xref: /linux/drivers/gpu/drm/amd/amdgpu/amdgpu_gfx.c (revision 76e3b62db9bf2dbedc5f41070684fdec64cd71a6)
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  * Copyright 2008 Red Hat Inc.
4  * Copyright 2009 Jerome Glisse.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  *
24  */
25 
26 #include <linux/firmware.h>
27 #include <linux/pm_runtime.h>
28 
29 #include "amdgpu.h"
30 #include "amdgpu_gfx.h"
31 #include "amdgpu_rlc.h"
32 #include "amdgpu_ras.h"
33 #include "amdgpu_reset.h"
34 #include "amdgpu_xcp.h"
35 #include "amdgpu_xgmi.h"
36 
37 /* delay 0.1 second to enable gfx off feature */
38 #define GFX_OFF_DELAY_ENABLE         msecs_to_jiffies(100)
39 
40 #define GFX_OFF_NO_DELAY 0
41 
42 /*
43  * GPU GFX IP block helpers function.
44  */
45 
46 int amdgpu_gfx_mec_queue_to_bit(struct amdgpu_device *adev, int mec,
47 				int pipe, int queue)
48 {
49 	int bit = 0;
50 
51 	bit += mec * adev->gfx.mec.num_pipe_per_mec
52 		* adev->gfx.mec.num_queue_per_pipe;
53 	bit += pipe * adev->gfx.mec.num_queue_per_pipe;
54 	bit += queue;
55 
56 	return bit;
57 }
58 
59 void amdgpu_queue_mask_bit_to_mec_queue(struct amdgpu_device *adev, int bit,
60 				 int *mec, int *pipe, int *queue)
61 {
62 	*queue = bit % adev->gfx.mec.num_queue_per_pipe;
63 	*pipe = (bit / adev->gfx.mec.num_queue_per_pipe)
64 		% adev->gfx.mec.num_pipe_per_mec;
65 	*mec = (bit / adev->gfx.mec.num_queue_per_pipe)
66 	       / adev->gfx.mec.num_pipe_per_mec;
67 
68 }
69 
70 bool amdgpu_gfx_is_mec_queue_enabled(struct amdgpu_device *adev,
71 				     int xcc_id, int mec, int pipe, int queue)
72 {
73 	return test_bit(amdgpu_gfx_mec_queue_to_bit(adev, mec, pipe, queue),
74 			adev->gfx.mec_bitmap[xcc_id].queue_bitmap);
75 }
76 
77 int amdgpu_gfx_me_queue_to_bit(struct amdgpu_device *adev,
78 			       int me, int pipe, int queue)
79 {
80 	int bit = 0;
81 
82 	bit += me * adev->gfx.me.num_pipe_per_me
83 		* adev->gfx.me.num_queue_per_pipe;
84 	bit += pipe * adev->gfx.me.num_queue_per_pipe;
85 	bit += queue;
86 
87 	return bit;
88 }
89 
90 bool amdgpu_gfx_is_me_queue_enabled(struct amdgpu_device *adev,
91 				    int me, int pipe, int queue)
92 {
93 	return test_bit(amdgpu_gfx_me_queue_to_bit(adev, me, pipe, queue),
94 			adev->gfx.me.queue_bitmap);
95 }
96 
97 /**
98  * amdgpu_gfx_parse_disable_cu - Parse the disable_cu module parameter
99  *
100  * @mask: array in which the per-shader array disable masks will be stored
101  * @max_se: number of SEs
102  * @max_sh: number of SHs
103  *
104  * The bitmask of CUs to be disabled in the shader array determined by se and
105  * sh is stored in mask[se * max_sh + sh].
106  */
107 void amdgpu_gfx_parse_disable_cu(unsigned int *mask, unsigned int max_se, unsigned int max_sh)
108 {
109 	unsigned int se, sh, cu;
110 	const char *p;
111 
112 	memset(mask, 0, sizeof(*mask) * max_se * max_sh);
113 
114 	if (!amdgpu_disable_cu || !*amdgpu_disable_cu)
115 		return;
116 
117 	p = amdgpu_disable_cu;
118 	for (;;) {
119 		char *next;
120 		int ret = sscanf(p, "%u.%u.%u", &se, &sh, &cu);
121 
122 		if (ret < 3) {
123 			DRM_ERROR("amdgpu: could not parse disable_cu\n");
124 			return;
125 		}
126 
127 		if (se < max_se && sh < max_sh && cu < 16) {
128 			DRM_INFO("amdgpu: disabling CU %u.%u.%u\n", se, sh, cu);
129 			mask[se * max_sh + sh] |= 1u << cu;
130 		} else {
131 			DRM_ERROR("amdgpu: disable_cu %u.%u.%u is out of range\n",
132 				  se, sh, cu);
133 		}
134 
135 		next = strchr(p, ',');
136 		if (!next)
137 			break;
138 		p = next + 1;
139 	}
140 }
141 
142 static bool amdgpu_gfx_is_graphics_multipipe_capable(struct amdgpu_device *adev)
143 {
144 	return amdgpu_async_gfx_ring && adev->gfx.me.num_pipe_per_me > 1;
145 }
146 
147 static bool amdgpu_gfx_is_compute_multipipe_capable(struct amdgpu_device *adev)
148 {
149 	if (amdgpu_compute_multipipe != -1) {
150 		DRM_INFO("amdgpu: forcing compute pipe policy %d\n",
151 			 amdgpu_compute_multipipe);
152 		return amdgpu_compute_multipipe == 1;
153 	}
154 
155 	if (amdgpu_ip_version(adev, GC_HWIP, 0) > IP_VERSION(9, 0, 0))
156 		return true;
157 
158 	/* FIXME: spreading the queues across pipes causes perf regressions
159 	 * on POLARIS11 compute workloads */
160 	if (adev->asic_type == CHIP_POLARIS11)
161 		return false;
162 
163 	return adev->gfx.mec.num_mec > 1;
164 }
165 
166 bool amdgpu_gfx_is_high_priority_graphics_queue(struct amdgpu_device *adev,
167 						struct amdgpu_ring *ring)
168 {
169 	int queue = ring->queue;
170 	int pipe = ring->pipe;
171 
172 	/* Policy: use pipe1 queue0 as high priority graphics queue if we
173 	 * have more than one gfx pipe.
174 	 */
175 	if (amdgpu_gfx_is_graphics_multipipe_capable(adev) &&
176 	    adev->gfx.num_gfx_rings > 1 && pipe == 1 && queue == 0) {
177 		int me = ring->me;
178 		int bit;
179 
180 		bit = amdgpu_gfx_me_queue_to_bit(adev, me, pipe, queue);
181 		if (ring == &adev->gfx.gfx_ring[bit])
182 			return true;
183 	}
184 
185 	return false;
186 }
187 
188 bool amdgpu_gfx_is_high_priority_compute_queue(struct amdgpu_device *adev,
189 					       struct amdgpu_ring *ring)
190 {
191 	/* Policy: use 1st queue as high priority compute queue if we
192 	 * have more than one compute queue.
193 	 */
194 	if (adev->gfx.num_compute_rings > 1 &&
195 	    ring == &adev->gfx.compute_ring[0])
196 		return true;
197 
198 	return false;
199 }
200 
201 void amdgpu_gfx_compute_queue_acquire(struct amdgpu_device *adev)
202 {
203 	int i, j, queue, pipe;
204 	bool multipipe_policy = amdgpu_gfx_is_compute_multipipe_capable(adev);
205 	int max_queues_per_mec = min(adev->gfx.mec.num_pipe_per_mec *
206 				     adev->gfx.mec.num_queue_per_pipe,
207 				     adev->gfx.num_compute_rings);
208 	int num_xcc = adev->gfx.xcc_mask ? NUM_XCC(adev->gfx.xcc_mask) : 1;
209 
210 	if (multipipe_policy) {
211 		/* policy: make queues evenly cross all pipes on MEC1 only
212 		 * for multiple xcc, just use the original policy for simplicity */
213 		for (j = 0; j < num_xcc; j++) {
214 			for (i = 0; i < max_queues_per_mec; i++) {
215 				pipe = i % adev->gfx.mec.num_pipe_per_mec;
216 				queue = (i / adev->gfx.mec.num_pipe_per_mec) %
217 					 adev->gfx.mec.num_queue_per_pipe;
218 
219 				set_bit(pipe * adev->gfx.mec.num_queue_per_pipe + queue,
220 					adev->gfx.mec_bitmap[j].queue_bitmap);
221 			}
222 		}
223 	} else {
224 		/* policy: amdgpu owns all queues in the given pipe */
225 		for (j = 0; j < num_xcc; j++) {
226 			for (i = 0; i < max_queues_per_mec; ++i)
227 				set_bit(i, adev->gfx.mec_bitmap[j].queue_bitmap);
228 		}
229 	}
230 
231 	for (j = 0; j < num_xcc; j++) {
232 		dev_dbg(adev->dev, "mec queue bitmap weight=%d\n",
233 			bitmap_weight(adev->gfx.mec_bitmap[j].queue_bitmap, AMDGPU_MAX_COMPUTE_QUEUES));
234 	}
235 }
236 
237 void amdgpu_gfx_graphics_queue_acquire(struct amdgpu_device *adev)
238 {
239 	int i, queue, pipe;
240 	bool multipipe_policy = amdgpu_gfx_is_graphics_multipipe_capable(adev);
241 	int max_queues_per_me = adev->gfx.me.num_pipe_per_me *
242 					adev->gfx.me.num_queue_per_pipe;
243 
244 	if (multipipe_policy) {
245 		/* policy: amdgpu owns the first queue per pipe at this stage
246 		 * will extend to mulitple queues per pipe later */
247 		for (i = 0; i < max_queues_per_me; i++) {
248 			pipe = i % adev->gfx.me.num_pipe_per_me;
249 			queue = (i / adev->gfx.me.num_pipe_per_me) %
250 				adev->gfx.me.num_queue_per_pipe;
251 
252 			set_bit(pipe * adev->gfx.me.num_queue_per_pipe + queue,
253 				adev->gfx.me.queue_bitmap);
254 		}
255 	} else {
256 		for (i = 0; i < max_queues_per_me; ++i)
257 			set_bit(i, adev->gfx.me.queue_bitmap);
258 	}
259 
260 	/* update the number of active graphics rings */
261 	adev->gfx.num_gfx_rings =
262 		bitmap_weight(adev->gfx.me.queue_bitmap, AMDGPU_MAX_GFX_QUEUES);
263 }
264 
265 static int amdgpu_gfx_kiq_acquire(struct amdgpu_device *adev,
266 				  struct amdgpu_ring *ring, int xcc_id)
267 {
268 	int queue_bit;
269 	int mec, pipe, queue;
270 
271 	queue_bit = adev->gfx.mec.num_mec
272 		    * adev->gfx.mec.num_pipe_per_mec
273 		    * adev->gfx.mec.num_queue_per_pipe;
274 
275 	while (--queue_bit >= 0) {
276 		if (test_bit(queue_bit, adev->gfx.mec_bitmap[xcc_id].queue_bitmap))
277 			continue;
278 
279 		amdgpu_queue_mask_bit_to_mec_queue(adev, queue_bit, &mec, &pipe, &queue);
280 
281 		/*
282 		 * 1. Using pipes 2/3 from MEC 2 seems cause problems.
283 		 * 2. It must use queue id 0, because CGPG_IDLE/SAVE/LOAD/RUN
284 		 * only can be issued on queue 0.
285 		 */
286 		if ((mec == 1 && pipe > 1) || queue != 0)
287 			continue;
288 
289 		ring->me = mec + 1;
290 		ring->pipe = pipe;
291 		ring->queue = queue;
292 
293 		return 0;
294 	}
295 
296 	dev_err(adev->dev, "Failed to find a queue for KIQ\n");
297 	return -EINVAL;
298 }
299 
300 int amdgpu_gfx_kiq_init_ring(struct amdgpu_device *adev, int xcc_id)
301 {
302 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
303 	struct amdgpu_irq_src *irq = &kiq->irq;
304 	struct amdgpu_ring *ring = &kiq->ring;
305 	int r = 0;
306 
307 	spin_lock_init(&kiq->ring_lock);
308 
309 	ring->adev = NULL;
310 	ring->ring_obj = NULL;
311 	ring->use_doorbell = true;
312 	ring->xcc_id = xcc_id;
313 	ring->vm_hub = AMDGPU_GFXHUB(xcc_id);
314 	ring->doorbell_index =
315 		(adev->doorbell_index.kiq +
316 		 xcc_id * adev->doorbell_index.xcc_doorbell_range)
317 		<< 1;
318 
319 	r = amdgpu_gfx_kiq_acquire(adev, ring, xcc_id);
320 	if (r)
321 		return r;
322 
323 	ring->eop_gpu_addr = kiq->eop_gpu_addr;
324 	ring->no_scheduler = true;
325 	snprintf(ring->name, sizeof(ring->name), "kiq_%hhu.%hhu.%hhu.%hhu",
326 		 (unsigned char)xcc_id, (unsigned char)ring->me,
327 		 (unsigned char)ring->pipe, (unsigned char)ring->queue);
328 	r = amdgpu_ring_init(adev, ring, 1024, irq, AMDGPU_CP_KIQ_IRQ_DRIVER0,
329 			     AMDGPU_RING_PRIO_DEFAULT, NULL);
330 	if (r)
331 		dev_warn(adev->dev, "(%d) failed to init kiq ring\n", r);
332 
333 	return r;
334 }
335 
336 void amdgpu_gfx_kiq_free_ring(struct amdgpu_ring *ring)
337 {
338 	amdgpu_ring_fini(ring);
339 }
340 
341 void amdgpu_gfx_kiq_fini(struct amdgpu_device *adev, int xcc_id)
342 {
343 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
344 
345 	amdgpu_bo_free_kernel(&kiq->eop_obj, &kiq->eop_gpu_addr, NULL);
346 }
347 
348 int amdgpu_gfx_kiq_init(struct amdgpu_device *adev,
349 			unsigned int hpd_size, int xcc_id)
350 {
351 	int r;
352 	u32 *hpd;
353 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
354 
355 	r = amdgpu_bo_create_kernel(adev, hpd_size, PAGE_SIZE,
356 				    AMDGPU_GEM_DOMAIN_GTT, &kiq->eop_obj,
357 				    &kiq->eop_gpu_addr, (void **)&hpd);
358 	if (r) {
359 		dev_warn(adev->dev, "failed to create KIQ bo (%d).\n", r);
360 		return r;
361 	}
362 
363 	memset(hpd, 0, hpd_size);
364 
365 	r = amdgpu_bo_reserve(kiq->eop_obj, true);
366 	if (unlikely(r != 0))
367 		dev_warn(adev->dev, "(%d) reserve kiq eop bo failed\n", r);
368 	amdgpu_bo_kunmap(kiq->eop_obj);
369 	amdgpu_bo_unreserve(kiq->eop_obj);
370 
371 	return 0;
372 }
373 
374 /* create MQD for each compute/gfx queue */
375 int amdgpu_gfx_mqd_sw_init(struct amdgpu_device *adev,
376 			   unsigned int mqd_size, int xcc_id)
377 {
378 	int r, i, j;
379 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
380 	struct amdgpu_ring *ring = &kiq->ring;
381 	u32 domain = AMDGPU_GEM_DOMAIN_GTT;
382 
383 #if !defined(CONFIG_ARM) && !defined(CONFIG_ARM64)
384 	/* Only enable on gfx10 and 11 for now to avoid changing behavior on older chips */
385 	if (amdgpu_ip_version(adev, GC_HWIP, 0) >= IP_VERSION(10, 0, 0))
386 		domain |= AMDGPU_GEM_DOMAIN_VRAM;
387 #endif
388 
389 	/* create MQD for KIQ */
390 	if (!adev->enable_mes_kiq && !ring->mqd_obj) {
391 		/* originaly the KIQ MQD is put in GTT domain, but for SRIOV VRAM domain is a must
392 		 * otherwise hypervisor trigger SAVE_VF fail after driver unloaded which mean MQD
393 		 * deallocated and gart_unbind, to strict diverage we decide to use VRAM domain for
394 		 * KIQ MQD no matter SRIOV or Bare-metal
395 		 */
396 		r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE,
397 					    AMDGPU_GEM_DOMAIN_VRAM |
398 					    AMDGPU_GEM_DOMAIN_GTT,
399 					    &ring->mqd_obj,
400 					    &ring->mqd_gpu_addr,
401 					    &ring->mqd_ptr);
402 		if (r) {
403 			dev_warn(adev->dev, "failed to create ring mqd ob (%d)", r);
404 			return r;
405 		}
406 
407 		/* prepare MQD backup */
408 		kiq->mqd_backup = kzalloc(mqd_size, GFP_KERNEL);
409 		if (!kiq->mqd_backup) {
410 			dev_warn(adev->dev,
411 				 "no memory to create MQD backup for ring %s\n", ring->name);
412 			return -ENOMEM;
413 		}
414 	}
415 
416 	if (adev->asic_type >= CHIP_NAVI10 && amdgpu_async_gfx_ring) {
417 		/* create MQD for each KGQ */
418 		for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
419 			ring = &adev->gfx.gfx_ring[i];
420 			if (!ring->mqd_obj) {
421 				r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE,
422 							    domain, &ring->mqd_obj,
423 							    &ring->mqd_gpu_addr, &ring->mqd_ptr);
424 				if (r) {
425 					dev_warn(adev->dev, "failed to create ring mqd bo (%d)", r);
426 					return r;
427 				}
428 
429 				ring->mqd_size = mqd_size;
430 				/* prepare MQD backup */
431 				adev->gfx.me.mqd_backup[i] = kzalloc(mqd_size, GFP_KERNEL);
432 				if (!adev->gfx.me.mqd_backup[i]) {
433 					dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name);
434 					return -ENOMEM;
435 				}
436 			}
437 		}
438 	}
439 
440 	/* create MQD for each KCQ */
441 	for (i = 0; i < adev->gfx.num_compute_rings; i++) {
442 		j = i + xcc_id * adev->gfx.num_compute_rings;
443 		ring = &adev->gfx.compute_ring[j];
444 		if (!ring->mqd_obj) {
445 			r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE,
446 						    domain, &ring->mqd_obj,
447 						    &ring->mqd_gpu_addr, &ring->mqd_ptr);
448 			if (r) {
449 				dev_warn(adev->dev, "failed to create ring mqd bo (%d)", r);
450 				return r;
451 			}
452 
453 			ring->mqd_size = mqd_size;
454 			/* prepare MQD backup */
455 			adev->gfx.mec.mqd_backup[j] = kzalloc(mqd_size, GFP_KERNEL);
456 			if (!adev->gfx.mec.mqd_backup[j]) {
457 				dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name);
458 				return -ENOMEM;
459 			}
460 		}
461 	}
462 
463 	return 0;
464 }
465 
466 void amdgpu_gfx_mqd_sw_fini(struct amdgpu_device *adev, int xcc_id)
467 {
468 	struct amdgpu_ring *ring = NULL;
469 	int i, j;
470 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
471 
472 	if (adev->asic_type >= CHIP_NAVI10 && amdgpu_async_gfx_ring) {
473 		for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
474 			ring = &adev->gfx.gfx_ring[i];
475 			kfree(adev->gfx.me.mqd_backup[i]);
476 			amdgpu_bo_free_kernel(&ring->mqd_obj,
477 					      &ring->mqd_gpu_addr,
478 					      &ring->mqd_ptr);
479 		}
480 	}
481 
482 	for (i = 0; i < adev->gfx.num_compute_rings; i++) {
483 		j = i + xcc_id * adev->gfx.num_compute_rings;
484 		ring = &adev->gfx.compute_ring[j];
485 		kfree(adev->gfx.mec.mqd_backup[j]);
486 		amdgpu_bo_free_kernel(&ring->mqd_obj,
487 				      &ring->mqd_gpu_addr,
488 				      &ring->mqd_ptr);
489 	}
490 
491 	ring = &kiq->ring;
492 	kfree(kiq->mqd_backup);
493 	amdgpu_bo_free_kernel(&ring->mqd_obj,
494 			      &ring->mqd_gpu_addr,
495 			      &ring->mqd_ptr);
496 }
497 
498 int amdgpu_gfx_disable_kcq(struct amdgpu_device *adev, int xcc_id)
499 {
500 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
501 	struct amdgpu_ring *kiq_ring = &kiq->ring;
502 	int i, r = 0;
503 	int j;
504 
505 	if (adev->enable_mes) {
506 		for (i = 0; i < adev->gfx.num_compute_rings; i++) {
507 			j = i + xcc_id * adev->gfx.num_compute_rings;
508 			amdgpu_mes_unmap_legacy_queue(adev,
509 						   &adev->gfx.compute_ring[j],
510 						   RESET_QUEUES, 0, 0);
511 		}
512 		return 0;
513 	}
514 
515 	if (!kiq->pmf || !kiq->pmf->kiq_unmap_queues)
516 		return -EINVAL;
517 
518 	if (!kiq_ring->sched.ready || amdgpu_in_reset(adev))
519 		return 0;
520 
521 	spin_lock(&kiq->ring_lock);
522 	if (amdgpu_ring_alloc(kiq_ring, kiq->pmf->unmap_queues_size *
523 					adev->gfx.num_compute_rings)) {
524 		spin_unlock(&kiq->ring_lock);
525 		return -ENOMEM;
526 	}
527 
528 	for (i = 0; i < adev->gfx.num_compute_rings; i++) {
529 		j = i + xcc_id * adev->gfx.num_compute_rings;
530 		kiq->pmf->kiq_unmap_queues(kiq_ring,
531 					   &adev->gfx.compute_ring[j],
532 					   RESET_QUEUES, 0, 0);
533 	}
534 	/* Submit unmap queue packet */
535 	amdgpu_ring_commit(kiq_ring);
536 	/*
537 	 * Ring test will do a basic scratch register change check. Just run
538 	 * this to ensure that unmap queues that is submitted before got
539 	 * processed successfully before returning.
540 	 */
541 	r = amdgpu_ring_test_helper(kiq_ring);
542 
543 	spin_unlock(&kiq->ring_lock);
544 
545 	return r;
546 }
547 
548 int amdgpu_gfx_disable_kgq(struct amdgpu_device *adev, int xcc_id)
549 {
550 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
551 	struct amdgpu_ring *kiq_ring = &kiq->ring;
552 	int i, r = 0;
553 	int j;
554 
555 	if (adev->enable_mes) {
556 		if (amdgpu_gfx_is_master_xcc(adev, xcc_id)) {
557 			for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
558 				j = i + xcc_id * adev->gfx.num_gfx_rings;
559 				amdgpu_mes_unmap_legacy_queue(adev,
560 						      &adev->gfx.gfx_ring[j],
561 						      PREEMPT_QUEUES, 0, 0);
562 			}
563 		}
564 		return 0;
565 	}
566 
567 	if (!kiq->pmf || !kiq->pmf->kiq_unmap_queues)
568 		return -EINVAL;
569 
570 	if (!adev->gfx.kiq[0].ring.sched.ready || amdgpu_in_reset(adev))
571 		return 0;
572 
573 	if (amdgpu_gfx_is_master_xcc(adev, xcc_id)) {
574 		spin_lock(&kiq->ring_lock);
575 		if (amdgpu_ring_alloc(kiq_ring, kiq->pmf->unmap_queues_size *
576 						adev->gfx.num_gfx_rings)) {
577 			spin_unlock(&kiq->ring_lock);
578 			return -ENOMEM;
579 		}
580 
581 		for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
582 			j = i + xcc_id * adev->gfx.num_gfx_rings;
583 			kiq->pmf->kiq_unmap_queues(kiq_ring,
584 						   &adev->gfx.gfx_ring[j],
585 						   PREEMPT_QUEUES, 0, 0);
586 		}
587 		/* Submit unmap queue packet */
588 		amdgpu_ring_commit(kiq_ring);
589 
590 		/*
591 		 * Ring test will do a basic scratch register change check.
592 		 * Just run this to ensure that unmap queues that is submitted
593 		 * before got processed successfully before returning.
594 		 */
595 		r = amdgpu_ring_test_helper(kiq_ring);
596 		spin_unlock(&kiq->ring_lock);
597 	}
598 
599 	return r;
600 }
601 
602 int amdgpu_queue_mask_bit_to_set_resource_bit(struct amdgpu_device *adev,
603 					int queue_bit)
604 {
605 	int mec, pipe, queue;
606 	int set_resource_bit = 0;
607 
608 	amdgpu_queue_mask_bit_to_mec_queue(adev, queue_bit, &mec, &pipe, &queue);
609 
610 	set_resource_bit = mec * 4 * 8 + pipe * 8 + queue;
611 
612 	return set_resource_bit;
613 }
614 
615 static int amdgpu_gfx_mes_enable_kcq(struct amdgpu_device *adev, int xcc_id)
616 {
617 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
618 	struct amdgpu_ring *kiq_ring = &kiq->ring;
619 	uint64_t queue_mask = ~0ULL;
620 	int r, i, j;
621 
622 	amdgpu_device_flush_hdp(adev, NULL);
623 
624 	if (!adev->enable_uni_mes) {
625 		spin_lock(&kiq->ring_lock);
626 		r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->set_resources_size);
627 		if (r) {
628 			dev_err(adev->dev, "Failed to lock KIQ (%d).\n", r);
629 			spin_unlock(&kiq->ring_lock);
630 			return r;
631 		}
632 
633 		kiq->pmf->kiq_set_resources(kiq_ring, queue_mask);
634 		r = amdgpu_ring_test_helper(kiq_ring);
635 		spin_unlock(&kiq->ring_lock);
636 		if (r)
637 			dev_err(adev->dev, "KIQ failed to set resources\n");
638 	}
639 
640 	for (i = 0; i < adev->gfx.num_compute_rings; i++) {
641 		j = i + xcc_id * adev->gfx.num_compute_rings;
642 		r = amdgpu_mes_map_legacy_queue(adev,
643 						&adev->gfx.compute_ring[j]);
644 		if (r) {
645 			dev_err(adev->dev, "failed to map compute queue\n");
646 			return r;
647 		}
648 	}
649 
650 	return 0;
651 }
652 
653 int amdgpu_gfx_enable_kcq(struct amdgpu_device *adev, int xcc_id)
654 {
655 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
656 	struct amdgpu_ring *kiq_ring = &kiq->ring;
657 	uint64_t queue_mask = 0;
658 	int r, i, j;
659 
660 	if (adev->mes.enable_legacy_queue_map)
661 		return amdgpu_gfx_mes_enable_kcq(adev, xcc_id);
662 
663 	if (!kiq->pmf || !kiq->pmf->kiq_map_queues || !kiq->pmf->kiq_set_resources)
664 		return -EINVAL;
665 
666 	for (i = 0; i < AMDGPU_MAX_COMPUTE_QUEUES; ++i) {
667 		if (!test_bit(i, adev->gfx.mec_bitmap[xcc_id].queue_bitmap))
668 			continue;
669 
670 		/* This situation may be hit in the future if a new HW
671 		 * generation exposes more than 64 queues. If so, the
672 		 * definition of queue_mask needs updating */
673 		if (WARN_ON(i > (sizeof(queue_mask)*8))) {
674 			DRM_ERROR("Invalid KCQ enabled: %d\n", i);
675 			break;
676 		}
677 
678 		queue_mask |= (1ull << amdgpu_queue_mask_bit_to_set_resource_bit(adev, i));
679 	}
680 
681 	amdgpu_device_flush_hdp(adev, NULL);
682 
683 	DRM_INFO("kiq ring mec %d pipe %d q %d\n", kiq_ring->me, kiq_ring->pipe,
684 		 kiq_ring->queue);
685 
686 	spin_lock(&kiq->ring_lock);
687 	r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->map_queues_size *
688 					adev->gfx.num_compute_rings +
689 					kiq->pmf->set_resources_size);
690 	if (r) {
691 		DRM_ERROR("Failed to lock KIQ (%d).\n", r);
692 		spin_unlock(&kiq->ring_lock);
693 		return r;
694 	}
695 
696 	kiq->pmf->kiq_set_resources(kiq_ring, queue_mask);
697 	for (i = 0; i < adev->gfx.num_compute_rings; i++) {
698 		j = i + xcc_id * adev->gfx.num_compute_rings;
699 		kiq->pmf->kiq_map_queues(kiq_ring,
700 					 &adev->gfx.compute_ring[j]);
701 	}
702 	/* Submit map queue packet */
703 	amdgpu_ring_commit(kiq_ring);
704 	/*
705 	 * Ring test will do a basic scratch register change check. Just run
706 	 * this to ensure that map queues that is submitted before got
707 	 * processed successfully before returning.
708 	 */
709 	r = amdgpu_ring_test_helper(kiq_ring);
710 	spin_unlock(&kiq->ring_lock);
711 	if (r)
712 		DRM_ERROR("KCQ enable failed\n");
713 
714 	return r;
715 }
716 
717 int amdgpu_gfx_enable_kgq(struct amdgpu_device *adev, int xcc_id)
718 {
719 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
720 	struct amdgpu_ring *kiq_ring = &kiq->ring;
721 	int r, i, j;
722 
723 	if (!kiq->pmf || !kiq->pmf->kiq_map_queues)
724 		return -EINVAL;
725 
726 	amdgpu_device_flush_hdp(adev, NULL);
727 
728 	if (adev->mes.enable_legacy_queue_map) {
729 		for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
730 			j = i + xcc_id * adev->gfx.num_gfx_rings;
731 			r = amdgpu_mes_map_legacy_queue(adev,
732 							&adev->gfx.gfx_ring[j]);
733 			if (r) {
734 				DRM_ERROR("failed to map gfx queue\n");
735 				return r;
736 			}
737 		}
738 
739 		return 0;
740 	}
741 
742 	spin_lock(&kiq->ring_lock);
743 	/* No need to map kcq on the slave */
744 	if (amdgpu_gfx_is_master_xcc(adev, xcc_id)) {
745 		r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->map_queues_size *
746 						adev->gfx.num_gfx_rings);
747 		if (r) {
748 			DRM_ERROR("Failed to lock KIQ (%d).\n", r);
749 			spin_unlock(&kiq->ring_lock);
750 			return r;
751 		}
752 
753 		for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
754 			j = i + xcc_id * adev->gfx.num_gfx_rings;
755 			kiq->pmf->kiq_map_queues(kiq_ring,
756 						 &adev->gfx.gfx_ring[j]);
757 		}
758 	}
759 	/* Submit map queue packet */
760 	amdgpu_ring_commit(kiq_ring);
761 	/*
762 	 * Ring test will do a basic scratch register change check. Just run
763 	 * this to ensure that map queues that is submitted before got
764 	 * processed successfully before returning.
765 	 */
766 	r = amdgpu_ring_test_helper(kiq_ring);
767 	spin_unlock(&kiq->ring_lock);
768 	if (r)
769 		DRM_ERROR("KGQ enable failed\n");
770 
771 	return r;
772 }
773 
774 static void amdgpu_gfx_do_off_ctrl(struct amdgpu_device *adev, bool enable,
775 				   bool no_delay)
776 {
777 	unsigned long delay = GFX_OFF_DELAY_ENABLE;
778 
779 	if (!(adev->pm.pp_feature & PP_GFXOFF_MASK))
780 		return;
781 
782 	mutex_lock(&adev->gfx.gfx_off_mutex);
783 
784 	if (enable) {
785 		/* If the count is already 0, it means there's an imbalance bug somewhere.
786 		 * Note that the bug may be in a different caller than the one which triggers the
787 		 * WARN_ON_ONCE.
788 		 */
789 		if (WARN_ON_ONCE(adev->gfx.gfx_off_req_count == 0))
790 			goto unlock;
791 
792 		adev->gfx.gfx_off_req_count--;
793 
794 		if (adev->gfx.gfx_off_req_count == 0 &&
795 		    !adev->gfx.gfx_off_state) {
796 			/* If going to s2idle, no need to wait */
797 			if (no_delay) {
798 				if (!amdgpu_dpm_set_powergating_by_smu(adev,
799 						AMD_IP_BLOCK_TYPE_GFX, true, 0))
800 					adev->gfx.gfx_off_state = true;
801 			} else {
802 				schedule_delayed_work(&adev->gfx.gfx_off_delay_work,
803 					      delay);
804 			}
805 		}
806 	} else {
807 		if (adev->gfx.gfx_off_req_count == 0) {
808 			cancel_delayed_work_sync(&adev->gfx.gfx_off_delay_work);
809 
810 			if (adev->gfx.gfx_off_state &&
811 			    !amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_GFX, false, 0)) {
812 				adev->gfx.gfx_off_state = false;
813 
814 				if (adev->gfx.funcs->init_spm_golden) {
815 					dev_dbg(adev->dev,
816 						"GFXOFF is disabled, re-init SPM golden settings\n");
817 					amdgpu_gfx_init_spm_golden(adev);
818 				}
819 			}
820 		}
821 
822 		adev->gfx.gfx_off_req_count++;
823 	}
824 
825 unlock:
826 	mutex_unlock(&adev->gfx.gfx_off_mutex);
827 }
828 
829 /* amdgpu_gfx_off_ctrl - Handle gfx off feature enable/disable
830  *
831  * @adev: amdgpu_device pointer
832  * @bool enable true: enable gfx off feature, false: disable gfx off feature
833  *
834  * 1. gfx off feature will be enabled by gfx ip after gfx cg pg enabled.
835  * 2. other client can send request to disable gfx off feature, the request should be honored.
836  * 3. other client can cancel their request of disable gfx off feature
837  * 4. other client should not send request to enable gfx off feature before disable gfx off feature.
838  *
839  * gfx off allow will be delayed by GFX_OFF_DELAY_ENABLE ms.
840  */
841 void amdgpu_gfx_off_ctrl(struct amdgpu_device *adev, bool enable)
842 {
843 	/* If going to s2idle, no need to wait */
844 	bool no_delay = adev->in_s0ix ? true : false;
845 
846 	amdgpu_gfx_do_off_ctrl(adev, enable, no_delay);
847 }
848 
849 /* amdgpu_gfx_off_ctrl_immediate - Handle gfx off feature enable/disable
850  *
851  * @adev: amdgpu_device pointer
852  * @bool enable true: enable gfx off feature, false: disable gfx off feature
853  *
854  * 1. gfx off feature will be enabled by gfx ip after gfx cg pg enabled.
855  * 2. other client can send request to disable gfx off feature, the request should be honored.
856  * 3. other client can cancel their request of disable gfx off feature
857  * 4. other client should not send request to enable gfx off feature before disable gfx off feature.
858  *
859  * gfx off allow will be issued immediately.
860  */
861 void amdgpu_gfx_off_ctrl_immediate(struct amdgpu_device *adev, bool enable)
862 {
863 	amdgpu_gfx_do_off_ctrl(adev, enable, true);
864 }
865 
866 int amdgpu_set_gfx_off_residency(struct amdgpu_device *adev, bool value)
867 {
868 	int r = 0;
869 
870 	mutex_lock(&adev->gfx.gfx_off_mutex);
871 
872 	r = amdgpu_dpm_set_residency_gfxoff(adev, value);
873 
874 	mutex_unlock(&adev->gfx.gfx_off_mutex);
875 
876 	return r;
877 }
878 
879 int amdgpu_get_gfx_off_residency(struct amdgpu_device *adev, u32 *value)
880 {
881 	int r = 0;
882 
883 	mutex_lock(&adev->gfx.gfx_off_mutex);
884 
885 	r = amdgpu_dpm_get_residency_gfxoff(adev, value);
886 
887 	mutex_unlock(&adev->gfx.gfx_off_mutex);
888 
889 	return r;
890 }
891 
892 int amdgpu_get_gfx_off_entrycount(struct amdgpu_device *adev, u64 *value)
893 {
894 	int r = 0;
895 
896 	mutex_lock(&adev->gfx.gfx_off_mutex);
897 
898 	r = amdgpu_dpm_get_entrycount_gfxoff(adev, value);
899 
900 	mutex_unlock(&adev->gfx.gfx_off_mutex);
901 
902 	return r;
903 }
904 
905 int amdgpu_get_gfx_off_status(struct amdgpu_device *adev, uint32_t *value)
906 {
907 
908 	int r = 0;
909 
910 	mutex_lock(&adev->gfx.gfx_off_mutex);
911 
912 	r = amdgpu_dpm_get_status_gfxoff(adev, value);
913 
914 	mutex_unlock(&adev->gfx.gfx_off_mutex);
915 
916 	return r;
917 }
918 
919 int amdgpu_gfx_ras_late_init(struct amdgpu_device *adev, struct ras_common_if *ras_block)
920 {
921 	int r;
922 
923 	if (amdgpu_ras_is_supported(adev, ras_block->block)) {
924 		if (!amdgpu_persistent_edc_harvesting_supported(adev)) {
925 			r = amdgpu_ras_reset_error_status(adev, AMDGPU_RAS_BLOCK__GFX);
926 			if (r)
927 				return r;
928 		}
929 
930 		r = amdgpu_ras_block_late_init(adev, ras_block);
931 		if (r)
932 			return r;
933 
934 		if (amdgpu_sriov_vf(adev))
935 			return r;
936 
937 		if (adev->gfx.cp_ecc_error_irq.funcs) {
938 			r = amdgpu_irq_get(adev, &adev->gfx.cp_ecc_error_irq, 0);
939 			if (r)
940 				goto late_fini;
941 		}
942 	} else {
943 		amdgpu_ras_feature_enable_on_boot(adev, ras_block, 0);
944 	}
945 
946 	return 0;
947 late_fini:
948 	amdgpu_ras_block_late_fini(adev, ras_block);
949 	return r;
950 }
951 
952 int amdgpu_gfx_ras_sw_init(struct amdgpu_device *adev)
953 {
954 	int err = 0;
955 	struct amdgpu_gfx_ras *ras = NULL;
956 
957 	/* adev->gfx.ras is NULL, which means gfx does not
958 	 * support ras function, then do nothing here.
959 	 */
960 	if (!adev->gfx.ras)
961 		return 0;
962 
963 	ras = adev->gfx.ras;
964 
965 	err = amdgpu_ras_register_ras_block(adev, &ras->ras_block);
966 	if (err) {
967 		dev_err(adev->dev, "Failed to register gfx ras block!\n");
968 		return err;
969 	}
970 
971 	strcpy(ras->ras_block.ras_comm.name, "gfx");
972 	ras->ras_block.ras_comm.block = AMDGPU_RAS_BLOCK__GFX;
973 	ras->ras_block.ras_comm.type = AMDGPU_RAS_ERROR__MULTI_UNCORRECTABLE;
974 	adev->gfx.ras_if = &ras->ras_block.ras_comm;
975 
976 	/* If not define special ras_late_init function, use gfx default ras_late_init */
977 	if (!ras->ras_block.ras_late_init)
978 		ras->ras_block.ras_late_init = amdgpu_gfx_ras_late_init;
979 
980 	/* If not defined special ras_cb function, use default ras_cb */
981 	if (!ras->ras_block.ras_cb)
982 		ras->ras_block.ras_cb = amdgpu_gfx_process_ras_data_cb;
983 
984 	return 0;
985 }
986 
987 int amdgpu_gfx_poison_consumption_handler(struct amdgpu_device *adev,
988 						struct amdgpu_iv_entry *entry)
989 {
990 	if (adev->gfx.ras && adev->gfx.ras->poison_consumption_handler)
991 		return adev->gfx.ras->poison_consumption_handler(adev, entry);
992 
993 	return 0;
994 }
995 
996 int amdgpu_gfx_process_ras_data_cb(struct amdgpu_device *adev,
997 		void *err_data,
998 		struct amdgpu_iv_entry *entry)
999 {
1000 	/* TODO ue will trigger an interrupt.
1001 	 *
1002 	 * When “Full RAS” is enabled, the per-IP interrupt sources should
1003 	 * be disabled and the driver should only look for the aggregated
1004 	 * interrupt via sync flood
1005 	 */
1006 	if (!amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__GFX)) {
1007 		kgd2kfd_set_sram_ecc_flag(adev->kfd.dev);
1008 		if (adev->gfx.ras && adev->gfx.ras->ras_block.hw_ops &&
1009 		    adev->gfx.ras->ras_block.hw_ops->query_ras_error_count)
1010 			adev->gfx.ras->ras_block.hw_ops->query_ras_error_count(adev, err_data);
1011 		amdgpu_ras_reset_gpu(adev);
1012 	}
1013 	return AMDGPU_RAS_SUCCESS;
1014 }
1015 
1016 int amdgpu_gfx_cp_ecc_error_irq(struct amdgpu_device *adev,
1017 				  struct amdgpu_irq_src *source,
1018 				  struct amdgpu_iv_entry *entry)
1019 {
1020 	struct ras_common_if *ras_if = adev->gfx.ras_if;
1021 	struct ras_dispatch_if ih_data = {
1022 		.entry = entry,
1023 	};
1024 
1025 	if (!ras_if)
1026 		return 0;
1027 
1028 	ih_data.head = *ras_if;
1029 
1030 	DRM_ERROR("CP ECC ERROR IRQ\n");
1031 	amdgpu_ras_interrupt_dispatch(adev, &ih_data);
1032 	return 0;
1033 }
1034 
1035 void amdgpu_gfx_ras_error_func(struct amdgpu_device *adev,
1036 		void *ras_error_status,
1037 		void (*func)(struct amdgpu_device *adev, void *ras_error_status,
1038 				int xcc_id))
1039 {
1040 	int i;
1041 	int num_xcc = adev->gfx.xcc_mask ? NUM_XCC(adev->gfx.xcc_mask) : 1;
1042 	uint32_t xcc_mask = GENMASK(num_xcc - 1, 0);
1043 	struct ras_err_data *err_data = (struct ras_err_data *)ras_error_status;
1044 
1045 	if (err_data) {
1046 		err_data->ue_count = 0;
1047 		err_data->ce_count = 0;
1048 	}
1049 
1050 	for_each_inst(i, xcc_mask)
1051 		func(adev, ras_error_status, i);
1052 }
1053 
1054 uint32_t amdgpu_kiq_rreg(struct amdgpu_device *adev, uint32_t reg, uint32_t xcc_id)
1055 {
1056 	signed long r, cnt = 0;
1057 	unsigned long flags;
1058 	uint32_t seq, reg_val_offs = 0, value = 0;
1059 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
1060 	struct amdgpu_ring *ring = &kiq->ring;
1061 
1062 	if (amdgpu_device_skip_hw_access(adev))
1063 		return 0;
1064 
1065 	if (adev->mes.ring[0].sched.ready)
1066 		return amdgpu_mes_rreg(adev, reg);
1067 
1068 	BUG_ON(!ring->funcs->emit_rreg);
1069 
1070 	spin_lock_irqsave(&kiq->ring_lock, flags);
1071 	if (amdgpu_device_wb_get(adev, &reg_val_offs)) {
1072 		pr_err("critical bug! too many kiq readers\n");
1073 		goto failed_unlock;
1074 	}
1075 	r = amdgpu_ring_alloc(ring, 32);
1076 	if (r)
1077 		goto failed_unlock;
1078 
1079 	amdgpu_ring_emit_rreg(ring, reg, reg_val_offs);
1080 	r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT);
1081 	if (r)
1082 		goto failed_undo;
1083 
1084 	amdgpu_ring_commit(ring);
1085 	spin_unlock_irqrestore(&kiq->ring_lock, flags);
1086 
1087 	r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
1088 
1089 	/* don't wait anymore for gpu reset case because this way may
1090 	 * block gpu_recover() routine forever, e.g. this virt_kiq_rreg
1091 	 * is triggered in TTM and ttm_bo_lock_delayed_workqueue() will
1092 	 * never return if we keep waiting in virt_kiq_rreg, which cause
1093 	 * gpu_recover() hang there.
1094 	 *
1095 	 * also don't wait anymore for IRQ context
1096 	 * */
1097 	if (r < 1 && (amdgpu_in_reset(adev) || in_interrupt()))
1098 		goto failed_kiq_read;
1099 
1100 	might_sleep();
1101 	while (r < 1 && cnt++ < MAX_KIQ_REG_TRY) {
1102 		msleep(MAX_KIQ_REG_BAILOUT_INTERVAL);
1103 		r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
1104 	}
1105 
1106 	if (cnt > MAX_KIQ_REG_TRY)
1107 		goto failed_kiq_read;
1108 
1109 	mb();
1110 	value = adev->wb.wb[reg_val_offs];
1111 	amdgpu_device_wb_free(adev, reg_val_offs);
1112 	return value;
1113 
1114 failed_undo:
1115 	amdgpu_ring_undo(ring);
1116 failed_unlock:
1117 	spin_unlock_irqrestore(&kiq->ring_lock, flags);
1118 failed_kiq_read:
1119 	if (reg_val_offs)
1120 		amdgpu_device_wb_free(adev, reg_val_offs);
1121 	dev_err(adev->dev, "failed to read reg:%x\n", reg);
1122 	return ~0;
1123 }
1124 
1125 void amdgpu_kiq_wreg(struct amdgpu_device *adev, uint32_t reg, uint32_t v, uint32_t xcc_id)
1126 {
1127 	signed long r, cnt = 0;
1128 	unsigned long flags;
1129 	uint32_t seq;
1130 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
1131 	struct amdgpu_ring *ring = &kiq->ring;
1132 
1133 	BUG_ON(!ring->funcs->emit_wreg);
1134 
1135 	if (amdgpu_device_skip_hw_access(adev))
1136 		return;
1137 
1138 	if (adev->mes.ring[0].sched.ready) {
1139 		amdgpu_mes_wreg(adev, reg, v);
1140 		return;
1141 	}
1142 
1143 	spin_lock_irqsave(&kiq->ring_lock, flags);
1144 	r = amdgpu_ring_alloc(ring, 32);
1145 	if (r)
1146 		goto failed_unlock;
1147 
1148 	amdgpu_ring_emit_wreg(ring, reg, v);
1149 	r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT);
1150 	if (r)
1151 		goto failed_undo;
1152 
1153 	amdgpu_ring_commit(ring);
1154 	spin_unlock_irqrestore(&kiq->ring_lock, flags);
1155 
1156 	r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
1157 
1158 	/* don't wait anymore for gpu reset case because this way may
1159 	 * block gpu_recover() routine forever, e.g. this virt_kiq_rreg
1160 	 * is triggered in TTM and ttm_bo_lock_delayed_workqueue() will
1161 	 * never return if we keep waiting in virt_kiq_rreg, which cause
1162 	 * gpu_recover() hang there.
1163 	 *
1164 	 * also don't wait anymore for IRQ context
1165 	 * */
1166 	if (r < 1 && (amdgpu_in_reset(adev) || in_interrupt()))
1167 		goto failed_kiq_write;
1168 
1169 	might_sleep();
1170 	while (r < 1 && cnt++ < MAX_KIQ_REG_TRY) {
1171 
1172 		msleep(MAX_KIQ_REG_BAILOUT_INTERVAL);
1173 		r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
1174 	}
1175 
1176 	if (cnt > MAX_KIQ_REG_TRY)
1177 		goto failed_kiq_write;
1178 
1179 	return;
1180 
1181 failed_undo:
1182 	amdgpu_ring_undo(ring);
1183 failed_unlock:
1184 	spin_unlock_irqrestore(&kiq->ring_lock, flags);
1185 failed_kiq_write:
1186 	dev_err(adev->dev, "failed to write reg:%x\n", reg);
1187 }
1188 
1189 int amdgpu_gfx_get_num_kcq(struct amdgpu_device *adev)
1190 {
1191 	if (amdgpu_num_kcq == -1) {
1192 		return 8;
1193 	} else if (amdgpu_num_kcq > 8 || amdgpu_num_kcq < 0) {
1194 		dev_warn(adev->dev, "set kernel compute queue number to 8 due to invalid parameter provided by user\n");
1195 		return 8;
1196 	}
1197 	return amdgpu_num_kcq;
1198 }
1199 
1200 void amdgpu_gfx_cp_init_microcode(struct amdgpu_device *adev,
1201 				  uint32_t ucode_id)
1202 {
1203 	const struct gfx_firmware_header_v1_0 *cp_hdr;
1204 	const struct gfx_firmware_header_v2_0 *cp_hdr_v2_0;
1205 	struct amdgpu_firmware_info *info = NULL;
1206 	const struct firmware *ucode_fw;
1207 	unsigned int fw_size;
1208 
1209 	switch (ucode_id) {
1210 	case AMDGPU_UCODE_ID_CP_PFP:
1211 		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1212 			adev->gfx.pfp_fw->data;
1213 		adev->gfx.pfp_fw_version =
1214 			le32_to_cpu(cp_hdr->header.ucode_version);
1215 		adev->gfx.pfp_feature_version =
1216 			le32_to_cpu(cp_hdr->ucode_feature_version);
1217 		ucode_fw = adev->gfx.pfp_fw;
1218 		fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes);
1219 		break;
1220 	case AMDGPU_UCODE_ID_CP_RS64_PFP:
1221 		cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1222 			adev->gfx.pfp_fw->data;
1223 		adev->gfx.pfp_fw_version =
1224 			le32_to_cpu(cp_hdr_v2_0->header.ucode_version);
1225 		adev->gfx.pfp_feature_version =
1226 			le32_to_cpu(cp_hdr_v2_0->ucode_feature_version);
1227 		ucode_fw = adev->gfx.pfp_fw;
1228 		fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes);
1229 		break;
1230 	case AMDGPU_UCODE_ID_CP_RS64_PFP_P0_STACK:
1231 	case AMDGPU_UCODE_ID_CP_RS64_PFP_P1_STACK:
1232 		cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1233 			adev->gfx.pfp_fw->data;
1234 		ucode_fw = adev->gfx.pfp_fw;
1235 		fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes);
1236 		break;
1237 	case AMDGPU_UCODE_ID_CP_ME:
1238 		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1239 			adev->gfx.me_fw->data;
1240 		adev->gfx.me_fw_version =
1241 			le32_to_cpu(cp_hdr->header.ucode_version);
1242 		adev->gfx.me_feature_version =
1243 			le32_to_cpu(cp_hdr->ucode_feature_version);
1244 		ucode_fw = adev->gfx.me_fw;
1245 		fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes);
1246 		break;
1247 	case AMDGPU_UCODE_ID_CP_RS64_ME:
1248 		cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1249 			adev->gfx.me_fw->data;
1250 		adev->gfx.me_fw_version =
1251 			le32_to_cpu(cp_hdr_v2_0->header.ucode_version);
1252 		adev->gfx.me_feature_version =
1253 			le32_to_cpu(cp_hdr_v2_0->ucode_feature_version);
1254 		ucode_fw = adev->gfx.me_fw;
1255 		fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes);
1256 		break;
1257 	case AMDGPU_UCODE_ID_CP_RS64_ME_P0_STACK:
1258 	case AMDGPU_UCODE_ID_CP_RS64_ME_P1_STACK:
1259 		cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1260 			adev->gfx.me_fw->data;
1261 		ucode_fw = adev->gfx.me_fw;
1262 		fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes);
1263 		break;
1264 	case AMDGPU_UCODE_ID_CP_CE:
1265 		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1266 			adev->gfx.ce_fw->data;
1267 		adev->gfx.ce_fw_version =
1268 			le32_to_cpu(cp_hdr->header.ucode_version);
1269 		adev->gfx.ce_feature_version =
1270 			le32_to_cpu(cp_hdr->ucode_feature_version);
1271 		ucode_fw = adev->gfx.ce_fw;
1272 		fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes);
1273 		break;
1274 	case AMDGPU_UCODE_ID_CP_MEC1:
1275 		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1276 			adev->gfx.mec_fw->data;
1277 		adev->gfx.mec_fw_version =
1278 			le32_to_cpu(cp_hdr->header.ucode_version);
1279 		adev->gfx.mec_feature_version =
1280 			le32_to_cpu(cp_hdr->ucode_feature_version);
1281 		ucode_fw = adev->gfx.mec_fw;
1282 		fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes) -
1283 			  le32_to_cpu(cp_hdr->jt_size) * 4;
1284 		break;
1285 	case AMDGPU_UCODE_ID_CP_MEC1_JT:
1286 		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1287 			adev->gfx.mec_fw->data;
1288 		ucode_fw = adev->gfx.mec_fw;
1289 		fw_size = le32_to_cpu(cp_hdr->jt_size) * 4;
1290 		break;
1291 	case AMDGPU_UCODE_ID_CP_MEC2:
1292 		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1293 			adev->gfx.mec2_fw->data;
1294 		adev->gfx.mec2_fw_version =
1295 			le32_to_cpu(cp_hdr->header.ucode_version);
1296 		adev->gfx.mec2_feature_version =
1297 			le32_to_cpu(cp_hdr->ucode_feature_version);
1298 		ucode_fw = adev->gfx.mec2_fw;
1299 		fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes) -
1300 			  le32_to_cpu(cp_hdr->jt_size) * 4;
1301 		break;
1302 	case AMDGPU_UCODE_ID_CP_MEC2_JT:
1303 		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1304 			adev->gfx.mec2_fw->data;
1305 		ucode_fw = adev->gfx.mec2_fw;
1306 		fw_size = le32_to_cpu(cp_hdr->jt_size) * 4;
1307 		break;
1308 	case AMDGPU_UCODE_ID_CP_RS64_MEC:
1309 		cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1310 			adev->gfx.mec_fw->data;
1311 		adev->gfx.mec_fw_version =
1312 			le32_to_cpu(cp_hdr_v2_0->header.ucode_version);
1313 		adev->gfx.mec_feature_version =
1314 			le32_to_cpu(cp_hdr_v2_0->ucode_feature_version);
1315 		ucode_fw = adev->gfx.mec_fw;
1316 		fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes);
1317 		break;
1318 	case AMDGPU_UCODE_ID_CP_RS64_MEC_P0_STACK:
1319 	case AMDGPU_UCODE_ID_CP_RS64_MEC_P1_STACK:
1320 	case AMDGPU_UCODE_ID_CP_RS64_MEC_P2_STACK:
1321 	case AMDGPU_UCODE_ID_CP_RS64_MEC_P3_STACK:
1322 		cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1323 			adev->gfx.mec_fw->data;
1324 		ucode_fw = adev->gfx.mec_fw;
1325 		fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes);
1326 		break;
1327 	default:
1328 		dev_err(adev->dev, "Invalid ucode id %u\n", ucode_id);
1329 		return;
1330 	}
1331 
1332 	if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
1333 		info = &adev->firmware.ucode[ucode_id];
1334 		info->ucode_id = ucode_id;
1335 		info->fw = ucode_fw;
1336 		adev->firmware.fw_size += ALIGN(fw_size, PAGE_SIZE);
1337 	}
1338 }
1339 
1340 bool amdgpu_gfx_is_master_xcc(struct amdgpu_device *adev, int xcc_id)
1341 {
1342 	return !(xcc_id % (adev->gfx.num_xcc_per_xcp ?
1343 			adev->gfx.num_xcc_per_xcp : 1));
1344 }
1345 
1346 static ssize_t amdgpu_gfx_get_current_compute_partition(struct device *dev,
1347 						struct device_attribute *addr,
1348 						char *buf)
1349 {
1350 	struct drm_device *ddev = dev_get_drvdata(dev);
1351 	struct amdgpu_device *adev = drm_to_adev(ddev);
1352 	int mode;
1353 
1354 	mode = amdgpu_xcp_query_partition_mode(adev->xcp_mgr,
1355 					       AMDGPU_XCP_FL_NONE);
1356 
1357 	return sysfs_emit(buf, "%s\n", amdgpu_gfx_compute_mode_desc(mode));
1358 }
1359 
1360 static ssize_t amdgpu_gfx_set_compute_partition(struct device *dev,
1361 						struct device_attribute *addr,
1362 						const char *buf, size_t count)
1363 {
1364 	struct drm_device *ddev = dev_get_drvdata(dev);
1365 	struct amdgpu_device *adev = drm_to_adev(ddev);
1366 	enum amdgpu_gfx_partition mode;
1367 	int ret = 0, num_xcc;
1368 
1369 	num_xcc = NUM_XCC(adev->gfx.xcc_mask);
1370 	if (num_xcc % 2 != 0)
1371 		return -EINVAL;
1372 
1373 	if (!strncasecmp("SPX", buf, strlen("SPX"))) {
1374 		mode = AMDGPU_SPX_PARTITION_MODE;
1375 	} else if (!strncasecmp("DPX", buf, strlen("DPX"))) {
1376 		/*
1377 		 * DPX mode needs AIDs to be in multiple of 2.
1378 		 * Each AID connects 2 XCCs.
1379 		 */
1380 		if (num_xcc%4)
1381 			return -EINVAL;
1382 		mode = AMDGPU_DPX_PARTITION_MODE;
1383 	} else if (!strncasecmp("TPX", buf, strlen("TPX"))) {
1384 		if (num_xcc != 6)
1385 			return -EINVAL;
1386 		mode = AMDGPU_TPX_PARTITION_MODE;
1387 	} else if (!strncasecmp("QPX", buf, strlen("QPX"))) {
1388 		if (num_xcc != 8)
1389 			return -EINVAL;
1390 		mode = AMDGPU_QPX_PARTITION_MODE;
1391 	} else if (!strncasecmp("CPX", buf, strlen("CPX"))) {
1392 		mode = AMDGPU_CPX_PARTITION_MODE;
1393 	} else {
1394 		return -EINVAL;
1395 	}
1396 
1397 	ret = amdgpu_xcp_switch_partition_mode(adev->xcp_mgr, mode);
1398 
1399 	if (ret)
1400 		return ret;
1401 
1402 	return count;
1403 }
1404 
1405 static const char *xcp_desc[] = {
1406 	[AMDGPU_SPX_PARTITION_MODE] = "SPX",
1407 	[AMDGPU_DPX_PARTITION_MODE] = "DPX",
1408 	[AMDGPU_TPX_PARTITION_MODE] = "TPX",
1409 	[AMDGPU_QPX_PARTITION_MODE] = "QPX",
1410 	[AMDGPU_CPX_PARTITION_MODE] = "CPX",
1411 };
1412 
1413 static ssize_t amdgpu_gfx_get_available_compute_partition(struct device *dev,
1414 						struct device_attribute *addr,
1415 						char *buf)
1416 {
1417 	struct drm_device *ddev = dev_get_drvdata(dev);
1418 	struct amdgpu_device *adev = drm_to_adev(ddev);
1419 	struct amdgpu_xcp_mgr *xcp_mgr = adev->xcp_mgr;
1420 	int size = 0, mode;
1421 	char *sep = "";
1422 
1423 	if (!xcp_mgr || !xcp_mgr->avail_xcp_modes)
1424 		return sysfs_emit(buf, "Not supported\n");
1425 
1426 	for_each_inst(mode, xcp_mgr->avail_xcp_modes) {
1427 		size += sysfs_emit_at(buf, size, "%s%s", sep, xcp_desc[mode]);
1428 		sep = ", ";
1429 	}
1430 
1431 	size += sysfs_emit_at(buf, size, "\n");
1432 
1433 	return size;
1434 }
1435 
1436 static int amdgpu_gfx_run_cleaner_shader_job(struct amdgpu_ring *ring)
1437 {
1438 	struct amdgpu_device *adev = ring->adev;
1439 	struct drm_gpu_scheduler *sched = &ring->sched;
1440 	struct drm_sched_entity entity;
1441 	struct dma_fence *f;
1442 	struct amdgpu_job *job;
1443 	struct amdgpu_ib *ib;
1444 	int i, r;
1445 
1446 	/* Initialize the scheduler entity */
1447 	r = drm_sched_entity_init(&entity, DRM_SCHED_PRIORITY_NORMAL,
1448 				  &sched, 1, NULL);
1449 	if (r) {
1450 		dev_err(adev->dev, "Failed setting up GFX kernel entity.\n");
1451 		goto err;
1452 	}
1453 
1454 	r = amdgpu_job_alloc_with_ib(ring->adev, &entity, NULL,
1455 				     64, 0,
1456 				     &job);
1457 	if (r)
1458 		goto err;
1459 
1460 	job->enforce_isolation = true;
1461 
1462 	ib = &job->ibs[0];
1463 	for (i = 0; i <= ring->funcs->align_mask; ++i)
1464 		ib->ptr[i] = ring->funcs->nop;
1465 	ib->length_dw = ring->funcs->align_mask + 1;
1466 
1467 	f = amdgpu_job_submit(job);
1468 
1469 	r = dma_fence_wait(f, false);
1470 	if (r)
1471 		goto err;
1472 
1473 	dma_fence_put(f);
1474 
1475 	/* Clean up the scheduler entity */
1476 	drm_sched_entity_destroy(&entity);
1477 	return 0;
1478 
1479 err:
1480 	return r;
1481 }
1482 
1483 static int amdgpu_gfx_run_cleaner_shader(struct amdgpu_device *adev, int xcp_id)
1484 {
1485 	int num_xcc = NUM_XCC(adev->gfx.xcc_mask);
1486 	struct amdgpu_ring *ring;
1487 	int num_xcc_to_clear;
1488 	int i, r, xcc_id;
1489 
1490 	if (adev->gfx.num_xcc_per_xcp)
1491 		num_xcc_to_clear = adev->gfx.num_xcc_per_xcp;
1492 	else
1493 		num_xcc_to_clear = 1;
1494 
1495 	for (xcc_id = 0; xcc_id < num_xcc; xcc_id++) {
1496 		for (i = 0; i < adev->gfx.num_compute_rings; i++) {
1497 			ring = &adev->gfx.compute_ring[i + xcc_id * adev->gfx.num_compute_rings];
1498 			if ((ring->xcp_id == xcp_id) && ring->sched.ready) {
1499 				r = amdgpu_gfx_run_cleaner_shader_job(ring);
1500 				if (r)
1501 					return r;
1502 				num_xcc_to_clear--;
1503 				break;
1504 			}
1505 		}
1506 	}
1507 
1508 	if (num_xcc_to_clear)
1509 		return -ENOENT;
1510 
1511 	return 0;
1512 }
1513 
1514 /**
1515  * amdgpu_gfx_set_run_cleaner_shader - Execute the AMDGPU GFX Cleaner Shader
1516  * @dev: The device structure
1517  * @attr: The device attribute structure
1518  * @buf: The buffer containing the input data
1519  * @count: The size of the input data
1520  *
1521  * Provides the sysfs interface to manually run a cleaner shader, which is
1522  * used to clear the GPU state between different tasks. Writing a value to the
1523  * 'run_cleaner_shader' sysfs file triggers the cleaner shader execution.
1524  * The value written corresponds to the partition index on multi-partition
1525  * devices. On single-partition devices, the value should be '0'.
1526  *
1527  * The cleaner shader clears the Local Data Store (LDS) and General Purpose
1528  * Registers (GPRs) to ensure data isolation between GPU workloads.
1529  *
1530  * Return: The number of bytes written to the sysfs file.
1531  */
1532 static ssize_t amdgpu_gfx_set_run_cleaner_shader(struct device *dev,
1533 						 struct device_attribute *attr,
1534 						 const char *buf,
1535 						 size_t count)
1536 {
1537 	struct drm_device *ddev = dev_get_drvdata(dev);
1538 	struct amdgpu_device *adev = drm_to_adev(ddev);
1539 	int ret;
1540 	long value;
1541 
1542 	if (amdgpu_in_reset(adev))
1543 		return -EPERM;
1544 	if (adev->in_suspend && !adev->in_runpm)
1545 		return -EPERM;
1546 
1547 	ret = kstrtol(buf, 0, &value);
1548 
1549 	if (ret)
1550 		return -EINVAL;
1551 
1552 	if (value < 0)
1553 		return -EINVAL;
1554 
1555 	if (adev->xcp_mgr) {
1556 		if (value >= adev->xcp_mgr->num_xcps)
1557 			return -EINVAL;
1558 	} else {
1559 		if (value > 1)
1560 			return -EINVAL;
1561 	}
1562 
1563 	ret = pm_runtime_get_sync(ddev->dev);
1564 	if (ret < 0) {
1565 		pm_runtime_put_autosuspend(ddev->dev);
1566 		return ret;
1567 	}
1568 
1569 	ret = amdgpu_gfx_run_cleaner_shader(adev, value);
1570 
1571 	pm_runtime_mark_last_busy(ddev->dev);
1572 	pm_runtime_put_autosuspend(ddev->dev);
1573 
1574 	if (ret)
1575 		return ret;
1576 
1577 	return count;
1578 }
1579 
1580 /**
1581  * amdgpu_gfx_get_enforce_isolation - Query AMDGPU GFX Enforce Isolation Settings
1582  * @dev: The device structure
1583  * @attr: The device attribute structure
1584  * @buf: The buffer to store the output data
1585  *
1586  * Provides the sysfs read interface to get the current settings of the 'enforce_isolation'
1587  * feature for each GPU partition. Reading from the 'enforce_isolation'
1588  * sysfs file returns the isolation settings for all partitions, where '0'
1589  * indicates disabled and '1' indicates enabled.
1590  *
1591  * Return: The number of bytes read from the sysfs file.
1592  */
1593 static ssize_t amdgpu_gfx_get_enforce_isolation(struct device *dev,
1594 						struct device_attribute *attr,
1595 						char *buf)
1596 {
1597 	struct drm_device *ddev = dev_get_drvdata(dev);
1598 	struct amdgpu_device *adev = drm_to_adev(ddev);
1599 	int i;
1600 	ssize_t size = 0;
1601 
1602 	if (adev->xcp_mgr) {
1603 		for (i = 0; i < adev->xcp_mgr->num_xcps; i++) {
1604 			size += sysfs_emit_at(buf, size, "%u", adev->enforce_isolation[i]);
1605 			if (i < (adev->xcp_mgr->num_xcps - 1))
1606 				size += sysfs_emit_at(buf, size, " ");
1607 		}
1608 		buf[size++] = '\n';
1609 	} else {
1610 		size = sysfs_emit_at(buf, 0, "%u\n", adev->enforce_isolation[0]);
1611 	}
1612 
1613 	return size;
1614 }
1615 
1616 /**
1617  * amdgpu_gfx_set_enforce_isolation - Control AMDGPU GFX Enforce Isolation
1618  * @dev: The device structure
1619  * @attr: The device attribute structure
1620  * @buf: The buffer containing the input data
1621  * @count: The size of the input data
1622  *
1623  * This function allows control over the 'enforce_isolation' feature, which
1624  * serializes access to the graphics engine. Writing '1' or '0' to the
1625  * 'enforce_isolation' sysfs file enables or disables process isolation for
1626  * each partition. The input should specify the setting for all partitions.
1627  *
1628  * Return: The number of bytes written to the sysfs file.
1629  */
1630 static ssize_t amdgpu_gfx_set_enforce_isolation(struct device *dev,
1631 						struct device_attribute *attr,
1632 						const char *buf, size_t count)
1633 {
1634 	struct drm_device *ddev = dev_get_drvdata(dev);
1635 	struct amdgpu_device *adev = drm_to_adev(ddev);
1636 	long partition_values[MAX_XCP] = {0};
1637 	int ret, i, num_partitions;
1638 	const char *input_buf = buf;
1639 
1640 	for (i = 0; i < (adev->xcp_mgr ? adev->xcp_mgr->num_xcps : 1); i++) {
1641 		ret = sscanf(input_buf, "%ld", &partition_values[i]);
1642 		if (ret <= 0)
1643 			break;
1644 
1645 		/* Move the pointer to the next value in the string */
1646 		input_buf = strchr(input_buf, ' ');
1647 		if (input_buf) {
1648 			input_buf++;
1649 		} else {
1650 			i++;
1651 			break;
1652 		}
1653 	}
1654 	num_partitions = i;
1655 
1656 	if (adev->xcp_mgr && num_partitions != adev->xcp_mgr->num_xcps)
1657 		return -EINVAL;
1658 
1659 	if (!adev->xcp_mgr && num_partitions != 1)
1660 		return -EINVAL;
1661 
1662 	for (i = 0; i < num_partitions; i++) {
1663 		if (partition_values[i] != 0 && partition_values[i] != 1)
1664 			return -EINVAL;
1665 	}
1666 
1667 	mutex_lock(&adev->enforce_isolation_mutex);
1668 
1669 	for (i = 0; i < num_partitions; i++) {
1670 		if (adev->enforce_isolation[i] && !partition_values[i]) {
1671 			/* Going from enabled to disabled */
1672 			amdgpu_vmid_free_reserved(adev, AMDGPU_GFXHUB(i));
1673 			amdgpu_mes_set_enforce_isolation(adev, i, false);
1674 		} else if (!adev->enforce_isolation[i] && partition_values[i]) {
1675 			/* Going from disabled to enabled */
1676 			amdgpu_vmid_alloc_reserved(adev, AMDGPU_GFXHUB(i));
1677 			amdgpu_mes_set_enforce_isolation(adev, i, true);
1678 		}
1679 		adev->enforce_isolation[i] = partition_values[i];
1680 	}
1681 
1682 	mutex_unlock(&adev->enforce_isolation_mutex);
1683 
1684 	return count;
1685 }
1686 
1687 static ssize_t amdgpu_gfx_get_gfx_reset_mask(struct device *dev,
1688 						struct device_attribute *attr,
1689 						char *buf)
1690 {
1691 	struct drm_device *ddev = dev_get_drvdata(dev);
1692 	struct amdgpu_device *adev = drm_to_adev(ddev);
1693 
1694 	if (!adev)
1695 		return -ENODEV;
1696 
1697 	return amdgpu_show_reset_mask(buf, adev->gfx.gfx_supported_reset);
1698 }
1699 
1700 static ssize_t amdgpu_gfx_get_compute_reset_mask(struct device *dev,
1701 						struct device_attribute *attr,
1702 						char *buf)
1703 {
1704 	struct drm_device *ddev = dev_get_drvdata(dev);
1705 	struct amdgpu_device *adev = drm_to_adev(ddev);
1706 
1707 	if (!adev)
1708 		return -ENODEV;
1709 
1710 	return amdgpu_show_reset_mask(buf, adev->gfx.compute_supported_reset);
1711 }
1712 
1713 static DEVICE_ATTR(run_cleaner_shader, 0200,
1714 		   NULL, amdgpu_gfx_set_run_cleaner_shader);
1715 
1716 static DEVICE_ATTR(enforce_isolation, 0644,
1717 		   amdgpu_gfx_get_enforce_isolation,
1718 		   amdgpu_gfx_set_enforce_isolation);
1719 
1720 static DEVICE_ATTR(current_compute_partition, 0644,
1721 		   amdgpu_gfx_get_current_compute_partition,
1722 		   amdgpu_gfx_set_compute_partition);
1723 
1724 static DEVICE_ATTR(available_compute_partition, 0444,
1725 		   amdgpu_gfx_get_available_compute_partition, NULL);
1726 static DEVICE_ATTR(gfx_reset_mask, 0444,
1727 		   amdgpu_gfx_get_gfx_reset_mask, NULL);
1728 
1729 static DEVICE_ATTR(compute_reset_mask, 0444,
1730 		   amdgpu_gfx_get_compute_reset_mask, NULL);
1731 
1732 static int amdgpu_gfx_sysfs_xcp_init(struct amdgpu_device *adev)
1733 {
1734 	struct amdgpu_xcp_mgr *xcp_mgr = adev->xcp_mgr;
1735 	bool xcp_switch_supported;
1736 	int r;
1737 
1738 	if (!xcp_mgr)
1739 		return 0;
1740 
1741 	xcp_switch_supported =
1742 		(xcp_mgr->funcs && xcp_mgr->funcs->switch_partition_mode);
1743 
1744 	if (!xcp_switch_supported)
1745 		dev_attr_current_compute_partition.attr.mode &=
1746 			~(S_IWUSR | S_IWGRP | S_IWOTH);
1747 
1748 	r = device_create_file(adev->dev, &dev_attr_current_compute_partition);
1749 	if (r)
1750 		return r;
1751 
1752 	if (xcp_switch_supported)
1753 		r = device_create_file(adev->dev,
1754 				       &dev_attr_available_compute_partition);
1755 
1756 	return r;
1757 }
1758 
1759 static void amdgpu_gfx_sysfs_xcp_fini(struct amdgpu_device *adev)
1760 {
1761 	struct amdgpu_xcp_mgr *xcp_mgr = adev->xcp_mgr;
1762 	bool xcp_switch_supported;
1763 
1764 	if (!xcp_mgr)
1765 		return;
1766 
1767 	xcp_switch_supported =
1768 		(xcp_mgr->funcs && xcp_mgr->funcs->switch_partition_mode);
1769 	device_remove_file(adev->dev, &dev_attr_current_compute_partition);
1770 
1771 	if (xcp_switch_supported)
1772 		device_remove_file(adev->dev,
1773 				   &dev_attr_available_compute_partition);
1774 }
1775 
1776 static int amdgpu_gfx_sysfs_isolation_shader_init(struct amdgpu_device *adev)
1777 {
1778 	int r;
1779 
1780 	r = device_create_file(adev->dev, &dev_attr_enforce_isolation);
1781 	if (r)
1782 		return r;
1783 	if (adev->gfx.enable_cleaner_shader)
1784 		r = device_create_file(adev->dev, &dev_attr_run_cleaner_shader);
1785 
1786 	return r;
1787 }
1788 
1789 static void amdgpu_gfx_sysfs_isolation_shader_fini(struct amdgpu_device *adev)
1790 {
1791 	device_remove_file(adev->dev, &dev_attr_enforce_isolation);
1792 	if (adev->gfx.enable_cleaner_shader)
1793 		device_remove_file(adev->dev, &dev_attr_run_cleaner_shader);
1794 }
1795 
1796 static int amdgpu_gfx_sysfs_reset_mask_init(struct amdgpu_device *adev)
1797 {
1798 	int r = 0;
1799 
1800 	if (!amdgpu_gpu_recovery)
1801 		return r;
1802 
1803 	if (adev->gfx.num_gfx_rings) {
1804 		r = device_create_file(adev->dev, &dev_attr_gfx_reset_mask);
1805 		if (r)
1806 			return r;
1807 	}
1808 
1809 	if (adev->gfx.num_compute_rings) {
1810 		r = device_create_file(adev->dev, &dev_attr_compute_reset_mask);
1811 		if (r)
1812 			return r;
1813 	}
1814 
1815 	return r;
1816 }
1817 
1818 static void amdgpu_gfx_sysfs_reset_mask_fini(struct amdgpu_device *adev)
1819 {
1820 	if (!amdgpu_gpu_recovery)
1821 		return;
1822 
1823 	if (adev->gfx.num_gfx_rings)
1824 		device_remove_file(adev->dev, &dev_attr_gfx_reset_mask);
1825 
1826 	if (adev->gfx.num_compute_rings)
1827 		device_remove_file(adev->dev, &dev_attr_compute_reset_mask);
1828 }
1829 
1830 int amdgpu_gfx_sysfs_init(struct amdgpu_device *adev)
1831 {
1832 	int r;
1833 
1834 	r = amdgpu_gfx_sysfs_xcp_init(adev);
1835 	if (r) {
1836 		dev_err(adev->dev, "failed to create xcp sysfs files");
1837 		return r;
1838 	}
1839 
1840 	r = amdgpu_gfx_sysfs_isolation_shader_init(adev);
1841 	if (r)
1842 		dev_err(adev->dev, "failed to create isolation sysfs files");
1843 
1844 	r = amdgpu_gfx_sysfs_reset_mask_init(adev);
1845 	if (r)
1846 		dev_err(adev->dev, "failed to create reset mask sysfs files");
1847 
1848 	return r;
1849 }
1850 
1851 void amdgpu_gfx_sysfs_fini(struct amdgpu_device *adev)
1852 {
1853 	if (adev->dev->kobj.sd) {
1854 		amdgpu_gfx_sysfs_xcp_fini(adev);
1855 		amdgpu_gfx_sysfs_isolation_shader_fini(adev);
1856 		amdgpu_gfx_sysfs_reset_mask_fini(adev);
1857 	}
1858 }
1859 
1860 int amdgpu_gfx_cleaner_shader_sw_init(struct amdgpu_device *adev,
1861 				      unsigned int cleaner_shader_size)
1862 {
1863 	if (!adev->gfx.enable_cleaner_shader)
1864 		return -EOPNOTSUPP;
1865 
1866 	return amdgpu_bo_create_kernel(adev, cleaner_shader_size, PAGE_SIZE,
1867 				       AMDGPU_GEM_DOMAIN_VRAM | AMDGPU_GEM_DOMAIN_GTT,
1868 				       &adev->gfx.cleaner_shader_obj,
1869 				       &adev->gfx.cleaner_shader_gpu_addr,
1870 				       (void **)&adev->gfx.cleaner_shader_cpu_ptr);
1871 }
1872 
1873 void amdgpu_gfx_cleaner_shader_sw_fini(struct amdgpu_device *adev)
1874 {
1875 	if (!adev->gfx.enable_cleaner_shader)
1876 		return;
1877 
1878 	amdgpu_bo_free_kernel(&adev->gfx.cleaner_shader_obj,
1879 			      &adev->gfx.cleaner_shader_gpu_addr,
1880 			      (void **)&adev->gfx.cleaner_shader_cpu_ptr);
1881 }
1882 
1883 void amdgpu_gfx_cleaner_shader_init(struct amdgpu_device *adev,
1884 				    unsigned int cleaner_shader_size,
1885 				    const void *cleaner_shader_ptr)
1886 {
1887 	if (!adev->gfx.enable_cleaner_shader)
1888 		return;
1889 
1890 	if (adev->gfx.cleaner_shader_cpu_ptr && cleaner_shader_ptr)
1891 		memcpy_toio(adev->gfx.cleaner_shader_cpu_ptr, cleaner_shader_ptr,
1892 			    cleaner_shader_size);
1893 }
1894 
1895 /**
1896  * amdgpu_gfx_kfd_sch_ctrl - Control the KFD scheduler from the KGD (Graphics Driver)
1897  * @adev: amdgpu_device pointer
1898  * @idx: Index of the scheduler to control
1899  * @enable: Whether to enable or disable the KFD scheduler
1900  *
1901  * This function is used to control the KFD (Kernel Fusion Driver) scheduler
1902  * from the KGD. It is part of the cleaner shader feature. This function plays
1903  * a key role in enforcing process isolation on the GPU.
1904  *
1905  * The function uses a reference count mechanism (kfd_sch_req_count) to keep
1906  * track of the number of requests to enable the KFD scheduler. When a request
1907  * to enable the KFD scheduler is made, the reference count is decremented.
1908  * When the reference count reaches zero, a delayed work is scheduled to
1909  * enforce isolation after a delay of GFX_SLICE_PERIOD.
1910  *
1911  * When a request to disable the KFD scheduler is made, the function first
1912  * checks if the reference count is zero. If it is, it cancels the delayed work
1913  * for enforcing isolation and checks if the KFD scheduler is active. If the
1914  * KFD scheduler is active, it sends a request to stop the KFD scheduler and
1915  * sets the KFD scheduler state to inactive. Then, it increments the reference
1916  * count.
1917  *
1918  * The function is synchronized using the kfd_sch_mutex to ensure that the KFD
1919  * scheduler state and reference count are updated atomically.
1920  *
1921  * Note: If the reference count is already zero when a request to enable the
1922  * KFD scheduler is made, it means there's an imbalance bug somewhere. The
1923  * function triggers a warning in this case.
1924  */
1925 static void amdgpu_gfx_kfd_sch_ctrl(struct amdgpu_device *adev, u32 idx,
1926 				    bool enable)
1927 {
1928 	mutex_lock(&adev->gfx.kfd_sch_mutex);
1929 
1930 	if (enable) {
1931 		/* If the count is already 0, it means there's an imbalance bug somewhere.
1932 		 * Note that the bug may be in a different caller than the one which triggers the
1933 		 * WARN_ON_ONCE.
1934 		 */
1935 		if (WARN_ON_ONCE(adev->gfx.kfd_sch_req_count[idx] == 0)) {
1936 			dev_err(adev->dev, "Attempted to enable KFD scheduler when reference count is already zero\n");
1937 			goto unlock;
1938 		}
1939 
1940 		adev->gfx.kfd_sch_req_count[idx]--;
1941 
1942 		if (adev->gfx.kfd_sch_req_count[idx] == 0 &&
1943 		    adev->gfx.kfd_sch_inactive[idx]) {
1944 			schedule_delayed_work(&adev->gfx.enforce_isolation[idx].work,
1945 					      msecs_to_jiffies(adev->gfx.enforce_isolation_time[idx]));
1946 		}
1947 	} else {
1948 		if (adev->gfx.kfd_sch_req_count[idx] == 0) {
1949 			cancel_delayed_work_sync(&adev->gfx.enforce_isolation[idx].work);
1950 			if (!adev->gfx.kfd_sch_inactive[idx]) {
1951 				amdgpu_amdkfd_stop_sched(adev, idx);
1952 				adev->gfx.kfd_sch_inactive[idx] = true;
1953 			}
1954 		}
1955 
1956 		adev->gfx.kfd_sch_req_count[idx]++;
1957 	}
1958 
1959 unlock:
1960 	mutex_unlock(&adev->gfx.kfd_sch_mutex);
1961 }
1962 
1963 /**
1964  * amdgpu_gfx_enforce_isolation_handler - work handler for enforcing shader isolation
1965  *
1966  * @work: work_struct.
1967  *
1968  * This function is the work handler for enforcing shader isolation on AMD GPUs.
1969  * It counts the number of emitted fences for each GFX and compute ring. If there
1970  * are any fences, it schedules the `enforce_isolation_work` to be run after a
1971  * delay of `GFX_SLICE_PERIOD`. If there are no fences, it signals the Kernel Fusion
1972  * Driver (KFD) to resume the runqueue. The function is synchronized using the
1973  * `enforce_isolation_mutex`.
1974  */
1975 void amdgpu_gfx_enforce_isolation_handler(struct work_struct *work)
1976 {
1977 	struct amdgpu_isolation_work *isolation_work =
1978 		container_of(work, struct amdgpu_isolation_work, work.work);
1979 	struct amdgpu_device *adev = isolation_work->adev;
1980 	u32 i, idx, fences = 0;
1981 
1982 	if (isolation_work->xcp_id == AMDGPU_XCP_NO_PARTITION)
1983 		idx = 0;
1984 	else
1985 		idx = isolation_work->xcp_id;
1986 
1987 	if (idx >= MAX_XCP)
1988 		return;
1989 
1990 	mutex_lock(&adev->enforce_isolation_mutex);
1991 	for (i = 0; i < AMDGPU_MAX_GFX_RINGS; ++i) {
1992 		if (isolation_work->xcp_id == adev->gfx.gfx_ring[i].xcp_id)
1993 			fences += amdgpu_fence_count_emitted(&adev->gfx.gfx_ring[i]);
1994 	}
1995 	for (i = 0; i < (AMDGPU_MAX_COMPUTE_RINGS * AMDGPU_MAX_GC_INSTANCES); ++i) {
1996 		if (isolation_work->xcp_id == adev->gfx.compute_ring[i].xcp_id)
1997 			fences += amdgpu_fence_count_emitted(&adev->gfx.compute_ring[i]);
1998 	}
1999 	if (fences) {
2000 		/* we've already had our timeslice, so let's wrap this up */
2001 		schedule_delayed_work(&adev->gfx.enforce_isolation[idx].work,
2002 				      msecs_to_jiffies(1));
2003 	} else {
2004 		/* Tell KFD to resume the runqueue */
2005 		if (adev->kfd.init_complete) {
2006 			WARN_ON_ONCE(!adev->gfx.kfd_sch_inactive[idx]);
2007 			WARN_ON_ONCE(adev->gfx.kfd_sch_req_count[idx]);
2008 				amdgpu_amdkfd_start_sched(adev, idx);
2009 				adev->gfx.kfd_sch_inactive[idx] = false;
2010 		}
2011 	}
2012 	mutex_unlock(&adev->enforce_isolation_mutex);
2013 }
2014 
2015 /**
2016  * amdgpu_gfx_enforce_isolation_wait_for_kfd - Manage KFD wait period for process isolation
2017  * @adev: amdgpu_device pointer
2018  * @idx: Index of the GPU partition
2019  *
2020  * When kernel submissions come in, the jobs are given a time slice and once
2021  * that time slice is up, if there are KFD user queues active, kernel
2022  * submissions are blocked until KFD has had its time slice. Once the KFD time
2023  * slice is up, KFD user queues are preempted and kernel submissions are
2024  * unblocked and allowed to run again.
2025  */
2026 static void
2027 amdgpu_gfx_enforce_isolation_wait_for_kfd(struct amdgpu_device *adev,
2028 					  u32 idx)
2029 {
2030 	unsigned long cjiffies;
2031 	bool wait = false;
2032 
2033 	mutex_lock(&adev->enforce_isolation_mutex);
2034 	if (adev->enforce_isolation[idx]) {
2035 		/* set the initial values if nothing is set */
2036 		if (!adev->gfx.enforce_isolation_jiffies[idx]) {
2037 			adev->gfx.enforce_isolation_jiffies[idx] = jiffies;
2038 			adev->gfx.enforce_isolation_time[idx] =	GFX_SLICE_PERIOD_MS;
2039 		}
2040 		/* Make sure KFD gets a chance to run */
2041 		if (amdgpu_amdkfd_compute_active(adev, idx)) {
2042 			cjiffies = jiffies;
2043 			if (time_after(cjiffies, adev->gfx.enforce_isolation_jiffies[idx])) {
2044 				cjiffies -= adev->gfx.enforce_isolation_jiffies[idx];
2045 				if ((jiffies_to_msecs(cjiffies) >= GFX_SLICE_PERIOD_MS)) {
2046 					/* if our time is up, let KGD work drain before scheduling more */
2047 					wait = true;
2048 					/* reset the timer period */
2049 					adev->gfx.enforce_isolation_time[idx] =	GFX_SLICE_PERIOD_MS;
2050 				} else {
2051 					/* set the timer period to what's left in our time slice */
2052 					adev->gfx.enforce_isolation_time[idx] =
2053 						GFX_SLICE_PERIOD_MS - jiffies_to_msecs(cjiffies);
2054 				}
2055 			} else {
2056 				/* if jiffies wrap around we will just wait a little longer */
2057 				adev->gfx.enforce_isolation_jiffies[idx] = jiffies;
2058 			}
2059 		} else {
2060 			/* if there is no KFD work, then set the full slice period */
2061 			adev->gfx.enforce_isolation_jiffies[idx] = jiffies;
2062 			adev->gfx.enforce_isolation_time[idx] = GFX_SLICE_PERIOD_MS;
2063 		}
2064 	}
2065 	mutex_unlock(&adev->enforce_isolation_mutex);
2066 
2067 	if (wait)
2068 		msleep(GFX_SLICE_PERIOD_MS);
2069 }
2070 
2071 /**
2072  * amdgpu_gfx_enforce_isolation_ring_begin_use - Begin use of a ring with enforced isolation
2073  * @ring: Pointer to the amdgpu_ring structure
2074  *
2075  * Ring begin_use helper implementation for gfx which serializes access to the
2076  * gfx IP between kernel submission IOCTLs and KFD user queues when isolation
2077  * enforcement is enabled. The kernel submission IOCTLs and KFD user queues
2078  * each get a time slice when both are active.
2079  */
2080 void amdgpu_gfx_enforce_isolation_ring_begin_use(struct amdgpu_ring *ring)
2081 {
2082 	struct amdgpu_device *adev = ring->adev;
2083 	u32 idx;
2084 	bool sched_work = false;
2085 
2086 	if (!adev->gfx.enable_cleaner_shader)
2087 		return;
2088 
2089 	if (ring->xcp_id == AMDGPU_XCP_NO_PARTITION)
2090 		idx = 0;
2091 	else
2092 		idx = ring->xcp_id;
2093 
2094 	if (idx >= MAX_XCP)
2095 		return;
2096 
2097 	/* Don't submit more work until KFD has had some time */
2098 	amdgpu_gfx_enforce_isolation_wait_for_kfd(adev, idx);
2099 
2100 	mutex_lock(&adev->enforce_isolation_mutex);
2101 	if (adev->enforce_isolation[idx]) {
2102 		if (adev->kfd.init_complete)
2103 			sched_work = true;
2104 	}
2105 	mutex_unlock(&adev->enforce_isolation_mutex);
2106 
2107 	if (sched_work)
2108 		amdgpu_gfx_kfd_sch_ctrl(adev, idx, false);
2109 }
2110 
2111 /**
2112  * amdgpu_gfx_enforce_isolation_ring_end_use - End use of a ring with enforced isolation
2113  * @ring: Pointer to the amdgpu_ring structure
2114  *
2115  * Ring end_use helper implementation for gfx which serializes access to the
2116  * gfx IP between kernel submission IOCTLs and KFD user queues when isolation
2117  * enforcement is enabled. The kernel submission IOCTLs and KFD user queues
2118  * each get a time slice when both are active.
2119  */
2120 void amdgpu_gfx_enforce_isolation_ring_end_use(struct amdgpu_ring *ring)
2121 {
2122 	struct amdgpu_device *adev = ring->adev;
2123 	u32 idx;
2124 	bool sched_work = false;
2125 
2126 	if (!adev->gfx.enable_cleaner_shader)
2127 		return;
2128 
2129 	if (ring->xcp_id == AMDGPU_XCP_NO_PARTITION)
2130 		idx = 0;
2131 	else
2132 		idx = ring->xcp_id;
2133 
2134 	if (idx >= MAX_XCP)
2135 		return;
2136 
2137 	mutex_lock(&adev->enforce_isolation_mutex);
2138 	if (adev->enforce_isolation[idx]) {
2139 		if (adev->kfd.init_complete)
2140 			sched_work = true;
2141 	}
2142 	mutex_unlock(&adev->enforce_isolation_mutex);
2143 
2144 	if (sched_work)
2145 		amdgpu_gfx_kfd_sch_ctrl(adev, idx, true);
2146 }
2147 
2148 void amdgpu_gfx_profile_idle_work_handler(struct work_struct *work)
2149 {
2150 	struct amdgpu_device *adev =
2151 		container_of(work, struct amdgpu_device, gfx.idle_work.work);
2152 	enum PP_SMC_POWER_PROFILE profile;
2153 	u32 i, fences = 0;
2154 	int r;
2155 
2156 	if (adev->gfx.num_gfx_rings)
2157 		profile = PP_SMC_POWER_PROFILE_FULLSCREEN3D;
2158 	else
2159 		profile = PP_SMC_POWER_PROFILE_COMPUTE;
2160 
2161 	for (i = 0; i < AMDGPU_MAX_GFX_RINGS; ++i)
2162 		fences += amdgpu_fence_count_emitted(&adev->gfx.gfx_ring[i]);
2163 	for (i = 0; i < (AMDGPU_MAX_COMPUTE_RINGS * AMDGPU_MAX_GC_INSTANCES); ++i)
2164 		fences += amdgpu_fence_count_emitted(&adev->gfx.compute_ring[i]);
2165 	if (!fences && !atomic_read(&adev->gfx.total_submission_cnt)) {
2166 		r = amdgpu_dpm_switch_power_profile(adev, profile, false);
2167 		if (r)
2168 			dev_warn(adev->dev, "(%d) failed to disable %s power profile mode\n", r,
2169 				 profile == PP_SMC_POWER_PROFILE_FULLSCREEN3D ?
2170 				 "fullscreen 3D" : "compute");
2171 	} else {
2172 		schedule_delayed_work(&adev->gfx.idle_work, GFX_PROFILE_IDLE_TIMEOUT);
2173 	}
2174 }
2175 
2176 void amdgpu_gfx_profile_ring_begin_use(struct amdgpu_ring *ring)
2177 {
2178 	struct amdgpu_device *adev = ring->adev;
2179 	enum PP_SMC_POWER_PROFILE profile;
2180 	int r;
2181 
2182 	if (adev->gfx.num_gfx_rings)
2183 		profile = PP_SMC_POWER_PROFILE_FULLSCREEN3D;
2184 	else
2185 		profile = PP_SMC_POWER_PROFILE_COMPUTE;
2186 
2187 	atomic_inc(&adev->gfx.total_submission_cnt);
2188 
2189 	if (!cancel_delayed_work_sync(&adev->gfx.idle_work)) {
2190 		r = amdgpu_dpm_switch_power_profile(adev, profile, true);
2191 		if (r)
2192 			dev_warn(adev->dev, "(%d) failed to disable %s power profile mode\n", r,
2193 				 profile == PP_SMC_POWER_PROFILE_FULLSCREEN3D ?
2194 				 "fullscreen 3D" : "compute");
2195 	}
2196 }
2197 
2198 void amdgpu_gfx_profile_ring_end_use(struct amdgpu_ring *ring)
2199 {
2200 	atomic_dec(&ring->adev->gfx.total_submission_cnt);
2201 
2202 	schedule_delayed_work(&ring->adev->gfx.idle_work, GFX_PROFILE_IDLE_TIMEOUT);
2203 }
2204 
2205 /*
2206  * debugfs for to enable/disable gfx job submission to specific core.
2207  */
2208 #if defined(CONFIG_DEBUG_FS)
2209 static int amdgpu_debugfs_gfx_sched_mask_set(void *data, u64 val)
2210 {
2211 	struct amdgpu_device *adev = (struct amdgpu_device *)data;
2212 	u32 i;
2213 	u64 mask = 0;
2214 	struct amdgpu_ring *ring;
2215 
2216 	if (!adev)
2217 		return -ENODEV;
2218 
2219 	mask = (1ULL << adev->gfx.num_gfx_rings) - 1;
2220 	if ((val & mask) == 0)
2221 		return -EINVAL;
2222 
2223 	for (i = 0; i < adev->gfx.num_gfx_rings; ++i) {
2224 		ring = &adev->gfx.gfx_ring[i];
2225 		if (val & (1 << i))
2226 			ring->sched.ready = true;
2227 		else
2228 			ring->sched.ready = false;
2229 	}
2230 	/* publish sched.ready flag update effective immediately across smp */
2231 	smp_rmb();
2232 	return 0;
2233 }
2234 
2235 static int amdgpu_debugfs_gfx_sched_mask_get(void *data, u64 *val)
2236 {
2237 	struct amdgpu_device *adev = (struct amdgpu_device *)data;
2238 	u32 i;
2239 	u64 mask = 0;
2240 	struct amdgpu_ring *ring;
2241 
2242 	if (!adev)
2243 		return -ENODEV;
2244 	for (i = 0; i < adev->gfx.num_gfx_rings; ++i) {
2245 		ring = &adev->gfx.gfx_ring[i];
2246 		if (ring->sched.ready)
2247 			mask |= 1ULL << i;
2248 	}
2249 
2250 	*val = mask;
2251 	return 0;
2252 }
2253 
2254 DEFINE_DEBUGFS_ATTRIBUTE(amdgpu_debugfs_gfx_sched_mask_fops,
2255 			 amdgpu_debugfs_gfx_sched_mask_get,
2256 			 amdgpu_debugfs_gfx_sched_mask_set, "%llx\n");
2257 
2258 #endif
2259 
2260 void amdgpu_debugfs_gfx_sched_mask_init(struct amdgpu_device *adev)
2261 {
2262 #if defined(CONFIG_DEBUG_FS)
2263 	struct drm_minor *minor = adev_to_drm(adev)->primary;
2264 	struct dentry *root = minor->debugfs_root;
2265 	char name[32];
2266 
2267 	if (!(adev->gfx.num_gfx_rings > 1))
2268 		return;
2269 	sprintf(name, "amdgpu_gfx_sched_mask");
2270 	debugfs_create_file(name, 0600, root, adev,
2271 			    &amdgpu_debugfs_gfx_sched_mask_fops);
2272 #endif
2273 }
2274 
2275 /*
2276  * debugfs for to enable/disable compute job submission to specific core.
2277  */
2278 #if defined(CONFIG_DEBUG_FS)
2279 static int amdgpu_debugfs_compute_sched_mask_set(void *data, u64 val)
2280 {
2281 	struct amdgpu_device *adev = (struct amdgpu_device *)data;
2282 	u32 i;
2283 	u64 mask = 0;
2284 	struct amdgpu_ring *ring;
2285 
2286 	if (!adev)
2287 		return -ENODEV;
2288 
2289 	mask = (1ULL << adev->gfx.num_compute_rings) - 1;
2290 	if ((val & mask) == 0)
2291 		return -EINVAL;
2292 
2293 	for (i = 0; i < adev->gfx.num_compute_rings; ++i) {
2294 		ring = &adev->gfx.compute_ring[i];
2295 		if (val & (1 << i))
2296 			ring->sched.ready = true;
2297 		else
2298 			ring->sched.ready = false;
2299 	}
2300 
2301 	/* publish sched.ready flag update effective immediately across smp */
2302 	smp_rmb();
2303 	return 0;
2304 }
2305 
2306 static int amdgpu_debugfs_compute_sched_mask_get(void *data, u64 *val)
2307 {
2308 	struct amdgpu_device *adev = (struct amdgpu_device *)data;
2309 	u32 i;
2310 	u64 mask = 0;
2311 	struct amdgpu_ring *ring;
2312 
2313 	if (!adev)
2314 		return -ENODEV;
2315 	for (i = 0; i < adev->gfx.num_compute_rings; ++i) {
2316 		ring = &adev->gfx.compute_ring[i];
2317 		if (ring->sched.ready)
2318 			mask |= 1ULL << i;
2319 	}
2320 
2321 	*val = mask;
2322 	return 0;
2323 }
2324 
2325 DEFINE_DEBUGFS_ATTRIBUTE(amdgpu_debugfs_compute_sched_mask_fops,
2326 			 amdgpu_debugfs_compute_sched_mask_get,
2327 			 amdgpu_debugfs_compute_sched_mask_set, "%llx\n");
2328 
2329 #endif
2330 
2331 void amdgpu_debugfs_compute_sched_mask_init(struct amdgpu_device *adev)
2332 {
2333 #if defined(CONFIG_DEBUG_FS)
2334 	struct drm_minor *minor = adev_to_drm(adev)->primary;
2335 	struct dentry *root = minor->debugfs_root;
2336 	char name[32];
2337 
2338 	if (!(adev->gfx.num_compute_rings > 1))
2339 		return;
2340 	sprintf(name, "amdgpu_compute_sched_mask");
2341 	debugfs_create_file(name, 0600, root, adev,
2342 			    &amdgpu_debugfs_compute_sched_mask_fops);
2343 #endif
2344 }
2345