1 /* 2 * Copyright 2014 Advanced Micro Devices, Inc. 3 * Copyright 2008 Red Hat Inc. 4 * Copyright 2009 Jerome Glisse. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 * 24 */ 25 26 #include <linux/firmware.h> 27 #include <linux/pm_runtime.h> 28 29 #include "amdgpu.h" 30 #include "amdgpu_gfx.h" 31 #include "amdgpu_rlc.h" 32 #include "amdgpu_ras.h" 33 #include "amdgpu_reset.h" 34 #include "amdgpu_xcp.h" 35 #include "amdgpu_xgmi.h" 36 #include "amdgpu_mes.h" 37 #include "nvd.h" 38 39 /* delay 0.1 second to enable gfx off feature */ 40 #define GFX_OFF_DELAY_ENABLE msecs_to_jiffies(100) 41 42 #define GFX_OFF_NO_DELAY 0 43 44 /* 45 * GPU GFX IP block helpers function. 46 */ 47 48 int amdgpu_gfx_mec_queue_to_bit(struct amdgpu_device *adev, int mec, 49 int pipe, int queue) 50 { 51 int bit = 0; 52 53 bit += mec * adev->gfx.mec.num_pipe_per_mec 54 * adev->gfx.mec.num_queue_per_pipe; 55 bit += pipe * adev->gfx.mec.num_queue_per_pipe; 56 bit += queue; 57 58 return bit; 59 } 60 61 void amdgpu_queue_mask_bit_to_mec_queue(struct amdgpu_device *adev, int bit, 62 int *mec, int *pipe, int *queue) 63 { 64 *queue = bit % adev->gfx.mec.num_queue_per_pipe; 65 *pipe = (bit / adev->gfx.mec.num_queue_per_pipe) 66 % adev->gfx.mec.num_pipe_per_mec; 67 *mec = (bit / adev->gfx.mec.num_queue_per_pipe) 68 / adev->gfx.mec.num_pipe_per_mec; 69 70 } 71 72 bool amdgpu_gfx_is_mec_queue_enabled(struct amdgpu_device *adev, 73 int xcc_id, int mec, int pipe, int queue) 74 { 75 return test_bit(amdgpu_gfx_mec_queue_to_bit(adev, mec, pipe, queue), 76 adev->gfx.mec_bitmap[xcc_id].queue_bitmap); 77 } 78 79 static int amdgpu_gfx_me_queue_to_bit(struct amdgpu_device *adev, 80 int me, int pipe, int queue) 81 { 82 int num_queue_per_pipe = 1; /* we only enable 1 KGQ per pipe */ 83 int bit = 0; 84 85 bit += me * adev->gfx.me.num_pipe_per_me 86 * num_queue_per_pipe; 87 bit += pipe * num_queue_per_pipe; 88 bit += queue; 89 90 return bit; 91 } 92 93 bool amdgpu_gfx_is_me_queue_enabled(struct amdgpu_device *adev, 94 int me, int pipe, int queue) 95 { 96 return test_bit(amdgpu_gfx_me_queue_to_bit(adev, me, pipe, queue), 97 adev->gfx.me.queue_bitmap); 98 } 99 100 /** 101 * amdgpu_gfx_parse_disable_cu - Parse the disable_cu module parameter 102 * 103 * @adev: amdgpu device pointer 104 * @mask: array in which the per-shader array disable masks will be stored 105 * @max_se: number of SEs 106 * @max_sh: number of SHs 107 * 108 * The bitmask of CUs to be disabled in the shader array determined by se and 109 * sh is stored in mask[se * max_sh + sh]. 110 */ 111 void amdgpu_gfx_parse_disable_cu(struct amdgpu_device *adev, unsigned int *mask, 112 unsigned int max_se, unsigned int max_sh) 113 { 114 unsigned int se, sh, cu; 115 const char *p; 116 117 memset(mask, 0, sizeof(*mask) * max_se * max_sh); 118 119 if (!amdgpu_disable_cu || !*amdgpu_disable_cu) 120 return; 121 122 p = amdgpu_disable_cu; 123 for (;;) { 124 char *next; 125 int ret = sscanf(p, "%u.%u.%u", &se, &sh, &cu); 126 127 if (ret < 3) { 128 drm_err(adev_to_drm(adev), "could not parse disable_cu\n"); 129 return; 130 } 131 132 if (se < max_se && sh < max_sh && cu < 16) { 133 drm_info(adev_to_drm(adev), "Disabling CU %u.%u.%u\n", se, sh, cu); 134 mask[se * max_sh + sh] |= 1u << cu; 135 } else { 136 drm_err(adev_to_drm(adev), "disable_cu %u.%u.%u is out of range\n", 137 se, sh, cu); 138 } 139 140 next = strchr(p, ','); 141 if (!next) 142 break; 143 p = next + 1; 144 } 145 } 146 147 static bool amdgpu_gfx_is_graphics_multipipe_capable(struct amdgpu_device *adev) 148 { 149 return amdgpu_async_gfx_ring && adev->gfx.me.num_pipe_per_me > 1; 150 } 151 152 static bool amdgpu_gfx_is_compute_multipipe_capable(struct amdgpu_device *adev) 153 { 154 if (amdgpu_compute_multipipe != -1) { 155 dev_info(adev->dev, " forcing compute pipe policy %d\n", 156 amdgpu_compute_multipipe); 157 return amdgpu_compute_multipipe == 1; 158 } 159 160 if (amdgpu_ip_version(adev, GC_HWIP, 0) > IP_VERSION(9, 0, 0)) 161 return true; 162 163 /* FIXME: spreading the queues across pipes causes perf regressions 164 * on POLARIS11 compute workloads */ 165 if (adev->asic_type == CHIP_POLARIS11) 166 return false; 167 168 return adev->gfx.mec.num_mec > 1; 169 } 170 171 bool amdgpu_gfx_is_high_priority_graphics_queue(struct amdgpu_device *adev, 172 struct amdgpu_ring *ring) 173 { 174 int queue = ring->queue; 175 int pipe = ring->pipe; 176 177 /* Policy: use pipe1 queue0 as high priority graphics queue if we 178 * have more than one gfx pipe. 179 */ 180 if (amdgpu_gfx_is_graphics_multipipe_capable(adev) && 181 adev->gfx.num_gfx_rings > 1 && pipe == 1 && queue == 0) { 182 int me = ring->me; 183 int bit; 184 185 bit = amdgpu_gfx_me_queue_to_bit(adev, me, pipe, queue); 186 if (ring == &adev->gfx.gfx_ring[bit]) 187 return true; 188 } 189 190 return false; 191 } 192 193 bool amdgpu_gfx_is_high_priority_compute_queue(struct amdgpu_device *adev, 194 struct amdgpu_ring *ring) 195 { 196 /* Policy: use 1st queue as high priority compute queue if we 197 * have more than one compute queue. 198 */ 199 if (adev->gfx.num_compute_rings > 1 && 200 ring == &adev->gfx.compute_ring[0]) 201 return true; 202 203 return false; 204 } 205 206 void amdgpu_gfx_compute_queue_acquire(struct amdgpu_device *adev) 207 { 208 int i, j, queue, pipe; 209 bool multipipe_policy = amdgpu_gfx_is_compute_multipipe_capable(adev); 210 int max_queues_per_mec = min(adev->gfx.mec.num_pipe_per_mec * 211 adev->gfx.mec.num_queue_per_pipe, 212 adev->gfx.num_compute_rings); 213 int num_xcc = adev->gfx.xcc_mask ? NUM_XCC(adev->gfx.xcc_mask) : 1; 214 215 if (multipipe_policy) { 216 /* policy: make queues evenly cross all pipes on MEC1 only 217 * for multiple xcc, just use the original policy for simplicity */ 218 for (j = 0; j < num_xcc; j++) { 219 for (i = 0; i < max_queues_per_mec; i++) { 220 pipe = i % adev->gfx.mec.num_pipe_per_mec; 221 queue = (i / adev->gfx.mec.num_pipe_per_mec) % 222 adev->gfx.mec.num_queue_per_pipe; 223 224 set_bit(pipe * adev->gfx.mec.num_queue_per_pipe + queue, 225 adev->gfx.mec_bitmap[j].queue_bitmap); 226 } 227 } 228 } else { 229 /* policy: amdgpu owns all queues in the given pipe */ 230 for (j = 0; j < num_xcc; j++) { 231 for (i = 0; i < max_queues_per_mec; ++i) 232 set_bit(i, adev->gfx.mec_bitmap[j].queue_bitmap); 233 } 234 } 235 236 for (j = 0; j < num_xcc; j++) { 237 dev_dbg(adev->dev, "mec queue bitmap weight=%d\n", 238 bitmap_weight(adev->gfx.mec_bitmap[j].queue_bitmap, AMDGPU_MAX_COMPUTE_QUEUES)); 239 } 240 } 241 242 void amdgpu_gfx_graphics_queue_acquire(struct amdgpu_device *adev) 243 { 244 int i, queue, pipe; 245 bool multipipe_policy = amdgpu_gfx_is_graphics_multipipe_capable(adev); 246 int num_queue_per_pipe = 1; /* we only enable 1 KGQ per pipe */ 247 int max_queues_per_me = adev->gfx.me.num_pipe_per_me * num_queue_per_pipe; 248 249 if (multipipe_policy) { 250 /* policy: amdgpu owns the first queue per pipe at this stage 251 * will extend to mulitple queues per pipe later */ 252 for (i = 0; i < max_queues_per_me; i++) { 253 pipe = i % adev->gfx.me.num_pipe_per_me; 254 queue = (i / adev->gfx.me.num_pipe_per_me) % 255 num_queue_per_pipe; 256 257 set_bit(pipe * num_queue_per_pipe + queue, 258 adev->gfx.me.queue_bitmap); 259 } 260 } else { 261 for (i = 0; i < max_queues_per_me; ++i) 262 set_bit(i, adev->gfx.me.queue_bitmap); 263 } 264 265 /* update the number of active graphics rings */ 266 if (adev->gfx.num_gfx_rings) 267 adev->gfx.num_gfx_rings = 268 bitmap_weight(adev->gfx.me.queue_bitmap, AMDGPU_MAX_GFX_QUEUES); 269 } 270 271 static int amdgpu_gfx_kiq_acquire(struct amdgpu_device *adev, 272 struct amdgpu_ring *ring, int xcc_id) 273 { 274 int queue_bit; 275 int mec, pipe, queue; 276 277 queue_bit = adev->gfx.mec.num_mec 278 * adev->gfx.mec.num_pipe_per_mec 279 * adev->gfx.mec.num_queue_per_pipe; 280 281 while (--queue_bit >= 0) { 282 if (test_bit(queue_bit, adev->gfx.mec_bitmap[xcc_id].queue_bitmap)) 283 continue; 284 285 amdgpu_queue_mask_bit_to_mec_queue(adev, queue_bit, &mec, &pipe, &queue); 286 287 /* 288 * 1. Using pipes 2/3 from MEC 2 seems cause problems. 289 * 2. It must use queue id 0, because CGPG_IDLE/SAVE/LOAD/RUN 290 * only can be issued on queue 0. 291 */ 292 if ((mec == 1 && pipe > 1) || queue != 0) 293 continue; 294 295 ring->me = mec + 1; 296 ring->pipe = pipe; 297 ring->queue = queue; 298 299 return 0; 300 } 301 302 dev_err(adev->dev, "Failed to find a queue for KIQ\n"); 303 return -EINVAL; 304 } 305 306 int amdgpu_gfx_kiq_init_ring(struct amdgpu_device *adev, int xcc_id) 307 { 308 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 309 struct amdgpu_irq_src *irq = &kiq->irq; 310 struct amdgpu_ring *ring = &kiq->ring; 311 int r = 0; 312 313 spin_lock_init(&kiq->ring_lock); 314 315 ring->adev = NULL; 316 ring->ring_obj = NULL; 317 ring->use_doorbell = true; 318 ring->xcc_id = xcc_id; 319 ring->vm_hub = AMDGPU_GFXHUB(xcc_id); 320 ring->doorbell_index = 321 (adev->doorbell_index.kiq + 322 xcc_id * adev->doorbell_index.xcc_doorbell_range) 323 << 1; 324 325 r = amdgpu_gfx_kiq_acquire(adev, ring, xcc_id); 326 if (r) 327 return r; 328 329 ring->eop_gpu_addr = kiq->eop_gpu_addr; 330 ring->no_scheduler = true; 331 snprintf(ring->name, sizeof(ring->name), "kiq_%hhu.%hhu.%hhu.%hhu", 332 (unsigned char)xcc_id, (unsigned char)ring->me, 333 (unsigned char)ring->pipe, (unsigned char)ring->queue); 334 r = amdgpu_ring_init(adev, ring, 1024, irq, AMDGPU_CP_KIQ_IRQ_DRIVER0, 335 AMDGPU_RING_PRIO_DEFAULT, NULL); 336 if (r) 337 dev_warn(adev->dev, "(%d) failed to init kiq ring\n", r); 338 339 return r; 340 } 341 342 void amdgpu_gfx_kiq_free_ring(struct amdgpu_ring *ring) 343 { 344 amdgpu_ring_fini(ring); 345 } 346 347 void amdgpu_gfx_kiq_fini(struct amdgpu_device *adev, int xcc_id) 348 { 349 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 350 351 amdgpu_bo_free_kernel(&kiq->eop_obj, &kiq->eop_gpu_addr, NULL); 352 } 353 354 int amdgpu_gfx_kiq_init(struct amdgpu_device *adev, 355 unsigned int hpd_size, int xcc_id) 356 { 357 int r; 358 u32 *hpd; 359 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 360 361 r = amdgpu_bo_create_kernel(adev, hpd_size, PAGE_SIZE, 362 AMDGPU_GEM_DOMAIN_GTT, &kiq->eop_obj, 363 &kiq->eop_gpu_addr, (void **)&hpd); 364 if (r) { 365 dev_warn(adev->dev, "failed to create KIQ bo (%d).\n", r); 366 return r; 367 } 368 369 memset(hpd, 0, hpd_size); 370 371 r = amdgpu_bo_reserve(kiq->eop_obj, true); 372 if (unlikely(r != 0)) 373 dev_warn(adev->dev, "(%d) reserve kiq eop bo failed\n", r); 374 amdgpu_bo_kunmap(kiq->eop_obj); 375 amdgpu_bo_unreserve(kiq->eop_obj); 376 377 return 0; 378 } 379 380 /* create MQD for each compute/gfx queue */ 381 int amdgpu_gfx_mqd_sw_init(struct amdgpu_device *adev, 382 unsigned int mqd_size, int xcc_id) 383 { 384 int r, i, j; 385 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 386 struct amdgpu_ring *ring = &kiq->ring; 387 u32 domain = AMDGPU_GEM_DOMAIN_GTT; 388 389 #if !defined(CONFIG_ARM) && !defined(CONFIG_ARM64) 390 /* Only enable on gfx10 and 11 for now to avoid changing behavior on older chips */ 391 if (amdgpu_ip_version(adev, GC_HWIP, 0) >= IP_VERSION(10, 0, 0)) 392 domain |= AMDGPU_GEM_DOMAIN_VRAM; 393 #endif 394 395 /* create MQD for KIQ */ 396 if (!adev->enable_mes_kiq && !ring->mqd_obj) { 397 /* originaly the KIQ MQD is put in GTT domain, but for SRIOV VRAM domain is a must 398 * otherwise hypervisor trigger SAVE_VF fail after driver unloaded which mean MQD 399 * deallocated and gart_unbind, to strict diverage we decide to use VRAM domain for 400 * KIQ MQD no matter SRIOV or Bare-metal 401 */ 402 r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE, 403 AMDGPU_GEM_DOMAIN_VRAM | 404 AMDGPU_GEM_DOMAIN_GTT, 405 &ring->mqd_obj, 406 &ring->mqd_gpu_addr, 407 &ring->mqd_ptr); 408 if (r) { 409 dev_warn(adev->dev, "failed to create ring mqd ob (%d)", r); 410 return r; 411 } 412 413 /* prepare MQD backup */ 414 kiq->mqd_backup = kzalloc(mqd_size, GFP_KERNEL); 415 if (!kiq->mqd_backup) { 416 dev_warn(adev->dev, 417 "no memory to create MQD backup for ring %s\n", ring->name); 418 return -ENOMEM; 419 } 420 } 421 422 if (adev->asic_type >= CHIP_NAVI10 && amdgpu_async_gfx_ring) { 423 /* create MQD for each KGQ */ 424 for (i = 0; i < adev->gfx.num_gfx_rings; i++) { 425 ring = &adev->gfx.gfx_ring[i]; 426 if (!ring->mqd_obj) { 427 r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE, 428 domain, &ring->mqd_obj, 429 &ring->mqd_gpu_addr, &ring->mqd_ptr); 430 if (r) { 431 dev_warn(adev->dev, "failed to create ring mqd bo (%d)", r); 432 return r; 433 } 434 435 ring->mqd_size = mqd_size; 436 /* prepare MQD backup */ 437 adev->gfx.me.mqd_backup[i] = kzalloc(mqd_size, GFP_KERNEL); 438 if (!adev->gfx.me.mqd_backup[i]) { 439 dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name); 440 return -ENOMEM; 441 } 442 } 443 } 444 } 445 446 /* create MQD for each KCQ */ 447 for (i = 0; i < adev->gfx.num_compute_rings; i++) { 448 j = i + xcc_id * adev->gfx.num_compute_rings; 449 ring = &adev->gfx.compute_ring[j]; 450 if (!ring->mqd_obj) { 451 r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE, 452 domain, &ring->mqd_obj, 453 &ring->mqd_gpu_addr, &ring->mqd_ptr); 454 if (r) { 455 dev_warn(adev->dev, "failed to create ring mqd bo (%d)", r); 456 return r; 457 } 458 459 ring->mqd_size = mqd_size; 460 /* prepare MQD backup */ 461 adev->gfx.mec.mqd_backup[j] = kzalloc(mqd_size, GFP_KERNEL); 462 if (!adev->gfx.mec.mqd_backup[j]) { 463 dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name); 464 return -ENOMEM; 465 } 466 } 467 } 468 469 return 0; 470 } 471 472 void amdgpu_gfx_mqd_sw_fini(struct amdgpu_device *adev, int xcc_id) 473 { 474 struct amdgpu_ring *ring = NULL; 475 int i, j; 476 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 477 478 if (adev->asic_type >= CHIP_NAVI10 && amdgpu_async_gfx_ring) { 479 for (i = 0; i < adev->gfx.num_gfx_rings; i++) { 480 ring = &adev->gfx.gfx_ring[i]; 481 kfree(adev->gfx.me.mqd_backup[i]); 482 amdgpu_bo_free_kernel(&ring->mqd_obj, 483 &ring->mqd_gpu_addr, 484 &ring->mqd_ptr); 485 } 486 } 487 488 for (i = 0; i < adev->gfx.num_compute_rings; i++) { 489 j = i + xcc_id * adev->gfx.num_compute_rings; 490 ring = &adev->gfx.compute_ring[j]; 491 kfree(adev->gfx.mec.mqd_backup[j]); 492 amdgpu_bo_free_kernel(&ring->mqd_obj, 493 &ring->mqd_gpu_addr, 494 &ring->mqd_ptr); 495 } 496 497 ring = &kiq->ring; 498 kfree(kiq->mqd_backup); 499 amdgpu_bo_free_kernel(&ring->mqd_obj, 500 &ring->mqd_gpu_addr, 501 &ring->mqd_ptr); 502 } 503 504 int amdgpu_gfx_disable_kcq(struct amdgpu_device *adev, int xcc_id) 505 { 506 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 507 struct amdgpu_ring *kiq_ring = &kiq->ring; 508 int i, r = 0; 509 int j; 510 511 if (adev->enable_mes) { 512 for (i = 0; i < adev->gfx.num_compute_rings; i++) { 513 j = i + xcc_id * adev->gfx.num_compute_rings; 514 amdgpu_mes_unmap_legacy_queue(adev, 515 &adev->gfx.compute_ring[j], 516 RESET_QUEUES, 0, 0, xcc_id); 517 } 518 return 0; 519 } 520 521 if (!kiq->pmf || !kiq->pmf->kiq_unmap_queues) 522 return -EINVAL; 523 524 if (!kiq_ring->sched.ready || amdgpu_in_reset(adev)) 525 return 0; 526 527 spin_lock(&kiq->ring_lock); 528 if (amdgpu_ring_alloc(kiq_ring, kiq->pmf->unmap_queues_size * 529 adev->gfx.num_compute_rings)) { 530 spin_unlock(&kiq->ring_lock); 531 return -ENOMEM; 532 } 533 534 for (i = 0; i < adev->gfx.num_compute_rings; i++) { 535 j = i + xcc_id * adev->gfx.num_compute_rings; 536 kiq->pmf->kiq_unmap_queues(kiq_ring, 537 &adev->gfx.compute_ring[j], 538 RESET_QUEUES, 0, 0); 539 } 540 /* Submit unmap queue packet */ 541 amdgpu_ring_commit(kiq_ring); 542 /* 543 * Ring test will do a basic scratch register change check. Just run 544 * this to ensure that unmap queues that is submitted before got 545 * processed successfully before returning. 546 */ 547 r = amdgpu_ring_test_helper(kiq_ring); 548 549 spin_unlock(&kiq->ring_lock); 550 551 return r; 552 } 553 554 int amdgpu_gfx_disable_kgq(struct amdgpu_device *adev, int xcc_id) 555 { 556 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 557 struct amdgpu_ring *kiq_ring = &kiq->ring; 558 int i, r = 0; 559 int j; 560 561 if (adev->enable_mes) { 562 if (amdgpu_gfx_is_master_xcc(adev, xcc_id)) { 563 for (i = 0; i < adev->gfx.num_gfx_rings; i++) { 564 j = i + xcc_id * adev->gfx.num_gfx_rings; 565 amdgpu_mes_unmap_legacy_queue(adev, 566 &adev->gfx.gfx_ring[j], 567 PREEMPT_QUEUES, 0, 0, xcc_id); 568 } 569 } 570 return 0; 571 } 572 573 if (!kiq->pmf || !kiq->pmf->kiq_unmap_queues) 574 return -EINVAL; 575 576 if (!adev->gfx.kiq[0].ring.sched.ready || amdgpu_in_reset(adev)) 577 return 0; 578 579 if (amdgpu_gfx_is_master_xcc(adev, xcc_id)) { 580 spin_lock(&kiq->ring_lock); 581 if (amdgpu_ring_alloc(kiq_ring, kiq->pmf->unmap_queues_size * 582 adev->gfx.num_gfx_rings)) { 583 spin_unlock(&kiq->ring_lock); 584 return -ENOMEM; 585 } 586 587 for (i = 0; i < adev->gfx.num_gfx_rings; i++) { 588 j = i + xcc_id * adev->gfx.num_gfx_rings; 589 kiq->pmf->kiq_unmap_queues(kiq_ring, 590 &adev->gfx.gfx_ring[j], 591 PREEMPT_QUEUES, 0, 0); 592 } 593 /* Submit unmap queue packet */ 594 amdgpu_ring_commit(kiq_ring); 595 596 /* 597 * Ring test will do a basic scratch register change check. 598 * Just run this to ensure that unmap queues that is submitted 599 * before got processed successfully before returning. 600 */ 601 r = amdgpu_ring_test_helper(kiq_ring); 602 spin_unlock(&kiq->ring_lock); 603 } 604 605 return r; 606 } 607 608 int amdgpu_queue_mask_bit_to_set_resource_bit(struct amdgpu_device *adev, 609 int queue_bit) 610 { 611 int mec, pipe, queue; 612 int set_resource_bit = 0; 613 614 amdgpu_queue_mask_bit_to_mec_queue(adev, queue_bit, &mec, &pipe, &queue); 615 616 set_resource_bit = mec * 4 * 8 + pipe * 8 + queue; 617 618 return set_resource_bit; 619 } 620 621 static int amdgpu_gfx_mes_enable_kcq(struct amdgpu_device *adev, int xcc_id) 622 { 623 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 624 struct amdgpu_ring *kiq_ring = &kiq->ring; 625 uint64_t queue_mask = ~0ULL; 626 int r, i, j; 627 628 amdgpu_device_flush_hdp(adev, NULL); 629 630 if (!adev->enable_uni_mes) { 631 spin_lock(&kiq->ring_lock); 632 r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->set_resources_size); 633 if (r) { 634 dev_err(adev->dev, "Failed to lock KIQ (%d).\n", r); 635 spin_unlock(&kiq->ring_lock); 636 return r; 637 } 638 639 kiq->pmf->kiq_set_resources(kiq_ring, queue_mask); 640 r = amdgpu_ring_test_helper(kiq_ring); 641 spin_unlock(&kiq->ring_lock); 642 if (r) 643 dev_err(adev->dev, "KIQ failed to set resources\n"); 644 } 645 646 for (i = 0; i < adev->gfx.num_compute_rings; i++) { 647 j = i + xcc_id * adev->gfx.num_compute_rings; 648 r = amdgpu_mes_map_legacy_queue(adev, 649 &adev->gfx.compute_ring[j], 650 xcc_id); 651 if (r) { 652 dev_err(adev->dev, "failed to map compute queue\n"); 653 return r; 654 } 655 } 656 657 return 0; 658 } 659 660 int amdgpu_gfx_enable_kcq(struct amdgpu_device *adev, int xcc_id) 661 { 662 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 663 struct amdgpu_ring *kiq_ring = &kiq->ring; 664 uint64_t queue_mask = 0; 665 int r, i, j; 666 667 if (adev->mes.enable_legacy_queue_map) 668 return amdgpu_gfx_mes_enable_kcq(adev, xcc_id); 669 670 if (!kiq->pmf || !kiq->pmf->kiq_map_queues || !kiq->pmf->kiq_set_resources) 671 return -EINVAL; 672 673 for (i = 0; i < AMDGPU_MAX_COMPUTE_QUEUES; ++i) { 674 if (!test_bit(i, adev->gfx.mec_bitmap[xcc_id].queue_bitmap)) 675 continue; 676 677 /* This situation may be hit in the future if a new HW 678 * generation exposes more than 64 queues. If so, the 679 * definition of queue_mask needs updating */ 680 if (WARN_ON(i > (sizeof(queue_mask)*8))) { 681 dev_err(adev->dev, "Invalid KCQ enabled: %d\n", i); 682 break; 683 } 684 685 queue_mask |= (1ull << amdgpu_queue_mask_bit_to_set_resource_bit(adev, i)); 686 } 687 688 amdgpu_device_flush_hdp(adev, NULL); 689 690 dev_info(adev->dev, "kiq ring mec %d pipe %d q %d\n", kiq_ring->me, 691 kiq_ring->pipe, kiq_ring->queue); 692 693 spin_lock(&kiq->ring_lock); 694 r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->map_queues_size * 695 adev->gfx.num_compute_rings + 696 kiq->pmf->set_resources_size); 697 if (r) { 698 dev_err(adev->dev, "Failed to lock KIQ (%d).\n", r); 699 spin_unlock(&kiq->ring_lock); 700 return r; 701 } 702 703 kiq->pmf->kiq_set_resources(kiq_ring, queue_mask); 704 for (i = 0; i < adev->gfx.num_compute_rings; i++) { 705 j = i + xcc_id * adev->gfx.num_compute_rings; 706 kiq->pmf->kiq_map_queues(kiq_ring, 707 &adev->gfx.compute_ring[j]); 708 } 709 /* Submit map queue packet */ 710 amdgpu_ring_commit(kiq_ring); 711 /* 712 * Ring test will do a basic scratch register change check. Just run 713 * this to ensure that map queues that is submitted before got 714 * processed successfully before returning. 715 */ 716 r = amdgpu_ring_test_helper(kiq_ring); 717 spin_unlock(&kiq->ring_lock); 718 if (r) 719 dev_err(adev->dev, "KCQ enable failed\n"); 720 721 return r; 722 } 723 724 int amdgpu_gfx_enable_kgq(struct amdgpu_device *adev, int xcc_id) 725 { 726 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 727 struct amdgpu_ring *kiq_ring = &kiq->ring; 728 int r, i, j; 729 730 if (!kiq->pmf || !kiq->pmf->kiq_map_queues) 731 return -EINVAL; 732 733 amdgpu_device_flush_hdp(adev, NULL); 734 735 if (adev->mes.enable_legacy_queue_map) { 736 for (i = 0; i < adev->gfx.num_gfx_rings; i++) { 737 j = i + xcc_id * adev->gfx.num_gfx_rings; 738 r = amdgpu_mes_map_legacy_queue(adev, 739 &adev->gfx.gfx_ring[j], 740 xcc_id); 741 if (r) { 742 dev_err(adev->dev, "failed to map gfx queue\n"); 743 return r; 744 } 745 } 746 747 return 0; 748 } 749 750 spin_lock(&kiq->ring_lock); 751 /* No need to map kcq on the slave */ 752 if (amdgpu_gfx_is_master_xcc(adev, xcc_id)) { 753 r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->map_queues_size * 754 adev->gfx.num_gfx_rings); 755 if (r) { 756 dev_err(adev->dev, "Failed to lock KIQ (%d).\n", r); 757 spin_unlock(&kiq->ring_lock); 758 return r; 759 } 760 761 for (i = 0; i < adev->gfx.num_gfx_rings; i++) { 762 j = i + xcc_id * adev->gfx.num_gfx_rings; 763 kiq->pmf->kiq_map_queues(kiq_ring, 764 &adev->gfx.gfx_ring[j]); 765 } 766 } 767 /* Submit map queue packet */ 768 amdgpu_ring_commit(kiq_ring); 769 /* 770 * Ring test will do a basic scratch register change check. Just run 771 * this to ensure that map queues that is submitted before got 772 * processed successfully before returning. 773 */ 774 r = amdgpu_ring_test_helper(kiq_ring); 775 spin_unlock(&kiq->ring_lock); 776 if (r) 777 dev_err(adev->dev, "KGQ enable failed\n"); 778 779 return r; 780 } 781 782 static void amdgpu_gfx_do_off_ctrl(struct amdgpu_device *adev, bool enable, 783 bool no_delay) 784 { 785 unsigned long delay = GFX_OFF_DELAY_ENABLE; 786 787 if (!(adev->pm.pp_feature & PP_GFXOFF_MASK)) 788 return; 789 790 mutex_lock(&adev->gfx.gfx_off_mutex); 791 792 if (enable) { 793 /* If the count is already 0, it means there's an imbalance bug somewhere. 794 * Note that the bug may be in a different caller than the one which triggers the 795 * WARN_ON_ONCE. 796 */ 797 if (WARN_ON_ONCE(adev->gfx.gfx_off_req_count == 0)) 798 goto unlock; 799 800 adev->gfx.gfx_off_req_count--; 801 802 if (adev->gfx.gfx_off_req_count == 0 && 803 !adev->gfx.gfx_off_state) { 804 /* If going to s2idle, no need to wait */ 805 if (no_delay) { 806 if (!amdgpu_dpm_set_powergating_by_smu(adev, 807 AMD_IP_BLOCK_TYPE_GFX, true, 0)) 808 adev->gfx.gfx_off_state = true; 809 } else { 810 schedule_delayed_work(&adev->gfx.gfx_off_delay_work, 811 delay); 812 } 813 } 814 } else { 815 if (adev->gfx.gfx_off_req_count == 0) { 816 cancel_delayed_work_sync(&adev->gfx.gfx_off_delay_work); 817 818 if (adev->gfx.gfx_off_state && 819 !amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_GFX, false, 0)) { 820 adev->gfx.gfx_off_state = false; 821 822 if (adev->gfx.funcs->init_spm_golden) { 823 dev_dbg(adev->dev, 824 "GFXOFF is disabled, re-init SPM golden settings\n"); 825 amdgpu_gfx_init_spm_golden(adev); 826 } 827 } 828 } 829 830 adev->gfx.gfx_off_req_count++; 831 } 832 833 unlock: 834 mutex_unlock(&adev->gfx.gfx_off_mutex); 835 } 836 837 /* amdgpu_gfx_off_ctrl - Handle gfx off feature enable/disable 838 * 839 * @adev: amdgpu_device pointer 840 * @bool enable true: enable gfx off feature, false: disable gfx off feature 841 * 842 * 1. gfx off feature will be enabled by gfx ip after gfx cg pg enabled. 843 * 2. other client can send request to disable gfx off feature, the request should be honored. 844 * 3. other client can cancel their request of disable gfx off feature 845 * 4. other client should not send request to enable gfx off feature before disable gfx off feature. 846 * 847 * gfx off allow will be delayed by GFX_OFF_DELAY_ENABLE ms. 848 */ 849 void amdgpu_gfx_off_ctrl(struct amdgpu_device *adev, bool enable) 850 { 851 /* If going to s2idle, no need to wait */ 852 bool no_delay = adev->in_s0ix ? true : false; 853 854 amdgpu_gfx_do_off_ctrl(adev, enable, no_delay); 855 } 856 857 /* amdgpu_gfx_off_ctrl_immediate - Handle gfx off feature enable/disable 858 * 859 * @adev: amdgpu_device pointer 860 * @bool enable true: enable gfx off feature, false: disable gfx off feature 861 * 862 * 1. gfx off feature will be enabled by gfx ip after gfx cg pg enabled. 863 * 2. other client can send request to disable gfx off feature, the request should be honored. 864 * 3. other client can cancel their request of disable gfx off feature 865 * 4. other client should not send request to enable gfx off feature before disable gfx off feature. 866 * 867 * gfx off allow will be issued immediately. 868 */ 869 void amdgpu_gfx_off_ctrl_immediate(struct amdgpu_device *adev, bool enable) 870 { 871 amdgpu_gfx_do_off_ctrl(adev, enable, true); 872 } 873 874 int amdgpu_set_gfx_off_residency(struct amdgpu_device *adev, bool value) 875 { 876 int r = 0; 877 878 mutex_lock(&adev->gfx.gfx_off_mutex); 879 880 r = amdgpu_dpm_set_residency_gfxoff(adev, value); 881 882 mutex_unlock(&adev->gfx.gfx_off_mutex); 883 884 return r; 885 } 886 887 int amdgpu_get_gfx_off_residency(struct amdgpu_device *adev, u32 *value) 888 { 889 int r = 0; 890 891 mutex_lock(&adev->gfx.gfx_off_mutex); 892 893 r = amdgpu_dpm_get_residency_gfxoff(adev, value); 894 895 mutex_unlock(&adev->gfx.gfx_off_mutex); 896 897 return r; 898 } 899 900 int amdgpu_get_gfx_off_entrycount(struct amdgpu_device *adev, u64 *value) 901 { 902 int r = 0; 903 904 mutex_lock(&adev->gfx.gfx_off_mutex); 905 906 r = amdgpu_dpm_get_entrycount_gfxoff(adev, value); 907 908 mutex_unlock(&adev->gfx.gfx_off_mutex); 909 910 return r; 911 } 912 913 int amdgpu_get_gfx_off_status(struct amdgpu_device *adev, uint32_t *value) 914 { 915 916 int r = 0; 917 918 mutex_lock(&adev->gfx.gfx_off_mutex); 919 920 r = amdgpu_dpm_get_status_gfxoff(adev, value); 921 922 mutex_unlock(&adev->gfx.gfx_off_mutex); 923 924 return r; 925 } 926 927 int amdgpu_gfx_ras_late_init(struct amdgpu_device *adev, struct ras_common_if *ras_block) 928 { 929 int r; 930 931 if (amdgpu_ras_is_supported(adev, ras_block->block)) { 932 if (!amdgpu_persistent_edc_harvesting_supported(adev)) { 933 r = amdgpu_ras_reset_error_status(adev, AMDGPU_RAS_BLOCK__GFX); 934 if (r) 935 return r; 936 } 937 938 r = amdgpu_ras_block_late_init(adev, ras_block); 939 if (r) 940 return r; 941 942 if (amdgpu_sriov_vf(adev)) 943 return r; 944 945 if (adev->gfx.cp_ecc_error_irq.funcs) { 946 r = amdgpu_irq_get(adev, &adev->gfx.cp_ecc_error_irq, 0); 947 if (r) 948 goto late_fini; 949 } 950 } else { 951 amdgpu_ras_feature_enable_on_boot(adev, ras_block, 0); 952 } 953 954 return 0; 955 late_fini: 956 amdgpu_ras_block_late_fini(adev, ras_block); 957 return r; 958 } 959 960 int amdgpu_gfx_ras_sw_init(struct amdgpu_device *adev) 961 { 962 int err = 0; 963 struct amdgpu_gfx_ras *ras = NULL; 964 965 /* adev->gfx.ras is NULL, which means gfx does not 966 * support ras function, then do nothing here. 967 */ 968 if (!adev->gfx.ras) 969 return 0; 970 971 ras = adev->gfx.ras; 972 973 err = amdgpu_ras_register_ras_block(adev, &ras->ras_block); 974 if (err) { 975 dev_err(adev->dev, "Failed to register gfx ras block!\n"); 976 return err; 977 } 978 979 strcpy(ras->ras_block.ras_comm.name, "gfx"); 980 ras->ras_block.ras_comm.block = AMDGPU_RAS_BLOCK__GFX; 981 ras->ras_block.ras_comm.type = AMDGPU_RAS_ERROR__MULTI_UNCORRECTABLE; 982 adev->gfx.ras_if = &ras->ras_block.ras_comm; 983 984 /* If not define special ras_late_init function, use gfx default ras_late_init */ 985 if (!ras->ras_block.ras_late_init) 986 ras->ras_block.ras_late_init = amdgpu_gfx_ras_late_init; 987 988 /* If not defined special ras_cb function, use default ras_cb */ 989 if (!ras->ras_block.ras_cb) 990 ras->ras_block.ras_cb = amdgpu_gfx_process_ras_data_cb; 991 992 return 0; 993 } 994 995 int amdgpu_gfx_poison_consumption_handler(struct amdgpu_device *adev, 996 struct amdgpu_iv_entry *entry) 997 { 998 if (adev->gfx.ras && adev->gfx.ras->poison_consumption_handler) 999 return adev->gfx.ras->poison_consumption_handler(adev, entry); 1000 1001 return 0; 1002 } 1003 1004 int amdgpu_gfx_process_ras_data_cb(struct amdgpu_device *adev, 1005 void *err_data, 1006 struct amdgpu_iv_entry *entry) 1007 { 1008 /* TODO ue will trigger an interrupt. 1009 * 1010 * When “Full RAS” is enabled, the per-IP interrupt sources should 1011 * be disabled and the driver should only look for the aggregated 1012 * interrupt via sync flood 1013 */ 1014 if (!amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__GFX)) { 1015 kgd2kfd_set_sram_ecc_flag(adev->kfd.dev); 1016 if (adev->gfx.ras && adev->gfx.ras->ras_block.hw_ops && 1017 adev->gfx.ras->ras_block.hw_ops->query_ras_error_count) 1018 adev->gfx.ras->ras_block.hw_ops->query_ras_error_count(adev, err_data); 1019 amdgpu_ras_reset_gpu(adev); 1020 } 1021 return AMDGPU_RAS_SUCCESS; 1022 } 1023 1024 int amdgpu_gfx_cp_ecc_error_irq(struct amdgpu_device *adev, 1025 struct amdgpu_irq_src *source, 1026 struct amdgpu_iv_entry *entry) 1027 { 1028 struct ras_common_if *ras_if = adev->gfx.ras_if; 1029 struct ras_dispatch_if ih_data = { 1030 .entry = entry, 1031 }; 1032 1033 if (!ras_if) 1034 return 0; 1035 1036 ih_data.head = *ras_if; 1037 1038 dev_err(adev->dev, "CP ECC ERROR IRQ\n"); 1039 amdgpu_ras_interrupt_dispatch(adev, &ih_data); 1040 return 0; 1041 } 1042 1043 void amdgpu_gfx_ras_error_func(struct amdgpu_device *adev, 1044 void *ras_error_status, 1045 void (*func)(struct amdgpu_device *adev, void *ras_error_status, 1046 int xcc_id)) 1047 { 1048 int i; 1049 int num_xcc = adev->gfx.xcc_mask ? NUM_XCC(adev->gfx.xcc_mask) : 1; 1050 uint32_t xcc_mask = GENMASK(num_xcc - 1, 0); 1051 struct ras_err_data *err_data = (struct ras_err_data *)ras_error_status; 1052 1053 if (err_data) { 1054 err_data->ue_count = 0; 1055 err_data->ce_count = 0; 1056 } 1057 1058 for_each_inst(i, xcc_mask) 1059 func(adev, ras_error_status, i); 1060 } 1061 1062 uint32_t amdgpu_kiq_rreg(struct amdgpu_device *adev, uint32_t reg, uint32_t xcc_id) 1063 { 1064 signed long r, cnt = 0; 1065 unsigned long flags; 1066 uint32_t seq, reg_val_offs = 0, value = 0; 1067 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 1068 struct amdgpu_ring *ring = &kiq->ring; 1069 1070 if (amdgpu_device_skip_hw_access(adev)) 1071 return 0; 1072 1073 if (adev->mes.ring[0].sched.ready) 1074 return amdgpu_mes_rreg(adev, reg, xcc_id); 1075 1076 BUG_ON(!ring->funcs->emit_rreg); 1077 1078 spin_lock_irqsave(&kiq->ring_lock, flags); 1079 if (amdgpu_device_wb_get(adev, ®_val_offs)) { 1080 pr_err("critical bug! too many kiq readers\n"); 1081 goto failed_unlock; 1082 } 1083 r = amdgpu_ring_alloc(ring, 32); 1084 if (r) 1085 goto failed_unlock; 1086 1087 amdgpu_ring_emit_rreg(ring, reg, reg_val_offs); 1088 r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT); 1089 if (r) 1090 goto failed_undo; 1091 1092 amdgpu_ring_commit(ring); 1093 spin_unlock_irqrestore(&kiq->ring_lock, flags); 1094 1095 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); 1096 1097 /* don't wait anymore for gpu reset case because this way may 1098 * block gpu_recover() routine forever, e.g. this virt_kiq_rreg 1099 * is triggered in TTM and ttm_bo_lock_delayed_workqueue() will 1100 * never return if we keep waiting in virt_kiq_rreg, which cause 1101 * gpu_recover() hang there. 1102 * 1103 * also don't wait anymore for IRQ context 1104 * */ 1105 if (r < 1 && (amdgpu_in_reset(adev) || in_interrupt())) 1106 goto failed_kiq_read; 1107 1108 might_sleep(); 1109 while (r < 1 && cnt++ < MAX_KIQ_REG_TRY) { 1110 if (amdgpu_in_reset(adev)) 1111 goto failed_kiq_read; 1112 1113 msleep(MAX_KIQ_REG_BAILOUT_INTERVAL); 1114 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); 1115 } 1116 1117 if (cnt > MAX_KIQ_REG_TRY) 1118 goto failed_kiq_read; 1119 1120 mb(); 1121 value = adev->wb.wb[reg_val_offs]; 1122 amdgpu_device_wb_free(adev, reg_val_offs); 1123 return value; 1124 1125 failed_undo: 1126 amdgpu_ring_undo(ring); 1127 failed_unlock: 1128 spin_unlock_irqrestore(&kiq->ring_lock, flags); 1129 failed_kiq_read: 1130 if (reg_val_offs) 1131 amdgpu_device_wb_free(adev, reg_val_offs); 1132 dev_err(adev->dev, "failed to read reg:%x\n", reg); 1133 return ~0; 1134 } 1135 1136 void amdgpu_kiq_wreg(struct amdgpu_device *adev, uint32_t reg, uint32_t v, uint32_t xcc_id) 1137 { 1138 signed long r, cnt = 0; 1139 unsigned long flags; 1140 uint32_t seq; 1141 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 1142 struct amdgpu_ring *ring = &kiq->ring; 1143 1144 BUG_ON(!ring->funcs->emit_wreg); 1145 1146 if (amdgpu_device_skip_hw_access(adev)) 1147 return; 1148 1149 if (adev->mes.ring[0].sched.ready) { 1150 amdgpu_mes_wreg(adev, reg, v, xcc_id); 1151 return; 1152 } 1153 1154 spin_lock_irqsave(&kiq->ring_lock, flags); 1155 r = amdgpu_ring_alloc(ring, 32); 1156 if (r) 1157 goto failed_unlock; 1158 1159 amdgpu_ring_emit_wreg(ring, reg, v); 1160 r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT); 1161 if (r) 1162 goto failed_undo; 1163 1164 amdgpu_ring_commit(ring); 1165 spin_unlock_irqrestore(&kiq->ring_lock, flags); 1166 1167 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); 1168 1169 /* don't wait anymore for gpu reset case because this way may 1170 * block gpu_recover() routine forever, e.g. this virt_kiq_rreg 1171 * is triggered in TTM and ttm_bo_lock_delayed_workqueue() will 1172 * never return if we keep waiting in virt_kiq_rreg, which cause 1173 * gpu_recover() hang there. 1174 * 1175 * also don't wait anymore for IRQ context 1176 * */ 1177 if (r < 1 && (amdgpu_in_reset(adev) || in_interrupt())) 1178 goto failed_kiq_write; 1179 1180 might_sleep(); 1181 while (r < 1 && cnt++ < MAX_KIQ_REG_TRY) { 1182 if (amdgpu_in_reset(adev)) 1183 goto failed_kiq_write; 1184 1185 msleep(MAX_KIQ_REG_BAILOUT_INTERVAL); 1186 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); 1187 } 1188 1189 if (cnt > MAX_KIQ_REG_TRY) 1190 goto failed_kiq_write; 1191 1192 return; 1193 1194 failed_undo: 1195 amdgpu_ring_undo(ring); 1196 failed_unlock: 1197 spin_unlock_irqrestore(&kiq->ring_lock, flags); 1198 failed_kiq_write: 1199 dev_err(adev->dev, "failed to write reg:%x\n", reg); 1200 } 1201 1202 void amdgpu_gfx_get_hdp_flush_mask(struct amdgpu_ring *ring, 1203 uint32_t *hdp_flush_mask, uint32_t *reg_mem_engine) 1204 { 1205 1206 if (!ring || !hdp_flush_mask || !reg_mem_engine) { 1207 DRM_INFO("%s:invalid params\n", __func__); 1208 return; 1209 } 1210 1211 const struct nbio_hdp_flush_reg *nbio_hf_reg = ring->adev->nbio.hdp_flush_reg; 1212 1213 switch (ring->funcs->type) { 1214 case AMDGPU_RING_TYPE_GFX: 1215 *hdp_flush_mask = nbio_hf_reg->ref_and_mask_cp0 << ring->pipe; 1216 *reg_mem_engine = 1; /* pfp */ 1217 break; 1218 case AMDGPU_RING_TYPE_COMPUTE: 1219 *hdp_flush_mask = nbio_hf_reg->ref_and_mask_cp2 << ring->pipe; 1220 *reg_mem_engine = 0; 1221 break; 1222 case AMDGPU_RING_TYPE_MES: 1223 *hdp_flush_mask = nbio_hf_reg->ref_and_mask_cp8; 1224 *reg_mem_engine = 0; 1225 break; 1226 case AMDGPU_RING_TYPE_KIQ: 1227 *hdp_flush_mask = nbio_hf_reg->ref_and_mask_cp9; 1228 *reg_mem_engine = 0; 1229 break; 1230 default: 1231 DRM_ERROR("%s:unsupported ring type %d\n", __func__, ring->funcs->type); 1232 return; 1233 } 1234 } 1235 1236 int amdgpu_kiq_hdp_flush(struct amdgpu_device *adev) 1237 { 1238 signed long r, cnt = 0; 1239 unsigned long flags; 1240 uint32_t seq; 1241 struct amdgpu_kiq *kiq = &adev->gfx.kiq[0]; 1242 struct amdgpu_ring *ring = &kiq->ring; 1243 1244 if (amdgpu_device_skip_hw_access(adev)) 1245 return 0; 1246 1247 if (adev->enable_mes_kiq && adev->mes.ring[0].sched.ready) 1248 return amdgpu_mes_hdp_flush(adev); 1249 1250 if (!ring->funcs->emit_hdp_flush) { 1251 return -EOPNOTSUPP; 1252 } 1253 1254 spin_lock_irqsave(&kiq->ring_lock, flags); 1255 r = amdgpu_ring_alloc(ring, 32); 1256 if (r) 1257 goto failed_unlock; 1258 1259 amdgpu_ring_emit_hdp_flush(ring); 1260 r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT); 1261 if (r) 1262 goto failed_undo; 1263 1264 amdgpu_ring_commit(ring); 1265 spin_unlock_irqrestore(&kiq->ring_lock, flags); 1266 1267 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); 1268 1269 /* don't wait anymore for gpu reset case because this way may 1270 * block gpu_recover() routine forever, e.g. this virt_kiq_rreg 1271 * is triggered in TTM and ttm_bo_lock_delayed_workqueue() will 1272 * never return if we keep waiting in virt_kiq_rreg, which cause 1273 * gpu_recover() hang there. 1274 * 1275 * also don't wait anymore for IRQ context 1276 * */ 1277 if (r < 1 && (amdgpu_in_reset(adev) || in_interrupt())) 1278 goto failed_kiq_hdp_flush; 1279 1280 might_sleep(); 1281 while (r < 1 && cnt++ < MAX_KIQ_REG_TRY) { 1282 if (amdgpu_in_reset(adev)) 1283 goto failed_kiq_hdp_flush; 1284 1285 msleep(MAX_KIQ_REG_BAILOUT_INTERVAL); 1286 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); 1287 } 1288 1289 if (cnt > MAX_KIQ_REG_TRY) { 1290 dev_err(adev->dev, "failed to flush HDP via KIQ timeout\n"); 1291 return -ETIMEDOUT; 1292 } 1293 1294 return 0; 1295 1296 failed_undo: 1297 amdgpu_ring_undo(ring); 1298 failed_unlock: 1299 spin_unlock_irqrestore(&kiq->ring_lock, flags); 1300 failed_kiq_hdp_flush: 1301 dev_err(adev->dev, "failed to flush HDP via KIQ\n"); 1302 return r < 0 ? r : -EIO; 1303 } 1304 1305 int amdgpu_gfx_get_num_kcq(struct amdgpu_device *adev) 1306 { 1307 if (amdgpu_num_kcq == -1) { 1308 return 8; 1309 } else if (amdgpu_num_kcq > 8 || amdgpu_num_kcq < 0) { 1310 dev_warn(adev->dev, "set kernel compute queue number to 8 due to invalid parameter provided by user\n"); 1311 return 8; 1312 } 1313 return amdgpu_num_kcq; 1314 } 1315 1316 void amdgpu_gfx_cp_init_microcode(struct amdgpu_device *adev, 1317 uint32_t ucode_id) 1318 { 1319 const struct gfx_firmware_header_v1_0 *cp_hdr; 1320 const struct gfx_firmware_header_v2_0 *cp_hdr_v2_0; 1321 struct amdgpu_firmware_info *info = NULL; 1322 const struct firmware *ucode_fw; 1323 unsigned int fw_size; 1324 1325 switch (ucode_id) { 1326 case AMDGPU_UCODE_ID_CP_PFP: 1327 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1328 adev->gfx.pfp_fw->data; 1329 adev->gfx.pfp_fw_version = 1330 le32_to_cpu(cp_hdr->header.ucode_version); 1331 adev->gfx.pfp_feature_version = 1332 le32_to_cpu(cp_hdr->ucode_feature_version); 1333 ucode_fw = adev->gfx.pfp_fw; 1334 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes); 1335 break; 1336 case AMDGPU_UCODE_ID_CP_RS64_PFP: 1337 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) 1338 adev->gfx.pfp_fw->data; 1339 adev->gfx.pfp_fw_version = 1340 le32_to_cpu(cp_hdr_v2_0->header.ucode_version); 1341 adev->gfx.pfp_feature_version = 1342 le32_to_cpu(cp_hdr_v2_0->ucode_feature_version); 1343 ucode_fw = adev->gfx.pfp_fw; 1344 fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes); 1345 break; 1346 case AMDGPU_UCODE_ID_CP_RS64_PFP_P0_STACK: 1347 case AMDGPU_UCODE_ID_CP_RS64_PFP_P1_STACK: 1348 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) 1349 adev->gfx.pfp_fw->data; 1350 ucode_fw = adev->gfx.pfp_fw; 1351 fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes); 1352 break; 1353 case AMDGPU_UCODE_ID_CP_ME: 1354 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1355 adev->gfx.me_fw->data; 1356 adev->gfx.me_fw_version = 1357 le32_to_cpu(cp_hdr->header.ucode_version); 1358 adev->gfx.me_feature_version = 1359 le32_to_cpu(cp_hdr->ucode_feature_version); 1360 ucode_fw = adev->gfx.me_fw; 1361 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes); 1362 break; 1363 case AMDGPU_UCODE_ID_CP_RS64_ME: 1364 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) 1365 adev->gfx.me_fw->data; 1366 adev->gfx.me_fw_version = 1367 le32_to_cpu(cp_hdr_v2_0->header.ucode_version); 1368 adev->gfx.me_feature_version = 1369 le32_to_cpu(cp_hdr_v2_0->ucode_feature_version); 1370 ucode_fw = adev->gfx.me_fw; 1371 fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes); 1372 break; 1373 case AMDGPU_UCODE_ID_CP_RS64_ME_P0_STACK: 1374 case AMDGPU_UCODE_ID_CP_RS64_ME_P1_STACK: 1375 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) 1376 adev->gfx.me_fw->data; 1377 ucode_fw = adev->gfx.me_fw; 1378 fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes); 1379 break; 1380 case AMDGPU_UCODE_ID_CP_CE: 1381 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1382 adev->gfx.ce_fw->data; 1383 adev->gfx.ce_fw_version = 1384 le32_to_cpu(cp_hdr->header.ucode_version); 1385 adev->gfx.ce_feature_version = 1386 le32_to_cpu(cp_hdr->ucode_feature_version); 1387 ucode_fw = adev->gfx.ce_fw; 1388 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes); 1389 break; 1390 case AMDGPU_UCODE_ID_CP_MEC1: 1391 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1392 adev->gfx.mec_fw->data; 1393 adev->gfx.mec_fw_version = 1394 le32_to_cpu(cp_hdr->header.ucode_version); 1395 adev->gfx.mec_feature_version = 1396 le32_to_cpu(cp_hdr->ucode_feature_version); 1397 ucode_fw = adev->gfx.mec_fw; 1398 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes) - 1399 le32_to_cpu(cp_hdr->jt_size) * 4; 1400 break; 1401 case AMDGPU_UCODE_ID_CP_MEC1_JT: 1402 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1403 adev->gfx.mec_fw->data; 1404 ucode_fw = adev->gfx.mec_fw; 1405 fw_size = le32_to_cpu(cp_hdr->jt_size) * 4; 1406 break; 1407 case AMDGPU_UCODE_ID_CP_MEC2: 1408 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1409 adev->gfx.mec2_fw->data; 1410 adev->gfx.mec2_fw_version = 1411 le32_to_cpu(cp_hdr->header.ucode_version); 1412 adev->gfx.mec2_feature_version = 1413 le32_to_cpu(cp_hdr->ucode_feature_version); 1414 ucode_fw = adev->gfx.mec2_fw; 1415 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes) - 1416 le32_to_cpu(cp_hdr->jt_size) * 4; 1417 break; 1418 case AMDGPU_UCODE_ID_CP_MEC2_JT: 1419 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1420 adev->gfx.mec2_fw->data; 1421 ucode_fw = adev->gfx.mec2_fw; 1422 fw_size = le32_to_cpu(cp_hdr->jt_size) * 4; 1423 break; 1424 case AMDGPU_UCODE_ID_CP_RS64_MEC: 1425 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) 1426 adev->gfx.mec_fw->data; 1427 adev->gfx.mec_fw_version = 1428 le32_to_cpu(cp_hdr_v2_0->header.ucode_version); 1429 adev->gfx.mec_feature_version = 1430 le32_to_cpu(cp_hdr_v2_0->ucode_feature_version); 1431 ucode_fw = adev->gfx.mec_fw; 1432 fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes); 1433 break; 1434 case AMDGPU_UCODE_ID_CP_RS64_MEC_P0_STACK: 1435 case AMDGPU_UCODE_ID_CP_RS64_MEC_P1_STACK: 1436 case AMDGPU_UCODE_ID_CP_RS64_MEC_P2_STACK: 1437 case AMDGPU_UCODE_ID_CP_RS64_MEC_P3_STACK: 1438 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) 1439 adev->gfx.mec_fw->data; 1440 ucode_fw = adev->gfx.mec_fw; 1441 fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes); 1442 break; 1443 default: 1444 dev_err(adev->dev, "Invalid ucode id %u\n", ucode_id); 1445 return; 1446 } 1447 1448 if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) { 1449 info = &adev->firmware.ucode[ucode_id]; 1450 info->ucode_id = ucode_id; 1451 info->fw = ucode_fw; 1452 adev->firmware.fw_size += ALIGN(fw_size, PAGE_SIZE); 1453 } 1454 } 1455 1456 bool amdgpu_gfx_is_master_xcc(struct amdgpu_device *adev, int xcc_id) 1457 { 1458 return !(xcc_id % (adev->gfx.num_xcc_per_xcp ? 1459 adev->gfx.num_xcc_per_xcp : 1)); 1460 } 1461 1462 static ssize_t amdgpu_gfx_get_current_compute_partition(struct device *dev, 1463 struct device_attribute *addr, 1464 char *buf) 1465 { 1466 struct drm_device *ddev = dev_get_drvdata(dev); 1467 struct amdgpu_device *adev = drm_to_adev(ddev); 1468 int mode; 1469 1470 /* Only minimal precaution taken to reject requests while in reset.*/ 1471 if (amdgpu_in_reset(adev)) 1472 return -EPERM; 1473 1474 mode = amdgpu_xcp_query_partition_mode(adev->xcp_mgr, 1475 AMDGPU_XCP_FL_NONE); 1476 1477 return sysfs_emit(buf, "%s\n", amdgpu_gfx_compute_mode_desc(mode)); 1478 } 1479 1480 static ssize_t amdgpu_gfx_set_compute_partition(struct device *dev, 1481 struct device_attribute *addr, 1482 const char *buf, size_t count) 1483 { 1484 struct drm_device *ddev = dev_get_drvdata(dev); 1485 struct amdgpu_device *adev = drm_to_adev(ddev); 1486 enum amdgpu_gfx_partition mode; 1487 int ret = 0, num_xcc; 1488 1489 num_xcc = NUM_XCC(adev->gfx.xcc_mask); 1490 if (num_xcc % 2 != 0) 1491 return -EINVAL; 1492 1493 if (!strncasecmp("SPX", buf, strlen("SPX"))) { 1494 mode = AMDGPU_SPX_PARTITION_MODE; 1495 } else if (!strncasecmp("DPX", buf, strlen("DPX"))) { 1496 /* 1497 * DPX mode needs AIDs to be in multiple of 2. 1498 * Each AID connects 2 XCCs. 1499 */ 1500 if (num_xcc%4) 1501 return -EINVAL; 1502 mode = AMDGPU_DPX_PARTITION_MODE; 1503 } else if (!strncasecmp("TPX", buf, strlen("TPX"))) { 1504 if (num_xcc != 6) 1505 return -EINVAL; 1506 mode = AMDGPU_TPX_PARTITION_MODE; 1507 } else if (!strncasecmp("QPX", buf, strlen("QPX"))) { 1508 if (num_xcc != 8) 1509 return -EINVAL; 1510 mode = AMDGPU_QPX_PARTITION_MODE; 1511 } else if (!strncasecmp("CPX", buf, strlen("CPX"))) { 1512 mode = AMDGPU_CPX_PARTITION_MODE; 1513 } else { 1514 return -EINVAL; 1515 } 1516 1517 /* Don't allow a switch while under reset */ 1518 if (!down_read_trylock(&adev->reset_domain->sem)) 1519 return -EPERM; 1520 1521 ret = amdgpu_xcp_switch_partition_mode(adev->xcp_mgr, mode); 1522 1523 up_read(&adev->reset_domain->sem); 1524 1525 if (ret) 1526 return ret; 1527 1528 return count; 1529 } 1530 1531 static const char *xcp_desc[] = { 1532 [AMDGPU_SPX_PARTITION_MODE] = "SPX", 1533 [AMDGPU_DPX_PARTITION_MODE] = "DPX", 1534 [AMDGPU_TPX_PARTITION_MODE] = "TPX", 1535 [AMDGPU_QPX_PARTITION_MODE] = "QPX", 1536 [AMDGPU_CPX_PARTITION_MODE] = "CPX", 1537 }; 1538 1539 static ssize_t amdgpu_gfx_get_available_compute_partition(struct device *dev, 1540 struct device_attribute *addr, 1541 char *buf) 1542 { 1543 struct drm_device *ddev = dev_get_drvdata(dev); 1544 struct amdgpu_device *adev = drm_to_adev(ddev); 1545 struct amdgpu_xcp_mgr *xcp_mgr = adev->xcp_mgr; 1546 int size = 0, mode; 1547 char *sep = ""; 1548 1549 if (!xcp_mgr || !xcp_mgr->avail_xcp_modes) 1550 return sysfs_emit(buf, "Not supported\n"); 1551 1552 for_each_inst(mode, xcp_mgr->avail_xcp_modes) { 1553 size += sysfs_emit_at(buf, size, "%s%s", sep, xcp_desc[mode]); 1554 sep = ", "; 1555 } 1556 1557 size += sysfs_emit_at(buf, size, "\n"); 1558 1559 return size; 1560 } 1561 1562 static int amdgpu_gfx_run_cleaner_shader_job(struct amdgpu_ring *ring) 1563 { 1564 struct amdgpu_device *adev = ring->adev; 1565 struct drm_gpu_scheduler *sched = &ring->sched; 1566 struct drm_sched_entity entity; 1567 static atomic_t counter; 1568 struct dma_fence *f; 1569 struct amdgpu_job *job; 1570 struct amdgpu_ib *ib; 1571 void *owner; 1572 int i, r; 1573 1574 /* Initialize the scheduler entity */ 1575 r = drm_sched_entity_init(&entity, DRM_SCHED_PRIORITY_NORMAL, 1576 &sched, 1, NULL); 1577 if (r) { 1578 dev_err(adev->dev, "Failed setting up GFX kernel entity.\n"); 1579 goto err; 1580 } 1581 1582 /* 1583 * Use some unique dummy value as the owner to make sure we execute 1584 * the cleaner shader on each submission. The value just need to change 1585 * for each submission and is otherwise meaningless. 1586 */ 1587 owner = (void *)(unsigned long)atomic_inc_return(&counter); 1588 1589 r = amdgpu_job_alloc_with_ib(ring->adev, &entity, owner, 1590 64, 0, &job, 1591 AMDGPU_KERNEL_JOB_ID_CLEANER_SHADER); 1592 if (r) 1593 goto err; 1594 1595 job->enforce_isolation = true; 1596 /* always run the cleaner shader */ 1597 job->run_cleaner_shader = true; 1598 1599 ib = &job->ibs[0]; 1600 for (i = 0; i <= ring->funcs->align_mask; ++i) 1601 ib->ptr[i] = ring->funcs->nop; 1602 ib->length_dw = ring->funcs->align_mask + 1; 1603 1604 f = amdgpu_job_submit(job); 1605 1606 r = dma_fence_wait(f, false); 1607 if (r) 1608 goto err; 1609 1610 dma_fence_put(f); 1611 1612 /* Clean up the scheduler entity */ 1613 drm_sched_entity_destroy(&entity); 1614 return 0; 1615 1616 err: 1617 return r; 1618 } 1619 1620 static int amdgpu_gfx_run_cleaner_shader(struct amdgpu_device *adev, int xcp_id) 1621 { 1622 int num_xcc = NUM_XCC(adev->gfx.xcc_mask); 1623 struct amdgpu_ring *ring; 1624 int num_xcc_to_clear; 1625 int i, r, xcc_id; 1626 1627 if (adev->gfx.num_xcc_per_xcp) 1628 num_xcc_to_clear = adev->gfx.num_xcc_per_xcp; 1629 else 1630 num_xcc_to_clear = 1; 1631 1632 for (xcc_id = 0; xcc_id < num_xcc; xcc_id++) { 1633 for (i = 0; i < adev->gfx.num_compute_rings; i++) { 1634 ring = &adev->gfx.compute_ring[i + xcc_id * adev->gfx.num_compute_rings]; 1635 if ((ring->xcp_id == xcp_id) && ring->sched.ready) { 1636 r = amdgpu_gfx_run_cleaner_shader_job(ring); 1637 if (r) 1638 return r; 1639 num_xcc_to_clear--; 1640 break; 1641 } 1642 } 1643 } 1644 1645 if (num_xcc_to_clear) 1646 return -ENOENT; 1647 1648 return 0; 1649 } 1650 1651 /** 1652 * amdgpu_gfx_set_run_cleaner_shader - Execute the AMDGPU GFX Cleaner Shader 1653 * @dev: The device structure 1654 * @attr: The device attribute structure 1655 * @buf: The buffer containing the input data 1656 * @count: The size of the input data 1657 * 1658 * Provides the sysfs interface to manually run a cleaner shader, which is 1659 * used to clear the GPU state between different tasks. Writing a value to the 1660 * 'run_cleaner_shader' sysfs file triggers the cleaner shader execution. 1661 * The value written corresponds to the partition index on multi-partition 1662 * devices. On single-partition devices, the value should be '0'. 1663 * 1664 * The cleaner shader clears the Local Data Store (LDS) and General Purpose 1665 * Registers (GPRs) to ensure data isolation between GPU workloads. 1666 * 1667 * Return: The number of bytes written to the sysfs file. 1668 */ 1669 static ssize_t amdgpu_gfx_set_run_cleaner_shader(struct device *dev, 1670 struct device_attribute *attr, 1671 const char *buf, 1672 size_t count) 1673 { 1674 struct drm_device *ddev = dev_get_drvdata(dev); 1675 struct amdgpu_device *adev = drm_to_adev(ddev); 1676 int ret; 1677 long value; 1678 1679 if (amdgpu_in_reset(adev)) 1680 return -EPERM; 1681 if (adev->in_suspend && !adev->in_runpm) 1682 return -EPERM; 1683 1684 if (adev->gfx.disable_kq) 1685 return -EPERM; 1686 1687 ret = kstrtol(buf, 0, &value); 1688 1689 if (ret) 1690 return -EINVAL; 1691 1692 if (value < 0) 1693 return -EINVAL; 1694 1695 if (adev->xcp_mgr) { 1696 if (value >= adev->xcp_mgr->num_xcps) 1697 return -EINVAL; 1698 } else { 1699 if (value > 1) 1700 return -EINVAL; 1701 } 1702 1703 ret = pm_runtime_get_sync(ddev->dev); 1704 if (ret < 0) { 1705 pm_runtime_put_autosuspend(ddev->dev); 1706 return ret; 1707 } 1708 1709 ret = amdgpu_gfx_run_cleaner_shader(adev, value); 1710 1711 pm_runtime_put_autosuspend(ddev->dev); 1712 1713 if (ret) 1714 return ret; 1715 1716 return count; 1717 } 1718 1719 /** 1720 * amdgpu_gfx_get_enforce_isolation - Query AMDGPU GFX Enforce Isolation Settings 1721 * @dev: The device structure 1722 * @attr: The device attribute structure 1723 * @buf: The buffer to store the output data 1724 * 1725 * Provides the sysfs read interface to get the current settings of the 'enforce_isolation' 1726 * feature for each GPU partition. Reading from the 'enforce_isolation' 1727 * sysfs file returns the isolation settings for all partitions, where '0' 1728 * indicates disabled, '1' indicates enabled, and '2' indicates enabled in legacy mode, 1729 * and '3' indicates enabled without cleaner shader. 1730 * 1731 * Return: The number of bytes read from the sysfs file. 1732 */ 1733 static ssize_t amdgpu_gfx_get_enforce_isolation(struct device *dev, 1734 struct device_attribute *attr, 1735 char *buf) 1736 { 1737 struct drm_device *ddev = dev_get_drvdata(dev); 1738 struct amdgpu_device *adev = drm_to_adev(ddev); 1739 int i; 1740 ssize_t size = 0; 1741 1742 if (adev->xcp_mgr) { 1743 for (i = 0; i < adev->xcp_mgr->num_xcps; i++) { 1744 size += sysfs_emit_at(buf, size, "%u", adev->enforce_isolation[i]); 1745 if (i < (adev->xcp_mgr->num_xcps - 1)) 1746 size += sysfs_emit_at(buf, size, " "); 1747 } 1748 buf[size++] = '\n'; 1749 } else { 1750 size = sysfs_emit_at(buf, 0, "%u\n", adev->enforce_isolation[0]); 1751 } 1752 1753 return size; 1754 } 1755 1756 /** 1757 * amdgpu_gfx_set_enforce_isolation - Control AMDGPU GFX Enforce Isolation 1758 * @dev: The device structure 1759 * @attr: The device attribute structure 1760 * @buf: The buffer containing the input data 1761 * @count: The size of the input data 1762 * 1763 * This function allows control over the 'enforce_isolation' feature, which 1764 * serializes access to the graphics engine. Writing '0' to disable, '1' to 1765 * enable isolation with cleaner shader, '2' to enable legacy isolation without 1766 * cleaner shader, or '3' to enable process isolation without submitting the 1767 * cleaner shader to the 'enforce_isolation' sysfs file sets the isolation mode 1768 * for each partition. The input should specify the setting for all 1769 * partitions. 1770 * 1771 * Return: The number of bytes written to the sysfs file. 1772 */ 1773 static ssize_t amdgpu_gfx_set_enforce_isolation(struct device *dev, 1774 struct device_attribute *attr, 1775 const char *buf, size_t count) 1776 { 1777 struct drm_device *ddev = dev_get_drvdata(dev); 1778 struct amdgpu_device *adev = drm_to_adev(ddev); 1779 long partition_values[MAX_XCP] = {0}; 1780 int ret, i, num_partitions; 1781 const char *input_buf = buf; 1782 1783 for (i = 0; i < (adev->xcp_mgr ? adev->xcp_mgr->num_xcps : 1); i++) { 1784 ret = sscanf(input_buf, "%ld", &partition_values[i]); 1785 if (ret <= 0) 1786 break; 1787 1788 /* Move the pointer to the next value in the string */ 1789 input_buf = strchr(input_buf, ' '); 1790 if (input_buf) { 1791 input_buf++; 1792 } else { 1793 i++; 1794 break; 1795 } 1796 } 1797 num_partitions = i; 1798 1799 if (adev->xcp_mgr && num_partitions != adev->xcp_mgr->num_xcps) 1800 return -EINVAL; 1801 1802 if (!adev->xcp_mgr && num_partitions != 1) 1803 return -EINVAL; 1804 1805 for (i = 0; i < num_partitions; i++) { 1806 if (partition_values[i] != 0 && 1807 partition_values[i] != 1 && 1808 partition_values[i] != 2 && 1809 partition_values[i] != 3) 1810 return -EINVAL; 1811 } 1812 1813 mutex_lock(&adev->enforce_isolation_mutex); 1814 for (i = 0; i < num_partitions; i++) { 1815 switch (partition_values[i]) { 1816 case 0: 1817 default: 1818 adev->enforce_isolation[i] = AMDGPU_ENFORCE_ISOLATION_DISABLE; 1819 break; 1820 case 1: 1821 adev->enforce_isolation[i] = 1822 AMDGPU_ENFORCE_ISOLATION_ENABLE; 1823 break; 1824 case 2: 1825 adev->enforce_isolation[i] = 1826 AMDGPU_ENFORCE_ISOLATION_ENABLE_LEGACY; 1827 break; 1828 case 3: 1829 adev->enforce_isolation[i] = 1830 AMDGPU_ENFORCE_ISOLATION_NO_CLEANER_SHADER; 1831 break; 1832 } 1833 } 1834 mutex_unlock(&adev->enforce_isolation_mutex); 1835 1836 amdgpu_mes_update_enforce_isolation(adev); 1837 1838 return count; 1839 } 1840 1841 static ssize_t amdgpu_gfx_get_gfx_reset_mask(struct device *dev, 1842 struct device_attribute *attr, 1843 char *buf) 1844 { 1845 struct drm_device *ddev = dev_get_drvdata(dev); 1846 struct amdgpu_device *adev = drm_to_adev(ddev); 1847 1848 if (!adev) 1849 return -ENODEV; 1850 1851 return amdgpu_show_reset_mask(buf, adev->gfx.gfx_supported_reset); 1852 } 1853 1854 static ssize_t amdgpu_gfx_get_compute_reset_mask(struct device *dev, 1855 struct device_attribute *attr, 1856 char *buf) 1857 { 1858 struct drm_device *ddev = dev_get_drvdata(dev); 1859 struct amdgpu_device *adev = drm_to_adev(ddev); 1860 1861 if (!adev) 1862 return -ENODEV; 1863 1864 return amdgpu_show_reset_mask(buf, adev->gfx.compute_supported_reset); 1865 } 1866 1867 static DEVICE_ATTR(run_cleaner_shader, 0200, 1868 NULL, amdgpu_gfx_set_run_cleaner_shader); 1869 1870 static DEVICE_ATTR(enforce_isolation, 0644, 1871 amdgpu_gfx_get_enforce_isolation, 1872 amdgpu_gfx_set_enforce_isolation); 1873 1874 static DEVICE_ATTR(current_compute_partition, 0644, 1875 amdgpu_gfx_get_current_compute_partition, 1876 amdgpu_gfx_set_compute_partition); 1877 1878 static DEVICE_ATTR(available_compute_partition, 0444, 1879 amdgpu_gfx_get_available_compute_partition, NULL); 1880 static DEVICE_ATTR(gfx_reset_mask, 0444, 1881 amdgpu_gfx_get_gfx_reset_mask, NULL); 1882 1883 static DEVICE_ATTR(compute_reset_mask, 0444, 1884 amdgpu_gfx_get_compute_reset_mask, NULL); 1885 1886 static int amdgpu_gfx_sysfs_xcp_init(struct amdgpu_device *adev) 1887 { 1888 struct amdgpu_xcp_mgr *xcp_mgr = adev->xcp_mgr; 1889 bool xcp_switch_supported; 1890 int r; 1891 1892 if (!xcp_mgr) 1893 return 0; 1894 1895 xcp_switch_supported = 1896 (xcp_mgr->funcs && xcp_mgr->funcs->switch_partition_mode); 1897 1898 if (!xcp_switch_supported) 1899 dev_attr_current_compute_partition.attr.mode &= 1900 ~(S_IWUSR | S_IWGRP | S_IWOTH); 1901 1902 r = device_create_file(adev->dev, &dev_attr_current_compute_partition); 1903 if (r) 1904 return r; 1905 1906 if (xcp_switch_supported) 1907 r = device_create_file(adev->dev, 1908 &dev_attr_available_compute_partition); 1909 1910 return r; 1911 } 1912 1913 static void amdgpu_gfx_sysfs_xcp_fini(struct amdgpu_device *adev) 1914 { 1915 struct amdgpu_xcp_mgr *xcp_mgr = adev->xcp_mgr; 1916 bool xcp_switch_supported; 1917 1918 if (!xcp_mgr) 1919 return; 1920 1921 xcp_switch_supported = 1922 (xcp_mgr->funcs && xcp_mgr->funcs->switch_partition_mode); 1923 device_remove_file(adev->dev, &dev_attr_current_compute_partition); 1924 1925 if (xcp_switch_supported) 1926 device_remove_file(adev->dev, 1927 &dev_attr_available_compute_partition); 1928 } 1929 1930 static int amdgpu_gfx_sysfs_isolation_shader_init(struct amdgpu_device *adev) 1931 { 1932 int r; 1933 1934 r = device_create_file(adev->dev, &dev_attr_enforce_isolation); 1935 if (r) 1936 return r; 1937 if (adev->gfx.enable_cleaner_shader) 1938 r = device_create_file(adev->dev, &dev_attr_run_cleaner_shader); 1939 1940 return r; 1941 } 1942 1943 static void amdgpu_gfx_sysfs_isolation_shader_fini(struct amdgpu_device *adev) 1944 { 1945 device_remove_file(adev->dev, &dev_attr_enforce_isolation); 1946 if (adev->gfx.enable_cleaner_shader) 1947 device_remove_file(adev->dev, &dev_attr_run_cleaner_shader); 1948 } 1949 1950 static int amdgpu_gfx_sysfs_reset_mask_init(struct amdgpu_device *adev) 1951 { 1952 int r = 0; 1953 1954 if (!amdgpu_gpu_recovery) 1955 return r; 1956 1957 if (adev->gfx.num_gfx_rings) { 1958 r = device_create_file(adev->dev, &dev_attr_gfx_reset_mask); 1959 if (r) 1960 return r; 1961 } 1962 1963 if (adev->gfx.num_compute_rings) { 1964 r = device_create_file(adev->dev, &dev_attr_compute_reset_mask); 1965 if (r) 1966 return r; 1967 } 1968 1969 return r; 1970 } 1971 1972 static void amdgpu_gfx_sysfs_reset_mask_fini(struct amdgpu_device *adev) 1973 { 1974 if (!amdgpu_gpu_recovery) 1975 return; 1976 1977 if (adev->gfx.num_gfx_rings) 1978 device_remove_file(adev->dev, &dev_attr_gfx_reset_mask); 1979 1980 if (adev->gfx.num_compute_rings) 1981 device_remove_file(adev->dev, &dev_attr_compute_reset_mask); 1982 } 1983 1984 int amdgpu_gfx_sysfs_init(struct amdgpu_device *adev) 1985 { 1986 int r; 1987 1988 r = amdgpu_gfx_sysfs_xcp_init(adev); 1989 if (r) { 1990 dev_err(adev->dev, "failed to create xcp sysfs files"); 1991 return r; 1992 } 1993 1994 r = amdgpu_gfx_sysfs_isolation_shader_init(adev); 1995 if (r) 1996 dev_err(adev->dev, "failed to create isolation sysfs files"); 1997 1998 r = amdgpu_gfx_sysfs_reset_mask_init(adev); 1999 if (r) 2000 dev_err(adev->dev, "failed to create reset mask sysfs files"); 2001 2002 return r; 2003 } 2004 2005 void amdgpu_gfx_sysfs_fini(struct amdgpu_device *adev) 2006 { 2007 if (adev->dev->kobj.sd) { 2008 amdgpu_gfx_sysfs_xcp_fini(adev); 2009 amdgpu_gfx_sysfs_isolation_shader_fini(adev); 2010 amdgpu_gfx_sysfs_reset_mask_fini(adev); 2011 } 2012 } 2013 2014 int amdgpu_gfx_cleaner_shader_sw_init(struct amdgpu_device *adev, 2015 unsigned int cleaner_shader_size) 2016 { 2017 if (!adev->gfx.enable_cleaner_shader) 2018 return -EOPNOTSUPP; 2019 2020 return amdgpu_bo_create_kernel(adev, cleaner_shader_size, PAGE_SIZE, 2021 AMDGPU_GEM_DOMAIN_VRAM | AMDGPU_GEM_DOMAIN_GTT, 2022 &adev->gfx.cleaner_shader_obj, 2023 &adev->gfx.cleaner_shader_gpu_addr, 2024 (void **)&adev->gfx.cleaner_shader_cpu_ptr); 2025 } 2026 2027 void amdgpu_gfx_cleaner_shader_sw_fini(struct amdgpu_device *adev) 2028 { 2029 if (!adev->gfx.enable_cleaner_shader) 2030 return; 2031 2032 amdgpu_bo_free_kernel(&adev->gfx.cleaner_shader_obj, 2033 &adev->gfx.cleaner_shader_gpu_addr, 2034 (void **)&adev->gfx.cleaner_shader_cpu_ptr); 2035 } 2036 2037 void amdgpu_gfx_cleaner_shader_init(struct amdgpu_device *adev, 2038 unsigned int cleaner_shader_size, 2039 const void *cleaner_shader_ptr) 2040 { 2041 if (!adev->gfx.enable_cleaner_shader) 2042 return; 2043 2044 if (adev->gfx.cleaner_shader_cpu_ptr && cleaner_shader_ptr) 2045 memcpy_toio(adev->gfx.cleaner_shader_cpu_ptr, cleaner_shader_ptr, 2046 cleaner_shader_size); 2047 } 2048 2049 /** 2050 * amdgpu_gfx_kfd_sch_ctrl - Control the KFD scheduler from the KGD (Graphics Driver) 2051 * @adev: amdgpu_device pointer 2052 * @idx: Index of the scheduler to control 2053 * @enable: Whether to enable or disable the KFD scheduler 2054 * 2055 * This function is used to control the KFD (Kernel Fusion Driver) scheduler 2056 * from the KGD. It is part of the cleaner shader feature. This function plays 2057 * a key role in enforcing process isolation on the GPU. 2058 * 2059 * The function uses a reference count mechanism (kfd_sch_req_count) to keep 2060 * track of the number of requests to enable the KFD scheduler. When a request 2061 * to enable the KFD scheduler is made, the reference count is decremented. 2062 * When the reference count reaches zero, a delayed work is scheduled to 2063 * enforce isolation after a delay of GFX_SLICE_PERIOD. 2064 * 2065 * When a request to disable the KFD scheduler is made, the function first 2066 * checks if the reference count is zero. If it is, it cancels the delayed work 2067 * for enforcing isolation and checks if the KFD scheduler is active. If the 2068 * KFD scheduler is active, it sends a request to stop the KFD scheduler and 2069 * sets the KFD scheduler state to inactive. Then, it increments the reference 2070 * count. 2071 * 2072 * The function is synchronized using the kfd_sch_mutex to ensure that the KFD 2073 * scheduler state and reference count are updated atomically. 2074 * 2075 * Note: If the reference count is already zero when a request to enable the 2076 * KFD scheduler is made, it means there's an imbalance bug somewhere. The 2077 * function triggers a warning in this case. 2078 */ 2079 static void amdgpu_gfx_kfd_sch_ctrl(struct amdgpu_device *adev, u32 idx, 2080 bool enable) 2081 { 2082 mutex_lock(&adev->gfx.userq_sch_mutex); 2083 2084 if (enable) { 2085 /* If the count is already 0, it means there's an imbalance bug somewhere. 2086 * Note that the bug may be in a different caller than the one which triggers the 2087 * WARN_ON_ONCE. 2088 */ 2089 if (WARN_ON_ONCE(adev->gfx.userq_sch_req_count[idx] == 0)) { 2090 dev_err(adev->dev, "Attempted to enable KFD scheduler when reference count is already zero\n"); 2091 goto unlock; 2092 } 2093 2094 adev->gfx.userq_sch_req_count[idx]--; 2095 2096 if (adev->gfx.userq_sch_req_count[idx] == 0 && 2097 adev->gfx.userq_sch_inactive[idx]) { 2098 schedule_delayed_work(&adev->gfx.enforce_isolation[idx].work, 2099 msecs_to_jiffies(adev->gfx.enforce_isolation_time[idx])); 2100 } 2101 } else { 2102 if (adev->gfx.userq_sch_req_count[idx] == 0) { 2103 cancel_delayed_work_sync(&adev->gfx.enforce_isolation[idx].work); 2104 if (!adev->gfx.userq_sch_inactive[idx]) { 2105 amdgpu_userq_stop_sched_for_enforce_isolation(adev, idx); 2106 if (adev->kfd.init_complete) 2107 amdgpu_amdkfd_stop_sched(adev, idx); 2108 adev->gfx.userq_sch_inactive[idx] = true; 2109 } 2110 } 2111 2112 adev->gfx.userq_sch_req_count[idx]++; 2113 } 2114 2115 unlock: 2116 mutex_unlock(&adev->gfx.userq_sch_mutex); 2117 } 2118 2119 /** 2120 * amdgpu_gfx_enforce_isolation_handler - work handler for enforcing shader isolation 2121 * 2122 * @work: work_struct. 2123 * 2124 * This function is the work handler for enforcing shader isolation on AMD GPUs. 2125 * It counts the number of emitted fences for each GFX and compute ring. If there 2126 * are any fences, it schedules the `enforce_isolation_work` to be run after a 2127 * delay of `GFX_SLICE_PERIOD`. If there are no fences, it signals the Kernel Fusion 2128 * Driver (KFD) to resume the runqueue. The function is synchronized using the 2129 * `enforce_isolation_mutex`. 2130 */ 2131 void amdgpu_gfx_enforce_isolation_handler(struct work_struct *work) 2132 { 2133 struct amdgpu_isolation_work *isolation_work = 2134 container_of(work, struct amdgpu_isolation_work, work.work); 2135 struct amdgpu_device *adev = isolation_work->adev; 2136 u32 i, idx, fences = 0; 2137 2138 if (isolation_work->xcp_id == AMDGPU_XCP_NO_PARTITION) 2139 idx = 0; 2140 else 2141 idx = isolation_work->xcp_id; 2142 2143 if (idx >= MAX_XCP) 2144 return; 2145 2146 mutex_lock(&adev->enforce_isolation_mutex); 2147 for (i = 0; i < AMDGPU_MAX_GFX_RINGS; ++i) { 2148 if (isolation_work->xcp_id == adev->gfx.gfx_ring[i].xcp_id) 2149 fences += amdgpu_fence_count_emitted(&adev->gfx.gfx_ring[i]); 2150 } 2151 for (i = 0; i < (AMDGPU_MAX_COMPUTE_RINGS * AMDGPU_MAX_GC_INSTANCES); ++i) { 2152 if (isolation_work->xcp_id == adev->gfx.compute_ring[i].xcp_id) 2153 fences += amdgpu_fence_count_emitted(&adev->gfx.compute_ring[i]); 2154 } 2155 if (fences) { 2156 /* we've already had our timeslice, so let's wrap this up */ 2157 schedule_delayed_work(&adev->gfx.enforce_isolation[idx].work, 2158 msecs_to_jiffies(1)); 2159 } else { 2160 /* Tell KFD to resume the runqueue */ 2161 WARN_ON_ONCE(!adev->gfx.userq_sch_inactive[idx]); 2162 WARN_ON_ONCE(adev->gfx.userq_sch_req_count[idx]); 2163 2164 amdgpu_userq_start_sched_for_enforce_isolation(adev, idx); 2165 if (adev->kfd.init_complete) 2166 amdgpu_amdkfd_start_sched(adev, idx); 2167 adev->gfx.userq_sch_inactive[idx] = false; 2168 } 2169 mutex_unlock(&adev->enforce_isolation_mutex); 2170 } 2171 2172 /** 2173 * amdgpu_gfx_enforce_isolation_wait_for_kfd - Manage KFD wait period for process isolation 2174 * @adev: amdgpu_device pointer 2175 * @idx: Index of the GPU partition 2176 * 2177 * When kernel submissions come in, the jobs are given a time slice and once 2178 * that time slice is up, if there are KFD user queues active, kernel 2179 * submissions are blocked until KFD has had its time slice. Once the KFD time 2180 * slice is up, KFD user queues are preempted and kernel submissions are 2181 * unblocked and allowed to run again. 2182 */ 2183 static void 2184 amdgpu_gfx_enforce_isolation_wait_for_kfd(struct amdgpu_device *adev, 2185 u32 idx) 2186 { 2187 unsigned long cjiffies; 2188 bool wait = false; 2189 2190 mutex_lock(&adev->enforce_isolation_mutex); 2191 if (adev->enforce_isolation[idx] == AMDGPU_ENFORCE_ISOLATION_ENABLE) { 2192 /* set the initial values if nothing is set */ 2193 if (!adev->gfx.enforce_isolation_jiffies[idx]) { 2194 adev->gfx.enforce_isolation_jiffies[idx] = jiffies; 2195 adev->gfx.enforce_isolation_time[idx] = GFX_SLICE_PERIOD_MS; 2196 } 2197 /* Make sure KFD gets a chance to run */ 2198 if (amdgpu_amdkfd_compute_active(adev, idx)) { 2199 cjiffies = jiffies; 2200 if (time_after(cjiffies, adev->gfx.enforce_isolation_jiffies[idx])) { 2201 cjiffies -= adev->gfx.enforce_isolation_jiffies[idx]; 2202 if ((jiffies_to_msecs(cjiffies) >= GFX_SLICE_PERIOD_MS)) { 2203 /* if our time is up, let KGD work drain before scheduling more */ 2204 wait = true; 2205 /* reset the timer period */ 2206 adev->gfx.enforce_isolation_time[idx] = GFX_SLICE_PERIOD_MS; 2207 } else { 2208 /* set the timer period to what's left in our time slice */ 2209 adev->gfx.enforce_isolation_time[idx] = 2210 GFX_SLICE_PERIOD_MS - jiffies_to_msecs(cjiffies); 2211 } 2212 } else { 2213 /* if jiffies wrap around we will just wait a little longer */ 2214 adev->gfx.enforce_isolation_jiffies[idx] = jiffies; 2215 } 2216 } else { 2217 /* if there is no KFD work, then set the full slice period */ 2218 adev->gfx.enforce_isolation_jiffies[idx] = jiffies; 2219 adev->gfx.enforce_isolation_time[idx] = GFX_SLICE_PERIOD_MS; 2220 } 2221 } 2222 mutex_unlock(&adev->enforce_isolation_mutex); 2223 2224 if (wait) 2225 msleep(GFX_SLICE_PERIOD_MS); 2226 } 2227 2228 /** 2229 * amdgpu_gfx_enforce_isolation_ring_begin_use - Begin use of a ring with enforced isolation 2230 * @ring: Pointer to the amdgpu_ring structure 2231 * 2232 * Ring begin_use helper implementation for gfx which serializes access to the 2233 * gfx IP between kernel submission IOCTLs and KFD user queues when isolation 2234 * enforcement is enabled. The kernel submission IOCTLs and KFD user queues 2235 * each get a time slice when both are active. 2236 */ 2237 void amdgpu_gfx_enforce_isolation_ring_begin_use(struct amdgpu_ring *ring) 2238 { 2239 struct amdgpu_device *adev = ring->adev; 2240 u32 idx; 2241 bool sched_work = false; 2242 2243 if (!adev->gfx.enable_cleaner_shader) 2244 return; 2245 2246 if (ring->xcp_id == AMDGPU_XCP_NO_PARTITION) 2247 idx = 0; 2248 else 2249 idx = ring->xcp_id; 2250 2251 if (idx >= MAX_XCP) 2252 return; 2253 2254 /* Don't submit more work until KFD has had some time */ 2255 amdgpu_gfx_enforce_isolation_wait_for_kfd(adev, idx); 2256 2257 mutex_lock(&adev->enforce_isolation_mutex); 2258 if (adev->enforce_isolation[idx] == AMDGPU_ENFORCE_ISOLATION_ENABLE) { 2259 if (adev->kfd.init_complete) 2260 sched_work = true; 2261 } 2262 mutex_unlock(&adev->enforce_isolation_mutex); 2263 2264 if (sched_work) 2265 amdgpu_gfx_kfd_sch_ctrl(adev, idx, false); 2266 } 2267 2268 /** 2269 * amdgpu_gfx_enforce_isolation_ring_end_use - End use of a ring with enforced isolation 2270 * @ring: Pointer to the amdgpu_ring structure 2271 * 2272 * Ring end_use helper implementation for gfx which serializes access to the 2273 * gfx IP between kernel submission IOCTLs and KFD user queues when isolation 2274 * enforcement is enabled. The kernel submission IOCTLs and KFD user queues 2275 * each get a time slice when both are active. 2276 */ 2277 void amdgpu_gfx_enforce_isolation_ring_end_use(struct amdgpu_ring *ring) 2278 { 2279 struct amdgpu_device *adev = ring->adev; 2280 u32 idx; 2281 bool sched_work = false; 2282 2283 if (!adev->gfx.enable_cleaner_shader) 2284 return; 2285 2286 if (ring->xcp_id == AMDGPU_XCP_NO_PARTITION) 2287 idx = 0; 2288 else 2289 idx = ring->xcp_id; 2290 2291 if (idx >= MAX_XCP) 2292 return; 2293 2294 mutex_lock(&adev->enforce_isolation_mutex); 2295 if (adev->enforce_isolation[idx] == AMDGPU_ENFORCE_ISOLATION_ENABLE) { 2296 if (adev->kfd.init_complete) 2297 sched_work = true; 2298 } 2299 mutex_unlock(&adev->enforce_isolation_mutex); 2300 2301 if (sched_work) 2302 amdgpu_gfx_kfd_sch_ctrl(adev, idx, true); 2303 } 2304 2305 void amdgpu_gfx_profile_idle_work_handler(struct work_struct *work) 2306 { 2307 struct amdgpu_device *adev = 2308 container_of(work, struct amdgpu_device, gfx.idle_work.work); 2309 enum PP_SMC_POWER_PROFILE profile; 2310 u32 i, fences = 0; 2311 int r; 2312 2313 if (adev->gfx.num_gfx_rings) 2314 profile = PP_SMC_POWER_PROFILE_FULLSCREEN3D; 2315 else 2316 profile = PP_SMC_POWER_PROFILE_COMPUTE; 2317 2318 for (i = 0; i < AMDGPU_MAX_GFX_RINGS; ++i) 2319 fences += amdgpu_fence_count_emitted(&adev->gfx.gfx_ring[i]); 2320 for (i = 0; i < (AMDGPU_MAX_COMPUTE_RINGS * AMDGPU_MAX_GC_INSTANCES); ++i) 2321 fences += amdgpu_fence_count_emitted(&adev->gfx.compute_ring[i]); 2322 if (!fences && !atomic_read(&adev->gfx.total_submission_cnt)) { 2323 mutex_lock(&adev->gfx.workload_profile_mutex); 2324 if (adev->gfx.workload_profile_active) { 2325 r = amdgpu_dpm_switch_power_profile(adev, profile, false); 2326 if (r) 2327 dev_warn(adev->dev, "(%d) failed to disable %s power profile mode\n", r, 2328 profile == PP_SMC_POWER_PROFILE_FULLSCREEN3D ? 2329 "fullscreen 3D" : "compute"); 2330 adev->gfx.workload_profile_active = false; 2331 } 2332 mutex_unlock(&adev->gfx.workload_profile_mutex); 2333 } else { 2334 schedule_delayed_work(&adev->gfx.idle_work, GFX_PROFILE_IDLE_TIMEOUT); 2335 } 2336 } 2337 2338 void amdgpu_gfx_profile_ring_begin_use(struct amdgpu_ring *ring) 2339 { 2340 struct amdgpu_device *adev = ring->adev; 2341 enum PP_SMC_POWER_PROFILE profile; 2342 int r; 2343 2344 if (amdgpu_dpm_is_overdrive_enabled(adev)) 2345 return; 2346 2347 if (adev->gfx.num_gfx_rings) 2348 profile = PP_SMC_POWER_PROFILE_FULLSCREEN3D; 2349 else 2350 profile = PP_SMC_POWER_PROFILE_COMPUTE; 2351 2352 atomic_inc(&adev->gfx.total_submission_cnt); 2353 2354 cancel_delayed_work_sync(&adev->gfx.idle_work); 2355 2356 /* We can safely return early here because we've cancelled the 2357 * the delayed work so there is no one else to set it to false 2358 * and we don't care if someone else sets it to true. 2359 */ 2360 if (adev->gfx.workload_profile_active) 2361 return; 2362 2363 mutex_lock(&adev->gfx.workload_profile_mutex); 2364 if (!adev->gfx.workload_profile_active) { 2365 r = amdgpu_dpm_switch_power_profile(adev, profile, true); 2366 if (r) 2367 dev_warn(adev->dev, "(%d) failed to disable %s power profile mode\n", r, 2368 profile == PP_SMC_POWER_PROFILE_FULLSCREEN3D ? 2369 "fullscreen 3D" : "compute"); 2370 adev->gfx.workload_profile_active = true; 2371 } 2372 mutex_unlock(&adev->gfx.workload_profile_mutex); 2373 } 2374 2375 void amdgpu_gfx_profile_ring_end_use(struct amdgpu_ring *ring) 2376 { 2377 struct amdgpu_device *adev = ring->adev; 2378 2379 if (amdgpu_dpm_is_overdrive_enabled(adev)) 2380 return; 2381 2382 atomic_dec(&ring->adev->gfx.total_submission_cnt); 2383 2384 schedule_delayed_work(&ring->adev->gfx.idle_work, GFX_PROFILE_IDLE_TIMEOUT); 2385 } 2386 2387 /** 2388 * amdgpu_gfx_csb_preamble_start - Set CSB preamble start 2389 * 2390 * @buffer: This is an output variable that gets the PACKET3 preamble setup. 2391 * 2392 * Return: 2393 * return the latest index. 2394 */ 2395 u32 amdgpu_gfx_csb_preamble_start(u32 *buffer) 2396 { 2397 u32 count = 0; 2398 2399 buffer[count++] = cpu_to_le32(PACKET3(PACKET3_PREAMBLE_CNTL, 0)); 2400 buffer[count++] = cpu_to_le32(PACKET3_PREAMBLE_BEGIN_CLEAR_STATE); 2401 2402 buffer[count++] = cpu_to_le32(PACKET3(PACKET3_CONTEXT_CONTROL, 1)); 2403 buffer[count++] = cpu_to_le32(0x80000000); 2404 buffer[count++] = cpu_to_le32(0x80000000); 2405 2406 return count; 2407 } 2408 2409 /** 2410 * amdgpu_gfx_csb_data_parser - Parser CS data 2411 * 2412 * @adev: amdgpu_device pointer used to get the CS data and other gfx info. 2413 * @buffer: This is an output variable that gets the PACKET3 preamble end. 2414 * @count: Index to start set the preemble end. 2415 * 2416 * Return: 2417 * return the latest index. 2418 */ 2419 u32 amdgpu_gfx_csb_data_parser(struct amdgpu_device *adev, u32 *buffer, u32 count) 2420 { 2421 const struct cs_section_def *sect = NULL; 2422 const struct cs_extent_def *ext = NULL; 2423 u32 i; 2424 2425 for (sect = adev->gfx.rlc.cs_data; sect->section != NULL; ++sect) { 2426 for (ext = sect->section; ext->extent != NULL; ++ext) { 2427 if (sect->id == SECT_CONTEXT) { 2428 buffer[count++] = cpu_to_le32(PACKET3(PACKET3_SET_CONTEXT_REG, ext->reg_count)); 2429 buffer[count++] = cpu_to_le32(ext->reg_index - PACKET3_SET_CONTEXT_REG_START); 2430 2431 for (i = 0; i < ext->reg_count; i++) 2432 buffer[count++] = cpu_to_le32(ext->extent[i]); 2433 } 2434 } 2435 } 2436 2437 return count; 2438 } 2439 2440 /** 2441 * amdgpu_gfx_csb_preamble_end - Set CSB preamble end 2442 * 2443 * @buffer: This is an output variable that gets the PACKET3 preamble end. 2444 * @count: Index to start set the preemble end. 2445 */ 2446 void amdgpu_gfx_csb_preamble_end(u32 *buffer, u32 count) 2447 { 2448 buffer[count++] = cpu_to_le32(PACKET3(PACKET3_PREAMBLE_CNTL, 0)); 2449 buffer[count++] = cpu_to_le32(PACKET3_PREAMBLE_END_CLEAR_STATE); 2450 2451 buffer[count++] = cpu_to_le32(PACKET3(PACKET3_CLEAR_STATE, 0)); 2452 buffer[count++] = cpu_to_le32(0); 2453 } 2454 2455 /* 2456 * debugfs for to enable/disable gfx job submission to specific core. 2457 */ 2458 #if defined(CONFIG_DEBUG_FS) 2459 static int amdgpu_debugfs_gfx_sched_mask_set(void *data, u64 val) 2460 { 2461 struct amdgpu_device *adev = (struct amdgpu_device *)data; 2462 u32 i; 2463 u64 mask = 0; 2464 struct amdgpu_ring *ring; 2465 2466 if (!adev) 2467 return -ENODEV; 2468 2469 mask = (1ULL << adev->gfx.num_gfx_rings) - 1; 2470 if ((val & mask) == 0) 2471 return -EINVAL; 2472 2473 for (i = 0; i < adev->gfx.num_gfx_rings; ++i) { 2474 ring = &adev->gfx.gfx_ring[i]; 2475 if (val & (1 << i)) 2476 ring->sched.ready = true; 2477 else 2478 ring->sched.ready = false; 2479 } 2480 /* publish sched.ready flag update effective immediately across smp */ 2481 smp_rmb(); 2482 return 0; 2483 } 2484 2485 static int amdgpu_debugfs_gfx_sched_mask_get(void *data, u64 *val) 2486 { 2487 struct amdgpu_device *adev = (struct amdgpu_device *)data; 2488 u32 i; 2489 u64 mask = 0; 2490 struct amdgpu_ring *ring; 2491 2492 if (!adev) 2493 return -ENODEV; 2494 for (i = 0; i < adev->gfx.num_gfx_rings; ++i) { 2495 ring = &adev->gfx.gfx_ring[i]; 2496 if (ring->sched.ready) 2497 mask |= 1ULL << i; 2498 } 2499 2500 *val = mask; 2501 return 0; 2502 } 2503 2504 DEFINE_DEBUGFS_ATTRIBUTE(amdgpu_debugfs_gfx_sched_mask_fops, 2505 amdgpu_debugfs_gfx_sched_mask_get, 2506 amdgpu_debugfs_gfx_sched_mask_set, "%llx\n"); 2507 2508 #endif 2509 2510 void amdgpu_debugfs_gfx_sched_mask_init(struct amdgpu_device *adev) 2511 { 2512 #if defined(CONFIG_DEBUG_FS) 2513 struct drm_minor *minor = adev_to_drm(adev)->primary; 2514 struct dentry *root = minor->debugfs_root; 2515 char name[32]; 2516 2517 if (!(adev->gfx.num_gfx_rings > 1)) 2518 return; 2519 sprintf(name, "amdgpu_gfx_sched_mask"); 2520 debugfs_create_file(name, 0600, root, adev, 2521 &amdgpu_debugfs_gfx_sched_mask_fops); 2522 #endif 2523 } 2524 2525 /* 2526 * debugfs for to enable/disable compute job submission to specific core. 2527 */ 2528 #if defined(CONFIG_DEBUG_FS) 2529 static int amdgpu_debugfs_compute_sched_mask_set(void *data, u64 val) 2530 { 2531 struct amdgpu_device *adev = (struct amdgpu_device *)data; 2532 u32 i; 2533 u64 mask = 0; 2534 struct amdgpu_ring *ring; 2535 2536 if (!adev) 2537 return -ENODEV; 2538 2539 mask = (1ULL << adev->gfx.num_compute_rings) - 1; 2540 if ((val & mask) == 0) 2541 return -EINVAL; 2542 2543 for (i = 0; i < adev->gfx.num_compute_rings; ++i) { 2544 ring = &adev->gfx.compute_ring[i]; 2545 if (val & (1 << i)) 2546 ring->sched.ready = true; 2547 else 2548 ring->sched.ready = false; 2549 } 2550 2551 /* publish sched.ready flag update effective immediately across smp */ 2552 smp_rmb(); 2553 return 0; 2554 } 2555 2556 static int amdgpu_debugfs_compute_sched_mask_get(void *data, u64 *val) 2557 { 2558 struct amdgpu_device *adev = (struct amdgpu_device *)data; 2559 u32 i; 2560 u64 mask = 0; 2561 struct amdgpu_ring *ring; 2562 2563 if (!adev) 2564 return -ENODEV; 2565 for (i = 0; i < adev->gfx.num_compute_rings; ++i) { 2566 ring = &adev->gfx.compute_ring[i]; 2567 if (ring->sched.ready) 2568 mask |= 1ULL << i; 2569 } 2570 2571 *val = mask; 2572 return 0; 2573 } 2574 2575 DEFINE_DEBUGFS_ATTRIBUTE(amdgpu_debugfs_compute_sched_mask_fops, 2576 amdgpu_debugfs_compute_sched_mask_get, 2577 amdgpu_debugfs_compute_sched_mask_set, "%llx\n"); 2578 2579 #endif 2580 2581 void amdgpu_debugfs_compute_sched_mask_init(struct amdgpu_device *adev) 2582 { 2583 #if defined(CONFIG_DEBUG_FS) 2584 struct drm_minor *minor = adev_to_drm(adev)->primary; 2585 struct dentry *root = minor->debugfs_root; 2586 char name[32]; 2587 2588 if (!(adev->gfx.num_compute_rings > 1)) 2589 return; 2590 sprintf(name, "amdgpu_compute_sched_mask"); 2591 debugfs_create_file(name, 0600, root, adev, 2592 &amdgpu_debugfs_compute_sched_mask_fops); 2593 #endif 2594 } 2595 2596