1 /* 2 * Copyright 2014 Advanced Micro Devices, Inc. 3 * Copyright 2008 Red Hat Inc. 4 * Copyright 2009 Jerome Glisse. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 * 24 */ 25 26 #include <linux/firmware.h> 27 #include "amdgpu.h" 28 #include "amdgpu_gfx.h" 29 #include "amdgpu_rlc.h" 30 #include "amdgpu_ras.h" 31 #include "amdgpu_xcp.h" 32 #include "amdgpu_xgmi.h" 33 34 /* delay 0.1 second to enable gfx off feature */ 35 #define GFX_OFF_DELAY_ENABLE msecs_to_jiffies(100) 36 37 #define GFX_OFF_NO_DELAY 0 38 39 /* 40 * GPU GFX IP block helpers function. 41 */ 42 43 int amdgpu_gfx_mec_queue_to_bit(struct amdgpu_device *adev, int mec, 44 int pipe, int queue) 45 { 46 int bit = 0; 47 48 bit += mec * adev->gfx.mec.num_pipe_per_mec 49 * adev->gfx.mec.num_queue_per_pipe; 50 bit += pipe * adev->gfx.mec.num_queue_per_pipe; 51 bit += queue; 52 53 return bit; 54 } 55 56 void amdgpu_queue_mask_bit_to_mec_queue(struct amdgpu_device *adev, int bit, 57 int *mec, int *pipe, int *queue) 58 { 59 *queue = bit % adev->gfx.mec.num_queue_per_pipe; 60 *pipe = (bit / adev->gfx.mec.num_queue_per_pipe) 61 % adev->gfx.mec.num_pipe_per_mec; 62 *mec = (bit / adev->gfx.mec.num_queue_per_pipe) 63 / adev->gfx.mec.num_pipe_per_mec; 64 65 } 66 67 bool amdgpu_gfx_is_mec_queue_enabled(struct amdgpu_device *adev, 68 int xcc_id, int mec, int pipe, int queue) 69 { 70 return test_bit(amdgpu_gfx_mec_queue_to_bit(adev, mec, pipe, queue), 71 adev->gfx.mec_bitmap[xcc_id].queue_bitmap); 72 } 73 74 int amdgpu_gfx_me_queue_to_bit(struct amdgpu_device *adev, 75 int me, int pipe, int queue) 76 { 77 int bit = 0; 78 79 bit += me * adev->gfx.me.num_pipe_per_me 80 * adev->gfx.me.num_queue_per_pipe; 81 bit += pipe * adev->gfx.me.num_queue_per_pipe; 82 bit += queue; 83 84 return bit; 85 } 86 87 void amdgpu_gfx_bit_to_me_queue(struct amdgpu_device *adev, int bit, 88 int *me, int *pipe, int *queue) 89 { 90 *queue = bit % adev->gfx.me.num_queue_per_pipe; 91 *pipe = (bit / adev->gfx.me.num_queue_per_pipe) 92 % adev->gfx.me.num_pipe_per_me; 93 *me = (bit / adev->gfx.me.num_queue_per_pipe) 94 / adev->gfx.me.num_pipe_per_me; 95 } 96 97 bool amdgpu_gfx_is_me_queue_enabled(struct amdgpu_device *adev, 98 int me, int pipe, int queue) 99 { 100 return test_bit(amdgpu_gfx_me_queue_to_bit(adev, me, pipe, queue), 101 adev->gfx.me.queue_bitmap); 102 } 103 104 /** 105 * amdgpu_gfx_parse_disable_cu - Parse the disable_cu module parameter 106 * 107 * @mask: array in which the per-shader array disable masks will be stored 108 * @max_se: number of SEs 109 * @max_sh: number of SHs 110 * 111 * The bitmask of CUs to be disabled in the shader array determined by se and 112 * sh is stored in mask[se * max_sh + sh]. 113 */ 114 void amdgpu_gfx_parse_disable_cu(unsigned int *mask, unsigned int max_se, unsigned int max_sh) 115 { 116 unsigned int se, sh, cu; 117 const char *p; 118 119 memset(mask, 0, sizeof(*mask) * max_se * max_sh); 120 121 if (!amdgpu_disable_cu || !*amdgpu_disable_cu) 122 return; 123 124 p = amdgpu_disable_cu; 125 for (;;) { 126 char *next; 127 int ret = sscanf(p, "%u.%u.%u", &se, &sh, &cu); 128 129 if (ret < 3) { 130 DRM_ERROR("amdgpu: could not parse disable_cu\n"); 131 return; 132 } 133 134 if (se < max_se && sh < max_sh && cu < 16) { 135 DRM_INFO("amdgpu: disabling CU %u.%u.%u\n", se, sh, cu); 136 mask[se * max_sh + sh] |= 1u << cu; 137 } else { 138 DRM_ERROR("amdgpu: disable_cu %u.%u.%u is out of range\n", 139 se, sh, cu); 140 } 141 142 next = strchr(p, ','); 143 if (!next) 144 break; 145 p = next + 1; 146 } 147 } 148 149 static bool amdgpu_gfx_is_graphics_multipipe_capable(struct amdgpu_device *adev) 150 { 151 return amdgpu_async_gfx_ring && adev->gfx.me.num_pipe_per_me > 1; 152 } 153 154 static bool amdgpu_gfx_is_compute_multipipe_capable(struct amdgpu_device *adev) 155 { 156 if (amdgpu_compute_multipipe != -1) { 157 DRM_INFO("amdgpu: forcing compute pipe policy %d\n", 158 amdgpu_compute_multipipe); 159 return amdgpu_compute_multipipe == 1; 160 } 161 162 if (amdgpu_ip_version(adev, GC_HWIP, 0) > IP_VERSION(9, 0, 0)) 163 return true; 164 165 /* FIXME: spreading the queues across pipes causes perf regressions 166 * on POLARIS11 compute workloads */ 167 if (adev->asic_type == CHIP_POLARIS11) 168 return false; 169 170 return adev->gfx.mec.num_mec > 1; 171 } 172 173 bool amdgpu_gfx_is_high_priority_graphics_queue(struct amdgpu_device *adev, 174 struct amdgpu_ring *ring) 175 { 176 int queue = ring->queue; 177 int pipe = ring->pipe; 178 179 /* Policy: use pipe1 queue0 as high priority graphics queue if we 180 * have more than one gfx pipe. 181 */ 182 if (amdgpu_gfx_is_graphics_multipipe_capable(adev) && 183 adev->gfx.num_gfx_rings > 1 && pipe == 1 && queue == 0) { 184 int me = ring->me; 185 int bit; 186 187 bit = amdgpu_gfx_me_queue_to_bit(adev, me, pipe, queue); 188 if (ring == &adev->gfx.gfx_ring[bit]) 189 return true; 190 } 191 192 return false; 193 } 194 195 bool amdgpu_gfx_is_high_priority_compute_queue(struct amdgpu_device *adev, 196 struct amdgpu_ring *ring) 197 { 198 /* Policy: use 1st queue as high priority compute queue if we 199 * have more than one compute queue. 200 */ 201 if (adev->gfx.num_compute_rings > 1 && 202 ring == &adev->gfx.compute_ring[0]) 203 return true; 204 205 return false; 206 } 207 208 void amdgpu_gfx_compute_queue_acquire(struct amdgpu_device *adev) 209 { 210 int i, j, queue, pipe; 211 bool multipipe_policy = amdgpu_gfx_is_compute_multipipe_capable(adev); 212 int max_queues_per_mec = min(adev->gfx.mec.num_pipe_per_mec * 213 adev->gfx.mec.num_queue_per_pipe, 214 adev->gfx.num_compute_rings); 215 int num_xcc = adev->gfx.xcc_mask ? NUM_XCC(adev->gfx.xcc_mask) : 1; 216 217 if (multipipe_policy) { 218 /* policy: make queues evenly cross all pipes on MEC1 only 219 * for multiple xcc, just use the original policy for simplicity */ 220 for (j = 0; j < num_xcc; j++) { 221 for (i = 0; i < max_queues_per_mec; i++) { 222 pipe = i % adev->gfx.mec.num_pipe_per_mec; 223 queue = (i / adev->gfx.mec.num_pipe_per_mec) % 224 adev->gfx.mec.num_queue_per_pipe; 225 226 set_bit(pipe * adev->gfx.mec.num_queue_per_pipe + queue, 227 adev->gfx.mec_bitmap[j].queue_bitmap); 228 } 229 } 230 } else { 231 /* policy: amdgpu owns all queues in the given pipe */ 232 for (j = 0; j < num_xcc; j++) { 233 for (i = 0; i < max_queues_per_mec; ++i) 234 set_bit(i, adev->gfx.mec_bitmap[j].queue_bitmap); 235 } 236 } 237 238 for (j = 0; j < num_xcc; j++) { 239 dev_dbg(adev->dev, "mec queue bitmap weight=%d\n", 240 bitmap_weight(adev->gfx.mec_bitmap[j].queue_bitmap, AMDGPU_MAX_COMPUTE_QUEUES)); 241 } 242 } 243 244 void amdgpu_gfx_graphics_queue_acquire(struct amdgpu_device *adev) 245 { 246 int i, queue, pipe; 247 bool multipipe_policy = amdgpu_gfx_is_graphics_multipipe_capable(adev); 248 int max_queues_per_me = adev->gfx.me.num_pipe_per_me * 249 adev->gfx.me.num_queue_per_pipe; 250 251 if (multipipe_policy) { 252 /* policy: amdgpu owns the first queue per pipe at this stage 253 * will extend to mulitple queues per pipe later */ 254 for (i = 0; i < max_queues_per_me; i++) { 255 pipe = i % adev->gfx.me.num_pipe_per_me; 256 queue = (i / adev->gfx.me.num_pipe_per_me) % 257 adev->gfx.me.num_queue_per_pipe; 258 259 set_bit(pipe * adev->gfx.me.num_queue_per_pipe + queue, 260 adev->gfx.me.queue_bitmap); 261 } 262 } else { 263 for (i = 0; i < max_queues_per_me; ++i) 264 set_bit(i, adev->gfx.me.queue_bitmap); 265 } 266 267 /* update the number of active graphics rings */ 268 adev->gfx.num_gfx_rings = 269 bitmap_weight(adev->gfx.me.queue_bitmap, AMDGPU_MAX_GFX_QUEUES); 270 } 271 272 static int amdgpu_gfx_kiq_acquire(struct amdgpu_device *adev, 273 struct amdgpu_ring *ring, int xcc_id) 274 { 275 int queue_bit; 276 int mec, pipe, queue; 277 278 queue_bit = adev->gfx.mec.num_mec 279 * adev->gfx.mec.num_pipe_per_mec 280 * adev->gfx.mec.num_queue_per_pipe; 281 282 while (--queue_bit >= 0) { 283 if (test_bit(queue_bit, adev->gfx.mec_bitmap[xcc_id].queue_bitmap)) 284 continue; 285 286 amdgpu_queue_mask_bit_to_mec_queue(adev, queue_bit, &mec, &pipe, &queue); 287 288 /* 289 * 1. Using pipes 2/3 from MEC 2 seems cause problems. 290 * 2. It must use queue id 0, because CGPG_IDLE/SAVE/LOAD/RUN 291 * only can be issued on queue 0. 292 */ 293 if ((mec == 1 && pipe > 1) || queue != 0) 294 continue; 295 296 ring->me = mec + 1; 297 ring->pipe = pipe; 298 ring->queue = queue; 299 300 return 0; 301 } 302 303 dev_err(adev->dev, "Failed to find a queue for KIQ\n"); 304 return -EINVAL; 305 } 306 307 int amdgpu_gfx_kiq_init_ring(struct amdgpu_device *adev, 308 struct amdgpu_ring *ring, 309 struct amdgpu_irq_src *irq, int xcc_id) 310 { 311 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 312 int r = 0; 313 314 spin_lock_init(&kiq->ring_lock); 315 316 ring->adev = NULL; 317 ring->ring_obj = NULL; 318 ring->use_doorbell = true; 319 ring->xcc_id = xcc_id; 320 ring->vm_hub = AMDGPU_GFXHUB(xcc_id); 321 ring->doorbell_index = 322 (adev->doorbell_index.kiq + 323 xcc_id * adev->doorbell_index.xcc_doorbell_range) 324 << 1; 325 326 r = amdgpu_gfx_kiq_acquire(adev, ring, xcc_id); 327 if (r) 328 return r; 329 330 ring->eop_gpu_addr = kiq->eop_gpu_addr; 331 ring->no_scheduler = true; 332 sprintf(ring->name, "kiq_%d.%d.%d.%d", xcc_id, ring->me, ring->pipe, ring->queue); 333 r = amdgpu_ring_init(adev, ring, 1024, irq, AMDGPU_CP_KIQ_IRQ_DRIVER0, 334 AMDGPU_RING_PRIO_DEFAULT, NULL); 335 if (r) 336 dev_warn(adev->dev, "(%d) failed to init kiq ring\n", r); 337 338 return r; 339 } 340 341 void amdgpu_gfx_kiq_free_ring(struct amdgpu_ring *ring) 342 { 343 amdgpu_ring_fini(ring); 344 } 345 346 void amdgpu_gfx_kiq_fini(struct amdgpu_device *adev, int xcc_id) 347 { 348 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 349 350 amdgpu_bo_free_kernel(&kiq->eop_obj, &kiq->eop_gpu_addr, NULL); 351 } 352 353 int amdgpu_gfx_kiq_init(struct amdgpu_device *adev, 354 unsigned int hpd_size, int xcc_id) 355 { 356 int r; 357 u32 *hpd; 358 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 359 360 r = amdgpu_bo_create_kernel(adev, hpd_size, PAGE_SIZE, 361 AMDGPU_GEM_DOMAIN_GTT, &kiq->eop_obj, 362 &kiq->eop_gpu_addr, (void **)&hpd); 363 if (r) { 364 dev_warn(adev->dev, "failed to create KIQ bo (%d).\n", r); 365 return r; 366 } 367 368 memset(hpd, 0, hpd_size); 369 370 r = amdgpu_bo_reserve(kiq->eop_obj, true); 371 if (unlikely(r != 0)) 372 dev_warn(adev->dev, "(%d) reserve kiq eop bo failed\n", r); 373 amdgpu_bo_kunmap(kiq->eop_obj); 374 amdgpu_bo_unreserve(kiq->eop_obj); 375 376 return 0; 377 } 378 379 /* create MQD for each compute/gfx queue */ 380 int amdgpu_gfx_mqd_sw_init(struct amdgpu_device *adev, 381 unsigned int mqd_size, int xcc_id) 382 { 383 int r, i, j; 384 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 385 struct amdgpu_ring *ring = &kiq->ring; 386 u32 domain = AMDGPU_GEM_DOMAIN_GTT; 387 388 /* Only enable on gfx10 and 11 for now to avoid changing behavior on older chips */ 389 if (amdgpu_ip_version(adev, GC_HWIP, 0) >= IP_VERSION(10, 0, 0)) 390 domain |= AMDGPU_GEM_DOMAIN_VRAM; 391 392 /* create MQD for KIQ */ 393 if (!adev->enable_mes_kiq && !ring->mqd_obj) { 394 /* originaly the KIQ MQD is put in GTT domain, but for SRIOV VRAM domain is a must 395 * otherwise hypervisor trigger SAVE_VF fail after driver unloaded which mean MQD 396 * deallocated and gart_unbind, to strict diverage we decide to use VRAM domain for 397 * KIQ MQD no matter SRIOV or Bare-metal 398 */ 399 r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE, 400 AMDGPU_GEM_DOMAIN_VRAM | 401 AMDGPU_GEM_DOMAIN_GTT, 402 &ring->mqd_obj, 403 &ring->mqd_gpu_addr, 404 &ring->mqd_ptr); 405 if (r) { 406 dev_warn(adev->dev, "failed to create ring mqd ob (%d)", r); 407 return r; 408 } 409 410 /* prepare MQD backup */ 411 kiq->mqd_backup = kmalloc(mqd_size, GFP_KERNEL); 412 if (!kiq->mqd_backup) { 413 dev_warn(adev->dev, 414 "no memory to create MQD backup for ring %s\n", ring->name); 415 return -ENOMEM; 416 } 417 } 418 419 if (adev->asic_type >= CHIP_NAVI10 && amdgpu_async_gfx_ring) { 420 /* create MQD for each KGQ */ 421 for (i = 0; i < adev->gfx.num_gfx_rings; i++) { 422 ring = &adev->gfx.gfx_ring[i]; 423 if (!ring->mqd_obj) { 424 r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE, 425 domain, &ring->mqd_obj, 426 &ring->mqd_gpu_addr, &ring->mqd_ptr); 427 if (r) { 428 dev_warn(adev->dev, "failed to create ring mqd bo (%d)", r); 429 return r; 430 } 431 432 ring->mqd_size = mqd_size; 433 /* prepare MQD backup */ 434 adev->gfx.me.mqd_backup[i] = kmalloc(mqd_size, GFP_KERNEL); 435 if (!adev->gfx.me.mqd_backup[i]) { 436 dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name); 437 return -ENOMEM; 438 } 439 } 440 } 441 } 442 443 /* create MQD for each KCQ */ 444 for (i = 0; i < adev->gfx.num_compute_rings; i++) { 445 j = i + xcc_id * adev->gfx.num_compute_rings; 446 ring = &adev->gfx.compute_ring[j]; 447 if (!ring->mqd_obj) { 448 r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE, 449 domain, &ring->mqd_obj, 450 &ring->mqd_gpu_addr, &ring->mqd_ptr); 451 if (r) { 452 dev_warn(adev->dev, "failed to create ring mqd bo (%d)", r); 453 return r; 454 } 455 456 ring->mqd_size = mqd_size; 457 /* prepare MQD backup */ 458 adev->gfx.mec.mqd_backup[j] = kmalloc(mqd_size, GFP_KERNEL); 459 if (!adev->gfx.mec.mqd_backup[j]) { 460 dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name); 461 return -ENOMEM; 462 } 463 } 464 } 465 466 return 0; 467 } 468 469 void amdgpu_gfx_mqd_sw_fini(struct amdgpu_device *adev, int xcc_id) 470 { 471 struct amdgpu_ring *ring = NULL; 472 int i, j; 473 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 474 475 if (adev->asic_type >= CHIP_NAVI10 && amdgpu_async_gfx_ring) { 476 for (i = 0; i < adev->gfx.num_gfx_rings; i++) { 477 ring = &adev->gfx.gfx_ring[i]; 478 kfree(adev->gfx.me.mqd_backup[i]); 479 amdgpu_bo_free_kernel(&ring->mqd_obj, 480 &ring->mqd_gpu_addr, 481 &ring->mqd_ptr); 482 } 483 } 484 485 for (i = 0; i < adev->gfx.num_compute_rings; i++) { 486 j = i + xcc_id * adev->gfx.num_compute_rings; 487 ring = &adev->gfx.compute_ring[j]; 488 kfree(adev->gfx.mec.mqd_backup[j]); 489 amdgpu_bo_free_kernel(&ring->mqd_obj, 490 &ring->mqd_gpu_addr, 491 &ring->mqd_ptr); 492 } 493 494 ring = &kiq->ring; 495 kfree(kiq->mqd_backup); 496 amdgpu_bo_free_kernel(&ring->mqd_obj, 497 &ring->mqd_gpu_addr, 498 &ring->mqd_ptr); 499 } 500 501 int amdgpu_gfx_disable_kcq(struct amdgpu_device *adev, int xcc_id) 502 { 503 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 504 struct amdgpu_ring *kiq_ring = &kiq->ring; 505 struct amdgpu_hive_info *hive; 506 struct amdgpu_ras *ras; 507 int hive_ras_recovery = 0; 508 int i, r = 0; 509 int j; 510 511 if (!kiq->pmf || !kiq->pmf->kiq_unmap_queues) 512 return -EINVAL; 513 514 spin_lock(&kiq->ring_lock); 515 if (amdgpu_ring_alloc(kiq_ring, kiq->pmf->unmap_queues_size * 516 adev->gfx.num_compute_rings)) { 517 spin_unlock(&kiq->ring_lock); 518 return -ENOMEM; 519 } 520 521 for (i = 0; i < adev->gfx.num_compute_rings; i++) { 522 j = i + xcc_id * adev->gfx.num_compute_rings; 523 kiq->pmf->kiq_unmap_queues(kiq_ring, 524 &adev->gfx.compute_ring[j], 525 RESET_QUEUES, 0, 0); 526 } 527 528 /** 529 * This is workaround: only skip kiq_ring test 530 * during ras recovery in suspend stage for gfx9.4.3 531 */ 532 hive = amdgpu_get_xgmi_hive(adev); 533 if (hive) { 534 hive_ras_recovery = atomic_read(&hive->ras_recovery); 535 amdgpu_put_xgmi_hive(hive); 536 } 537 538 ras = amdgpu_ras_get_context(adev); 539 if ((amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 3)) && 540 ras && (atomic_read(&ras->in_recovery) || hive_ras_recovery)) { 541 spin_unlock(&kiq->ring_lock); 542 return 0; 543 } 544 545 if (kiq_ring->sched.ready && !adev->job_hang) 546 r = amdgpu_ring_test_helper(kiq_ring); 547 spin_unlock(&kiq->ring_lock); 548 549 return r; 550 } 551 552 int amdgpu_gfx_disable_kgq(struct amdgpu_device *adev, int xcc_id) 553 { 554 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 555 struct amdgpu_ring *kiq_ring = &kiq->ring; 556 int i, r = 0; 557 int j; 558 559 if (!kiq->pmf || !kiq->pmf->kiq_unmap_queues) 560 return -EINVAL; 561 562 spin_lock(&kiq->ring_lock); 563 if (amdgpu_gfx_is_master_xcc(adev, xcc_id)) { 564 if (amdgpu_ring_alloc(kiq_ring, kiq->pmf->unmap_queues_size * 565 adev->gfx.num_gfx_rings)) { 566 spin_unlock(&kiq->ring_lock); 567 return -ENOMEM; 568 } 569 570 for (i = 0; i < adev->gfx.num_gfx_rings; i++) { 571 j = i + xcc_id * adev->gfx.num_gfx_rings; 572 kiq->pmf->kiq_unmap_queues(kiq_ring, 573 &adev->gfx.gfx_ring[j], 574 PREEMPT_QUEUES, 0, 0); 575 } 576 } 577 578 if (adev->gfx.kiq[0].ring.sched.ready && !adev->job_hang) 579 r = amdgpu_ring_test_helper(kiq_ring); 580 spin_unlock(&kiq->ring_lock); 581 582 return r; 583 } 584 585 int amdgpu_queue_mask_bit_to_set_resource_bit(struct amdgpu_device *adev, 586 int queue_bit) 587 { 588 int mec, pipe, queue; 589 int set_resource_bit = 0; 590 591 amdgpu_queue_mask_bit_to_mec_queue(adev, queue_bit, &mec, &pipe, &queue); 592 593 set_resource_bit = mec * 4 * 8 + pipe * 8 + queue; 594 595 return set_resource_bit; 596 } 597 598 int amdgpu_gfx_enable_kcq(struct amdgpu_device *adev, int xcc_id) 599 { 600 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 601 struct amdgpu_ring *kiq_ring = &kiq->ring; 602 uint64_t queue_mask = 0; 603 int r, i, j; 604 605 if (!kiq->pmf || !kiq->pmf->kiq_map_queues || !kiq->pmf->kiq_set_resources) 606 return -EINVAL; 607 608 for (i = 0; i < AMDGPU_MAX_COMPUTE_QUEUES; ++i) { 609 if (!test_bit(i, adev->gfx.mec_bitmap[xcc_id].queue_bitmap)) 610 continue; 611 612 /* This situation may be hit in the future if a new HW 613 * generation exposes more than 64 queues. If so, the 614 * definition of queue_mask needs updating */ 615 if (WARN_ON(i > (sizeof(queue_mask)*8))) { 616 DRM_ERROR("Invalid KCQ enabled: %d\n", i); 617 break; 618 } 619 620 queue_mask |= (1ull << amdgpu_queue_mask_bit_to_set_resource_bit(adev, i)); 621 } 622 623 DRM_INFO("kiq ring mec %d pipe %d q %d\n", kiq_ring->me, kiq_ring->pipe, 624 kiq_ring->queue); 625 amdgpu_device_flush_hdp(adev, NULL); 626 627 spin_lock(&kiq->ring_lock); 628 r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->map_queues_size * 629 adev->gfx.num_compute_rings + 630 kiq->pmf->set_resources_size); 631 if (r) { 632 DRM_ERROR("Failed to lock KIQ (%d).\n", r); 633 spin_unlock(&kiq->ring_lock); 634 return r; 635 } 636 637 if (adev->enable_mes) 638 queue_mask = ~0ULL; 639 640 kiq->pmf->kiq_set_resources(kiq_ring, queue_mask); 641 for (i = 0; i < adev->gfx.num_compute_rings; i++) { 642 j = i + xcc_id * adev->gfx.num_compute_rings; 643 kiq->pmf->kiq_map_queues(kiq_ring, 644 &adev->gfx.compute_ring[j]); 645 } 646 647 r = amdgpu_ring_test_helper(kiq_ring); 648 spin_unlock(&kiq->ring_lock); 649 if (r) 650 DRM_ERROR("KCQ enable failed\n"); 651 652 return r; 653 } 654 655 int amdgpu_gfx_enable_kgq(struct amdgpu_device *adev, int xcc_id) 656 { 657 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 658 struct amdgpu_ring *kiq_ring = &kiq->ring; 659 int r, i, j; 660 661 if (!kiq->pmf || !kiq->pmf->kiq_map_queues) 662 return -EINVAL; 663 664 amdgpu_device_flush_hdp(adev, NULL); 665 666 spin_lock(&kiq->ring_lock); 667 /* No need to map kcq on the slave */ 668 if (amdgpu_gfx_is_master_xcc(adev, xcc_id)) { 669 r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->map_queues_size * 670 adev->gfx.num_gfx_rings); 671 if (r) { 672 DRM_ERROR("Failed to lock KIQ (%d).\n", r); 673 spin_unlock(&kiq->ring_lock); 674 return r; 675 } 676 677 for (i = 0; i < adev->gfx.num_gfx_rings; i++) { 678 j = i + xcc_id * adev->gfx.num_gfx_rings; 679 kiq->pmf->kiq_map_queues(kiq_ring, 680 &adev->gfx.gfx_ring[j]); 681 } 682 } 683 684 r = amdgpu_ring_test_helper(kiq_ring); 685 spin_unlock(&kiq->ring_lock); 686 if (r) 687 DRM_ERROR("KCQ enable failed\n"); 688 689 return r; 690 } 691 692 /* amdgpu_gfx_off_ctrl - Handle gfx off feature enable/disable 693 * 694 * @adev: amdgpu_device pointer 695 * @bool enable true: enable gfx off feature, false: disable gfx off feature 696 * 697 * 1. gfx off feature will be enabled by gfx ip after gfx cg gp enabled. 698 * 2. other client can send request to disable gfx off feature, the request should be honored. 699 * 3. other client can cancel their request of disable gfx off feature 700 * 4. other client should not send request to enable gfx off feature before disable gfx off feature. 701 */ 702 703 void amdgpu_gfx_off_ctrl(struct amdgpu_device *adev, bool enable) 704 { 705 unsigned long delay = GFX_OFF_DELAY_ENABLE; 706 707 if (!(adev->pm.pp_feature & PP_GFXOFF_MASK)) 708 return; 709 710 mutex_lock(&adev->gfx.gfx_off_mutex); 711 712 if (enable) { 713 /* If the count is already 0, it means there's an imbalance bug somewhere. 714 * Note that the bug may be in a different caller than the one which triggers the 715 * WARN_ON_ONCE. 716 */ 717 if (WARN_ON_ONCE(adev->gfx.gfx_off_req_count == 0)) 718 goto unlock; 719 720 adev->gfx.gfx_off_req_count--; 721 722 if (adev->gfx.gfx_off_req_count == 0 && 723 !adev->gfx.gfx_off_state) { 724 schedule_delayed_work(&adev->gfx.gfx_off_delay_work, 725 delay); 726 } 727 } else { 728 if (adev->gfx.gfx_off_req_count == 0) { 729 cancel_delayed_work_sync(&adev->gfx.gfx_off_delay_work); 730 731 if (adev->gfx.gfx_off_state && 732 !amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_GFX, false)) { 733 adev->gfx.gfx_off_state = false; 734 735 if (adev->gfx.funcs->init_spm_golden) { 736 dev_dbg(adev->dev, 737 "GFXOFF is disabled, re-init SPM golden settings\n"); 738 amdgpu_gfx_init_spm_golden(adev); 739 } 740 } 741 } 742 743 adev->gfx.gfx_off_req_count++; 744 } 745 746 unlock: 747 mutex_unlock(&adev->gfx.gfx_off_mutex); 748 } 749 750 int amdgpu_set_gfx_off_residency(struct amdgpu_device *adev, bool value) 751 { 752 int r = 0; 753 754 mutex_lock(&adev->gfx.gfx_off_mutex); 755 756 r = amdgpu_dpm_set_residency_gfxoff(adev, value); 757 758 mutex_unlock(&adev->gfx.gfx_off_mutex); 759 760 return r; 761 } 762 763 int amdgpu_get_gfx_off_residency(struct amdgpu_device *adev, u32 *value) 764 { 765 int r = 0; 766 767 mutex_lock(&adev->gfx.gfx_off_mutex); 768 769 r = amdgpu_dpm_get_residency_gfxoff(adev, value); 770 771 mutex_unlock(&adev->gfx.gfx_off_mutex); 772 773 return r; 774 } 775 776 int amdgpu_get_gfx_off_entrycount(struct amdgpu_device *adev, u64 *value) 777 { 778 int r = 0; 779 780 mutex_lock(&adev->gfx.gfx_off_mutex); 781 782 r = amdgpu_dpm_get_entrycount_gfxoff(adev, value); 783 784 mutex_unlock(&adev->gfx.gfx_off_mutex); 785 786 return r; 787 } 788 789 int amdgpu_get_gfx_off_status(struct amdgpu_device *adev, uint32_t *value) 790 { 791 792 int r = 0; 793 794 mutex_lock(&adev->gfx.gfx_off_mutex); 795 796 r = amdgpu_dpm_get_status_gfxoff(adev, value); 797 798 mutex_unlock(&adev->gfx.gfx_off_mutex); 799 800 return r; 801 } 802 803 int amdgpu_gfx_ras_late_init(struct amdgpu_device *adev, struct ras_common_if *ras_block) 804 { 805 int r; 806 807 if (amdgpu_ras_is_supported(adev, ras_block->block)) { 808 if (!amdgpu_persistent_edc_harvesting_supported(adev)) 809 amdgpu_ras_reset_error_status(adev, AMDGPU_RAS_BLOCK__GFX); 810 811 r = amdgpu_ras_block_late_init(adev, ras_block); 812 if (r) 813 return r; 814 815 if (adev->gfx.cp_ecc_error_irq.funcs) { 816 r = amdgpu_irq_get(adev, &adev->gfx.cp_ecc_error_irq, 0); 817 if (r) 818 goto late_fini; 819 } 820 } else { 821 amdgpu_ras_feature_enable_on_boot(adev, ras_block, 0); 822 } 823 824 return 0; 825 late_fini: 826 amdgpu_ras_block_late_fini(adev, ras_block); 827 return r; 828 } 829 830 int amdgpu_gfx_ras_sw_init(struct amdgpu_device *adev) 831 { 832 int err = 0; 833 struct amdgpu_gfx_ras *ras = NULL; 834 835 /* adev->gfx.ras is NULL, which means gfx does not 836 * support ras function, then do nothing here. 837 */ 838 if (!adev->gfx.ras) 839 return 0; 840 841 ras = adev->gfx.ras; 842 843 err = amdgpu_ras_register_ras_block(adev, &ras->ras_block); 844 if (err) { 845 dev_err(adev->dev, "Failed to register gfx ras block!\n"); 846 return err; 847 } 848 849 strcpy(ras->ras_block.ras_comm.name, "gfx"); 850 ras->ras_block.ras_comm.block = AMDGPU_RAS_BLOCK__GFX; 851 ras->ras_block.ras_comm.type = AMDGPU_RAS_ERROR__MULTI_UNCORRECTABLE; 852 adev->gfx.ras_if = &ras->ras_block.ras_comm; 853 854 /* If not define special ras_late_init function, use gfx default ras_late_init */ 855 if (!ras->ras_block.ras_late_init) 856 ras->ras_block.ras_late_init = amdgpu_gfx_ras_late_init; 857 858 /* If not defined special ras_cb function, use default ras_cb */ 859 if (!ras->ras_block.ras_cb) 860 ras->ras_block.ras_cb = amdgpu_gfx_process_ras_data_cb; 861 862 return 0; 863 } 864 865 int amdgpu_gfx_poison_consumption_handler(struct amdgpu_device *adev, 866 struct amdgpu_iv_entry *entry) 867 { 868 if (adev->gfx.ras && adev->gfx.ras->poison_consumption_handler) 869 return adev->gfx.ras->poison_consumption_handler(adev, entry); 870 871 return 0; 872 } 873 874 int amdgpu_gfx_process_ras_data_cb(struct amdgpu_device *adev, 875 void *err_data, 876 struct amdgpu_iv_entry *entry) 877 { 878 /* TODO ue will trigger an interrupt. 879 * 880 * When “Full RAS” is enabled, the per-IP interrupt sources should 881 * be disabled and the driver should only look for the aggregated 882 * interrupt via sync flood 883 */ 884 if (!amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__GFX)) { 885 kgd2kfd_set_sram_ecc_flag(adev->kfd.dev); 886 if (adev->gfx.ras && adev->gfx.ras->ras_block.hw_ops && 887 adev->gfx.ras->ras_block.hw_ops->query_ras_error_count) 888 adev->gfx.ras->ras_block.hw_ops->query_ras_error_count(adev, err_data); 889 amdgpu_ras_reset_gpu(adev); 890 } 891 return AMDGPU_RAS_SUCCESS; 892 } 893 894 int amdgpu_gfx_cp_ecc_error_irq(struct amdgpu_device *adev, 895 struct amdgpu_irq_src *source, 896 struct amdgpu_iv_entry *entry) 897 { 898 struct ras_common_if *ras_if = adev->gfx.ras_if; 899 struct ras_dispatch_if ih_data = { 900 .entry = entry, 901 }; 902 903 if (!ras_if) 904 return 0; 905 906 ih_data.head = *ras_if; 907 908 DRM_ERROR("CP ECC ERROR IRQ\n"); 909 amdgpu_ras_interrupt_dispatch(adev, &ih_data); 910 return 0; 911 } 912 913 void amdgpu_gfx_ras_error_func(struct amdgpu_device *adev, 914 void *ras_error_status, 915 void (*func)(struct amdgpu_device *adev, void *ras_error_status, 916 int xcc_id)) 917 { 918 int i; 919 int num_xcc = adev->gfx.xcc_mask ? NUM_XCC(adev->gfx.xcc_mask) : 1; 920 uint32_t xcc_mask = GENMASK(num_xcc - 1, 0); 921 struct ras_err_data *err_data = (struct ras_err_data *)ras_error_status; 922 923 if (err_data) { 924 err_data->ue_count = 0; 925 err_data->ce_count = 0; 926 } 927 928 for_each_inst(i, xcc_mask) 929 func(adev, ras_error_status, i); 930 } 931 932 uint32_t amdgpu_kiq_rreg(struct amdgpu_device *adev, uint32_t reg) 933 { 934 signed long r, cnt = 0; 935 unsigned long flags; 936 uint32_t seq, reg_val_offs = 0, value = 0; 937 struct amdgpu_kiq *kiq = &adev->gfx.kiq[0]; 938 struct amdgpu_ring *ring = &kiq->ring; 939 940 if (amdgpu_device_skip_hw_access(adev)) 941 return 0; 942 943 if (adev->mes.ring.sched.ready) 944 return amdgpu_mes_rreg(adev, reg); 945 946 BUG_ON(!ring->funcs->emit_rreg); 947 948 spin_lock_irqsave(&kiq->ring_lock, flags); 949 if (amdgpu_device_wb_get(adev, ®_val_offs)) { 950 pr_err("critical bug! too many kiq readers\n"); 951 goto failed_unlock; 952 } 953 amdgpu_ring_alloc(ring, 32); 954 amdgpu_ring_emit_rreg(ring, reg, reg_val_offs); 955 r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT); 956 if (r) 957 goto failed_undo; 958 959 amdgpu_ring_commit(ring); 960 spin_unlock_irqrestore(&kiq->ring_lock, flags); 961 962 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); 963 964 /* don't wait anymore for gpu reset case because this way may 965 * block gpu_recover() routine forever, e.g. this virt_kiq_rreg 966 * is triggered in TTM and ttm_bo_lock_delayed_workqueue() will 967 * never return if we keep waiting in virt_kiq_rreg, which cause 968 * gpu_recover() hang there. 969 * 970 * also don't wait anymore for IRQ context 971 * */ 972 if (r < 1 && (amdgpu_in_reset(adev) || in_interrupt())) 973 goto failed_kiq_read; 974 975 might_sleep(); 976 while (r < 1 && cnt++ < MAX_KIQ_REG_TRY) { 977 msleep(MAX_KIQ_REG_BAILOUT_INTERVAL); 978 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); 979 } 980 981 if (cnt > MAX_KIQ_REG_TRY) 982 goto failed_kiq_read; 983 984 mb(); 985 value = adev->wb.wb[reg_val_offs]; 986 amdgpu_device_wb_free(adev, reg_val_offs); 987 return value; 988 989 failed_undo: 990 amdgpu_ring_undo(ring); 991 failed_unlock: 992 spin_unlock_irqrestore(&kiq->ring_lock, flags); 993 failed_kiq_read: 994 if (reg_val_offs) 995 amdgpu_device_wb_free(adev, reg_val_offs); 996 dev_err(adev->dev, "failed to read reg:%x\n", reg); 997 return ~0; 998 } 999 1000 void amdgpu_kiq_wreg(struct amdgpu_device *adev, uint32_t reg, uint32_t v) 1001 { 1002 signed long r, cnt = 0; 1003 unsigned long flags; 1004 uint32_t seq; 1005 struct amdgpu_kiq *kiq = &adev->gfx.kiq[0]; 1006 struct amdgpu_ring *ring = &kiq->ring; 1007 1008 BUG_ON(!ring->funcs->emit_wreg); 1009 1010 if (amdgpu_device_skip_hw_access(adev)) 1011 return; 1012 1013 if (adev->mes.ring.sched.ready) { 1014 amdgpu_mes_wreg(adev, reg, v); 1015 return; 1016 } 1017 1018 spin_lock_irqsave(&kiq->ring_lock, flags); 1019 amdgpu_ring_alloc(ring, 32); 1020 amdgpu_ring_emit_wreg(ring, reg, v); 1021 r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT); 1022 if (r) 1023 goto failed_undo; 1024 1025 amdgpu_ring_commit(ring); 1026 spin_unlock_irqrestore(&kiq->ring_lock, flags); 1027 1028 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); 1029 1030 /* don't wait anymore for gpu reset case because this way may 1031 * block gpu_recover() routine forever, e.g. this virt_kiq_rreg 1032 * is triggered in TTM and ttm_bo_lock_delayed_workqueue() will 1033 * never return if we keep waiting in virt_kiq_rreg, which cause 1034 * gpu_recover() hang there. 1035 * 1036 * also don't wait anymore for IRQ context 1037 * */ 1038 if (r < 1 && (amdgpu_in_reset(adev) || in_interrupt())) 1039 goto failed_kiq_write; 1040 1041 might_sleep(); 1042 while (r < 1 && cnt++ < MAX_KIQ_REG_TRY) { 1043 1044 msleep(MAX_KIQ_REG_BAILOUT_INTERVAL); 1045 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); 1046 } 1047 1048 if (cnt > MAX_KIQ_REG_TRY) 1049 goto failed_kiq_write; 1050 1051 return; 1052 1053 failed_undo: 1054 amdgpu_ring_undo(ring); 1055 spin_unlock_irqrestore(&kiq->ring_lock, flags); 1056 failed_kiq_write: 1057 dev_err(adev->dev, "failed to write reg:%x\n", reg); 1058 } 1059 1060 int amdgpu_gfx_get_num_kcq(struct amdgpu_device *adev) 1061 { 1062 if (amdgpu_num_kcq == -1) { 1063 return 8; 1064 } else if (amdgpu_num_kcq > 8 || amdgpu_num_kcq < 0) { 1065 dev_warn(adev->dev, "set kernel compute queue number to 8 due to invalid parameter provided by user\n"); 1066 return 8; 1067 } 1068 return amdgpu_num_kcq; 1069 } 1070 1071 void amdgpu_gfx_cp_init_microcode(struct amdgpu_device *adev, 1072 uint32_t ucode_id) 1073 { 1074 const struct gfx_firmware_header_v1_0 *cp_hdr; 1075 const struct gfx_firmware_header_v2_0 *cp_hdr_v2_0; 1076 struct amdgpu_firmware_info *info = NULL; 1077 const struct firmware *ucode_fw; 1078 unsigned int fw_size; 1079 1080 switch (ucode_id) { 1081 case AMDGPU_UCODE_ID_CP_PFP: 1082 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1083 adev->gfx.pfp_fw->data; 1084 adev->gfx.pfp_fw_version = 1085 le32_to_cpu(cp_hdr->header.ucode_version); 1086 adev->gfx.pfp_feature_version = 1087 le32_to_cpu(cp_hdr->ucode_feature_version); 1088 ucode_fw = adev->gfx.pfp_fw; 1089 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes); 1090 break; 1091 case AMDGPU_UCODE_ID_CP_RS64_PFP: 1092 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) 1093 adev->gfx.pfp_fw->data; 1094 adev->gfx.pfp_fw_version = 1095 le32_to_cpu(cp_hdr_v2_0->header.ucode_version); 1096 adev->gfx.pfp_feature_version = 1097 le32_to_cpu(cp_hdr_v2_0->ucode_feature_version); 1098 ucode_fw = adev->gfx.pfp_fw; 1099 fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes); 1100 break; 1101 case AMDGPU_UCODE_ID_CP_RS64_PFP_P0_STACK: 1102 case AMDGPU_UCODE_ID_CP_RS64_PFP_P1_STACK: 1103 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) 1104 adev->gfx.pfp_fw->data; 1105 ucode_fw = adev->gfx.pfp_fw; 1106 fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes); 1107 break; 1108 case AMDGPU_UCODE_ID_CP_ME: 1109 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1110 adev->gfx.me_fw->data; 1111 adev->gfx.me_fw_version = 1112 le32_to_cpu(cp_hdr->header.ucode_version); 1113 adev->gfx.me_feature_version = 1114 le32_to_cpu(cp_hdr->ucode_feature_version); 1115 ucode_fw = adev->gfx.me_fw; 1116 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes); 1117 break; 1118 case AMDGPU_UCODE_ID_CP_RS64_ME: 1119 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) 1120 adev->gfx.me_fw->data; 1121 adev->gfx.me_fw_version = 1122 le32_to_cpu(cp_hdr_v2_0->header.ucode_version); 1123 adev->gfx.me_feature_version = 1124 le32_to_cpu(cp_hdr_v2_0->ucode_feature_version); 1125 ucode_fw = adev->gfx.me_fw; 1126 fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes); 1127 break; 1128 case AMDGPU_UCODE_ID_CP_RS64_ME_P0_STACK: 1129 case AMDGPU_UCODE_ID_CP_RS64_ME_P1_STACK: 1130 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) 1131 adev->gfx.me_fw->data; 1132 ucode_fw = adev->gfx.me_fw; 1133 fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes); 1134 break; 1135 case AMDGPU_UCODE_ID_CP_CE: 1136 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1137 adev->gfx.ce_fw->data; 1138 adev->gfx.ce_fw_version = 1139 le32_to_cpu(cp_hdr->header.ucode_version); 1140 adev->gfx.ce_feature_version = 1141 le32_to_cpu(cp_hdr->ucode_feature_version); 1142 ucode_fw = adev->gfx.ce_fw; 1143 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes); 1144 break; 1145 case AMDGPU_UCODE_ID_CP_MEC1: 1146 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1147 adev->gfx.mec_fw->data; 1148 adev->gfx.mec_fw_version = 1149 le32_to_cpu(cp_hdr->header.ucode_version); 1150 adev->gfx.mec_feature_version = 1151 le32_to_cpu(cp_hdr->ucode_feature_version); 1152 ucode_fw = adev->gfx.mec_fw; 1153 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes) - 1154 le32_to_cpu(cp_hdr->jt_size) * 4; 1155 break; 1156 case AMDGPU_UCODE_ID_CP_MEC1_JT: 1157 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1158 adev->gfx.mec_fw->data; 1159 ucode_fw = adev->gfx.mec_fw; 1160 fw_size = le32_to_cpu(cp_hdr->jt_size) * 4; 1161 break; 1162 case AMDGPU_UCODE_ID_CP_MEC2: 1163 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1164 adev->gfx.mec2_fw->data; 1165 adev->gfx.mec2_fw_version = 1166 le32_to_cpu(cp_hdr->header.ucode_version); 1167 adev->gfx.mec2_feature_version = 1168 le32_to_cpu(cp_hdr->ucode_feature_version); 1169 ucode_fw = adev->gfx.mec2_fw; 1170 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes) - 1171 le32_to_cpu(cp_hdr->jt_size) * 4; 1172 break; 1173 case AMDGPU_UCODE_ID_CP_MEC2_JT: 1174 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1175 adev->gfx.mec2_fw->data; 1176 ucode_fw = adev->gfx.mec2_fw; 1177 fw_size = le32_to_cpu(cp_hdr->jt_size) * 4; 1178 break; 1179 case AMDGPU_UCODE_ID_CP_RS64_MEC: 1180 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) 1181 adev->gfx.mec_fw->data; 1182 adev->gfx.mec_fw_version = 1183 le32_to_cpu(cp_hdr_v2_0->header.ucode_version); 1184 adev->gfx.mec_feature_version = 1185 le32_to_cpu(cp_hdr_v2_0->ucode_feature_version); 1186 ucode_fw = adev->gfx.mec_fw; 1187 fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes); 1188 break; 1189 case AMDGPU_UCODE_ID_CP_RS64_MEC_P0_STACK: 1190 case AMDGPU_UCODE_ID_CP_RS64_MEC_P1_STACK: 1191 case AMDGPU_UCODE_ID_CP_RS64_MEC_P2_STACK: 1192 case AMDGPU_UCODE_ID_CP_RS64_MEC_P3_STACK: 1193 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) 1194 adev->gfx.mec_fw->data; 1195 ucode_fw = adev->gfx.mec_fw; 1196 fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes); 1197 break; 1198 default: 1199 break; 1200 } 1201 1202 if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) { 1203 info = &adev->firmware.ucode[ucode_id]; 1204 info->ucode_id = ucode_id; 1205 info->fw = ucode_fw; 1206 adev->firmware.fw_size += ALIGN(fw_size, PAGE_SIZE); 1207 } 1208 } 1209 1210 bool amdgpu_gfx_is_master_xcc(struct amdgpu_device *adev, int xcc_id) 1211 { 1212 return !(xcc_id % (adev->gfx.num_xcc_per_xcp ? 1213 adev->gfx.num_xcc_per_xcp : 1)); 1214 } 1215 1216 static ssize_t amdgpu_gfx_get_current_compute_partition(struct device *dev, 1217 struct device_attribute *addr, 1218 char *buf) 1219 { 1220 struct drm_device *ddev = dev_get_drvdata(dev); 1221 struct amdgpu_device *adev = drm_to_adev(ddev); 1222 int mode; 1223 1224 mode = amdgpu_xcp_query_partition_mode(adev->xcp_mgr, 1225 AMDGPU_XCP_FL_NONE); 1226 1227 return sysfs_emit(buf, "%s\n", amdgpu_gfx_compute_mode_desc(mode)); 1228 } 1229 1230 static ssize_t amdgpu_gfx_set_compute_partition(struct device *dev, 1231 struct device_attribute *addr, 1232 const char *buf, size_t count) 1233 { 1234 struct drm_device *ddev = dev_get_drvdata(dev); 1235 struct amdgpu_device *adev = drm_to_adev(ddev); 1236 enum amdgpu_gfx_partition mode; 1237 int ret = 0, num_xcc; 1238 1239 num_xcc = NUM_XCC(adev->gfx.xcc_mask); 1240 if (num_xcc % 2 != 0) 1241 return -EINVAL; 1242 1243 if (!strncasecmp("SPX", buf, strlen("SPX"))) { 1244 mode = AMDGPU_SPX_PARTITION_MODE; 1245 } else if (!strncasecmp("DPX", buf, strlen("DPX"))) { 1246 /* 1247 * DPX mode needs AIDs to be in multiple of 2. 1248 * Each AID connects 2 XCCs. 1249 */ 1250 if (num_xcc%4) 1251 return -EINVAL; 1252 mode = AMDGPU_DPX_PARTITION_MODE; 1253 } else if (!strncasecmp("TPX", buf, strlen("TPX"))) { 1254 if (num_xcc != 6) 1255 return -EINVAL; 1256 mode = AMDGPU_TPX_PARTITION_MODE; 1257 } else if (!strncasecmp("QPX", buf, strlen("QPX"))) { 1258 if (num_xcc != 8) 1259 return -EINVAL; 1260 mode = AMDGPU_QPX_PARTITION_MODE; 1261 } else if (!strncasecmp("CPX", buf, strlen("CPX"))) { 1262 mode = AMDGPU_CPX_PARTITION_MODE; 1263 } else { 1264 return -EINVAL; 1265 } 1266 1267 ret = amdgpu_xcp_switch_partition_mode(adev->xcp_mgr, mode); 1268 1269 if (ret) 1270 return ret; 1271 1272 return count; 1273 } 1274 1275 static ssize_t amdgpu_gfx_get_available_compute_partition(struct device *dev, 1276 struct device_attribute *addr, 1277 char *buf) 1278 { 1279 struct drm_device *ddev = dev_get_drvdata(dev); 1280 struct amdgpu_device *adev = drm_to_adev(ddev); 1281 char *supported_partition; 1282 1283 /* TBD */ 1284 switch (NUM_XCC(adev->gfx.xcc_mask)) { 1285 case 8: 1286 supported_partition = "SPX, DPX, QPX, CPX"; 1287 break; 1288 case 6: 1289 supported_partition = "SPX, TPX, CPX"; 1290 break; 1291 case 4: 1292 supported_partition = "SPX, DPX, CPX"; 1293 break; 1294 /* this seems only existing in emulation phase */ 1295 case 2: 1296 supported_partition = "SPX, CPX"; 1297 break; 1298 default: 1299 supported_partition = "Not supported"; 1300 break; 1301 } 1302 1303 return sysfs_emit(buf, "%s\n", supported_partition); 1304 } 1305 1306 static DEVICE_ATTR(current_compute_partition, 0644, 1307 amdgpu_gfx_get_current_compute_partition, 1308 amdgpu_gfx_set_compute_partition); 1309 1310 static DEVICE_ATTR(available_compute_partition, 0444, 1311 amdgpu_gfx_get_available_compute_partition, NULL); 1312 1313 int amdgpu_gfx_sysfs_init(struct amdgpu_device *adev) 1314 { 1315 int r; 1316 1317 r = device_create_file(adev->dev, &dev_attr_current_compute_partition); 1318 if (r) 1319 return r; 1320 1321 r = device_create_file(adev->dev, &dev_attr_available_compute_partition); 1322 1323 return r; 1324 } 1325 1326 void amdgpu_gfx_sysfs_fini(struct amdgpu_device *adev) 1327 { 1328 device_remove_file(adev->dev, &dev_attr_current_compute_partition); 1329 device_remove_file(adev->dev, &dev_attr_available_compute_partition); 1330 } 1331