 mode = AMDGPU_DPX_PARTITION_MODE; 1356 } else if (!strncasecmp("TPX", buf, strlen("TPX"))) { 1357 if (num_xcc != 6) 1358 return -EINVAL; 1359 mode = AMDGPU_TPX_PARTITION_MODE; 1360 } else if (!strncasecmp("QPX", buf, strlen("QPX"))) { 1361 if (num_xcc != 8) 1362 return -EINVAL; 1363 mode = AMDGPU_QPX_PARTITION_MODE; 1364 } else if (!strncasecmp("CPX", buf, strlen("CPX"))) { 1365 mode = AMDGPU_CPX_PARTITION_MODE; 1366 } else { 1367 return -EINVAL; 1368 } 1369 1370 ret = amdgpu_xcp_switch_partition_mode(adev->xcp_mgr, mode); 1371 1372 if (ret) 1373 return ret; 1374 1375 return count; 1376 } 1377 1378 static const char *xcp_desc[] = { 1379 [AMDGPU_SPX_PARTITION_MODE] = "SPX", 1380 [AMDGPU_DPX_PARTITION_MODE] = "DPX", 1381 [AMDGPU_TPX_PARTITION_MODE] = "TPX", 1382 [AMDGPU_QPX_PARTITION_MODE] = "QPX", 1383 [AMDGPU_CPX_PARTITION_MODE] = "CPX", 1384 }; 1385 1386 static ssize_t amdgpu_gfx_get_available_compute_partition(struct device *dev, 1387 struct device_attribute *addr, 1388 char *buf) 1389 { 1390 struct drm_device *ddev = dev_get_drvdata(dev); 1391 struct amdgpu_device *adev = drm_to_adev(ddev); 1392 struct amdgpu_xcp_mgr *xcp_mgr = adev->xcp_mgr; 1393 int size = 0, mode; 1394 char *sep = ""; 1395 1396 if (!xcp_mgr || !xcp_mgr->avail_xcp_modes) 1397 return sysfs_emit(buf, "Not supported\n"); 1398 1399 for_each_inst(mode, xcp_mgr->avail_xcp_modes) { 1400 size += sysfs_emit_at(buf, size, "%s%s", sep, xcp_desc[mode]); 1401 sep = ", "; 1402 } 1403 1404 size += sysfs_emit_at(buf, size, "\n"); 1405 1406 return size; 1407 } 1408 1409 static int amdgpu_gfx_run_cleaner_shader_job(struct amdgpu_ring *ring) 1410 { 1411 struct amdgpu_device *adev = ring->adev; 1412 struct drm_gpu_scheduler *sched = &ring->sched; 1413 struct drm_sched_entity entity; 1414 struct dma_fence *f; 1415 struct amdgpu_job *job; 1416 struct amdgpu_ib *ib; 1417 int i, r; 1418 1419 /* Initialize the scheduler entity */ 1420 r = drm_sched_entity_init(&entity, DRM_SCHED_PRIORITY_NORMAL, 1421 &sched, 1, NULL); 1422 if (r) { 1423 dev_err(adev->dev, "Failed setting up GFX kernel entity.\n"); 1424 goto err; 1425 } 1426 1427 r = amdgpu_job_alloc_with_ib(ring->adev, &entity, NULL, 1428 64, 0, 1429 &job); 1430 if (r) 1431 goto err; 1432 1433 job->enforce_isolation = true; 1434 1435 ib = &job->ibs[0]; 1436 for (i = 0; i <= ring->funcs->align_mask; ++i) 1437 ib->ptr[i] = ring->funcs->nop; 1438 ib->length_dw = ring->funcs->align_mask + 1; 1439 1440 f = amdgpu_job_submit(job); 1441 1442 r = dma_fence_wait(f, false); 1443 if (r) 1444 goto err; 1445 1446 dma_fence_put(f); 1447 1448 /* Clean up the scheduler entity */ 1449 drm_sched_entity_destroy(&entity); 1450 return 0; 1451 1452 err: 1453 return r; 1454 } 1455 1456 static int amdgpu_gfx_run_cleaner_shader(struct amdgpu_device *adev, int xcp_id) 1457 { 1458 int num_xcc = NUM_XCC(adev->gfx.xcc_mask); 1459 struct amdgpu_ring *ring; 1460 int num_xcc_to_clear; 1461 int i, r, xcc_id; 1462 1463 if (adev->gfx.num_xcc_per_xcp) 1464 num_xcc_to_clear = adev->gfx.num_xcc_per_xcp; 1465 else 1466 num_xcc_to_clear = 1; 1467 1468 for (xcc_id = 0; xcc_id < num_xcc; xcc_id++) { 1469 for (i = 0; i < adev->gfx.num_compute_rings; i++) { 1470 ring = &adev->gfx.compute_ring[i + xcc_id * adev->gfx.num_compute_rings]; 1471 if ((ring->xcp_id == xcp_id) && ring->sched.ready) { 1472 r = amdgpu_gfx_run_cleaner_shader_job(ring); 1473 if (r) 1474 return r; 1475 num_xcc_to_clear--; 1476 break; 1477 } 1478 } 1479 } 1480 1481 if (num_xcc_to_clear) 1482 return -ENOENT; 1483 1484 return 0; 1485 } 1486 1487 static ssize_t amdgpu_gfx_set_run_cleaner_shader(struct device *dev, 1488 struct device_attribute *attr, 1489 const char *buf, 1490 size_t count) 1491 { 1492 struct drm_device *ddev = dev_get_drvdata(dev); 1493 struct amdgpu_device *adev = drm_to_adev(ddev); 1494 int ret; 1495 long value; 1496 1497 if (amdgpu_in_reset(adev)) 1498 return -EPERM; 1499 if (adev->in_suspend && !adev->in_runpm) 1500 return -EPERM; 1501 1502 ret = kstrtol(buf, 0, &value); 1503 1504 if (ret) 1505 return -EINVAL; 1506 1507 if (value < 0) 1508 return -EINVAL; 1509 1510 if (adev->xcp_mgr) { 1511 if (value >= adev->xcp_mgr->num_xcps) 1512 return -EINVAL; 1513 } else { 1514 if (value > 1) 1515 return -EINVAL; 1516 } 1517 1518 ret = pm_runtime_get_sync(ddev->dev); 1519 if (ret < 0) { 1520 pm_runtime_put_autosuspend(ddev->dev); 1521 return ret; 1522 } 1523 1524 ret = amdgpu_gfx_run_cleaner_shader(adev, value); 1525 1526 pm_runtime_mark_last_busy(ddev->dev); 1527 pm_runtime_put_autosuspend(ddev->dev); 1528 1529 if (ret) 1530 return ret; 1531 1532 return count; 1533 } 1534 1535 static ssize_t amdgpu_gfx_get_enforce_isolation(struct device *dev, 1536 struct device_attribute *attr, 1537 char *buf) 1538 { 1539 struct drm_device *ddev = dev_get_drvdata(dev); 1540 struct amdgpu_device *adev = drm_to_adev(ddev); 1541 int i; 1542 ssize_t size = 0; 1543 1544 if (adev->xcp_mgr) { 1545 for (i = 0; i < adev->xcp_mgr->num_xcps; i++) { 1546 size += sysfs_emit_at(buf, size, "%u", adev->enforce_isolation[i]); 1547 if (i < (adev->xcp_mgr->num_xcps - 1)) 1548 size += sysfs_emit_at(buf, size, " "); 1549 } 1550 buf[size++] = '\n'; 1551 } else { 1552 size = sysfs_emit_at(buf, 0, "%u\n", adev->enforce_isolation[0]); 1553 } 1554 1555 return size; 1556 } 1557 1558 static ssize_t amdgpu_gfx_set_enforce_isolation(struct device *dev, 1559 struct device_attribute *attr, 1560 const char *buf, size_t count) 1561 { 1562 struct drm_device *ddev = dev_get_drvdata(dev); 1563 struct amdgpu_device *adev = drm_to_adev(ddev); 1564 long partition_values[MAX_XCP] = {0}; 1565 int ret, i, num_partitions; 1566 const char *input_buf = buf; 1567 1568 for (i = 0; i < (adev->xcp_mgr ? adev->xcp_mgr->num_xcps : 1); i++) { 1569 ret = sscanf(input_buf, "%ld", &partition_values[i]); 1570 if (ret <= 0) 1571 break; 1572 1573 /* Move the pointer to the next value in the string */ 1574 input_buf = strchr(input_buf, ' '); 1575 if (input_buf) { 1576 input_buf++; 1577 } else { 1578 i++; 1579 break; 1580 } 1581 } 1582 num_partitions = i; 1583 1584 if (adev->xcp_mgr && num_partitions != adev->xcp_mgr->num_xcps) 1585 return -EINVAL; 1586 1587 if (!adev->xcp_mgr && num_partitions != 1) 1588 return -EINVAL; 1589 1590 for (i = 0; i < num_partitions; i++) { 1591 if (partition_values[i] != 0 && partition_values[i] != 1) 1592 return -EINVAL; 1593 } 1594 1595 mutex_lock(&adev->enforce_isolation_mutex); 1596 1597 for (i = 0; i < num_partitions; i++) { 1598 if (adev->enforce_isolation[i] && !partition_values[i]) { 1599 /* Going from enabled to disabled */ 1600 amdgpu_vmid_free_reserved(adev, AMDGPU_GFXHUB(i)); 1601 amdgpu_mes_set_enforce_isolation(adev, i, false); 1602 } else if (!adev->enforce_isolation[i] && partition_values[i]) { 1603 /* Going from disabled to enabled */ 1604 amdgpu_vmid_alloc_reserved(adev, AMDGPU_GFXHUB(i)); 1605 amdgpu_mes_set_enforce_isolation(adev, i, true); 1606 } 1607 adev->enforce_isolation[i] = partition_values[i]; 1608 } 1609 1610 mutex_unlock(&adev->enforce_isolation_mutex); 1611 1612 return count; 1613 } 1614 1615 static ssize_t amdgpu_gfx_get_gfx_reset_mask(struct device *dev, 1616 struct device_attribute *attr, 1617 char *buf) 1618 { 1619 struct drm_device *ddev = dev_get_drvdata(dev); 1620 struct amdgpu_device *adev = drm_to_adev(ddev); 1621 1622 if (!adev) 1623 return -ENODEV; 1624 1625 return amdgpu_show_reset_mask(buf, adev->gfx.gfx_supported_reset); 1626 } 1627 1628 static ssize_t amdgpu_gfx_get_compute_reset_mask(struct device *dev, 1629 struct device_attribute *attr, 1630 char *buf) 1631 { 1632 struct drm_device *ddev = dev_get_drvdata(dev); 1633 struct amdgpu_device *adev = drm_to_adev(ddev); 1634 1635 if (!adev) 1636 return -ENODEV; 1637 1638 return amdgpu_show_reset_mask(buf, adev->gfx.compute_supported_reset); 1639 } 1640 1641 static DEVICE_ATTR(run_cleaner_shader, 0200, 1642 NULL, amdgpu_gfx_set_run_cleaner_shader); 1643 1644 static DEVICE_ATTR(enforce_isolation, 0644, 1645 amdgpu_gfx_get_enforce_isolation, 1646 amdgpu_gfx_set_enforce_isolation); 1647 1648 static DEVICE_ATTR(current_compute_partition, 0644, 1649 amdgpu_gfx_get_current_compute_partition, 1650 amdgpu_gfx_set_compute_partition); 1651 1652 static DEVICE_ATTR(available_compute_partition, 0444, 1653 amdgpu_gfx_get_available_compute_partition, NULL); 1654 static DEVICE_ATTR(gfx_reset_mask, 0444, 1655 amdgpu_gfx_get_gfx_reset_mask, NULL); 1656 1657 static DEVICE_ATTR(compute_reset_mask, 0444, 1658 amdgpu_gfx_get_compute_reset_mask, NULL); 1659 1660 static int amdgpu_gfx_sysfs_xcp_init(struct amdgpu_device *adev) 1661 { 1662 struct amdgpu_xcp_mgr *xcp_mgr = adev->xcp_mgr; 1663 bool xcp_switch_supported; 1664 int r; 1665 1666 if (!xcp_mgr) 1667 return 0; 1668 1669 xcp_switch_supported = 1670 (xcp_mgr->funcs && xcp_mgr->funcs->switch_partition_mode); 1671 1672 if (!xcp_switch_supported) 1673 dev_attr_current_compute_partition.attr.mode &= 1674 ~(S_IWUSR | S_IWGRP | S_IWOTH); 1675 1676 r = device_create_file(adev->dev, &dev_attr_current_compute_partition); 1677 if (r) 1678 return r; 1679 1680 if (xcp_switch_supported) 1681 r = device_create_file(adev->dev, 1682 &dev_attr_available_compute_partition); 1683 1684 return r; 1685 } 1686 1687 static void amdgpu_gfx_sysfs_xcp_fini(struct amdgpu_device *adev) 1688 { 1689 struct amdgpu_xcp_mgr *xcp_mgr = adev->xcp_mgr; 1690 bool xcp_switch_supported; 1691 1692 if (!xcp_mgr) 1693 return; 1694 1695 xcp_switch_supported = 1696 (xcp_mgr->funcs && xcp_mgr->funcs->switch_partition_mode); 1697 device_remove_file(adev->dev, &dev_attr_current_compute_partition); 1698 1699 if (xcp_switch_supported) 1700 device_remove_file(adev->dev, 1701 &dev_attr_available_compute_partition); 1702 } 1703 1704 static int amdgpu_gfx_sysfs_isolation_shader_init(struct amdgpu_device *adev) 1705 { 1706 int r; 1707 1708 r = device_create_file(adev->dev, &dev_attr_enforce_isolation); 1709 if (r) 1710 return r; 1711 if (adev->gfx.enable_cleaner_shader) 1712 r = device_create_file(adev->dev, &dev_attr_run_cleaner_shader); 1713 1714 return r; 1715 } 1716 1717 static void amdgpu_gfx_sysfs_isolation_shader_fini(struct amdgpu_device *adev) 1718 { 1719 device_remove_file(adev->dev, &dev_attr_enforce_isolation); 1720 if (adev->gfx.enable_cleaner_shader) 1721 device_remove_file(adev->dev, &dev_attr_run_cleaner_shader); 1722 } 1723 1724 static int amdgpu_gfx_sysfs_reset_mask_init(struct amdgpu_device *adev) 1725 { 1726 int r = 0; 1727 1728 if (!amdgpu_gpu_recovery) 1729 return r; 1730 1731 if (adev->gfx.num_gfx_rings) { 1732 r = device_create_file(adev->dev, &dev_attr_gfx_reset_mask); 1733 if (r) 1734 return r; 1735 } 1736 1737 if (adev->gfx.num_compute_rings) { 1738 r = device_create_file(adev->dev, &dev_attr_compute_reset_mask); 1739 if (r) 1740 return r; 1741 } 1742 1743 return r; 1744 } 1745 1746 static void amdgpu_gfx_sysfs_reset_mask_fini(struct amdgpu_device *adev) 1747 { 1748 if (!amdgpu_gpu_recovery) 1749 return; 1750 1751 if (adev->gfx.num_gfx_rings) 1752 device_remove_file(adev->dev, &dev_attr_gfx_reset_mask); 1753 1754 if (adev->gfx.num_compute_rings) 1755 device_remove_file(adev->dev, &dev_attr_compute_reset_mask); 1756 } 1757 1758 int amdgpu_gfx_sysfs_init(struct amdgpu_device *adev) 1759 { 1760 int r; 1761 1762 r = amdgpu_gfx_sysfs_xcp_init(adev); 1763 if (r) { 1764 dev_err(adev->dev, "failed to create xcp sysfs files"); 1765 return r; 1766 } 1767 1768 r = amdgpu_gfx_sysfs_isolation_shader_init(adev); 1769 if (r) 1770 dev_err(adev->dev, "failed to create isolation sysfs files"); 1771 1772 r = amdgpu_gfx_sysfs_reset_mask_init(adev); 1773 if (r) 1774 dev_err(adev->dev, "failed to create reset mask sysfs files"); 1775 1776 return r; 1777 } 1778 1779 void amdgpu_gfx_sysfs_fini(struct amdgpu_device *adev) 1780 { 1781 if (adev->dev->kobj.sd) { 1782 amdgpu_gfx_sysfs_xcp_fini(adev); 1783 amdgpu_gfx_sysfs_isolation_shader_fini(adev); 1784 amdgpu_gfx_sysfs_reset_mask_fini(adev); 1785 } 1786 } 1787 1788 int amdgpu_gfx_cleaner_shader_sw_init(struct amdgpu_device *adev, 1789 unsigned int cleaner_shader_size) 1790 { 1791 if (!adev->gfx.enable_cleaner_shader) 1792 return -EOPNOTSUPP; 1793 1794 return amdgpu_bo_create_kernel(adev, cleaner_shader_size, PAGE_SIZE, 1795 AMDGPU_GEM_DOMAIN_VRAM | AMDGPU_GEM_DOMAIN_GTT, 1796 &adev->gfx.cleaner_shader_obj, 1797 &adev->gfx.cleaner_shader_gpu_addr, 1798 (void **)&adev->gfx.cleaner_shader_cpu_ptr); 1799 } 1800 1801 void amdgpu_gfx_cleaner_shader_sw_fini(struct amdgpu_device *adev) 1802 { 1803 if (!adev->gfx.enable_cleaner_shader) 1804 return; 1805 1806 amdgpu_bo_free_kernel(&adev->gfx.cleaner_shader_obj, 1807 &adev->gfx.cleaner_shader_gpu_addr, 1808 (void **)&adev->gfx.cleaner_shader_cpu_ptr); 1809 } 1810 1811 void amdgpu_gfx_cleaner_shader_init(struct amdgpu_device *adev, 1812 unsigned int cleaner_shader_size, 1813 const void *cleaner_shader_ptr) 1814 { 1815 if (!adev->gfx.enable_cleaner_shader) 1816 return; 1817 1818 if (adev->gfx.cleaner_shader_cpu_ptr && cleaner_shader_ptr) 1819 memcpy_toio(adev->gfx.cleaner_shader_cpu_ptr, cleaner_shader_ptr, 1820 cleaner_shader_size); 1821 } 1822 1823 /** 1824 * amdgpu_gfx_kfd_sch_ctrl - Control the KFD scheduler from the KGD (Graphics Driver) 1825 * @adev: amdgpu_device pointer 1826 * @idx: Index of the scheduler to control 1827 * @enable: Whether to enable or disable the KFD scheduler 1828 * 1829 * This function is used to control the KFD (Kernel Fusion Driver) scheduler 1830 * from the KGD. It is part of the cleaner shader feature. This function plays 1831 * a key role in enforcing process isolation on the GPU. 1832 * 1833 * The function uses a reference count mechanism (kfd_sch_req_count) to keep 1834 * track of the number of requests to enable the KFD scheduler. When a request 1835 * to enable the KFD scheduler is made, the reference count is decremented. 1836 * When the reference count reaches zero, a delayed work is scheduled to 1837 * enforce isolation after a delay of GFX_SLICE_PERIOD. 1838 * 1839 * When a request to disable the KFD scheduler is made, the function first 1840 * checks if the reference count is zero. If it is, it cancels the delayed work 1841 * for enforcing isolation and checks if the KFD scheduler is active. If the 1842 * KFD scheduler is active, it sends a request to stop the KFD scheduler and 1843 * sets the KFD scheduler state to inactive. Then, it increments the reference 1844 * count. 1845 * 1846 * The function is synchronized using the kfd_sch_mutex to ensure that the KFD 1847 * scheduler state and reference count are updated atomically. 1848 * 1849 * Note: If the reference count is already zero when a request to enable the 1850 * KFD scheduler is made, it means there's an imbalance bug somewhere. The 1851 * function triggers a warning in this case. 1852 */ 1853 static void amdgpu_gfx_kfd_sch_ctrl(struct amdgpu_device *adev, u32 idx, 1854 bool enable) 1855 { 1856 mutex_lock(&adev->gfx.kfd_sch_mutex); 1857 1858 if (enable) { 1859 /* If the count is already 0, it means there's an imbalance bug somewhere. 1860 * Note that the bug may be in a different caller than the one which triggers the 1861 * WARN_ON_ONCE. 1862 */ 1863 if (WARN_ON_ONCE(adev->gfx.kfd_sch_req_count[idx] == 0)) { 1864 dev_err(adev->dev, "Attempted to enable KFD scheduler when reference count is already zero\n"); 1865 goto unlock; 1866 } 1867 1868 adev->gfx.kfd_sch_req_count[idx]--; 1869 1870 if (adev->gfx.kfd_sch_req_count[idx] == 0 && 1871 adev->gfx.kfd_sch_inactive[idx]) { 1872 schedule_delayed_work(&adev->gfx.enforce_isolation[idx].work, 1873 msecs_to_jiffies(adev->gfx.enforce_isolation_time[idx])); 1874 } 1875 } else { 1876 if (adev->gfx.kfd_sch_req_count[idx] == 0) { 1877 cancel_delayed_work_sync(&adev->gfx.enforce_isolation[idx].work); 1878 if (!adev->gfx.kfd_sch_inactive[idx]) { 1879 amdgpu_amdkfd_stop_sched(adev, idx); 1880 adev->gfx.kfd_sch_inactive[idx] = true; 1881 } 1882 } 1883 1884 adev->gfx.kfd_sch_req_count[idx]++; 1885 } 1886 1887 unlock: 1888 mutex_unlock(&adev->gfx.kfd_sch_mutex); 1889 } 1890 1891 /** 1892 * amdgpu_gfx_enforce_isolation_handler - work handler for enforcing shader isolation 1893 * 1894 * @work: work_struct. 1895 * 1896 * This function is the work handler for enforcing shader isolation on AMD GPUs. 1897 * It counts the number of emitted fences for each GFX and compute ring. If there 1898 * are any fences, it schedules the `enforce_isolation_work` to be run after a 1899 * delay of `GFX_SLICE_PERIOD`. If there are no fences, it signals the Kernel Fusion 1900 * Driver (KFD) to resume the runqueue. The function is synchronized using the 1901 * `enforce_isolation_mutex`. 1902 */ 1903 void amdgpu_gfx_enforce_isolation_handler(struct work_struct *work) 1904 { 1905 struct amdgpu_isolation_work *isolation_work = 1906 container_of(work, struct amdgpu_isolation_work, work.work); 1907 struct amdgpu_device *adev = isolation_work->adev; 1908 u32 i, idx, fences = 0; 1909 1910 if (isolation_work->xcp_id == AMDGPU_XCP_NO_PARTITION) 1911 idx = 0; 1912 else 1913 idx = isolation_work->xcp_id; 1914 1915 if (idx >= MAX_XCP) 1916 return; 1917 1918 mutex_lock(&adev->enforce_isolation_mutex); 1919 for (i = 0; i < AMDGPU_MAX_GFX_RINGS; ++i) { 1920 if (isolation_work->xcp_id == adev->gfx.gfx_ring[i].xcp_id) 1921 fences += amdgpu_fence_count_emitted(&adev->gfx.gfx_ring[i]); 1922 } 1923 for (i = 0; i < (AMDGPU_MAX_COMPUTE_RINGS * AMDGPU_MAX_GC_INSTANCES); ++i) { 1924 if (isolation_work->xcp_id == adev->gfx.compute_ring[i].xcp_id) 1925 fences += amdgpu_fence_count_emitted(&adev->gfx.compute_ring[i]); 1926 } 1927 if (fences) { 1928 /* we've already had our timeslice, so let's wrap this up */ 1929 schedule_delayed_work(&adev->gfx.enforce_isolation[idx].work, 1930 msecs_to_jiffies(1)); 1931 } else { 1932 /* Tell KFD to resume the runqueue */ 1933 if (adev->kfd.init_complete) { 1934 WARN_ON_ONCE(!adev->gfx.kfd_sch_inactive[idx]); 1935 WARN_ON_ONCE(adev->gfx.kfd_sch_req_count[idx]); 1936 amdgpu_amdkfd_start_sched(adev, idx); 1937 adev->gfx.kfd_sch_inactive[idx] = false; 1938 } 1939 } 1940 mutex_unlock(&adev->enforce_isolation_mutex); 1941 } 1942 1943 static void 1944 amdgpu_gfx_enforce_isolation_wait_for_kfd(struct amdgpu_device *adev, 1945 u32 idx) 1946 { 1947 unsigned long cjiffies; 1948 bool wait = false; 1949 1950 mutex_lock(&adev->enforce_isolation_mutex); 1951 if (adev->enforce_isolation[idx]) { 1952 /* set the initial values if nothing is set */ 1953 if (!adev->gfx.enforce_isolation_jiffies[idx]) { 1954 adev->gfx.enforce_isolation_jiffies[idx] = jiffies; 1955 adev->gfx.enforce_isolation_time[idx] = GFX_SLICE_PERIOD_MS; 1956 } 1957 /* Make sure KFD gets a chance to run */ 1958 if (amdgpu_amdkfd_compute_active(adev, idx)) { 1959 cjiffies = jiffies; 1960 if (time_after(cjiffies, adev->gfx.enforce_isolation_jiffies[idx])) { 1961 cjiffies -= adev->gfx.enforce_isolation_jiffies[idx]; 1962 if ((jiffies_to_msecs(cjiffies) >= GFX_SLICE_PERIOD_MS)) { 1963 /* if our time is up, let KGD work drain before scheduling more */ 1964 wait = true; 1965 /* reset the timer period */ 1966 adev->gfx.enforce_isolation_time[idx] = GFX_SLICE_PERIOD_MS; 1967 } else { 1968 /* set the timer period to what's left in our time slice */ 1969 adev->gfx.enforce_isolation_time[idx] = 1970 GFX_SLICE_PERIOD_MS - jiffies_to_msecs(cjiffies); 1971 } 1972 } else { 1973 /* if jiffies wrap around we will just wait a little longer */ 1974 adev->gfx.enforce_isolation_jiffies[idx] = jiffies; 1975 } 1976 } else { 1977 /* if there is no KFD work, then set the full slice period */ 1978 adev->gfx.enforce_isolation_jiffies[idx] = jiffies; 1979 adev->gfx.enforce_isolation_time[idx] = GFX_SLICE_PERIOD_MS; 1980 } 1981 } 1982 mutex_unlock(&adev->enforce_isolation_mutex); 1983 1984 if (wait) 1985 msleep(GFX_SLICE_PERIOD_MS); 1986 } 1987 1988 void amdgpu_gfx_enforce_isolation_ring_begin_use(struct amdgpu_ring *ring) 1989 { 1990 struct amdgpu_device *adev = ring->adev; 1991 u32 idx; 1992 1993 if (!adev->gfx.enable_cleaner_shader) 1994 return; 1995 1996 if (ring->xcp_id == AMDGPU_XCP_NO_PARTITION) 1997 idx = 0; 1998 else 1999 idx = ring->xcp_id; 2000 2001 if (idx >= MAX_XCP) 2002 return; 2003 2004 /* Don't submit more work until KFD has had some time */ 2005 amdgpu_gfx_enforce_isolation_wait_for_kfd(adev, idx); 2006 2007 mutex_lock(&adev->enforce_isolation_mutex); 2008 if (adev->enforce_isolation[idx]) { 2009 if (adev->kfd.init_complete) 2010 amdgpu_gfx_kfd_sch_ctrl(adev, idx, false); 2011 } 2012 mutex_unlock(&adev->enforce_isolation_mutex); 2013 } 2014 2015 void amdgpu_gfx_enforce_isolation_ring_end_use(struct amdgpu_ring *ring) 2016 { 2017 struct amdgpu_device *adev = ring->adev; 2018 u32 idx; 2019 2020 if (!adev->gfx.enable_cleaner_shader) 2021 return; 2022 2023 if (ring->xcp_id == AMDGPU_XCP_NO_PARTITION) 2024 idx = 0; 2025 else 2026 idx = ring->xcp_id; 2027 2028 if (idx >= MAX_XCP) 2029 return; 2030 2031 mutex_lock(&adev->enforce_isolation_mutex); 2032 if (adev->enforce_isolation[idx]) { 2033 if (adev->kfd.init_complete) 2034 amdgpu_gfx_kfd_sch_ctrl(adev, idx, true); 2035 } 2036 mutex_unlock(&adev->enforce_isolation_mutex); 2037 } 2038 2039 /* 2040 * debugfs for to enable/disable gfx job submission to specific core. 2041 */ 2042 #if defined(CONFIG_DEBUG_FS) 2043 static int amdgpu_debugfs_gfx_sched_mask_set(void *data, u64 val) 2044 { 2045 struct amdgpu_device *adev = (struct amdgpu_device *)data; 2046 u32 i; 2047 u64 mask = 0; 2048 struct amdgpu_ring *ring; 2049 2050 if (!adev) 2051 return -ENODEV; 2052 2053 mask = (1 << adev->gfx.num_gfx_rings) - 1; 2054 if ((val & mask) == 0) 2055 return -EINVAL; 2056 2057 for (i = 0; i < adev->gfx.num_gfx_rings; ++i) { 2058 ring = &adev->gfx.gfx_ring[i]; 2059 if (val & (1 << i)) 2060 ring->sched.ready = true; 2061 else 2062 ring->sched.ready = false; 2063 } 2064 /* publish sched.ready flag update effective immediately across smp */ 2065 smp_rmb(); 2066 return 0; 2067 } 2068 2069 static int amdgpu_debugfs_gfx_sched_mask_get(void *data, u64 *val) 2070 { 2071 struct amdgpu_device *adev = (struct amdgpu_device *)data; 2072 u32 i; 2073 u64 mask = 0; 2074 struct amdgpu_ring *ring; 2075 2076 if (!adev) 2077 return -ENODEV; 2078 for (i = 0; i < adev->gfx.num_gfx_rings; ++i) { 2079 ring = &adev->gfx.gfx_ring[i]; 2080 if (ring->sched.ready) 2081 mask |= 1 << i; 2082 } 2083 2084 *val = mask; 2085 return 0; 2086 } 2087 2088 DEFINE_DEBUGFS_ATTRIBUTE(amdgpu_debugfs_gfx_sched_mask_fops, 2089 amdgpu_debugfs_gfx_sched_mask_get, 2090 amdgpu_debugfs_gfx_sched_mask_set, "%llx\n"); 2091 2092 #endif 2093 2094 void amdgpu_debugfs_gfx_sched_mask_init(struct amdgpu_device *adev) 2095 { 2096 #if defined(CONFIG_DEBUG_FS) 2097 struct drm_minor *minor = adev_to_drm(adev)->primary; 2098 struct dentry *root = minor->debugfs_root; 2099 char name[32]; 2100 2101 if (!(adev->gfx.num_gfx_rings > 1)) 2102 return; 2103 sprintf(name, "amdgpu_gfx_sched_mask"); 2104 debugfs_create_file(name, 0600, root, adev, 2105 &amdgpu_debugfs_gfx_sched_mask_fops); 2106 #endif 2107 } 2108 2109 /* 2110 * debugfs for to enable/disable compute job submission to specific core. 2111 */ 2112 #if defined(CONFIG_DEBUG_FS) 2113 static int amdgpu_debugfs_compute_sched_mask_set(void *data, u64 val) 2114 { 2115 struct amdgpu_device *adev = (struct amdgpu_device *)data; 2116 u32 i; 2117 u64 mask = 0; 2118 struct amdgpu_ring *ring; 2119 2120 if (!adev) 2121 return -ENODEV; 2122 2123 mask = (1 << adev->gfx.num_compute_rings) - 1; 2124 if ((val & mask) == 0) 2125 return -EINVAL; 2126 2127 for (i = 0; i < adev->gfx.num_compute_rings; ++i) { 2128 ring = &adev->gfx.compute_ring[i]; 2129 if (val & (1 << i)) 2130 ring->sched.ready = true; 2131 else 2132 ring->sched.ready = false; 2133 } 2134 2135 /* publish sched.ready flag update effective immediately across smp */ 2136 smp_rmb(); 2137 return 0; 2138 } 2139 2140 static int amdgpu_debugfs_compute_sched_mask_get(void *data, u64 *val) 2141 { 2142 struct amdgpu_device *adev = (struct amdgpu_device *)data; 2143 u32 i; 2144 u64 mask = 0; 2145 struct amdgpu_ring *ring; 2146 2147 if (!adev) 2148 return -ENODEV; 2149 for (i = 0; i < adev->gfx.num_compute_rings; ++i) { 2150 ring = &adev->gfx.compute_ring[i]; 2151 if (ring->sched.ready) 2152 mask |= 1 << i; 2153 } 2154 2155 *val = mask; 2156 return 0; 2157 } 2158 2159 DEFINE_DEBUGFS_ATTRIBUTE(amdgpu_debugfs_compute_sched_mask_fops, 2160 amdgpu_debugfs_compute_sched_mask_get, 2161 amdgpu_debugfs_compute_sched_mask_set, "%llx\n"); 2162 2163 #endif 2164 2165 void amdgpu_debugfs_compute_sched_mask_init(struct amdgpu_device *adev) 2166 { 2167 #if defined(CONFIG_DEBUG_FS) 2168 struct drm_minor *minor = adev_to_drm(adev)->primary; 2169 struct dentry *root = minor->debugfs_root; 2170 char name[32]; 2171 2172 if (!(adev->gfx.num_compute_rings > 1)) 2173 return; 2174 sprintf(name, "amdgpu_compute_sched_mask"); 2175 debugfs_create_file(name, 0600, root, adev, 2176 &amdgpu_debugfs_compute_sched_mask_fops); 2177 #endif 2178 } 2179