xref: /linux/drivers/gpu/drm/amd/amdgpu/amdgpu_gfx.c (revision 566ab427f827b0256d3e8ce0235d088e6a9c28bd)
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  * Copyright 2008 Red Hat Inc.
4  * Copyright 2009 Jerome Glisse.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  *
24  */
25 
26 #include <linux/firmware.h>
27 #include <linux/pm_runtime.h>
28 
29 #include "amdgpu.h"
30 #include "amdgpu_gfx.h"
31 #include "amdgpu_rlc.h"
32 #include "amdgpu_ras.h"
33 #include "amdgpu_reset.h"
34 #include "amdgpu_xcp.h"
35 #include "amdgpu_xgmi.h"
36 
37 /* delay 0.1 second to enable gfx off feature */
38 #define GFX_OFF_DELAY_ENABLE         msecs_to_jiffies(100)
39 
40 #define GFX_OFF_NO_DELAY 0
41 
42 /*
43  * GPU GFX IP block helpers function.
44  */
45 
46 int amdgpu_gfx_mec_queue_to_bit(struct amdgpu_device *adev, int mec,
47 				int pipe, int queue)
48 {
49 	int bit = 0;
50 
51 	bit += mec * adev->gfx.mec.num_pipe_per_mec
52 		* adev->gfx.mec.num_queue_per_pipe;
53 	bit += pipe * adev->gfx.mec.num_queue_per_pipe;
54 	bit += queue;
55 
56 	return bit;
57 }
58 
59 void amdgpu_queue_mask_bit_to_mec_queue(struct amdgpu_device *adev, int bit,
60 				 int *mec, int *pipe, int *queue)
61 {
62 	*queue = bit % adev->gfx.mec.num_queue_per_pipe;
63 	*pipe = (bit / adev->gfx.mec.num_queue_per_pipe)
64 		% adev->gfx.mec.num_pipe_per_mec;
65 	*mec = (bit / adev->gfx.mec.num_queue_per_pipe)
66 	       / adev->gfx.mec.num_pipe_per_mec;
67 
68 }
69 
70 bool amdgpu_gfx_is_mec_queue_enabled(struct amdgpu_device *adev,
71 				     int xcc_id, int mec, int pipe, int queue)
72 {
73 	return test_bit(amdgpu_gfx_mec_queue_to_bit(adev, mec, pipe, queue),
74 			adev->gfx.mec_bitmap[xcc_id].queue_bitmap);
75 }
76 
77 int amdgpu_gfx_me_queue_to_bit(struct amdgpu_device *adev,
78 			       int me, int pipe, int queue)
79 {
80 	int bit = 0;
81 
82 	bit += me * adev->gfx.me.num_pipe_per_me
83 		* adev->gfx.me.num_queue_per_pipe;
84 	bit += pipe * adev->gfx.me.num_queue_per_pipe;
85 	bit += queue;
86 
87 	return bit;
88 }
89 
90 void amdgpu_gfx_bit_to_me_queue(struct amdgpu_device *adev, int bit,
91 				int *me, int *pipe, int *queue)
92 {
93 	*queue = bit % adev->gfx.me.num_queue_per_pipe;
94 	*pipe = (bit / adev->gfx.me.num_queue_per_pipe)
95 		% adev->gfx.me.num_pipe_per_me;
96 	*me = (bit / adev->gfx.me.num_queue_per_pipe)
97 		/ adev->gfx.me.num_pipe_per_me;
98 }
99 
100 bool amdgpu_gfx_is_me_queue_enabled(struct amdgpu_device *adev,
101 				    int me, int pipe, int queue)
102 {
103 	return test_bit(amdgpu_gfx_me_queue_to_bit(adev, me, pipe, queue),
104 			adev->gfx.me.queue_bitmap);
105 }
106 
107 /**
108  * amdgpu_gfx_parse_disable_cu - Parse the disable_cu module parameter
109  *
110  * @mask: array in which the per-shader array disable masks will be stored
111  * @max_se: number of SEs
112  * @max_sh: number of SHs
113  *
114  * The bitmask of CUs to be disabled in the shader array determined by se and
115  * sh is stored in mask[se * max_sh + sh].
116  */
117 void amdgpu_gfx_parse_disable_cu(unsigned int *mask, unsigned int max_se, unsigned int max_sh)
118 {
119 	unsigned int se, sh, cu;
120 	const char *p;
121 
122 	memset(mask, 0, sizeof(*mask) * max_se * max_sh);
123 
124 	if (!amdgpu_disable_cu || !*amdgpu_disable_cu)
125 		return;
126 
127 	p = amdgpu_disable_cu;
128 	for (;;) {
129 		char *next;
130 		int ret = sscanf(p, "%u.%u.%u", &se, &sh, &cu);
131 
132 		if (ret < 3) {
133 			DRM_ERROR("amdgpu: could not parse disable_cu\n");
134 			return;
135 		}
136 
137 		if (se < max_se && sh < max_sh && cu < 16) {
138 			DRM_INFO("amdgpu: disabling CU %u.%u.%u\n", se, sh, cu);
139 			mask[se * max_sh + sh] |= 1u << cu;
140 		} else {
141 			DRM_ERROR("amdgpu: disable_cu %u.%u.%u is out of range\n",
142 				  se, sh, cu);
143 		}
144 
145 		next = strchr(p, ',');
146 		if (!next)
147 			break;
148 		p = next + 1;
149 	}
150 }
151 
152 static bool amdgpu_gfx_is_graphics_multipipe_capable(struct amdgpu_device *adev)
153 {
154 	return amdgpu_async_gfx_ring && adev->gfx.me.num_pipe_per_me > 1;
155 }
156 
157 static bool amdgpu_gfx_is_compute_multipipe_capable(struct amdgpu_device *adev)
158 {
159 	if (amdgpu_compute_multipipe != -1) {
160 		DRM_INFO("amdgpu: forcing compute pipe policy %d\n",
161 			 amdgpu_compute_multipipe);
162 		return amdgpu_compute_multipipe == 1;
163 	}
164 
165 	if (amdgpu_ip_version(adev, GC_HWIP, 0) > IP_VERSION(9, 0, 0))
166 		return true;
167 
168 	/* FIXME: spreading the queues across pipes causes perf regressions
169 	 * on POLARIS11 compute workloads */
170 	if (adev->asic_type == CHIP_POLARIS11)
171 		return false;
172 
173 	return adev->gfx.mec.num_mec > 1;
174 }
175 
176 bool amdgpu_gfx_is_high_priority_graphics_queue(struct amdgpu_device *adev,
177 						struct amdgpu_ring *ring)
178 {
179 	int queue = ring->queue;
180 	int pipe = ring->pipe;
181 
182 	/* Policy: use pipe1 queue0 as high priority graphics queue if we
183 	 * have more than one gfx pipe.
184 	 */
185 	if (amdgpu_gfx_is_graphics_multipipe_capable(adev) &&
186 	    adev->gfx.num_gfx_rings > 1 && pipe == 1 && queue == 0) {
187 		int me = ring->me;
188 		int bit;
189 
190 		bit = amdgpu_gfx_me_queue_to_bit(adev, me, pipe, queue);
191 		if (ring == &adev->gfx.gfx_ring[bit])
192 			return true;
193 	}
194 
195 	return false;
196 }
197 
198 bool amdgpu_gfx_is_high_priority_compute_queue(struct amdgpu_device *adev,
199 					       struct amdgpu_ring *ring)
200 {
201 	/* Policy: use 1st queue as high priority compute queue if we
202 	 * have more than one compute queue.
203 	 */
204 	if (adev->gfx.num_compute_rings > 1 &&
205 	    ring == &adev->gfx.compute_ring[0])
206 		return true;
207 
208 	return false;
209 }
210 
211 void amdgpu_gfx_compute_queue_acquire(struct amdgpu_device *adev)
212 {
213 	int i, j, queue, pipe;
214 	bool multipipe_policy = amdgpu_gfx_is_compute_multipipe_capable(adev);
215 	int max_queues_per_mec = min(adev->gfx.mec.num_pipe_per_mec *
216 				     adev->gfx.mec.num_queue_per_pipe,
217 				     adev->gfx.num_compute_rings);
218 	int num_xcc = adev->gfx.xcc_mask ? NUM_XCC(adev->gfx.xcc_mask) : 1;
219 
220 	if (multipipe_policy) {
221 		/* policy: make queues evenly cross all pipes on MEC1 only
222 		 * for multiple xcc, just use the original policy for simplicity */
223 		for (j = 0; j < num_xcc; j++) {
224 			for (i = 0; i < max_queues_per_mec; i++) {
225 				pipe = i % adev->gfx.mec.num_pipe_per_mec;
226 				queue = (i / adev->gfx.mec.num_pipe_per_mec) %
227 					 adev->gfx.mec.num_queue_per_pipe;
228 
229 				set_bit(pipe * adev->gfx.mec.num_queue_per_pipe + queue,
230 					adev->gfx.mec_bitmap[j].queue_bitmap);
231 			}
232 		}
233 	} else {
234 		/* policy: amdgpu owns all queues in the given pipe */
235 		for (j = 0; j < num_xcc; j++) {
236 			for (i = 0; i < max_queues_per_mec; ++i)
237 				set_bit(i, adev->gfx.mec_bitmap[j].queue_bitmap);
238 		}
239 	}
240 
241 	for (j = 0; j < num_xcc; j++) {
242 		dev_dbg(adev->dev, "mec queue bitmap weight=%d\n",
243 			bitmap_weight(adev->gfx.mec_bitmap[j].queue_bitmap, AMDGPU_MAX_COMPUTE_QUEUES));
244 	}
245 }
246 
247 void amdgpu_gfx_graphics_queue_acquire(struct amdgpu_device *adev)
248 {
249 	int i, queue, pipe;
250 	bool multipipe_policy = amdgpu_gfx_is_graphics_multipipe_capable(adev);
251 	int max_queues_per_me = adev->gfx.me.num_pipe_per_me *
252 					adev->gfx.me.num_queue_per_pipe;
253 
254 	if (multipipe_policy) {
255 		/* policy: amdgpu owns the first queue per pipe at this stage
256 		 * will extend to mulitple queues per pipe later */
257 		for (i = 0; i < max_queues_per_me; i++) {
258 			pipe = i % adev->gfx.me.num_pipe_per_me;
259 			queue = (i / adev->gfx.me.num_pipe_per_me) %
260 				adev->gfx.me.num_queue_per_pipe;
261 
262 			set_bit(pipe * adev->gfx.me.num_queue_per_pipe + queue,
263 				adev->gfx.me.queue_bitmap);
264 		}
265 	} else {
266 		for (i = 0; i < max_queues_per_me; ++i)
267 			set_bit(i, adev->gfx.me.queue_bitmap);
268 	}
269 
270 	/* update the number of active graphics rings */
271 	adev->gfx.num_gfx_rings =
272 		bitmap_weight(adev->gfx.me.queue_bitmap, AMDGPU_MAX_GFX_QUEUES);
273 }
274 
275 static int amdgpu_gfx_kiq_acquire(struct amdgpu_device *adev,
276 				  struct amdgpu_ring *ring, int xcc_id)
277 {
278 	int queue_bit;
279 	int mec, pipe, queue;
280 
281 	queue_bit = adev->gfx.mec.num_mec
282 		    * adev->gfx.mec.num_pipe_per_mec
283 		    * adev->gfx.mec.num_queue_per_pipe;
284 
285 	while (--queue_bit >= 0) {
286 		if (test_bit(queue_bit, adev->gfx.mec_bitmap[xcc_id].queue_bitmap))
287 			continue;
288 
289 		amdgpu_queue_mask_bit_to_mec_queue(adev, queue_bit, &mec, &pipe, &queue);
290 
291 		/*
292 		 * 1. Using pipes 2/3 from MEC 2 seems cause problems.
293 		 * 2. It must use queue id 0, because CGPG_IDLE/SAVE/LOAD/RUN
294 		 * only can be issued on queue 0.
295 		 */
296 		if ((mec == 1 && pipe > 1) || queue != 0)
297 			continue;
298 
299 		ring->me = mec + 1;
300 		ring->pipe = pipe;
301 		ring->queue = queue;
302 
303 		return 0;
304 	}
305 
306 	dev_err(adev->dev, "Failed to find a queue for KIQ\n");
307 	return -EINVAL;
308 }
309 
310 int amdgpu_gfx_kiq_init_ring(struct amdgpu_device *adev, int xcc_id)
311 {
312 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
313 	struct amdgpu_irq_src *irq = &kiq->irq;
314 	struct amdgpu_ring *ring = &kiq->ring;
315 	int r = 0;
316 
317 	spin_lock_init(&kiq->ring_lock);
318 
319 	ring->adev = NULL;
320 	ring->ring_obj = NULL;
321 	ring->use_doorbell = true;
322 	ring->xcc_id = xcc_id;
323 	ring->vm_hub = AMDGPU_GFXHUB(xcc_id);
324 	ring->doorbell_index =
325 		(adev->doorbell_index.kiq +
326 		 xcc_id * adev->doorbell_index.xcc_doorbell_range)
327 		<< 1;
328 
329 	r = amdgpu_gfx_kiq_acquire(adev, ring, xcc_id);
330 	if (r)
331 		return r;
332 
333 	ring->eop_gpu_addr = kiq->eop_gpu_addr;
334 	ring->no_scheduler = true;
335 	snprintf(ring->name, sizeof(ring->name), "kiq_%hhu.%hhu.%hhu.%hhu",
336 		 (unsigned char)xcc_id, (unsigned char)ring->me,
337 		 (unsigned char)ring->pipe, (unsigned char)ring->queue);
338 	r = amdgpu_ring_init(adev, ring, 1024, irq, AMDGPU_CP_KIQ_IRQ_DRIVER0,
339 			     AMDGPU_RING_PRIO_DEFAULT, NULL);
340 	if (r)
341 		dev_warn(adev->dev, "(%d) failed to init kiq ring\n", r);
342 
343 	return r;
344 }
345 
346 void amdgpu_gfx_kiq_free_ring(struct amdgpu_ring *ring)
347 {
348 	amdgpu_ring_fini(ring);
349 }
350 
351 void amdgpu_gfx_kiq_fini(struct amdgpu_device *adev, int xcc_id)
352 {
353 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
354 
355 	amdgpu_bo_free_kernel(&kiq->eop_obj, &kiq->eop_gpu_addr, NULL);
356 }
357 
358 int amdgpu_gfx_kiq_init(struct amdgpu_device *adev,
359 			unsigned int hpd_size, int xcc_id)
360 {
361 	int r;
362 	u32 *hpd;
363 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
364 
365 	r = amdgpu_bo_create_kernel(adev, hpd_size, PAGE_SIZE,
366 				    AMDGPU_GEM_DOMAIN_GTT, &kiq->eop_obj,
367 				    &kiq->eop_gpu_addr, (void **)&hpd);
368 	if (r) {
369 		dev_warn(adev->dev, "failed to create KIQ bo (%d).\n", r);
370 		return r;
371 	}
372 
373 	memset(hpd, 0, hpd_size);
374 
375 	r = amdgpu_bo_reserve(kiq->eop_obj, true);
376 	if (unlikely(r != 0))
377 		dev_warn(adev->dev, "(%d) reserve kiq eop bo failed\n", r);
378 	amdgpu_bo_kunmap(kiq->eop_obj);
379 	amdgpu_bo_unreserve(kiq->eop_obj);
380 
381 	return 0;
382 }
383 
384 /* create MQD for each compute/gfx queue */
385 int amdgpu_gfx_mqd_sw_init(struct amdgpu_device *adev,
386 			   unsigned int mqd_size, int xcc_id)
387 {
388 	int r, i, j;
389 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
390 	struct amdgpu_ring *ring = &kiq->ring;
391 	u32 domain = AMDGPU_GEM_DOMAIN_GTT;
392 
393 #if !defined(CONFIG_ARM) && !defined(CONFIG_ARM64)
394 	/* Only enable on gfx10 and 11 for now to avoid changing behavior on older chips */
395 	if (amdgpu_ip_version(adev, GC_HWIP, 0) >= IP_VERSION(10, 0, 0))
396 		domain |= AMDGPU_GEM_DOMAIN_VRAM;
397 #endif
398 
399 	/* create MQD for KIQ */
400 	if (!adev->enable_mes_kiq && !ring->mqd_obj) {
401 		/* originaly the KIQ MQD is put in GTT domain, but for SRIOV VRAM domain is a must
402 		 * otherwise hypervisor trigger SAVE_VF fail after driver unloaded which mean MQD
403 		 * deallocated and gart_unbind, to strict diverage we decide to use VRAM domain for
404 		 * KIQ MQD no matter SRIOV or Bare-metal
405 		 */
406 		r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE,
407 					    AMDGPU_GEM_DOMAIN_VRAM |
408 					    AMDGPU_GEM_DOMAIN_GTT,
409 					    &ring->mqd_obj,
410 					    &ring->mqd_gpu_addr,
411 					    &ring->mqd_ptr);
412 		if (r) {
413 			dev_warn(adev->dev, "failed to create ring mqd ob (%d)", r);
414 			return r;
415 		}
416 
417 		/* prepare MQD backup */
418 		kiq->mqd_backup = kmalloc(mqd_size, GFP_KERNEL);
419 		if (!kiq->mqd_backup) {
420 			dev_warn(adev->dev,
421 				 "no memory to create MQD backup for ring %s\n", ring->name);
422 			return -ENOMEM;
423 		}
424 	}
425 
426 	if (adev->asic_type >= CHIP_NAVI10 && amdgpu_async_gfx_ring) {
427 		/* create MQD for each KGQ */
428 		for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
429 			ring = &adev->gfx.gfx_ring[i];
430 			if (!ring->mqd_obj) {
431 				r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE,
432 							    domain, &ring->mqd_obj,
433 							    &ring->mqd_gpu_addr, &ring->mqd_ptr);
434 				if (r) {
435 					dev_warn(adev->dev, "failed to create ring mqd bo (%d)", r);
436 					return r;
437 				}
438 
439 				ring->mqd_size = mqd_size;
440 				/* prepare MQD backup */
441 				adev->gfx.me.mqd_backup[i] = kmalloc(mqd_size, GFP_KERNEL);
442 				if (!adev->gfx.me.mqd_backup[i]) {
443 					dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name);
444 					return -ENOMEM;
445 				}
446 			}
447 		}
448 	}
449 
450 	/* create MQD for each KCQ */
451 	for (i = 0; i < adev->gfx.num_compute_rings; i++) {
452 		j = i + xcc_id * adev->gfx.num_compute_rings;
453 		ring = &adev->gfx.compute_ring[j];
454 		if (!ring->mqd_obj) {
455 			r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE,
456 						    domain, &ring->mqd_obj,
457 						    &ring->mqd_gpu_addr, &ring->mqd_ptr);
458 			if (r) {
459 				dev_warn(adev->dev, "failed to create ring mqd bo (%d)", r);
460 				return r;
461 			}
462 
463 			ring->mqd_size = mqd_size;
464 			/* prepare MQD backup */
465 			adev->gfx.mec.mqd_backup[j] = kmalloc(mqd_size, GFP_KERNEL);
466 			if (!adev->gfx.mec.mqd_backup[j]) {
467 				dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name);
468 				return -ENOMEM;
469 			}
470 		}
471 	}
472 
473 	return 0;
474 }
475 
476 void amdgpu_gfx_mqd_sw_fini(struct amdgpu_device *adev, int xcc_id)
477 {
478 	struct amdgpu_ring *ring = NULL;
479 	int i, j;
480 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
481 
482 	if (adev->asic_type >= CHIP_NAVI10 && amdgpu_async_gfx_ring) {
483 		for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
484 			ring = &adev->gfx.gfx_ring[i];
485 			kfree(adev->gfx.me.mqd_backup[i]);
486 			amdgpu_bo_free_kernel(&ring->mqd_obj,
487 					      &ring->mqd_gpu_addr,
488 					      &ring->mqd_ptr);
489 		}
490 	}
491 
492 	for (i = 0; i < adev->gfx.num_compute_rings; i++) {
493 		j = i + xcc_id * adev->gfx.num_compute_rings;
494 		ring = &adev->gfx.compute_ring[j];
495 		kfree(adev->gfx.mec.mqd_backup[j]);
496 		amdgpu_bo_free_kernel(&ring->mqd_obj,
497 				      &ring->mqd_gpu_addr,
498 				      &ring->mqd_ptr);
499 	}
500 
501 	ring = &kiq->ring;
502 	kfree(kiq->mqd_backup);
503 	amdgpu_bo_free_kernel(&ring->mqd_obj,
504 			      &ring->mqd_gpu_addr,
505 			      &ring->mqd_ptr);
506 }
507 
508 int amdgpu_gfx_disable_kcq(struct amdgpu_device *adev, int xcc_id)
509 {
510 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
511 	struct amdgpu_ring *kiq_ring = &kiq->ring;
512 	int i, r = 0;
513 	int j;
514 
515 	if (adev->enable_mes) {
516 		for (i = 0; i < adev->gfx.num_compute_rings; i++) {
517 			j = i + xcc_id * adev->gfx.num_compute_rings;
518 			amdgpu_mes_unmap_legacy_queue(adev,
519 						   &adev->gfx.compute_ring[j],
520 						   RESET_QUEUES, 0, 0);
521 		}
522 		return 0;
523 	}
524 
525 	if (!kiq->pmf || !kiq->pmf->kiq_unmap_queues)
526 		return -EINVAL;
527 
528 	spin_lock(&kiq->ring_lock);
529 	if (amdgpu_ring_alloc(kiq_ring, kiq->pmf->unmap_queues_size *
530 					adev->gfx.num_compute_rings)) {
531 		spin_unlock(&kiq->ring_lock);
532 		return -ENOMEM;
533 	}
534 
535 	for (i = 0; i < adev->gfx.num_compute_rings; i++) {
536 		j = i + xcc_id * adev->gfx.num_compute_rings;
537 		kiq->pmf->kiq_unmap_queues(kiq_ring,
538 					   &adev->gfx.compute_ring[j],
539 					   RESET_QUEUES, 0, 0);
540 	}
541 
542 	/**
543 	 * This is workaround: only skip kiq_ring test
544 	 * during ras recovery in suspend stage for gfx9.4.3
545 	 */
546 	if ((amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 3) ||
547 	    amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 4)) &&
548 	    amdgpu_ras_in_recovery(adev)) {
549 		spin_unlock(&kiq->ring_lock);
550 		return 0;
551 	}
552 
553 	if (kiq_ring->sched.ready && !adev->job_hang)
554 		r = amdgpu_ring_test_helper(kiq_ring);
555 	spin_unlock(&kiq->ring_lock);
556 
557 	return r;
558 }
559 
560 int amdgpu_gfx_disable_kgq(struct amdgpu_device *adev, int xcc_id)
561 {
562 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
563 	struct amdgpu_ring *kiq_ring = &kiq->ring;
564 	int i, r = 0;
565 	int j;
566 
567 	if (adev->enable_mes) {
568 		if (amdgpu_gfx_is_master_xcc(adev, xcc_id)) {
569 			for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
570 				j = i + xcc_id * adev->gfx.num_gfx_rings;
571 				amdgpu_mes_unmap_legacy_queue(adev,
572 						      &adev->gfx.gfx_ring[j],
573 						      PREEMPT_QUEUES, 0, 0);
574 			}
575 		}
576 		return 0;
577 	}
578 
579 	if (!kiq->pmf || !kiq->pmf->kiq_unmap_queues)
580 		return -EINVAL;
581 
582 	spin_lock(&kiq->ring_lock);
583 	if (amdgpu_gfx_is_master_xcc(adev, xcc_id)) {
584 		if (amdgpu_ring_alloc(kiq_ring, kiq->pmf->unmap_queues_size *
585 						adev->gfx.num_gfx_rings)) {
586 			spin_unlock(&kiq->ring_lock);
587 			return -ENOMEM;
588 		}
589 
590 		for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
591 			j = i + xcc_id * adev->gfx.num_gfx_rings;
592 			kiq->pmf->kiq_unmap_queues(kiq_ring,
593 						   &adev->gfx.gfx_ring[j],
594 						   PREEMPT_QUEUES, 0, 0);
595 		}
596 	}
597 
598 	if (adev->gfx.kiq[0].ring.sched.ready && !adev->job_hang)
599 		r = amdgpu_ring_test_helper(kiq_ring);
600 	spin_unlock(&kiq->ring_lock);
601 
602 	return r;
603 }
604 
605 int amdgpu_queue_mask_bit_to_set_resource_bit(struct amdgpu_device *adev,
606 					int queue_bit)
607 {
608 	int mec, pipe, queue;
609 	int set_resource_bit = 0;
610 
611 	amdgpu_queue_mask_bit_to_mec_queue(adev, queue_bit, &mec, &pipe, &queue);
612 
613 	set_resource_bit = mec * 4 * 8 + pipe * 8 + queue;
614 
615 	return set_resource_bit;
616 }
617 
618 static int amdgpu_gfx_mes_enable_kcq(struct amdgpu_device *adev, int xcc_id)
619 {
620 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
621 	struct amdgpu_ring *kiq_ring = &kiq->ring;
622 	uint64_t queue_mask = ~0ULL;
623 	int r, i, j;
624 
625 	amdgpu_device_flush_hdp(adev, NULL);
626 
627 	if (!adev->enable_uni_mes) {
628 		spin_lock(&kiq->ring_lock);
629 		r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->set_resources_size);
630 		if (r) {
631 			dev_err(adev->dev, "Failed to lock KIQ (%d).\n", r);
632 			spin_unlock(&kiq->ring_lock);
633 			return r;
634 		}
635 
636 		kiq->pmf->kiq_set_resources(kiq_ring, queue_mask);
637 		r = amdgpu_ring_test_helper(kiq_ring);
638 		spin_unlock(&kiq->ring_lock);
639 		if (r)
640 			dev_err(adev->dev, "KIQ failed to set resources\n");
641 	}
642 
643 	for (i = 0; i < adev->gfx.num_compute_rings; i++) {
644 		j = i + xcc_id * adev->gfx.num_compute_rings;
645 		r = amdgpu_mes_map_legacy_queue(adev,
646 						&adev->gfx.compute_ring[j]);
647 		if (r) {
648 			dev_err(adev->dev, "failed to map compute queue\n");
649 			return r;
650 		}
651 	}
652 
653 	return 0;
654 }
655 
656 int amdgpu_gfx_enable_kcq(struct amdgpu_device *adev, int xcc_id)
657 {
658 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
659 	struct amdgpu_ring *kiq_ring = &kiq->ring;
660 	uint64_t queue_mask = 0;
661 	int r, i, j;
662 
663 	if (adev->mes.enable_legacy_queue_map)
664 		return amdgpu_gfx_mes_enable_kcq(adev, xcc_id);
665 
666 	if (!kiq->pmf || !kiq->pmf->kiq_map_queues || !kiq->pmf->kiq_set_resources)
667 		return -EINVAL;
668 
669 	for (i = 0; i < AMDGPU_MAX_COMPUTE_QUEUES; ++i) {
670 		if (!test_bit(i, adev->gfx.mec_bitmap[xcc_id].queue_bitmap))
671 			continue;
672 
673 		/* This situation may be hit in the future if a new HW
674 		 * generation exposes more than 64 queues. If so, the
675 		 * definition of queue_mask needs updating */
676 		if (WARN_ON(i > (sizeof(queue_mask)*8))) {
677 			DRM_ERROR("Invalid KCQ enabled: %d\n", i);
678 			break;
679 		}
680 
681 		queue_mask |= (1ull << amdgpu_queue_mask_bit_to_set_resource_bit(adev, i));
682 	}
683 
684 	amdgpu_device_flush_hdp(adev, NULL);
685 
686 	DRM_INFO("kiq ring mec %d pipe %d q %d\n", kiq_ring->me, kiq_ring->pipe,
687 		 kiq_ring->queue);
688 
689 	spin_lock(&kiq->ring_lock);
690 	r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->map_queues_size *
691 					adev->gfx.num_compute_rings +
692 					kiq->pmf->set_resources_size);
693 	if (r) {
694 		DRM_ERROR("Failed to lock KIQ (%d).\n", r);
695 		spin_unlock(&kiq->ring_lock);
696 		return r;
697 	}
698 
699 	kiq->pmf->kiq_set_resources(kiq_ring, queue_mask);
700 	for (i = 0; i < adev->gfx.num_compute_rings; i++) {
701 		j = i + xcc_id * adev->gfx.num_compute_rings;
702 		kiq->pmf->kiq_map_queues(kiq_ring,
703 					 &adev->gfx.compute_ring[j]);
704 	}
705 
706 	r = amdgpu_ring_test_helper(kiq_ring);
707 	spin_unlock(&kiq->ring_lock);
708 	if (r)
709 		DRM_ERROR("KCQ enable failed\n");
710 
711 	return r;
712 }
713 
714 int amdgpu_gfx_enable_kgq(struct amdgpu_device *adev, int xcc_id)
715 {
716 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
717 	struct amdgpu_ring *kiq_ring = &kiq->ring;
718 	int r, i, j;
719 
720 	if (!kiq->pmf || !kiq->pmf->kiq_map_queues)
721 		return -EINVAL;
722 
723 	amdgpu_device_flush_hdp(adev, NULL);
724 
725 	if (adev->mes.enable_legacy_queue_map) {
726 		for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
727 			j = i + xcc_id * adev->gfx.num_gfx_rings;
728 			r = amdgpu_mes_map_legacy_queue(adev,
729 							&adev->gfx.gfx_ring[j]);
730 			if (r) {
731 				DRM_ERROR("failed to map gfx queue\n");
732 				return r;
733 			}
734 		}
735 
736 		return 0;
737 	}
738 
739 	spin_lock(&kiq->ring_lock);
740 	/* No need to map kcq on the slave */
741 	if (amdgpu_gfx_is_master_xcc(adev, xcc_id)) {
742 		r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->map_queues_size *
743 						adev->gfx.num_gfx_rings);
744 		if (r) {
745 			DRM_ERROR("Failed to lock KIQ (%d).\n", r);
746 			spin_unlock(&kiq->ring_lock);
747 			return r;
748 		}
749 
750 		for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
751 			j = i + xcc_id * adev->gfx.num_gfx_rings;
752 			kiq->pmf->kiq_map_queues(kiq_ring,
753 						 &adev->gfx.gfx_ring[j]);
754 		}
755 	}
756 
757 	r = amdgpu_ring_test_helper(kiq_ring);
758 	spin_unlock(&kiq->ring_lock);
759 	if (r)
760 		DRM_ERROR("KGQ enable failed\n");
761 
762 	return r;
763 }
764 
765 /* amdgpu_gfx_off_ctrl - Handle gfx off feature enable/disable
766  *
767  * @adev: amdgpu_device pointer
768  * @bool enable true: enable gfx off feature, false: disable gfx off feature
769  *
770  * 1. gfx off feature will be enabled by gfx ip after gfx cg gp enabled.
771  * 2. other client can send request to disable gfx off feature, the request should be honored.
772  * 3. other client can cancel their request of disable gfx off feature
773  * 4. other client should not send request to enable gfx off feature before disable gfx off feature.
774  */
775 
776 void amdgpu_gfx_off_ctrl(struct amdgpu_device *adev, bool enable)
777 {
778 	unsigned long delay = GFX_OFF_DELAY_ENABLE;
779 
780 	if (!(adev->pm.pp_feature & PP_GFXOFF_MASK))
781 		return;
782 
783 	mutex_lock(&adev->gfx.gfx_off_mutex);
784 
785 	if (enable) {
786 		/* If the count is already 0, it means there's an imbalance bug somewhere.
787 		 * Note that the bug may be in a different caller than the one which triggers the
788 		 * WARN_ON_ONCE.
789 		 */
790 		if (WARN_ON_ONCE(adev->gfx.gfx_off_req_count == 0))
791 			goto unlock;
792 
793 		adev->gfx.gfx_off_req_count--;
794 
795 		if (adev->gfx.gfx_off_req_count == 0 &&
796 		    !adev->gfx.gfx_off_state) {
797 			/* If going to s2idle, no need to wait */
798 			if (adev->in_s0ix) {
799 				if (!amdgpu_dpm_set_powergating_by_smu(adev,
800 						AMD_IP_BLOCK_TYPE_GFX, true))
801 					adev->gfx.gfx_off_state = true;
802 			} else {
803 				schedule_delayed_work(&adev->gfx.gfx_off_delay_work,
804 					      delay);
805 			}
806 		}
807 	} else {
808 		if (adev->gfx.gfx_off_req_count == 0) {
809 			cancel_delayed_work_sync(&adev->gfx.gfx_off_delay_work);
810 
811 			if (adev->gfx.gfx_off_state &&
812 			    !amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_GFX, false)) {
813 				adev->gfx.gfx_off_state = false;
814 
815 				if (adev->gfx.funcs->init_spm_golden) {
816 					dev_dbg(adev->dev,
817 						"GFXOFF is disabled, re-init SPM golden settings\n");
818 					amdgpu_gfx_init_spm_golden(adev);
819 				}
820 			}
821 		}
822 
823 		adev->gfx.gfx_off_req_count++;
824 	}
825 
826 unlock:
827 	mutex_unlock(&adev->gfx.gfx_off_mutex);
828 }
829 
830 int amdgpu_set_gfx_off_residency(struct amdgpu_device *adev, bool value)
831 {
832 	int r = 0;
833 
834 	mutex_lock(&adev->gfx.gfx_off_mutex);
835 
836 	r = amdgpu_dpm_set_residency_gfxoff(adev, value);
837 
838 	mutex_unlock(&adev->gfx.gfx_off_mutex);
839 
840 	return r;
841 }
842 
843 int amdgpu_get_gfx_off_residency(struct amdgpu_device *adev, u32 *value)
844 {
845 	int r = 0;
846 
847 	mutex_lock(&adev->gfx.gfx_off_mutex);
848 
849 	r = amdgpu_dpm_get_residency_gfxoff(adev, value);
850 
851 	mutex_unlock(&adev->gfx.gfx_off_mutex);
852 
853 	return r;
854 }
855 
856 int amdgpu_get_gfx_off_entrycount(struct amdgpu_device *adev, u64 *value)
857 {
858 	int r = 0;
859 
860 	mutex_lock(&adev->gfx.gfx_off_mutex);
861 
862 	r = amdgpu_dpm_get_entrycount_gfxoff(adev, value);
863 
864 	mutex_unlock(&adev->gfx.gfx_off_mutex);
865 
866 	return r;
867 }
868 
869 int amdgpu_get_gfx_off_status(struct amdgpu_device *adev, uint32_t *value)
870 {
871 
872 	int r = 0;
873 
874 	mutex_lock(&adev->gfx.gfx_off_mutex);
875 
876 	r = amdgpu_dpm_get_status_gfxoff(adev, value);
877 
878 	mutex_unlock(&adev->gfx.gfx_off_mutex);
879 
880 	return r;
881 }
882 
883 int amdgpu_gfx_ras_late_init(struct amdgpu_device *adev, struct ras_common_if *ras_block)
884 {
885 	int r;
886 
887 	if (amdgpu_ras_is_supported(adev, ras_block->block)) {
888 		if (!amdgpu_persistent_edc_harvesting_supported(adev)) {
889 			r = amdgpu_ras_reset_error_status(adev, AMDGPU_RAS_BLOCK__GFX);
890 			if (r)
891 				return r;
892 		}
893 
894 		r = amdgpu_ras_block_late_init(adev, ras_block);
895 		if (r)
896 			return r;
897 
898 		if (adev->gfx.cp_ecc_error_irq.funcs) {
899 			r = amdgpu_irq_get(adev, &adev->gfx.cp_ecc_error_irq, 0);
900 			if (r)
901 				goto late_fini;
902 		}
903 	} else {
904 		amdgpu_ras_feature_enable_on_boot(adev, ras_block, 0);
905 	}
906 
907 	return 0;
908 late_fini:
909 	amdgpu_ras_block_late_fini(adev, ras_block);
910 	return r;
911 }
912 
913 int amdgpu_gfx_ras_sw_init(struct amdgpu_device *adev)
914 {
915 	int err = 0;
916 	struct amdgpu_gfx_ras *ras = NULL;
917 
918 	/* adev->gfx.ras is NULL, which means gfx does not
919 	 * support ras function, then do nothing here.
920 	 */
921 	if (!adev->gfx.ras)
922 		return 0;
923 
924 	ras = adev->gfx.ras;
925 
926 	err = amdgpu_ras_register_ras_block(adev, &ras->ras_block);
927 	if (err) {
928 		dev_err(adev->dev, "Failed to register gfx ras block!\n");
929 		return err;
930 	}
931 
932 	strcpy(ras->ras_block.ras_comm.name, "gfx");
933 	ras->ras_block.ras_comm.block = AMDGPU_RAS_BLOCK__GFX;
934 	ras->ras_block.ras_comm.type = AMDGPU_RAS_ERROR__MULTI_UNCORRECTABLE;
935 	adev->gfx.ras_if = &ras->ras_block.ras_comm;
936 
937 	/* If not define special ras_late_init function, use gfx default ras_late_init */
938 	if (!ras->ras_block.ras_late_init)
939 		ras->ras_block.ras_late_init = amdgpu_gfx_ras_late_init;
940 
941 	/* If not defined special ras_cb function, use default ras_cb */
942 	if (!ras->ras_block.ras_cb)
943 		ras->ras_block.ras_cb = amdgpu_gfx_process_ras_data_cb;
944 
945 	return 0;
946 }
947 
948 int amdgpu_gfx_poison_consumption_handler(struct amdgpu_device *adev,
949 						struct amdgpu_iv_entry *entry)
950 {
951 	if (adev->gfx.ras && adev->gfx.ras->poison_consumption_handler)
952 		return adev->gfx.ras->poison_consumption_handler(adev, entry);
953 
954 	return 0;
955 }
956 
957 int amdgpu_gfx_process_ras_data_cb(struct amdgpu_device *adev,
958 		void *err_data,
959 		struct amdgpu_iv_entry *entry)
960 {
961 	/* TODO ue will trigger an interrupt.
962 	 *
963 	 * When “Full RAS” is enabled, the per-IP interrupt sources should
964 	 * be disabled and the driver should only look for the aggregated
965 	 * interrupt via sync flood
966 	 */
967 	if (!amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__GFX)) {
968 		kgd2kfd_set_sram_ecc_flag(adev->kfd.dev);
969 		if (adev->gfx.ras && adev->gfx.ras->ras_block.hw_ops &&
970 		    adev->gfx.ras->ras_block.hw_ops->query_ras_error_count)
971 			adev->gfx.ras->ras_block.hw_ops->query_ras_error_count(adev, err_data);
972 		amdgpu_ras_reset_gpu(adev);
973 	}
974 	return AMDGPU_RAS_SUCCESS;
975 }
976 
977 int amdgpu_gfx_cp_ecc_error_irq(struct amdgpu_device *adev,
978 				  struct amdgpu_irq_src *source,
979 				  struct amdgpu_iv_entry *entry)
980 {
981 	struct ras_common_if *ras_if = adev->gfx.ras_if;
982 	struct ras_dispatch_if ih_data = {
983 		.entry = entry,
984 	};
985 
986 	if (!ras_if)
987 		return 0;
988 
989 	ih_data.head = *ras_if;
990 
991 	DRM_ERROR("CP ECC ERROR IRQ\n");
992 	amdgpu_ras_interrupt_dispatch(adev, &ih_data);
993 	return 0;
994 }
995 
996 void amdgpu_gfx_ras_error_func(struct amdgpu_device *adev,
997 		void *ras_error_status,
998 		void (*func)(struct amdgpu_device *adev, void *ras_error_status,
999 				int xcc_id))
1000 {
1001 	int i;
1002 	int num_xcc = adev->gfx.xcc_mask ? NUM_XCC(adev->gfx.xcc_mask) : 1;
1003 	uint32_t xcc_mask = GENMASK(num_xcc - 1, 0);
1004 	struct ras_err_data *err_data = (struct ras_err_data *)ras_error_status;
1005 
1006 	if (err_data) {
1007 		err_data->ue_count = 0;
1008 		err_data->ce_count = 0;
1009 	}
1010 
1011 	for_each_inst(i, xcc_mask)
1012 		func(adev, ras_error_status, i);
1013 }
1014 
1015 uint32_t amdgpu_kiq_rreg(struct amdgpu_device *adev, uint32_t reg, uint32_t xcc_id)
1016 {
1017 	signed long r, cnt = 0;
1018 	unsigned long flags;
1019 	uint32_t seq, reg_val_offs = 0, value = 0;
1020 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
1021 	struct amdgpu_ring *ring = &kiq->ring;
1022 
1023 	if (amdgpu_device_skip_hw_access(adev))
1024 		return 0;
1025 
1026 	if (adev->mes.ring[0].sched.ready)
1027 		return amdgpu_mes_rreg(adev, reg);
1028 
1029 	BUG_ON(!ring->funcs->emit_rreg);
1030 
1031 	spin_lock_irqsave(&kiq->ring_lock, flags);
1032 	if (amdgpu_device_wb_get(adev, &reg_val_offs)) {
1033 		pr_err("critical bug! too many kiq readers\n");
1034 		goto failed_unlock;
1035 	}
1036 	r = amdgpu_ring_alloc(ring, 32);
1037 	if (r)
1038 		goto failed_unlock;
1039 
1040 	amdgpu_ring_emit_rreg(ring, reg, reg_val_offs);
1041 	r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT);
1042 	if (r)
1043 		goto failed_undo;
1044 
1045 	amdgpu_ring_commit(ring);
1046 	spin_unlock_irqrestore(&kiq->ring_lock, flags);
1047 
1048 	r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
1049 
1050 	/* don't wait anymore for gpu reset case because this way may
1051 	 * block gpu_recover() routine forever, e.g. this virt_kiq_rreg
1052 	 * is triggered in TTM and ttm_bo_lock_delayed_workqueue() will
1053 	 * never return if we keep waiting in virt_kiq_rreg, which cause
1054 	 * gpu_recover() hang there.
1055 	 *
1056 	 * also don't wait anymore for IRQ context
1057 	 * */
1058 	if (r < 1 && (amdgpu_in_reset(adev) || in_interrupt()))
1059 		goto failed_kiq_read;
1060 
1061 	might_sleep();
1062 	while (r < 1 && cnt++ < MAX_KIQ_REG_TRY) {
1063 		msleep(MAX_KIQ_REG_BAILOUT_INTERVAL);
1064 		r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
1065 	}
1066 
1067 	if (cnt > MAX_KIQ_REG_TRY)
1068 		goto failed_kiq_read;
1069 
1070 	mb();
1071 	value = adev->wb.wb[reg_val_offs];
1072 	amdgpu_device_wb_free(adev, reg_val_offs);
1073 	return value;
1074 
1075 failed_undo:
1076 	amdgpu_ring_undo(ring);
1077 failed_unlock:
1078 	spin_unlock_irqrestore(&kiq->ring_lock, flags);
1079 failed_kiq_read:
1080 	if (reg_val_offs)
1081 		amdgpu_device_wb_free(adev, reg_val_offs);
1082 	dev_err(adev->dev, "failed to read reg:%x\n", reg);
1083 	return ~0;
1084 }
1085 
1086 void amdgpu_kiq_wreg(struct amdgpu_device *adev, uint32_t reg, uint32_t v, uint32_t xcc_id)
1087 {
1088 	signed long r, cnt = 0;
1089 	unsigned long flags;
1090 	uint32_t seq;
1091 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
1092 	struct amdgpu_ring *ring = &kiq->ring;
1093 
1094 	BUG_ON(!ring->funcs->emit_wreg);
1095 
1096 	if (amdgpu_device_skip_hw_access(adev))
1097 		return;
1098 
1099 	if (adev->mes.ring[0].sched.ready) {
1100 		amdgpu_mes_wreg(adev, reg, v);
1101 		return;
1102 	}
1103 
1104 	spin_lock_irqsave(&kiq->ring_lock, flags);
1105 	r = amdgpu_ring_alloc(ring, 32);
1106 	if (r)
1107 		goto failed_unlock;
1108 
1109 	amdgpu_ring_emit_wreg(ring, reg, v);
1110 	r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT);
1111 	if (r)
1112 		goto failed_undo;
1113 
1114 	amdgpu_ring_commit(ring);
1115 	spin_unlock_irqrestore(&kiq->ring_lock, flags);
1116 
1117 	r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
1118 
1119 	/* don't wait anymore for gpu reset case because this way may
1120 	 * block gpu_recover() routine forever, e.g. this virt_kiq_rreg
1121 	 * is triggered in TTM and ttm_bo_lock_delayed_workqueue() will
1122 	 * never return if we keep waiting in virt_kiq_rreg, which cause
1123 	 * gpu_recover() hang there.
1124 	 *
1125 	 * also don't wait anymore for IRQ context
1126 	 * */
1127 	if (r < 1 && (amdgpu_in_reset(adev) || in_interrupt()))
1128 		goto failed_kiq_write;
1129 
1130 	might_sleep();
1131 	while (r < 1 && cnt++ < MAX_KIQ_REG_TRY) {
1132 
1133 		msleep(MAX_KIQ_REG_BAILOUT_INTERVAL);
1134 		r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
1135 	}
1136 
1137 	if (cnt > MAX_KIQ_REG_TRY)
1138 		goto failed_kiq_write;
1139 
1140 	return;
1141 
1142 failed_undo:
1143 	amdgpu_ring_undo(ring);
1144 failed_unlock:
1145 	spin_unlock_irqrestore(&kiq->ring_lock, flags);
1146 failed_kiq_write:
1147 	dev_err(adev->dev, "failed to write reg:%x\n", reg);
1148 }
1149 
1150 int amdgpu_gfx_get_num_kcq(struct amdgpu_device *adev)
1151 {
1152 	if (amdgpu_num_kcq == -1) {
1153 		return 8;
1154 	} else if (amdgpu_num_kcq > 8 || amdgpu_num_kcq < 0) {
1155 		dev_warn(adev->dev, "set kernel compute queue number to 8 due to invalid parameter provided by user\n");
1156 		return 8;
1157 	}
1158 	return amdgpu_num_kcq;
1159 }
1160 
1161 void amdgpu_gfx_cp_init_microcode(struct amdgpu_device *adev,
1162 				  uint32_t ucode_id)
1163 {
1164 	const struct gfx_firmware_header_v1_0 *cp_hdr;
1165 	const struct gfx_firmware_header_v2_0 *cp_hdr_v2_0;
1166 	struct amdgpu_firmware_info *info = NULL;
1167 	const struct firmware *ucode_fw;
1168 	unsigned int fw_size;
1169 
1170 	switch (ucode_id) {
1171 	case AMDGPU_UCODE_ID_CP_PFP:
1172 		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1173 			adev->gfx.pfp_fw->data;
1174 		adev->gfx.pfp_fw_version =
1175 			le32_to_cpu(cp_hdr->header.ucode_version);
1176 		adev->gfx.pfp_feature_version =
1177 			le32_to_cpu(cp_hdr->ucode_feature_version);
1178 		ucode_fw = adev->gfx.pfp_fw;
1179 		fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes);
1180 		break;
1181 	case AMDGPU_UCODE_ID_CP_RS64_PFP:
1182 		cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1183 			adev->gfx.pfp_fw->data;
1184 		adev->gfx.pfp_fw_version =
1185 			le32_to_cpu(cp_hdr_v2_0->header.ucode_version);
1186 		adev->gfx.pfp_feature_version =
1187 			le32_to_cpu(cp_hdr_v2_0->ucode_feature_version);
1188 		ucode_fw = adev->gfx.pfp_fw;
1189 		fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes);
1190 		break;
1191 	case AMDGPU_UCODE_ID_CP_RS64_PFP_P0_STACK:
1192 	case AMDGPU_UCODE_ID_CP_RS64_PFP_P1_STACK:
1193 		cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1194 			adev->gfx.pfp_fw->data;
1195 		ucode_fw = adev->gfx.pfp_fw;
1196 		fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes);
1197 		break;
1198 	case AMDGPU_UCODE_ID_CP_ME:
1199 		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1200 			adev->gfx.me_fw->data;
1201 		adev->gfx.me_fw_version =
1202 			le32_to_cpu(cp_hdr->header.ucode_version);
1203 		adev->gfx.me_feature_version =
1204 			le32_to_cpu(cp_hdr->ucode_feature_version);
1205 		ucode_fw = adev->gfx.me_fw;
1206 		fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes);
1207 		break;
1208 	case AMDGPU_UCODE_ID_CP_RS64_ME:
1209 		cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1210 			adev->gfx.me_fw->data;
1211 		adev->gfx.me_fw_version =
1212 			le32_to_cpu(cp_hdr_v2_0->header.ucode_version);
1213 		adev->gfx.me_feature_version =
1214 			le32_to_cpu(cp_hdr_v2_0->ucode_feature_version);
1215 		ucode_fw = adev->gfx.me_fw;
1216 		fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes);
1217 		break;
1218 	case AMDGPU_UCODE_ID_CP_RS64_ME_P0_STACK:
1219 	case AMDGPU_UCODE_ID_CP_RS64_ME_P1_STACK:
1220 		cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1221 			adev->gfx.me_fw->data;
1222 		ucode_fw = adev->gfx.me_fw;
1223 		fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes);
1224 		break;
1225 	case AMDGPU_UCODE_ID_CP_CE:
1226 		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1227 			adev->gfx.ce_fw->data;
1228 		adev->gfx.ce_fw_version =
1229 			le32_to_cpu(cp_hdr->header.ucode_version);
1230 		adev->gfx.ce_feature_version =
1231 			le32_to_cpu(cp_hdr->ucode_feature_version);
1232 		ucode_fw = adev->gfx.ce_fw;
1233 		fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes);
1234 		break;
1235 	case AMDGPU_UCODE_ID_CP_MEC1:
1236 		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1237 			adev->gfx.mec_fw->data;
1238 		adev->gfx.mec_fw_version =
1239 			le32_to_cpu(cp_hdr->header.ucode_version);
1240 		adev->gfx.mec_feature_version =
1241 			le32_to_cpu(cp_hdr->ucode_feature_version);
1242 		ucode_fw = adev->gfx.mec_fw;
1243 		fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes) -
1244 			  le32_to_cpu(cp_hdr->jt_size) * 4;
1245 		break;
1246 	case AMDGPU_UCODE_ID_CP_MEC1_JT:
1247 		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1248 			adev->gfx.mec_fw->data;
1249 		ucode_fw = adev->gfx.mec_fw;
1250 		fw_size = le32_to_cpu(cp_hdr->jt_size) * 4;
1251 		break;
1252 	case AMDGPU_UCODE_ID_CP_MEC2:
1253 		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1254 			adev->gfx.mec2_fw->data;
1255 		adev->gfx.mec2_fw_version =
1256 			le32_to_cpu(cp_hdr->header.ucode_version);
1257 		adev->gfx.mec2_feature_version =
1258 			le32_to_cpu(cp_hdr->ucode_feature_version);
1259 		ucode_fw = adev->gfx.mec2_fw;
1260 		fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes) -
1261 			  le32_to_cpu(cp_hdr->jt_size) * 4;
1262 		break;
1263 	case AMDGPU_UCODE_ID_CP_MEC2_JT:
1264 		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1265 			adev->gfx.mec2_fw->data;
1266 		ucode_fw = adev->gfx.mec2_fw;
1267 		fw_size = le32_to_cpu(cp_hdr->jt_size) * 4;
1268 		break;
1269 	case AMDGPU_UCODE_ID_CP_RS64_MEC:
1270 		cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1271 			adev->gfx.mec_fw->data;
1272 		adev->gfx.mec_fw_version =
1273 			le32_to_cpu(cp_hdr_v2_0->header.ucode_version);
1274 		adev->gfx.mec_feature_version =
1275 			le32_to_cpu(cp_hdr_v2_0->ucode_feature_version);
1276 		ucode_fw = adev->gfx.mec_fw;
1277 		fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes);
1278 		break;
1279 	case AMDGPU_UCODE_ID_CP_RS64_MEC_P0_STACK:
1280 	case AMDGPU_UCODE_ID_CP_RS64_MEC_P1_STACK:
1281 	case AMDGPU_UCODE_ID_CP_RS64_MEC_P2_STACK:
1282 	case AMDGPU_UCODE_ID_CP_RS64_MEC_P3_STACK:
1283 		cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1284 			adev->gfx.mec_fw->data;
1285 		ucode_fw = adev->gfx.mec_fw;
1286 		fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes);
1287 		break;
1288 	default:
1289 		dev_err(adev->dev, "Invalid ucode id %u\n", ucode_id);
1290 		return;
1291 	}
1292 
1293 	if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
1294 		info = &adev->firmware.ucode[ucode_id];
1295 		info->ucode_id = ucode_id;
1296 		info->fw = ucode_fw;
1297 		adev->firmware.fw_size += ALIGN(fw_size, PAGE_SIZE);
1298 	}
1299 }
1300 
1301 bool amdgpu_gfx_is_master_xcc(struct amdgpu_device *adev, int xcc_id)
1302 {
1303 	return !(xcc_id % (adev->gfx.num_xcc_per_xcp ?
1304 			adev->gfx.num_xcc_per_xcp : 1));
1305 }
1306 
1307 static ssize_t amdgpu_gfx_get_current_compute_partition(struct device *dev,
1308 						struct device_attribute *addr,
1309 						char *buf)
1310 {
1311 	struct drm_device *ddev = dev_get_drvdata(dev);
1312 	struct amdgpu_device *adev = drm_to_adev(ddev);
1313 	int mode;
1314 
1315 	mode = amdgpu_xcp_query_partition_mode(adev->xcp_mgr,
1316 					       AMDGPU_XCP_FL_NONE);
1317 
1318 	return sysfs_emit(buf, "%s\n", amdgpu_gfx_compute_mode_desc(mode));
1319 }
1320 
1321 static ssize_t amdgpu_gfx_set_compute_partition(struct device *dev,
1322 						struct device_attribute *addr,
1323 						const char *buf, size_t count)
1324 {
1325 	struct drm_device *ddev = dev_get_drvdata(dev);
1326 	struct amdgpu_device *adev = drm_to_adev(ddev);
1327 	enum amdgpu_gfx_partition mode;
1328 	int ret = 0, num_xcc;
1329 
1330 	num_xcc = NUM_XCC(adev->gfx.xcc_mask);
1331 	if (num_xcc % 2 != 0)
1332 		return -EINVAL;
1333 
1334 	if (!strncasecmp("SPX", buf, strlen("SPX"))) {
1335 		mode = AMDGPU_SPX_PARTITION_MODE;
1336 	} else if (!strncasecmp("DPX", buf, strlen("DPX"))) {
1337 		/*
1338 		 * DPX mode needs AIDs to be in multiple of 2.
1339 		 * Each AID connects 2 XCCs.
1340 		 */
1341 		if (num_xcc%4)
1342 			return -EINVAL;
1343 		mode = AMDGPU_DPX_PARTITION_MODE;
1344 	} else if (!strncasecmp("TPX", buf, strlen("TPX"))) {
1345 		if (num_xcc != 6)
1346 			return -EINVAL;
1347 		mode = AMDGPU_TPX_PARTITION_MODE;
1348 	} else if (!strncasecmp("QPX", buf, strlen("QPX"))) {
1349 		if (num_xcc != 8)
1350 			return -EINVAL;
1351 		mode = AMDGPU_QPX_PARTITION_MODE;
1352 	} else if (!strncasecmp("CPX", buf, strlen("CPX"))) {
1353 		mode = AMDGPU_CPX_PARTITION_MODE;
1354 	} else {
1355 		return -EINVAL;
1356 	}
1357 
1358 	ret = amdgpu_xcp_switch_partition_mode(adev->xcp_mgr, mode);
1359 
1360 	if (ret)
1361 		return ret;
1362 
1363 	return count;
1364 }
1365 
1366 static ssize_t amdgpu_gfx_get_available_compute_partition(struct device *dev,
1367 						struct device_attribute *addr,
1368 						char *buf)
1369 {
1370 	struct drm_device *ddev = dev_get_drvdata(dev);
1371 	struct amdgpu_device *adev = drm_to_adev(ddev);
1372 	char *supported_partition;
1373 
1374 	/* TBD */
1375 	switch (NUM_XCC(adev->gfx.xcc_mask)) {
1376 	case 8:
1377 		supported_partition = "SPX, DPX, QPX, CPX";
1378 		break;
1379 	case 6:
1380 		supported_partition = "SPX, TPX, CPX";
1381 		break;
1382 	case 4:
1383 		supported_partition = "SPX, DPX, CPX";
1384 		break;
1385 	/* this seems only existing in emulation phase */
1386 	case 2:
1387 		supported_partition = "SPX, CPX";
1388 		break;
1389 	default:
1390 		supported_partition = "Not supported";
1391 		break;
1392 	}
1393 
1394 	return sysfs_emit(buf, "%s\n", supported_partition);
1395 }
1396 
1397 static int amdgpu_gfx_run_cleaner_shader_job(struct amdgpu_ring *ring)
1398 {
1399 	struct amdgpu_device *adev = ring->adev;
1400 	struct drm_gpu_scheduler *sched = &ring->sched;
1401 	struct drm_sched_entity entity;
1402 	struct dma_fence *f;
1403 	struct amdgpu_job *job;
1404 	struct amdgpu_ib *ib;
1405 	int i, r;
1406 
1407 	/* Initialize the scheduler entity */
1408 	r = drm_sched_entity_init(&entity, DRM_SCHED_PRIORITY_NORMAL,
1409 				  &sched, 1, NULL);
1410 	if (r) {
1411 		dev_err(adev->dev, "Failed setting up GFX kernel entity.\n");
1412 		goto err;
1413 	}
1414 
1415 	r = amdgpu_job_alloc_with_ib(ring->adev, &entity, NULL,
1416 				     64, 0,
1417 				     &job);
1418 	if (r)
1419 		goto err;
1420 
1421 	job->enforce_isolation = true;
1422 
1423 	ib = &job->ibs[0];
1424 	for (i = 0; i <= ring->funcs->align_mask; ++i)
1425 		ib->ptr[i] = ring->funcs->nop;
1426 	ib->length_dw = ring->funcs->align_mask + 1;
1427 
1428 	f = amdgpu_job_submit(job);
1429 
1430 	r = dma_fence_wait(f, false);
1431 	if (r)
1432 		goto err;
1433 
1434 	dma_fence_put(f);
1435 
1436 	/* Clean up the scheduler entity */
1437 	drm_sched_entity_destroy(&entity);
1438 	return 0;
1439 
1440 err:
1441 	return r;
1442 }
1443 
1444 static int amdgpu_gfx_run_cleaner_shader(struct amdgpu_device *adev, int xcp_id)
1445 {
1446 	int num_xcc = NUM_XCC(adev->gfx.xcc_mask);
1447 	struct amdgpu_ring *ring;
1448 	int num_xcc_to_clear;
1449 	int i, r, xcc_id;
1450 
1451 	if (adev->gfx.num_xcc_per_xcp)
1452 		num_xcc_to_clear = adev->gfx.num_xcc_per_xcp;
1453 	else
1454 		num_xcc_to_clear = 1;
1455 
1456 	for (xcc_id = 0; xcc_id < num_xcc; xcc_id++) {
1457 		for (i = 0; i < adev->gfx.num_compute_rings; i++) {
1458 			ring = &adev->gfx.compute_ring[i + xcc_id * adev->gfx.num_compute_rings];
1459 			if ((ring->xcp_id == xcp_id) && ring->sched.ready) {
1460 				r = amdgpu_gfx_run_cleaner_shader_job(ring);
1461 				if (r)
1462 					return r;
1463 				num_xcc_to_clear--;
1464 				break;
1465 			}
1466 		}
1467 	}
1468 
1469 	if (num_xcc_to_clear)
1470 		return -ENOENT;
1471 
1472 	return 0;
1473 }
1474 
1475 static ssize_t amdgpu_gfx_set_run_cleaner_shader(struct device *dev,
1476 						 struct device_attribute *attr,
1477 						 const char *buf,
1478 						 size_t count)
1479 {
1480 	struct drm_device *ddev = dev_get_drvdata(dev);
1481 	struct amdgpu_device *adev = drm_to_adev(ddev);
1482 	int ret;
1483 	long value;
1484 
1485 	if (amdgpu_in_reset(adev))
1486 		return -EPERM;
1487 	if (adev->in_suspend && !adev->in_runpm)
1488 		return -EPERM;
1489 
1490 	ret = kstrtol(buf, 0, &value);
1491 
1492 	if (ret)
1493 		return -EINVAL;
1494 
1495 	if (value < 0)
1496 		return -EINVAL;
1497 
1498 	if (adev->xcp_mgr) {
1499 		if (value >= adev->xcp_mgr->num_xcps)
1500 			return -EINVAL;
1501 	} else {
1502 		if (value > 1)
1503 			return -EINVAL;
1504 	}
1505 
1506 	ret = pm_runtime_get_sync(ddev->dev);
1507 	if (ret < 0) {
1508 		pm_runtime_put_autosuspend(ddev->dev);
1509 		return ret;
1510 	}
1511 
1512 	ret = amdgpu_gfx_run_cleaner_shader(adev, value);
1513 
1514 	pm_runtime_mark_last_busy(ddev->dev);
1515 	pm_runtime_put_autosuspend(ddev->dev);
1516 
1517 	if (ret)
1518 		return ret;
1519 
1520 	return count;
1521 }
1522 
1523 static ssize_t amdgpu_gfx_get_enforce_isolation(struct device *dev,
1524 						struct device_attribute *attr,
1525 						char *buf)
1526 {
1527 	struct drm_device *ddev = dev_get_drvdata(dev);
1528 	struct amdgpu_device *adev = drm_to_adev(ddev);
1529 	int i;
1530 	ssize_t size = 0;
1531 
1532 	if (adev->xcp_mgr) {
1533 		for (i = 0; i < adev->xcp_mgr->num_xcps; i++) {
1534 			size += sysfs_emit_at(buf, size, "%u", adev->enforce_isolation[i]);
1535 			if (i < (adev->xcp_mgr->num_xcps - 1))
1536 				size += sysfs_emit_at(buf, size, " ");
1537 		}
1538 		buf[size++] = '\n';
1539 	} else {
1540 		size = sysfs_emit_at(buf, 0, "%u\n", adev->enforce_isolation[0]);
1541 	}
1542 
1543 	return size;
1544 }
1545 
1546 static ssize_t amdgpu_gfx_set_enforce_isolation(struct device *dev,
1547 						struct device_attribute *attr,
1548 						const char *buf, size_t count)
1549 {
1550 	struct drm_device *ddev = dev_get_drvdata(dev);
1551 	struct amdgpu_device *adev = drm_to_adev(ddev);
1552 	long partition_values[MAX_XCP] = {0};
1553 	int ret, i, num_partitions;
1554 	const char *input_buf = buf;
1555 
1556 	for (i = 0; i < (adev->xcp_mgr ? adev->xcp_mgr->num_xcps : 1); i++) {
1557 		ret = sscanf(input_buf, "%ld", &partition_values[i]);
1558 		if (ret <= 0)
1559 			break;
1560 
1561 		/* Move the pointer to the next value in the string */
1562 		input_buf = strchr(input_buf, ' ');
1563 		if (input_buf) {
1564 			input_buf++;
1565 		} else {
1566 			i++;
1567 			break;
1568 		}
1569 	}
1570 	num_partitions = i;
1571 
1572 	if (adev->xcp_mgr && num_partitions != adev->xcp_mgr->num_xcps)
1573 		return -EINVAL;
1574 
1575 	if (!adev->xcp_mgr && num_partitions != 1)
1576 		return -EINVAL;
1577 
1578 	for (i = 0; i < num_partitions; i++) {
1579 		if (partition_values[i] != 0 && partition_values[i] != 1)
1580 			return -EINVAL;
1581 	}
1582 
1583 	mutex_lock(&adev->enforce_isolation_mutex);
1584 
1585 	for (i = 0; i < num_partitions; i++) {
1586 		if (adev->enforce_isolation[i] && !partition_values[i]) {
1587 			/* Going from enabled to disabled */
1588 			amdgpu_vmid_free_reserved(adev, AMDGPU_GFXHUB(i));
1589 		} else if (!adev->enforce_isolation[i] && partition_values[i]) {
1590 			/* Going from disabled to enabled */
1591 			amdgpu_vmid_alloc_reserved(adev, AMDGPU_GFXHUB(i));
1592 		}
1593 		adev->enforce_isolation[i] = partition_values[i];
1594 	}
1595 
1596 	mutex_unlock(&adev->enforce_isolation_mutex);
1597 
1598 	return count;
1599 }
1600 
1601 static DEVICE_ATTR(run_cleaner_shader, 0200,
1602 		   NULL, amdgpu_gfx_set_run_cleaner_shader);
1603 
1604 static DEVICE_ATTR(enforce_isolation, 0644,
1605 		   amdgpu_gfx_get_enforce_isolation,
1606 		   amdgpu_gfx_set_enforce_isolation);
1607 
1608 static DEVICE_ATTR(current_compute_partition, 0644,
1609 		   amdgpu_gfx_get_current_compute_partition,
1610 		   amdgpu_gfx_set_compute_partition);
1611 
1612 static DEVICE_ATTR(available_compute_partition, 0444,
1613 		   amdgpu_gfx_get_available_compute_partition, NULL);
1614 
1615 int amdgpu_gfx_sysfs_init(struct amdgpu_device *adev)
1616 {
1617 	int r;
1618 
1619 	r = device_create_file(adev->dev, &dev_attr_current_compute_partition);
1620 	if (r)
1621 		return r;
1622 
1623 	r = device_create_file(adev->dev, &dev_attr_available_compute_partition);
1624 
1625 	return r;
1626 }
1627 
1628 void amdgpu_gfx_sysfs_fini(struct amdgpu_device *adev)
1629 {
1630 	device_remove_file(adev->dev, &dev_attr_current_compute_partition);
1631 	device_remove_file(adev->dev, &dev_attr_available_compute_partition);
1632 }
1633 
1634 int amdgpu_gfx_sysfs_isolation_shader_init(struct amdgpu_device *adev)
1635 {
1636 	int r;
1637 
1638 	if (!amdgpu_sriov_vf(adev)) {
1639 		r = device_create_file(adev->dev, &dev_attr_enforce_isolation);
1640 		if (r)
1641 			return r;
1642 	}
1643 
1644 	r = device_create_file(adev->dev, &dev_attr_run_cleaner_shader);
1645 	if (r)
1646 		return r;
1647 
1648 	return 0;
1649 }
1650 
1651 void amdgpu_gfx_sysfs_isolation_shader_fini(struct amdgpu_device *adev)
1652 {
1653 	if (!amdgpu_sriov_vf(adev))
1654 		device_remove_file(adev->dev, &dev_attr_enforce_isolation);
1655 	device_remove_file(adev->dev, &dev_attr_run_cleaner_shader);
1656 }
1657 
1658 int amdgpu_gfx_cleaner_shader_sw_init(struct amdgpu_device *adev,
1659 				      unsigned int cleaner_shader_size)
1660 {
1661 	if (!adev->gfx.enable_cleaner_shader)
1662 		return -EOPNOTSUPP;
1663 
1664 	return amdgpu_bo_create_kernel(adev, cleaner_shader_size, PAGE_SIZE,
1665 				       AMDGPU_GEM_DOMAIN_VRAM | AMDGPU_GEM_DOMAIN_GTT,
1666 				       &adev->gfx.cleaner_shader_obj,
1667 				       &adev->gfx.cleaner_shader_gpu_addr,
1668 				       (void **)&adev->gfx.cleaner_shader_cpu_ptr);
1669 }
1670 
1671 void amdgpu_gfx_cleaner_shader_sw_fini(struct amdgpu_device *adev)
1672 {
1673 	if (!adev->gfx.enable_cleaner_shader)
1674 		return;
1675 
1676 	amdgpu_bo_free_kernel(&adev->gfx.cleaner_shader_obj,
1677 			      &adev->gfx.cleaner_shader_gpu_addr,
1678 			      (void **)&adev->gfx.cleaner_shader_cpu_ptr);
1679 }
1680 
1681 void amdgpu_gfx_cleaner_shader_init(struct amdgpu_device *adev,
1682 				    unsigned int cleaner_shader_size,
1683 				    const void *cleaner_shader_ptr)
1684 {
1685 	if (!adev->gfx.enable_cleaner_shader)
1686 		return;
1687 
1688 	if (adev->gfx.cleaner_shader_cpu_ptr && cleaner_shader_ptr)
1689 		memcpy_toio(adev->gfx.cleaner_shader_cpu_ptr, cleaner_shader_ptr,
1690 			    cleaner_shader_size);
1691 }
1692 
1693 /**
1694  * amdgpu_gfx_kfd_sch_ctrl - Control the KFD scheduler from the KGD (Graphics Driver)
1695  * @adev: amdgpu_device pointer
1696  * @idx: Index of the scheduler to control
1697  * @enable: Whether to enable or disable the KFD scheduler
1698  *
1699  * This function is used to control the KFD (Kernel Fusion Driver) scheduler
1700  * from the KGD. It is part of the cleaner shader feature. This function plays
1701  * a key role in enforcing process isolation on the GPU.
1702  *
1703  * The function uses a reference count mechanism (kfd_sch_req_count) to keep
1704  * track of the number of requests to enable the KFD scheduler. When a request
1705  * to enable the KFD scheduler is made, the reference count is decremented.
1706  * When the reference count reaches zero, a delayed work is scheduled to
1707  * enforce isolation after a delay of GFX_SLICE_PERIOD.
1708  *
1709  * When a request to disable the KFD scheduler is made, the function first
1710  * checks if the reference count is zero. If it is, it cancels the delayed work
1711  * for enforcing isolation and checks if the KFD scheduler is active. If the
1712  * KFD scheduler is active, it sends a request to stop the KFD scheduler and
1713  * sets the KFD scheduler state to inactive. Then, it increments the reference
1714  * count.
1715  *
1716  * The function is synchronized using the kfd_sch_mutex to ensure that the KFD
1717  * scheduler state and reference count are updated atomically.
1718  *
1719  * Note: If the reference count is already zero when a request to enable the
1720  * KFD scheduler is made, it means there's an imbalance bug somewhere. The
1721  * function triggers a warning in this case.
1722  */
1723 static void amdgpu_gfx_kfd_sch_ctrl(struct amdgpu_device *adev, u32 idx,
1724 				    bool enable)
1725 {
1726 	mutex_lock(&adev->gfx.kfd_sch_mutex);
1727 
1728 	if (enable) {
1729 		/* If the count is already 0, it means there's an imbalance bug somewhere.
1730 		 * Note that the bug may be in a different caller than the one which triggers the
1731 		 * WARN_ON_ONCE.
1732 		 */
1733 		if (WARN_ON_ONCE(adev->gfx.kfd_sch_req_count[idx] == 0)) {
1734 			dev_err(adev->dev, "Attempted to enable KFD scheduler when reference count is already zero\n");
1735 			goto unlock;
1736 		}
1737 
1738 		adev->gfx.kfd_sch_req_count[idx]--;
1739 
1740 		if (adev->gfx.kfd_sch_req_count[idx] == 0 &&
1741 		    adev->gfx.kfd_sch_inactive[idx]) {
1742 			schedule_delayed_work(&adev->gfx.enforce_isolation[idx].work,
1743 					      GFX_SLICE_PERIOD);
1744 		}
1745 	} else {
1746 		if (adev->gfx.kfd_sch_req_count[idx] == 0) {
1747 			cancel_delayed_work_sync(&adev->gfx.enforce_isolation[idx].work);
1748 			if (!adev->gfx.kfd_sch_inactive[idx]) {
1749 				amdgpu_amdkfd_stop_sched(adev, idx);
1750 				adev->gfx.kfd_sch_inactive[idx] = true;
1751 			}
1752 		}
1753 
1754 		adev->gfx.kfd_sch_req_count[idx]++;
1755 	}
1756 
1757 unlock:
1758 	mutex_unlock(&adev->gfx.kfd_sch_mutex);
1759 }
1760 
1761 /**
1762  * amdgpu_gfx_enforce_isolation_handler - work handler for enforcing shader isolation
1763  *
1764  * @work: work_struct.
1765  *
1766  * This function is the work handler for enforcing shader isolation on AMD GPUs.
1767  * It counts the number of emitted fences for each GFX and compute ring. If there
1768  * are any fences, it schedules the `enforce_isolation_work` to be run after a
1769  * delay of `GFX_SLICE_PERIOD`. If there are no fences, it signals the Kernel Fusion
1770  * Driver (KFD) to resume the runqueue. The function is synchronized using the
1771  * `enforce_isolation_mutex`.
1772  */
1773 void amdgpu_gfx_enforce_isolation_handler(struct work_struct *work)
1774 {
1775 	struct amdgpu_isolation_work *isolation_work =
1776 		container_of(work, struct amdgpu_isolation_work, work.work);
1777 	struct amdgpu_device *adev = isolation_work->adev;
1778 	u32 i, idx, fences = 0;
1779 
1780 	if (isolation_work->xcp_id == AMDGPU_XCP_NO_PARTITION)
1781 		idx = 0;
1782 	else
1783 		idx = isolation_work->xcp_id;
1784 
1785 	if (idx >= MAX_XCP)
1786 		return;
1787 
1788 	mutex_lock(&adev->enforce_isolation_mutex);
1789 	for (i = 0; i < AMDGPU_MAX_GFX_RINGS; ++i) {
1790 		if (isolation_work->xcp_id == adev->gfx.gfx_ring[i].xcp_id)
1791 			fences += amdgpu_fence_count_emitted(&adev->gfx.gfx_ring[i]);
1792 	}
1793 	for (i = 0; i < (AMDGPU_MAX_COMPUTE_RINGS * AMDGPU_MAX_GC_INSTANCES); ++i) {
1794 		if (isolation_work->xcp_id == adev->gfx.compute_ring[i].xcp_id)
1795 			fences += amdgpu_fence_count_emitted(&adev->gfx.compute_ring[i]);
1796 	}
1797 	if (fences) {
1798 		schedule_delayed_work(&adev->gfx.enforce_isolation[idx].work,
1799 				      GFX_SLICE_PERIOD);
1800 	} else {
1801 		/* Tell KFD to resume the runqueue */
1802 		if (adev->kfd.init_complete) {
1803 			WARN_ON_ONCE(!adev->gfx.kfd_sch_inactive[idx]);
1804 			WARN_ON_ONCE(adev->gfx.kfd_sch_req_count[idx]);
1805 				amdgpu_amdkfd_start_sched(adev, idx);
1806 				adev->gfx.kfd_sch_inactive[idx] = false;
1807 		}
1808 	}
1809 	mutex_unlock(&adev->enforce_isolation_mutex);
1810 }
1811 
1812 void amdgpu_gfx_enforce_isolation_ring_begin_use(struct amdgpu_ring *ring)
1813 {
1814 	struct amdgpu_device *adev = ring->adev;
1815 	u32 idx;
1816 
1817 	if (!adev->gfx.enable_cleaner_shader)
1818 		return;
1819 
1820 	if (ring->xcp_id == AMDGPU_XCP_NO_PARTITION)
1821 		idx = 0;
1822 	else
1823 		idx = ring->xcp_id;
1824 
1825 	if (idx >= MAX_XCP)
1826 		return;
1827 
1828 	mutex_lock(&adev->enforce_isolation_mutex);
1829 	if (adev->enforce_isolation[idx]) {
1830 		if (adev->kfd.init_complete)
1831 			amdgpu_gfx_kfd_sch_ctrl(adev, idx, false);
1832 	}
1833 	mutex_unlock(&adev->enforce_isolation_mutex);
1834 }
1835 
1836 void amdgpu_gfx_enforce_isolation_ring_end_use(struct amdgpu_ring *ring)
1837 {
1838 	struct amdgpu_device *adev = ring->adev;
1839 	u32 idx;
1840 
1841 	if (!adev->gfx.enable_cleaner_shader)
1842 		return;
1843 
1844 	if (ring->xcp_id == AMDGPU_XCP_NO_PARTITION)
1845 		idx = 0;
1846 	else
1847 		idx = ring->xcp_id;
1848 
1849 	if (idx >= MAX_XCP)
1850 		return;
1851 
1852 	mutex_lock(&adev->enforce_isolation_mutex);
1853 	if (adev->enforce_isolation[idx]) {
1854 		if (adev->kfd.init_complete)
1855 			amdgpu_gfx_kfd_sch_ctrl(adev, idx, true);
1856 	}
1857 	mutex_unlock(&adev->enforce_isolation_mutex);
1858 }
1859