1 /* 2 * Copyright 2014 Advanced Micro Devices, Inc. 3 * Copyright 2008 Red Hat Inc. 4 * Copyright 2009 Jerome Glisse. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 * 24 */ 25 26 #include <linux/firmware.h> 27 #include "amdgpu.h" 28 #include "amdgpu_gfx.h" 29 #include "amdgpu_rlc.h" 30 #include "amdgpu_ras.h" 31 #include "amdgpu_xcp.h" 32 #include "amdgpu_xgmi.h" 33 34 /* delay 0.1 second to enable gfx off feature */ 35 #define GFX_OFF_DELAY_ENABLE msecs_to_jiffies(100) 36 37 #define GFX_OFF_NO_DELAY 0 38 39 /* 40 * GPU GFX IP block helpers function. 41 */ 42 43 int amdgpu_gfx_mec_queue_to_bit(struct amdgpu_device *adev, int mec, 44 int pipe, int queue) 45 { 46 int bit = 0; 47 48 bit += mec * adev->gfx.mec.num_pipe_per_mec 49 * adev->gfx.mec.num_queue_per_pipe; 50 bit += pipe * adev->gfx.mec.num_queue_per_pipe; 51 bit += queue; 52 53 return bit; 54 } 55 56 void amdgpu_queue_mask_bit_to_mec_queue(struct amdgpu_device *adev, int bit, 57 int *mec, int *pipe, int *queue) 58 { 59 *queue = bit % adev->gfx.mec.num_queue_per_pipe; 60 *pipe = (bit / adev->gfx.mec.num_queue_per_pipe) 61 % adev->gfx.mec.num_pipe_per_mec; 62 *mec = (bit / adev->gfx.mec.num_queue_per_pipe) 63 / adev->gfx.mec.num_pipe_per_mec; 64 65 } 66 67 bool amdgpu_gfx_is_mec_queue_enabled(struct amdgpu_device *adev, 68 int xcc_id, int mec, int pipe, int queue) 69 { 70 return test_bit(amdgpu_gfx_mec_queue_to_bit(adev, mec, pipe, queue), 71 adev->gfx.mec_bitmap[xcc_id].queue_bitmap); 72 } 73 74 int amdgpu_gfx_me_queue_to_bit(struct amdgpu_device *adev, 75 int me, int pipe, int queue) 76 { 77 int bit = 0; 78 79 bit += me * adev->gfx.me.num_pipe_per_me 80 * adev->gfx.me.num_queue_per_pipe; 81 bit += pipe * adev->gfx.me.num_queue_per_pipe; 82 bit += queue; 83 84 return bit; 85 } 86 87 void amdgpu_gfx_bit_to_me_queue(struct amdgpu_device *adev, int bit, 88 int *me, int *pipe, int *queue) 89 { 90 *queue = bit % adev->gfx.me.num_queue_per_pipe; 91 *pipe = (bit / adev->gfx.me.num_queue_per_pipe) 92 % adev->gfx.me.num_pipe_per_me; 93 *me = (bit / adev->gfx.me.num_queue_per_pipe) 94 / adev->gfx.me.num_pipe_per_me; 95 } 96 97 bool amdgpu_gfx_is_me_queue_enabled(struct amdgpu_device *adev, 98 int me, int pipe, int queue) 99 { 100 return test_bit(amdgpu_gfx_me_queue_to_bit(adev, me, pipe, queue), 101 adev->gfx.me.queue_bitmap); 102 } 103 104 /** 105 * amdgpu_gfx_parse_disable_cu - Parse the disable_cu module parameter 106 * 107 * @mask: array in which the per-shader array disable masks will be stored 108 * @max_se: number of SEs 109 * @max_sh: number of SHs 110 * 111 * The bitmask of CUs to be disabled in the shader array determined by se and 112 * sh is stored in mask[se * max_sh + sh]. 113 */ 114 void amdgpu_gfx_parse_disable_cu(unsigned int *mask, unsigned int max_se, unsigned int max_sh) 115 { 116 unsigned int se, sh, cu; 117 const char *p; 118 119 memset(mask, 0, sizeof(*mask) * max_se * max_sh); 120 121 if (!amdgpu_disable_cu || !*amdgpu_disable_cu) 122 return; 123 124 p = amdgpu_disable_cu; 125 for (;;) { 126 char *next; 127 int ret = sscanf(p, "%u.%u.%u", &se, &sh, &cu); 128 129 if (ret < 3) { 130 DRM_ERROR("amdgpu: could not parse disable_cu\n"); 131 return; 132 } 133 134 if (se < max_se && sh < max_sh && cu < 16) { 135 DRM_INFO("amdgpu: disabling CU %u.%u.%u\n", se, sh, cu); 136 mask[se * max_sh + sh] |= 1u << cu; 137 } else { 138 DRM_ERROR("amdgpu: disable_cu %u.%u.%u is out of range\n", 139 se, sh, cu); 140 } 141 142 next = strchr(p, ','); 143 if (!next) 144 break; 145 p = next + 1; 146 } 147 } 148 149 static bool amdgpu_gfx_is_graphics_multipipe_capable(struct amdgpu_device *adev) 150 { 151 return amdgpu_async_gfx_ring && adev->gfx.me.num_pipe_per_me > 1; 152 } 153 154 static bool amdgpu_gfx_is_compute_multipipe_capable(struct amdgpu_device *adev) 155 { 156 if (amdgpu_compute_multipipe != -1) { 157 DRM_INFO("amdgpu: forcing compute pipe policy %d\n", 158 amdgpu_compute_multipipe); 159 return amdgpu_compute_multipipe == 1; 160 } 161 162 if (amdgpu_ip_version(adev, GC_HWIP, 0) > IP_VERSION(9, 0, 0)) 163 return true; 164 165 /* FIXME: spreading the queues across pipes causes perf regressions 166 * on POLARIS11 compute workloads */ 167 if (adev->asic_type == CHIP_POLARIS11) 168 return false; 169 170 return adev->gfx.mec.num_mec > 1; 171 } 172 173 bool amdgpu_gfx_is_high_priority_graphics_queue(struct amdgpu_device *adev, 174 struct amdgpu_ring *ring) 175 { 176 int queue = ring->queue; 177 int pipe = ring->pipe; 178 179 /* Policy: use pipe1 queue0 as high priority graphics queue if we 180 * have more than one gfx pipe. 181 */ 182 if (amdgpu_gfx_is_graphics_multipipe_capable(adev) && 183 adev->gfx.num_gfx_rings > 1 && pipe == 1 && queue == 0) { 184 int me = ring->me; 185 int bit; 186 187 bit = amdgpu_gfx_me_queue_to_bit(adev, me, pipe, queue); 188 if (ring == &adev->gfx.gfx_ring[bit]) 189 return true; 190 } 191 192 return false; 193 } 194 195 bool amdgpu_gfx_is_high_priority_compute_queue(struct amdgpu_device *adev, 196 struct amdgpu_ring *ring) 197 { 198 /* Policy: use 1st queue as high priority compute queue if we 199 * have more than one compute queue. 200 */ 201 if (adev->gfx.num_compute_rings > 1 && 202 ring == &adev->gfx.compute_ring[0]) 203 return true; 204 205 return false; 206 } 207 208 void amdgpu_gfx_compute_queue_acquire(struct amdgpu_device *adev) 209 { 210 int i, j, queue, pipe; 211 bool multipipe_policy = amdgpu_gfx_is_compute_multipipe_capable(adev); 212 int max_queues_per_mec = min(adev->gfx.mec.num_pipe_per_mec * 213 adev->gfx.mec.num_queue_per_pipe, 214 adev->gfx.num_compute_rings); 215 int num_xcc = adev->gfx.xcc_mask ? NUM_XCC(adev->gfx.xcc_mask) : 1; 216 217 if (multipipe_policy) { 218 /* policy: make queues evenly cross all pipes on MEC1 only 219 * for multiple xcc, just use the original policy for simplicity */ 220 for (j = 0; j < num_xcc; j++) { 221 for (i = 0; i < max_queues_per_mec; i++) { 222 pipe = i % adev->gfx.mec.num_pipe_per_mec; 223 queue = (i / adev->gfx.mec.num_pipe_per_mec) % 224 adev->gfx.mec.num_queue_per_pipe; 225 226 set_bit(pipe * adev->gfx.mec.num_queue_per_pipe + queue, 227 adev->gfx.mec_bitmap[j].queue_bitmap); 228 } 229 } 230 } else { 231 /* policy: amdgpu owns all queues in the given pipe */ 232 for (j = 0; j < num_xcc; j++) { 233 for (i = 0; i < max_queues_per_mec; ++i) 234 set_bit(i, adev->gfx.mec_bitmap[j].queue_bitmap); 235 } 236 } 237 238 for (j = 0; j < num_xcc; j++) { 239 dev_dbg(adev->dev, "mec queue bitmap weight=%d\n", 240 bitmap_weight(adev->gfx.mec_bitmap[j].queue_bitmap, AMDGPU_MAX_COMPUTE_QUEUES)); 241 } 242 } 243 244 void amdgpu_gfx_graphics_queue_acquire(struct amdgpu_device *adev) 245 { 246 int i, queue, pipe; 247 bool multipipe_policy = amdgpu_gfx_is_graphics_multipipe_capable(adev); 248 int max_queues_per_me = adev->gfx.me.num_pipe_per_me * 249 adev->gfx.me.num_queue_per_pipe; 250 251 if (multipipe_policy) { 252 /* policy: amdgpu owns the first queue per pipe at this stage 253 * will extend to mulitple queues per pipe later */ 254 for (i = 0; i < max_queues_per_me; i++) { 255 pipe = i % adev->gfx.me.num_pipe_per_me; 256 queue = (i / adev->gfx.me.num_pipe_per_me) % 257 adev->gfx.me.num_queue_per_pipe; 258 259 set_bit(pipe * adev->gfx.me.num_queue_per_pipe + queue, 260 adev->gfx.me.queue_bitmap); 261 } 262 } else { 263 for (i = 0; i < max_queues_per_me; ++i) 264 set_bit(i, adev->gfx.me.queue_bitmap); 265 } 266 267 /* update the number of active graphics rings */ 268 adev->gfx.num_gfx_rings = 269 bitmap_weight(adev->gfx.me.queue_bitmap, AMDGPU_MAX_GFX_QUEUES); 270 } 271 272 static int amdgpu_gfx_kiq_acquire(struct amdgpu_device *adev, 273 struct amdgpu_ring *ring, int xcc_id) 274 { 275 int queue_bit; 276 int mec, pipe, queue; 277 278 queue_bit = adev->gfx.mec.num_mec 279 * adev->gfx.mec.num_pipe_per_mec 280 * adev->gfx.mec.num_queue_per_pipe; 281 282 while (--queue_bit >= 0) { 283 if (test_bit(queue_bit, adev->gfx.mec_bitmap[xcc_id].queue_bitmap)) 284 continue; 285 286 amdgpu_queue_mask_bit_to_mec_queue(adev, queue_bit, &mec, &pipe, &queue); 287 288 /* 289 * 1. Using pipes 2/3 from MEC 2 seems cause problems. 290 * 2. It must use queue id 0, because CGPG_IDLE/SAVE/LOAD/RUN 291 * only can be issued on queue 0. 292 */ 293 if ((mec == 1 && pipe > 1) || queue != 0) 294 continue; 295 296 ring->me = mec + 1; 297 ring->pipe = pipe; 298 ring->queue = queue; 299 300 return 0; 301 } 302 303 dev_err(adev->dev, "Failed to find a queue for KIQ\n"); 304 return -EINVAL; 305 } 306 307 int amdgpu_gfx_kiq_init_ring(struct amdgpu_device *adev, int xcc_id) 308 { 309 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 310 struct amdgpu_irq_src *irq = &kiq->irq; 311 struct amdgpu_ring *ring = &kiq->ring; 312 int r = 0; 313 314 spin_lock_init(&kiq->ring_lock); 315 316 ring->adev = NULL; 317 ring->ring_obj = NULL; 318 ring->use_doorbell = true; 319 ring->xcc_id = xcc_id; 320 ring->vm_hub = AMDGPU_GFXHUB(xcc_id); 321 ring->doorbell_index = 322 (adev->doorbell_index.kiq + 323 xcc_id * adev->doorbell_index.xcc_doorbell_range) 324 << 1; 325 326 r = amdgpu_gfx_kiq_acquire(adev, ring, xcc_id); 327 if (r) 328 return r; 329 330 ring->eop_gpu_addr = kiq->eop_gpu_addr; 331 ring->no_scheduler = true; 332 snprintf(ring->name, sizeof(ring->name), "kiq_%hhu.%hhu.%hhu.%hhu", 333 (unsigned char)xcc_id, (unsigned char)ring->me, 334 (unsigned char)ring->pipe, (unsigned char)ring->queue); 335 r = amdgpu_ring_init(adev, ring, 1024, irq, AMDGPU_CP_KIQ_IRQ_DRIVER0, 336 AMDGPU_RING_PRIO_DEFAULT, NULL); 337 if (r) 338 dev_warn(adev->dev, "(%d) failed to init kiq ring\n", r); 339 340 return r; 341 } 342 343 void amdgpu_gfx_kiq_free_ring(struct amdgpu_ring *ring) 344 { 345 amdgpu_ring_fini(ring); 346 } 347 348 void amdgpu_gfx_kiq_fini(struct amdgpu_device *adev, int xcc_id) 349 { 350 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 351 352 amdgpu_bo_free_kernel(&kiq->eop_obj, &kiq->eop_gpu_addr, NULL); 353 } 354 355 int amdgpu_gfx_kiq_init(struct amdgpu_device *adev, 356 unsigned int hpd_size, int xcc_id) 357 { 358 int r; 359 u32 *hpd; 360 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 361 362 r = amdgpu_bo_create_kernel(adev, hpd_size, PAGE_SIZE, 363 AMDGPU_GEM_DOMAIN_GTT, &kiq->eop_obj, 364 &kiq->eop_gpu_addr, (void **)&hpd); 365 if (r) { 366 dev_warn(adev->dev, "failed to create KIQ bo (%d).\n", r); 367 return r; 368 } 369 370 memset(hpd, 0, hpd_size); 371 372 r = amdgpu_bo_reserve(kiq->eop_obj, true); 373 if (unlikely(r != 0)) 374 dev_warn(adev->dev, "(%d) reserve kiq eop bo failed\n", r); 375 amdgpu_bo_kunmap(kiq->eop_obj); 376 amdgpu_bo_unreserve(kiq->eop_obj); 377 378 return 0; 379 } 380 381 /* create MQD for each compute/gfx queue */ 382 int amdgpu_gfx_mqd_sw_init(struct amdgpu_device *adev, 383 unsigned int mqd_size, int xcc_id) 384 { 385 int r, i, j; 386 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 387 struct amdgpu_ring *ring = &kiq->ring; 388 u32 domain = AMDGPU_GEM_DOMAIN_GTT; 389 390 #if !defined(CONFIG_ARM) && !defined(CONFIG_ARM64) 391 /* Only enable on gfx10 and 11 for now to avoid changing behavior on older chips */ 392 if (amdgpu_ip_version(adev, GC_HWIP, 0) >= IP_VERSION(10, 0, 0)) 393 domain |= AMDGPU_GEM_DOMAIN_VRAM; 394 #endif 395 396 /* create MQD for KIQ */ 397 if (!adev->enable_mes_kiq && !ring->mqd_obj) { 398 /* originaly the KIQ MQD is put in GTT domain, but for SRIOV VRAM domain is a must 399 * otherwise hypervisor trigger SAVE_VF fail after driver unloaded which mean MQD 400 * deallocated and gart_unbind, to strict diverage we decide to use VRAM domain for 401 * KIQ MQD no matter SRIOV or Bare-metal 402 */ 403 r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE, 404 AMDGPU_GEM_DOMAIN_VRAM | 405 AMDGPU_GEM_DOMAIN_GTT, 406 &ring->mqd_obj, 407 &ring->mqd_gpu_addr, 408 &ring->mqd_ptr); 409 if (r) { 410 dev_warn(adev->dev, "failed to create ring mqd ob (%d)", r); 411 return r; 412 } 413 414 /* prepare MQD backup */ 415 kiq->mqd_backup = kmalloc(mqd_size, GFP_KERNEL); 416 if (!kiq->mqd_backup) { 417 dev_warn(adev->dev, 418 "no memory to create MQD backup for ring %s\n", ring->name); 419 return -ENOMEM; 420 } 421 } 422 423 if (adev->asic_type >= CHIP_NAVI10 && amdgpu_async_gfx_ring) { 424 /* create MQD for each KGQ */ 425 for (i = 0; i < adev->gfx.num_gfx_rings; i++) { 426 ring = &adev->gfx.gfx_ring[i]; 427 if (!ring->mqd_obj) { 428 r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE, 429 domain, &ring->mqd_obj, 430 &ring->mqd_gpu_addr, &ring->mqd_ptr); 431 if (r) { 432 dev_warn(adev->dev, "failed to create ring mqd bo (%d)", r); 433 return r; 434 } 435 436 ring->mqd_size = mqd_size; 437 /* prepare MQD backup */ 438 adev->gfx.me.mqd_backup[i] = kmalloc(mqd_size, GFP_KERNEL); 439 if (!adev->gfx.me.mqd_backup[i]) { 440 dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name); 441 return -ENOMEM; 442 } 443 } 444 } 445 } 446 447 /* create MQD for each KCQ */ 448 for (i = 0; i < adev->gfx.num_compute_rings; i++) { 449 j = i + xcc_id * adev->gfx.num_compute_rings; 450 ring = &adev->gfx.compute_ring[j]; 451 if (!ring->mqd_obj) { 452 r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE, 453 domain, &ring->mqd_obj, 454 &ring->mqd_gpu_addr, &ring->mqd_ptr); 455 if (r) { 456 dev_warn(adev->dev, "failed to create ring mqd bo (%d)", r); 457 return r; 458 } 459 460 ring->mqd_size = mqd_size; 461 /* prepare MQD backup */ 462 adev->gfx.mec.mqd_backup[j] = kmalloc(mqd_size, GFP_KERNEL); 463 if (!adev->gfx.mec.mqd_backup[j]) { 464 dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name); 465 return -ENOMEM; 466 } 467 } 468 } 469 470 return 0; 471 } 472 473 void amdgpu_gfx_mqd_sw_fini(struct amdgpu_device *adev, int xcc_id) 474 { 475 struct amdgpu_ring *ring = NULL; 476 int i, j; 477 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 478 479 if (adev->asic_type >= CHIP_NAVI10 && amdgpu_async_gfx_ring) { 480 for (i = 0; i < adev->gfx.num_gfx_rings; i++) { 481 ring = &adev->gfx.gfx_ring[i]; 482 kfree(adev->gfx.me.mqd_backup[i]); 483 amdgpu_bo_free_kernel(&ring->mqd_obj, 484 &ring->mqd_gpu_addr, 485 &ring->mqd_ptr); 486 } 487 } 488 489 for (i = 0; i < adev->gfx.num_compute_rings; i++) { 490 j = i + xcc_id * adev->gfx.num_compute_rings; 491 ring = &adev->gfx.compute_ring[j]; 492 kfree(adev->gfx.mec.mqd_backup[j]); 493 amdgpu_bo_free_kernel(&ring->mqd_obj, 494 &ring->mqd_gpu_addr, 495 &ring->mqd_ptr); 496 } 497 498 ring = &kiq->ring; 499 kfree(kiq->mqd_backup); 500 amdgpu_bo_free_kernel(&ring->mqd_obj, 501 &ring->mqd_gpu_addr, 502 &ring->mqd_ptr); 503 } 504 505 int amdgpu_gfx_disable_kcq(struct amdgpu_device *adev, int xcc_id) 506 { 507 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 508 struct amdgpu_ring *kiq_ring = &kiq->ring; 509 int i, r = 0; 510 int j; 511 512 if (adev->enable_mes) { 513 for (i = 0; i < adev->gfx.num_compute_rings; i++) { 514 j = i + xcc_id * adev->gfx.num_compute_rings; 515 amdgpu_mes_unmap_legacy_queue(adev, 516 &adev->gfx.compute_ring[j], 517 RESET_QUEUES, 0, 0); 518 } 519 return 0; 520 } 521 522 if (!kiq->pmf || !kiq->pmf->kiq_unmap_queues) 523 return -EINVAL; 524 525 spin_lock(&kiq->ring_lock); 526 if (amdgpu_ring_alloc(kiq_ring, kiq->pmf->unmap_queues_size * 527 adev->gfx.num_compute_rings)) { 528 spin_unlock(&kiq->ring_lock); 529 return -ENOMEM; 530 } 531 532 for (i = 0; i < adev->gfx.num_compute_rings; i++) { 533 j = i + xcc_id * adev->gfx.num_compute_rings; 534 kiq->pmf->kiq_unmap_queues(kiq_ring, 535 &adev->gfx.compute_ring[j], 536 RESET_QUEUES, 0, 0); 537 } 538 539 /** 540 * This is workaround: only skip kiq_ring test 541 * during ras recovery in suspend stage for gfx9.4.3 542 */ 543 if ((amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 3) || 544 amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 4)) && 545 amdgpu_ras_in_recovery(adev)) { 546 spin_unlock(&kiq->ring_lock); 547 return 0; 548 } 549 550 if (kiq_ring->sched.ready && !adev->job_hang) 551 r = amdgpu_ring_test_helper(kiq_ring); 552 spin_unlock(&kiq->ring_lock); 553 554 return r; 555 } 556 557 int amdgpu_gfx_disable_kgq(struct amdgpu_device *adev, int xcc_id) 558 { 559 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 560 struct amdgpu_ring *kiq_ring = &kiq->ring; 561 int i, r = 0; 562 int j; 563 564 if (adev->enable_mes) { 565 if (amdgpu_gfx_is_master_xcc(adev, xcc_id)) { 566 for (i = 0; i < adev->gfx.num_gfx_rings; i++) { 567 j = i + xcc_id * adev->gfx.num_gfx_rings; 568 amdgpu_mes_unmap_legacy_queue(adev, 569 &adev->gfx.gfx_ring[j], 570 PREEMPT_QUEUES, 0, 0); 571 } 572 } 573 return 0; 574 } 575 576 if (!kiq->pmf || !kiq->pmf->kiq_unmap_queues) 577 return -EINVAL; 578 579 spin_lock(&kiq->ring_lock); 580 if (amdgpu_gfx_is_master_xcc(adev, xcc_id)) { 581 if (amdgpu_ring_alloc(kiq_ring, kiq->pmf->unmap_queues_size * 582 adev->gfx.num_gfx_rings)) { 583 spin_unlock(&kiq->ring_lock); 584 return -ENOMEM; 585 } 586 587 for (i = 0; i < adev->gfx.num_gfx_rings; i++) { 588 j = i + xcc_id * adev->gfx.num_gfx_rings; 589 kiq->pmf->kiq_unmap_queues(kiq_ring, 590 &adev->gfx.gfx_ring[j], 591 PREEMPT_QUEUES, 0, 0); 592 } 593 } 594 595 if (adev->gfx.kiq[0].ring.sched.ready && !adev->job_hang) 596 r = amdgpu_ring_test_helper(kiq_ring); 597 spin_unlock(&kiq->ring_lock); 598 599 return r; 600 } 601 602 int amdgpu_queue_mask_bit_to_set_resource_bit(struct amdgpu_device *adev, 603 int queue_bit) 604 { 605 int mec, pipe, queue; 606 int set_resource_bit = 0; 607 608 amdgpu_queue_mask_bit_to_mec_queue(adev, queue_bit, &mec, &pipe, &queue); 609 610 set_resource_bit = mec * 4 * 8 + pipe * 8 + queue; 611 612 return set_resource_bit; 613 } 614 615 static int amdgpu_gfx_mes_enable_kcq(struct amdgpu_device *adev, int xcc_id) 616 { 617 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 618 struct amdgpu_ring *kiq_ring = &kiq->ring; 619 uint64_t queue_mask = ~0ULL; 620 int r, i, j; 621 622 amdgpu_device_flush_hdp(adev, NULL); 623 624 if (!adev->enable_uni_mes) { 625 spin_lock(&kiq->ring_lock); 626 r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->set_resources_size); 627 if (r) { 628 dev_err(adev->dev, "Failed to lock KIQ (%d).\n", r); 629 spin_unlock(&kiq->ring_lock); 630 return r; 631 } 632 633 kiq->pmf->kiq_set_resources(kiq_ring, queue_mask); 634 r = amdgpu_ring_test_helper(kiq_ring); 635 spin_unlock(&kiq->ring_lock); 636 if (r) 637 dev_err(adev->dev, "KIQ failed to set resources\n"); 638 } 639 640 for (i = 0; i < adev->gfx.num_compute_rings; i++) { 641 j = i + xcc_id * adev->gfx.num_compute_rings; 642 r = amdgpu_mes_map_legacy_queue(adev, 643 &adev->gfx.compute_ring[j]); 644 if (r) { 645 dev_err(adev->dev, "failed to map compute queue\n"); 646 return r; 647 } 648 } 649 650 return 0; 651 } 652 653 int amdgpu_gfx_enable_kcq(struct amdgpu_device *adev, int xcc_id) 654 { 655 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 656 struct amdgpu_ring *kiq_ring = &kiq->ring; 657 uint64_t queue_mask = 0; 658 int r, i, j; 659 660 if (adev->enable_mes) 661 return amdgpu_gfx_mes_enable_kcq(adev, xcc_id); 662 663 if (!kiq->pmf || !kiq->pmf->kiq_map_queues || !kiq->pmf->kiq_set_resources) 664 return -EINVAL; 665 666 for (i = 0; i < AMDGPU_MAX_COMPUTE_QUEUES; ++i) { 667 if (!test_bit(i, adev->gfx.mec_bitmap[xcc_id].queue_bitmap)) 668 continue; 669 670 /* This situation may be hit in the future if a new HW 671 * generation exposes more than 64 queues. If so, the 672 * definition of queue_mask needs updating */ 673 if (WARN_ON(i > (sizeof(queue_mask)*8))) { 674 DRM_ERROR("Invalid KCQ enabled: %d\n", i); 675 break; 676 } 677 678 queue_mask |= (1ull << amdgpu_queue_mask_bit_to_set_resource_bit(adev, i)); 679 } 680 681 amdgpu_device_flush_hdp(adev, NULL); 682 683 DRM_INFO("kiq ring mec %d pipe %d q %d\n", kiq_ring->me, kiq_ring->pipe, 684 kiq_ring->queue); 685 686 spin_lock(&kiq->ring_lock); 687 r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->map_queues_size * 688 adev->gfx.num_compute_rings + 689 kiq->pmf->set_resources_size); 690 if (r) { 691 DRM_ERROR("Failed to lock KIQ (%d).\n", r); 692 spin_unlock(&kiq->ring_lock); 693 return r; 694 } 695 696 kiq->pmf->kiq_set_resources(kiq_ring, queue_mask); 697 for (i = 0; i < adev->gfx.num_compute_rings; i++) { 698 j = i + xcc_id * adev->gfx.num_compute_rings; 699 kiq->pmf->kiq_map_queues(kiq_ring, 700 &adev->gfx.compute_ring[j]); 701 } 702 703 r = amdgpu_ring_test_helper(kiq_ring); 704 spin_unlock(&kiq->ring_lock); 705 if (r) 706 DRM_ERROR("KCQ enable failed\n"); 707 708 return r; 709 } 710 711 int amdgpu_gfx_enable_kgq(struct amdgpu_device *adev, int xcc_id) 712 { 713 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 714 struct amdgpu_ring *kiq_ring = &kiq->ring; 715 int r, i, j; 716 717 if (!kiq->pmf || !kiq->pmf->kiq_map_queues) 718 return -EINVAL; 719 720 amdgpu_device_flush_hdp(adev, NULL); 721 722 if (adev->enable_mes) { 723 for (i = 0; i < adev->gfx.num_gfx_rings; i++) { 724 j = i + xcc_id * adev->gfx.num_gfx_rings; 725 r = amdgpu_mes_map_legacy_queue(adev, 726 &adev->gfx.gfx_ring[j]); 727 if (r) { 728 DRM_ERROR("failed to map gfx queue\n"); 729 return r; 730 } 731 } 732 733 return 0; 734 } 735 736 spin_lock(&kiq->ring_lock); 737 /* No need to map kcq on the slave */ 738 if (amdgpu_gfx_is_master_xcc(adev, xcc_id)) { 739 r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->map_queues_size * 740 adev->gfx.num_gfx_rings); 741 if (r) { 742 DRM_ERROR("Failed to lock KIQ (%d).\n", r); 743 spin_unlock(&kiq->ring_lock); 744 return r; 745 } 746 747 for (i = 0; i < adev->gfx.num_gfx_rings; i++) { 748 j = i + xcc_id * adev->gfx.num_gfx_rings; 749 kiq->pmf->kiq_map_queues(kiq_ring, 750 &adev->gfx.gfx_ring[j]); 751 } 752 } 753 754 r = amdgpu_ring_test_helper(kiq_ring); 755 spin_unlock(&kiq->ring_lock); 756 if (r) 757 DRM_ERROR("KGQ enable failed\n"); 758 759 return r; 760 } 761 762 /* amdgpu_gfx_off_ctrl - Handle gfx off feature enable/disable 763 * 764 * @adev: amdgpu_device pointer 765 * @bool enable true: enable gfx off feature, false: disable gfx off feature 766 * 767 * 1. gfx off feature will be enabled by gfx ip after gfx cg gp enabled. 768 * 2. other client can send request to disable gfx off feature, the request should be honored. 769 * 3. other client can cancel their request of disable gfx off feature 770 * 4. other client should not send request to enable gfx off feature before disable gfx off feature. 771 */ 772 773 void amdgpu_gfx_off_ctrl(struct amdgpu_device *adev, bool enable) 774 { 775 unsigned long delay = GFX_OFF_DELAY_ENABLE; 776 777 if (!(adev->pm.pp_feature & PP_GFXOFF_MASK)) 778 return; 779 780 mutex_lock(&adev->gfx.gfx_off_mutex); 781 782 if (enable) { 783 /* If the count is already 0, it means there's an imbalance bug somewhere. 784 * Note that the bug may be in a different caller than the one which triggers the 785 * WARN_ON_ONCE. 786 */ 787 if (WARN_ON_ONCE(adev->gfx.gfx_off_req_count == 0)) 788 goto unlock; 789 790 adev->gfx.gfx_off_req_count--; 791 792 if (adev->gfx.gfx_off_req_count == 0 && 793 !adev->gfx.gfx_off_state) { 794 /* If going to s2idle, no need to wait */ 795 if (adev->in_s0ix) { 796 if (!amdgpu_dpm_set_powergating_by_smu(adev, 797 AMD_IP_BLOCK_TYPE_GFX, true)) 798 adev->gfx.gfx_off_state = true; 799 } else { 800 schedule_delayed_work(&adev->gfx.gfx_off_delay_work, 801 delay); 802 } 803 } 804 } else { 805 if (adev->gfx.gfx_off_req_count == 0) { 806 cancel_delayed_work_sync(&adev->gfx.gfx_off_delay_work); 807 808 if (adev->gfx.gfx_off_state && 809 !amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_GFX, false)) { 810 adev->gfx.gfx_off_state = false; 811 812 if (adev->gfx.funcs->init_spm_golden) { 813 dev_dbg(adev->dev, 814 "GFXOFF is disabled, re-init SPM golden settings\n"); 815 amdgpu_gfx_init_spm_golden(adev); 816 } 817 } 818 } 819 820 adev->gfx.gfx_off_req_count++; 821 } 822 823 unlock: 824 mutex_unlock(&adev->gfx.gfx_off_mutex); 825 } 826 827 int amdgpu_set_gfx_off_residency(struct amdgpu_device *adev, bool value) 828 { 829 int r = 0; 830 831 mutex_lock(&adev->gfx.gfx_off_mutex); 832 833 r = amdgpu_dpm_set_residency_gfxoff(adev, value); 834 835 mutex_unlock(&adev->gfx.gfx_off_mutex); 836 837 return r; 838 } 839 840 int amdgpu_get_gfx_off_residency(struct amdgpu_device *adev, u32 *value) 841 { 842 int r = 0; 843 844 mutex_lock(&adev->gfx.gfx_off_mutex); 845 846 r = amdgpu_dpm_get_residency_gfxoff(adev, value); 847 848 mutex_unlock(&adev->gfx.gfx_off_mutex); 849 850 return r; 851 } 852 853 int amdgpu_get_gfx_off_entrycount(struct amdgpu_device *adev, u64 *value) 854 { 855 int r = 0; 856 857 mutex_lock(&adev->gfx.gfx_off_mutex); 858 859 r = amdgpu_dpm_get_entrycount_gfxoff(adev, value); 860 861 mutex_unlock(&adev->gfx.gfx_off_mutex); 862 863 return r; 864 } 865 866 int amdgpu_get_gfx_off_status(struct amdgpu_device *adev, uint32_t *value) 867 { 868 869 int r = 0; 870 871 mutex_lock(&adev->gfx.gfx_off_mutex); 872 873 r = amdgpu_dpm_get_status_gfxoff(adev, value); 874 875 mutex_unlock(&adev->gfx.gfx_off_mutex); 876 877 return r; 878 } 879 880 int amdgpu_gfx_ras_late_init(struct amdgpu_device *adev, struct ras_common_if *ras_block) 881 { 882 int r; 883 884 if (amdgpu_ras_is_supported(adev, ras_block->block)) { 885 if (!amdgpu_persistent_edc_harvesting_supported(adev)) 886 amdgpu_ras_reset_error_status(adev, AMDGPU_RAS_BLOCK__GFX); 887 888 r = amdgpu_ras_block_late_init(adev, ras_block); 889 if (r) 890 return r; 891 892 if (adev->gfx.cp_ecc_error_irq.funcs) { 893 r = amdgpu_irq_get(adev, &adev->gfx.cp_ecc_error_irq, 0); 894 if (r) 895 goto late_fini; 896 } 897 } else { 898 amdgpu_ras_feature_enable_on_boot(adev, ras_block, 0); 899 } 900 901 return 0; 902 late_fini: 903 amdgpu_ras_block_late_fini(adev, ras_block); 904 return r; 905 } 906 907 int amdgpu_gfx_ras_sw_init(struct amdgpu_device *adev) 908 { 909 int err = 0; 910 struct amdgpu_gfx_ras *ras = NULL; 911 912 /* adev->gfx.ras is NULL, which means gfx does not 913 * support ras function, then do nothing here. 914 */ 915 if (!adev->gfx.ras) 916 return 0; 917 918 ras = adev->gfx.ras; 919 920 err = amdgpu_ras_register_ras_block(adev, &ras->ras_block); 921 if (err) { 922 dev_err(adev->dev, "Failed to register gfx ras block!\n"); 923 return err; 924 } 925 926 strcpy(ras->ras_block.ras_comm.name, "gfx"); 927 ras->ras_block.ras_comm.block = AMDGPU_RAS_BLOCK__GFX; 928 ras->ras_block.ras_comm.type = AMDGPU_RAS_ERROR__MULTI_UNCORRECTABLE; 929 adev->gfx.ras_if = &ras->ras_block.ras_comm; 930 931 /* If not define special ras_late_init function, use gfx default ras_late_init */ 932 if (!ras->ras_block.ras_late_init) 933 ras->ras_block.ras_late_init = amdgpu_gfx_ras_late_init; 934 935 /* If not defined special ras_cb function, use default ras_cb */ 936 if (!ras->ras_block.ras_cb) 937 ras->ras_block.ras_cb = amdgpu_gfx_process_ras_data_cb; 938 939 return 0; 940 } 941 942 int amdgpu_gfx_poison_consumption_handler(struct amdgpu_device *adev, 943 struct amdgpu_iv_entry *entry) 944 { 945 if (adev->gfx.ras && adev->gfx.ras->poison_consumption_handler) 946 return adev->gfx.ras->poison_consumption_handler(adev, entry); 947 948 return 0; 949 } 950 951 int amdgpu_gfx_process_ras_data_cb(struct amdgpu_device *adev, 952 void *err_data, 953 struct amdgpu_iv_entry *entry) 954 { 955 /* TODO ue will trigger an interrupt. 956 * 957 * When “Full RAS” is enabled, the per-IP interrupt sources should 958 * be disabled and the driver should only look for the aggregated 959 * interrupt via sync flood 960 */ 961 if (!amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__GFX)) { 962 kgd2kfd_set_sram_ecc_flag(adev->kfd.dev); 963 if (adev->gfx.ras && adev->gfx.ras->ras_block.hw_ops && 964 adev->gfx.ras->ras_block.hw_ops->query_ras_error_count) 965 adev->gfx.ras->ras_block.hw_ops->query_ras_error_count(adev, err_data); 966 amdgpu_ras_reset_gpu(adev); 967 } 968 return AMDGPU_RAS_SUCCESS; 969 } 970 971 int amdgpu_gfx_cp_ecc_error_irq(struct amdgpu_device *adev, 972 struct amdgpu_irq_src *source, 973 struct amdgpu_iv_entry *entry) 974 { 975 struct ras_common_if *ras_if = adev->gfx.ras_if; 976 struct ras_dispatch_if ih_data = { 977 .entry = entry, 978 }; 979 980 if (!ras_if) 981 return 0; 982 983 ih_data.head = *ras_if; 984 985 DRM_ERROR("CP ECC ERROR IRQ\n"); 986 amdgpu_ras_interrupt_dispatch(adev, &ih_data); 987 return 0; 988 } 989 990 void amdgpu_gfx_ras_error_func(struct amdgpu_device *adev, 991 void *ras_error_status, 992 void (*func)(struct amdgpu_device *adev, void *ras_error_status, 993 int xcc_id)) 994 { 995 int i; 996 int num_xcc = adev->gfx.xcc_mask ? NUM_XCC(adev->gfx.xcc_mask) : 1; 997 uint32_t xcc_mask = GENMASK(num_xcc - 1, 0); 998 struct ras_err_data *err_data = (struct ras_err_data *)ras_error_status; 999 1000 if (err_data) { 1001 err_data->ue_count = 0; 1002 err_data->ce_count = 0; 1003 } 1004 1005 for_each_inst(i, xcc_mask) 1006 func(adev, ras_error_status, i); 1007 } 1008 1009 uint32_t amdgpu_kiq_rreg(struct amdgpu_device *adev, uint32_t reg, uint32_t xcc_id) 1010 { 1011 signed long r, cnt = 0; 1012 unsigned long flags; 1013 uint32_t seq, reg_val_offs = 0, value = 0; 1014 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 1015 struct amdgpu_ring *ring = &kiq->ring; 1016 1017 if (amdgpu_device_skip_hw_access(adev)) 1018 return 0; 1019 1020 if (adev->mes.ring[0].sched.ready) 1021 return amdgpu_mes_rreg(adev, reg); 1022 1023 BUG_ON(!ring->funcs->emit_rreg); 1024 1025 spin_lock_irqsave(&kiq->ring_lock, flags); 1026 if (amdgpu_device_wb_get(adev, ®_val_offs)) { 1027 pr_err("critical bug! too many kiq readers\n"); 1028 goto failed_unlock; 1029 } 1030 amdgpu_ring_alloc(ring, 32); 1031 amdgpu_ring_emit_rreg(ring, reg, reg_val_offs); 1032 r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT); 1033 if (r) 1034 goto failed_undo; 1035 1036 amdgpu_ring_commit(ring); 1037 spin_unlock_irqrestore(&kiq->ring_lock, flags); 1038 1039 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); 1040 1041 /* don't wait anymore for gpu reset case because this way may 1042 * block gpu_recover() routine forever, e.g. this virt_kiq_rreg 1043 * is triggered in TTM and ttm_bo_lock_delayed_workqueue() will 1044 * never return if we keep waiting in virt_kiq_rreg, which cause 1045 * gpu_recover() hang there. 1046 * 1047 * also don't wait anymore for IRQ context 1048 * */ 1049 if (r < 1 && (amdgpu_in_reset(adev) || in_interrupt())) 1050 goto failed_kiq_read; 1051 1052 might_sleep(); 1053 while (r < 1 && cnt++ < MAX_KIQ_REG_TRY) { 1054 msleep(MAX_KIQ_REG_BAILOUT_INTERVAL); 1055 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); 1056 } 1057 1058 if (cnt > MAX_KIQ_REG_TRY) 1059 goto failed_kiq_read; 1060 1061 mb(); 1062 value = adev->wb.wb[reg_val_offs]; 1063 amdgpu_device_wb_free(adev, reg_val_offs); 1064 return value; 1065 1066 failed_undo: 1067 amdgpu_ring_undo(ring); 1068 failed_unlock: 1069 spin_unlock_irqrestore(&kiq->ring_lock, flags); 1070 failed_kiq_read: 1071 if (reg_val_offs) 1072 amdgpu_device_wb_free(adev, reg_val_offs); 1073 dev_err(adev->dev, "failed to read reg:%x\n", reg); 1074 return ~0; 1075 } 1076 1077 void amdgpu_kiq_wreg(struct amdgpu_device *adev, uint32_t reg, uint32_t v, uint32_t xcc_id) 1078 { 1079 signed long r, cnt = 0; 1080 unsigned long flags; 1081 uint32_t seq; 1082 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 1083 struct amdgpu_ring *ring = &kiq->ring; 1084 1085 BUG_ON(!ring->funcs->emit_wreg); 1086 1087 if (amdgpu_device_skip_hw_access(adev)) 1088 return; 1089 1090 if (adev->mes.ring[0].sched.ready) { 1091 amdgpu_mes_wreg(adev, reg, v); 1092 return; 1093 } 1094 1095 spin_lock_irqsave(&kiq->ring_lock, flags); 1096 amdgpu_ring_alloc(ring, 32); 1097 amdgpu_ring_emit_wreg(ring, reg, v); 1098 r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT); 1099 if (r) 1100 goto failed_undo; 1101 1102 amdgpu_ring_commit(ring); 1103 spin_unlock_irqrestore(&kiq->ring_lock, flags); 1104 1105 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); 1106 1107 /* don't wait anymore for gpu reset case because this way may 1108 * block gpu_recover() routine forever, e.g. this virt_kiq_rreg 1109 * is triggered in TTM and ttm_bo_lock_delayed_workqueue() will 1110 * never return if we keep waiting in virt_kiq_rreg, which cause 1111 * gpu_recover() hang there. 1112 * 1113 * also don't wait anymore for IRQ context 1114 * */ 1115 if (r < 1 && (amdgpu_in_reset(adev) || in_interrupt())) 1116 goto failed_kiq_write; 1117 1118 might_sleep(); 1119 while (r < 1 && cnt++ < MAX_KIQ_REG_TRY) { 1120 1121 msleep(MAX_KIQ_REG_BAILOUT_INTERVAL); 1122 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); 1123 } 1124 1125 if (cnt > MAX_KIQ_REG_TRY) 1126 goto failed_kiq_write; 1127 1128 return; 1129 1130 failed_undo: 1131 amdgpu_ring_undo(ring); 1132 spin_unlock_irqrestore(&kiq->ring_lock, flags); 1133 failed_kiq_write: 1134 dev_err(adev->dev, "failed to write reg:%x\n", reg); 1135 } 1136 1137 int amdgpu_gfx_get_num_kcq(struct amdgpu_device *adev) 1138 { 1139 if (amdgpu_num_kcq == -1) { 1140 return 8; 1141 } else if (amdgpu_num_kcq > 8 || amdgpu_num_kcq < 0) { 1142 dev_warn(adev->dev, "set kernel compute queue number to 8 due to invalid parameter provided by user\n"); 1143 return 8; 1144 } 1145 return amdgpu_num_kcq; 1146 } 1147 1148 void amdgpu_gfx_cp_init_microcode(struct amdgpu_device *adev, 1149 uint32_t ucode_id) 1150 { 1151 const struct gfx_firmware_header_v1_0 *cp_hdr; 1152 const struct gfx_firmware_header_v2_0 *cp_hdr_v2_0; 1153 struct amdgpu_firmware_info *info = NULL; 1154 const struct firmware *ucode_fw; 1155 unsigned int fw_size; 1156 1157 switch (ucode_id) { 1158 case AMDGPU_UCODE_ID_CP_PFP: 1159 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1160 adev->gfx.pfp_fw->data; 1161 adev->gfx.pfp_fw_version = 1162 le32_to_cpu(cp_hdr->header.ucode_version); 1163 adev->gfx.pfp_feature_version = 1164 le32_to_cpu(cp_hdr->ucode_feature_version); 1165 ucode_fw = adev->gfx.pfp_fw; 1166 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes); 1167 break; 1168 case AMDGPU_UCODE_ID_CP_RS64_PFP: 1169 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) 1170 adev->gfx.pfp_fw->data; 1171 adev->gfx.pfp_fw_version = 1172 le32_to_cpu(cp_hdr_v2_0->header.ucode_version); 1173 adev->gfx.pfp_feature_version = 1174 le32_to_cpu(cp_hdr_v2_0->ucode_feature_version); 1175 ucode_fw = adev->gfx.pfp_fw; 1176 fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes); 1177 break; 1178 case AMDGPU_UCODE_ID_CP_RS64_PFP_P0_STACK: 1179 case AMDGPU_UCODE_ID_CP_RS64_PFP_P1_STACK: 1180 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) 1181 adev->gfx.pfp_fw->data; 1182 ucode_fw = adev->gfx.pfp_fw; 1183 fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes); 1184 break; 1185 case AMDGPU_UCODE_ID_CP_ME: 1186 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1187 adev->gfx.me_fw->data; 1188 adev->gfx.me_fw_version = 1189 le32_to_cpu(cp_hdr->header.ucode_version); 1190 adev->gfx.me_feature_version = 1191 le32_to_cpu(cp_hdr->ucode_feature_version); 1192 ucode_fw = adev->gfx.me_fw; 1193 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes); 1194 break; 1195 case AMDGPU_UCODE_ID_CP_RS64_ME: 1196 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) 1197 adev->gfx.me_fw->data; 1198 adev->gfx.me_fw_version = 1199 le32_to_cpu(cp_hdr_v2_0->header.ucode_version); 1200 adev->gfx.me_feature_version = 1201 le32_to_cpu(cp_hdr_v2_0->ucode_feature_version); 1202 ucode_fw = adev->gfx.me_fw; 1203 fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes); 1204 break; 1205 case AMDGPU_UCODE_ID_CP_RS64_ME_P0_STACK: 1206 case AMDGPU_UCODE_ID_CP_RS64_ME_P1_STACK: 1207 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) 1208 adev->gfx.me_fw->data; 1209 ucode_fw = adev->gfx.me_fw; 1210 fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes); 1211 break; 1212 case AMDGPU_UCODE_ID_CP_CE: 1213 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1214 adev->gfx.ce_fw->data; 1215 adev->gfx.ce_fw_version = 1216 le32_to_cpu(cp_hdr->header.ucode_version); 1217 adev->gfx.ce_feature_version = 1218 le32_to_cpu(cp_hdr->ucode_feature_version); 1219 ucode_fw = adev->gfx.ce_fw; 1220 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes); 1221 break; 1222 case AMDGPU_UCODE_ID_CP_MEC1: 1223 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1224 adev->gfx.mec_fw->data; 1225 adev->gfx.mec_fw_version = 1226 le32_to_cpu(cp_hdr->header.ucode_version); 1227 adev->gfx.mec_feature_version = 1228 le32_to_cpu(cp_hdr->ucode_feature_version); 1229 ucode_fw = adev->gfx.mec_fw; 1230 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes) - 1231 le32_to_cpu(cp_hdr->jt_size) * 4; 1232 break; 1233 case AMDGPU_UCODE_ID_CP_MEC1_JT: 1234 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1235 adev->gfx.mec_fw->data; 1236 ucode_fw = adev->gfx.mec_fw; 1237 fw_size = le32_to_cpu(cp_hdr->jt_size) * 4; 1238 break; 1239 case AMDGPU_UCODE_ID_CP_MEC2: 1240 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1241 adev->gfx.mec2_fw->data; 1242 adev->gfx.mec2_fw_version = 1243 le32_to_cpu(cp_hdr->header.ucode_version); 1244 adev->gfx.mec2_feature_version = 1245 le32_to_cpu(cp_hdr->ucode_feature_version); 1246 ucode_fw = adev->gfx.mec2_fw; 1247 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes) - 1248 le32_to_cpu(cp_hdr->jt_size) * 4; 1249 break; 1250 case AMDGPU_UCODE_ID_CP_MEC2_JT: 1251 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1252 adev->gfx.mec2_fw->data; 1253 ucode_fw = adev->gfx.mec2_fw; 1254 fw_size = le32_to_cpu(cp_hdr->jt_size) * 4; 1255 break; 1256 case AMDGPU_UCODE_ID_CP_RS64_MEC: 1257 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) 1258 adev->gfx.mec_fw->data; 1259 adev->gfx.mec_fw_version = 1260 le32_to_cpu(cp_hdr_v2_0->header.ucode_version); 1261 adev->gfx.mec_feature_version = 1262 le32_to_cpu(cp_hdr_v2_0->ucode_feature_version); 1263 ucode_fw = adev->gfx.mec_fw; 1264 fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes); 1265 break; 1266 case AMDGPU_UCODE_ID_CP_RS64_MEC_P0_STACK: 1267 case AMDGPU_UCODE_ID_CP_RS64_MEC_P1_STACK: 1268 case AMDGPU_UCODE_ID_CP_RS64_MEC_P2_STACK: 1269 case AMDGPU_UCODE_ID_CP_RS64_MEC_P3_STACK: 1270 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) 1271 adev->gfx.mec_fw->data; 1272 ucode_fw = adev->gfx.mec_fw; 1273 fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes); 1274 break; 1275 default: 1276 dev_err(adev->dev, "Invalid ucode id %u\n", ucode_id); 1277 return; 1278 } 1279 1280 if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) { 1281 info = &adev->firmware.ucode[ucode_id]; 1282 info->ucode_id = ucode_id; 1283 info->fw = ucode_fw; 1284 adev->firmware.fw_size += ALIGN(fw_size, PAGE_SIZE); 1285 } 1286 } 1287 1288 bool amdgpu_gfx_is_master_xcc(struct amdgpu_device *adev, int xcc_id) 1289 { 1290 return !(xcc_id % (adev->gfx.num_xcc_per_xcp ? 1291 adev->gfx.num_xcc_per_xcp : 1)); 1292 } 1293 1294 static ssize_t amdgpu_gfx_get_current_compute_partition(struct device *dev, 1295 struct device_attribute *addr, 1296 char *buf) 1297 { 1298 struct drm_device *ddev = dev_get_drvdata(dev); 1299 struct amdgpu_device *adev = drm_to_adev(ddev); 1300 int mode; 1301 1302 mode = amdgpu_xcp_query_partition_mode(adev->xcp_mgr, 1303 AMDGPU_XCP_FL_NONE); 1304 1305 return sysfs_emit(buf, "%s\n", amdgpu_gfx_compute_mode_desc(mode)); 1306 } 1307 1308 static ssize_t amdgpu_gfx_set_compute_partition(struct device *dev, 1309 struct device_attribute *addr, 1310 const char *buf, size_t count) 1311 { 1312 struct drm_device *ddev = dev_get_drvdata(dev); 1313 struct amdgpu_device *adev = drm_to_adev(ddev); 1314 enum amdgpu_gfx_partition mode; 1315 int ret = 0, num_xcc; 1316 1317 num_xcc = NUM_XCC(adev->gfx.xcc_mask); 1318 if (num_xcc % 2 != 0) 1319 return -EINVAL; 1320 1321 if (!strncasecmp("SPX", buf, strlen("SPX"))) { 1322 mode = AMDGPU_SPX_PARTITION_MODE; 1323 } else if (!strncasecmp("DPX", buf, strlen("DPX"))) { 1324 /* 1325 * DPX mode needs AIDs to be in multiple of 2. 1326 * Each AID connects 2 XCCs. 1327 */ 1328 if (num_xcc%4) 1329 return -EINVAL; 1330 mode = AMDGPU_DPX_PARTITION_MODE; 1331 } else if (!strncasecmp("TPX", buf, strlen("TPX"))) { 1332 if (num_xcc != 6) 1333 return -EINVAL; 1334 mode = AMDGPU_TPX_PARTITION_MODE; 1335 } else if (!strncasecmp("QPX", buf, strlen("QPX"))) { 1336 if (num_xcc != 8) 1337 return -EINVAL; 1338 mode = AMDGPU_QPX_PARTITION_MODE; 1339 } else if (!strncasecmp("CPX", buf, strlen("CPX"))) { 1340 mode = AMDGPU_CPX_PARTITION_MODE; 1341 } else { 1342 return -EINVAL; 1343 } 1344 1345 ret = amdgpu_xcp_switch_partition_mode(adev->xcp_mgr, mode); 1346 1347 if (ret) 1348 return ret; 1349 1350 return count; 1351 } 1352 1353 static ssize_t amdgpu_gfx_get_available_compute_partition(struct device *dev, 1354 struct device_attribute *addr, 1355 char *buf) 1356 { 1357 struct drm_device *ddev = dev_get_drvdata(dev); 1358 struct amdgpu_device *adev = drm_to_adev(ddev); 1359 char *supported_partition; 1360 1361 /* TBD */ 1362 switch (NUM_XCC(adev->gfx.xcc_mask)) { 1363 case 8: 1364 supported_partition = "SPX, DPX, QPX, CPX"; 1365 break; 1366 case 6: 1367 supported_partition = "SPX, TPX, CPX"; 1368 break; 1369 case 4: 1370 supported_partition = "SPX, DPX, CPX"; 1371 break; 1372 /* this seems only existing in emulation phase */ 1373 case 2: 1374 supported_partition = "SPX, CPX"; 1375 break; 1376 default: 1377 supported_partition = "Not supported"; 1378 break; 1379 } 1380 1381 return sysfs_emit(buf, "%s\n", supported_partition); 1382 } 1383 1384 static DEVICE_ATTR(current_compute_partition, 0644, 1385 amdgpu_gfx_get_current_compute_partition, 1386 amdgpu_gfx_set_compute_partition); 1387 1388 static DEVICE_ATTR(available_compute_partition, 0444, 1389 amdgpu_gfx_get_available_compute_partition, NULL); 1390 1391 int amdgpu_gfx_sysfs_init(struct amdgpu_device *adev) 1392 { 1393 int r; 1394 1395 r = device_create_file(adev->dev, &dev_attr_current_compute_partition); 1396 if (r) 1397 return r; 1398 1399 r = device_create_file(adev->dev, &dev_attr_available_compute_partition); 1400 1401 return r; 1402 } 1403 1404 void amdgpu_gfx_sysfs_fini(struct amdgpu_device *adev) 1405 { 1406 device_remove_file(adev->dev, &dev_attr_current_compute_partition); 1407 device_remove_file(adev->dev, &dev_attr_available_compute_partition); 1408 } 1409