1 /* 2 * Copyright 2014 Advanced Micro Devices, Inc. 3 * Copyright 2008 Red Hat Inc. 4 * Copyright 2009 Jerome Glisse. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 * 24 */ 25 26 #include <linux/firmware.h> 27 #include "amdgpu.h" 28 #include "amdgpu_gfx.h" 29 #include "amdgpu_rlc.h" 30 #include "amdgpu_ras.h" 31 #include "amdgpu_xcp.h" 32 #include "amdgpu_xgmi.h" 33 34 /* delay 0.1 second to enable gfx off feature */ 35 #define GFX_OFF_DELAY_ENABLE msecs_to_jiffies(100) 36 37 #define GFX_OFF_NO_DELAY 0 38 39 /* 40 * GPU GFX IP block helpers function. 41 */ 42 43 int amdgpu_gfx_mec_queue_to_bit(struct amdgpu_device *adev, int mec, 44 int pipe, int queue) 45 { 46 int bit = 0; 47 48 bit += mec * adev->gfx.mec.num_pipe_per_mec 49 * adev->gfx.mec.num_queue_per_pipe; 50 bit += pipe * adev->gfx.mec.num_queue_per_pipe; 51 bit += queue; 52 53 return bit; 54 } 55 56 void amdgpu_queue_mask_bit_to_mec_queue(struct amdgpu_device *adev, int bit, 57 int *mec, int *pipe, int *queue) 58 { 59 *queue = bit % adev->gfx.mec.num_queue_per_pipe; 60 *pipe = (bit / adev->gfx.mec.num_queue_per_pipe) 61 % adev->gfx.mec.num_pipe_per_mec; 62 *mec = (bit / adev->gfx.mec.num_queue_per_pipe) 63 / adev->gfx.mec.num_pipe_per_mec; 64 65 } 66 67 bool amdgpu_gfx_is_mec_queue_enabled(struct amdgpu_device *adev, 68 int xcc_id, int mec, int pipe, int queue) 69 { 70 return test_bit(amdgpu_gfx_mec_queue_to_bit(adev, mec, pipe, queue), 71 adev->gfx.mec_bitmap[xcc_id].queue_bitmap); 72 } 73 74 int amdgpu_gfx_me_queue_to_bit(struct amdgpu_device *adev, 75 int me, int pipe, int queue) 76 { 77 int bit = 0; 78 79 bit += me * adev->gfx.me.num_pipe_per_me 80 * adev->gfx.me.num_queue_per_pipe; 81 bit += pipe * adev->gfx.me.num_queue_per_pipe; 82 bit += queue; 83 84 return bit; 85 } 86 87 void amdgpu_gfx_bit_to_me_queue(struct amdgpu_device *adev, int bit, 88 int *me, int *pipe, int *queue) 89 { 90 *queue = bit % adev->gfx.me.num_queue_per_pipe; 91 *pipe = (bit / adev->gfx.me.num_queue_per_pipe) 92 % adev->gfx.me.num_pipe_per_me; 93 *me = (bit / adev->gfx.me.num_queue_per_pipe) 94 / adev->gfx.me.num_pipe_per_me; 95 } 96 97 bool amdgpu_gfx_is_me_queue_enabled(struct amdgpu_device *adev, 98 int me, int pipe, int queue) 99 { 100 return test_bit(amdgpu_gfx_me_queue_to_bit(adev, me, pipe, queue), 101 adev->gfx.me.queue_bitmap); 102 } 103 104 /** 105 * amdgpu_gfx_parse_disable_cu - Parse the disable_cu module parameter 106 * 107 * @mask: array in which the per-shader array disable masks will be stored 108 * @max_se: number of SEs 109 * @max_sh: number of SHs 110 * 111 * The bitmask of CUs to be disabled in the shader array determined by se and 112 * sh is stored in mask[se * max_sh + sh]. 113 */ 114 void amdgpu_gfx_parse_disable_cu(unsigned int *mask, unsigned int max_se, unsigned int max_sh) 115 { 116 unsigned int se, sh, cu; 117 const char *p; 118 119 memset(mask, 0, sizeof(*mask) * max_se * max_sh); 120 121 if (!amdgpu_disable_cu || !*amdgpu_disable_cu) 122 return; 123 124 p = amdgpu_disable_cu; 125 for (;;) { 126 char *next; 127 int ret = sscanf(p, "%u.%u.%u", &se, &sh, &cu); 128 129 if (ret < 3) { 130 DRM_ERROR("amdgpu: could not parse disable_cu\n"); 131 return; 132 } 133 134 if (se < max_se && sh < max_sh && cu < 16) { 135 DRM_INFO("amdgpu: disabling CU %u.%u.%u\n", se, sh, cu); 136 mask[se * max_sh + sh] |= 1u << cu; 137 } else { 138 DRM_ERROR("amdgpu: disable_cu %u.%u.%u is out of range\n", 139 se, sh, cu); 140 } 141 142 next = strchr(p, ','); 143 if (!next) 144 break; 145 p = next + 1; 146 } 147 } 148 149 static bool amdgpu_gfx_is_graphics_multipipe_capable(struct amdgpu_device *adev) 150 { 151 return amdgpu_async_gfx_ring && adev->gfx.me.num_pipe_per_me > 1; 152 } 153 154 static bool amdgpu_gfx_is_compute_multipipe_capable(struct amdgpu_device *adev) 155 { 156 if (amdgpu_compute_multipipe != -1) { 157 DRM_INFO("amdgpu: forcing compute pipe policy %d\n", 158 amdgpu_compute_multipipe); 159 return amdgpu_compute_multipipe == 1; 160 } 161 162 if (amdgpu_ip_version(adev, GC_HWIP, 0) > IP_VERSION(9, 0, 0)) 163 return true; 164 165 /* FIXME: spreading the queues across pipes causes perf regressions 166 * on POLARIS11 compute workloads */ 167 if (adev->asic_type == CHIP_POLARIS11) 168 return false; 169 170 return adev->gfx.mec.num_mec > 1; 171 } 172 173 bool amdgpu_gfx_is_high_priority_graphics_queue(struct amdgpu_device *adev, 174 struct amdgpu_ring *ring) 175 { 176 int queue = ring->queue; 177 int pipe = ring->pipe; 178 179 /* Policy: use pipe1 queue0 as high priority graphics queue if we 180 * have more than one gfx pipe. 181 */ 182 if (amdgpu_gfx_is_graphics_multipipe_capable(adev) && 183 adev->gfx.num_gfx_rings > 1 && pipe == 1 && queue == 0) { 184 int me = ring->me; 185 int bit; 186 187 bit = amdgpu_gfx_me_queue_to_bit(adev, me, pipe, queue); 188 if (ring == &adev->gfx.gfx_ring[bit]) 189 return true; 190 } 191 192 return false; 193 } 194 195 bool amdgpu_gfx_is_high_priority_compute_queue(struct amdgpu_device *adev, 196 struct amdgpu_ring *ring) 197 { 198 /* Policy: use 1st queue as high priority compute queue if we 199 * have more than one compute queue. 200 */ 201 if (adev->gfx.num_compute_rings > 1 && 202 ring == &adev->gfx.compute_ring[0]) 203 return true; 204 205 return false; 206 } 207 208 void amdgpu_gfx_compute_queue_acquire(struct amdgpu_device *adev) 209 { 210 int i, j, queue, pipe; 211 bool multipipe_policy = amdgpu_gfx_is_compute_multipipe_capable(adev); 212 int max_queues_per_mec = min(adev->gfx.mec.num_pipe_per_mec * 213 adev->gfx.mec.num_queue_per_pipe, 214 adev->gfx.num_compute_rings); 215 int num_xcc = adev->gfx.xcc_mask ? NUM_XCC(adev->gfx.xcc_mask) : 1; 216 217 if (multipipe_policy) { 218 /* policy: make queues evenly cross all pipes on MEC1 only 219 * for multiple xcc, just use the original policy for simplicity */ 220 for (j = 0; j < num_xcc; j++) { 221 for (i = 0; i < max_queues_per_mec; i++) { 222 pipe = i % adev->gfx.mec.num_pipe_per_mec; 223 queue = (i / adev->gfx.mec.num_pipe_per_mec) % 224 adev->gfx.mec.num_queue_per_pipe; 225 226 set_bit(pipe * adev->gfx.mec.num_queue_per_pipe + queue, 227 adev->gfx.mec_bitmap[j].queue_bitmap); 228 } 229 } 230 } else { 231 /* policy: amdgpu owns all queues in the given pipe */ 232 for (j = 0; j < num_xcc; j++) { 233 for (i = 0; i < max_queues_per_mec; ++i) 234 set_bit(i, adev->gfx.mec_bitmap[j].queue_bitmap); 235 } 236 } 237 238 for (j = 0; j < num_xcc; j++) { 239 dev_dbg(adev->dev, "mec queue bitmap weight=%d\n", 240 bitmap_weight(adev->gfx.mec_bitmap[j].queue_bitmap, AMDGPU_MAX_COMPUTE_QUEUES)); 241 } 242 } 243 244 void amdgpu_gfx_graphics_queue_acquire(struct amdgpu_device *adev) 245 { 246 int i, queue, pipe; 247 bool multipipe_policy = amdgpu_gfx_is_graphics_multipipe_capable(adev); 248 int max_queues_per_me = adev->gfx.me.num_pipe_per_me * 249 adev->gfx.me.num_queue_per_pipe; 250 251 if (multipipe_policy) { 252 /* policy: amdgpu owns the first queue per pipe at this stage 253 * will extend to mulitple queues per pipe later */ 254 for (i = 0; i < max_queues_per_me; i++) { 255 pipe = i % adev->gfx.me.num_pipe_per_me; 256 queue = (i / adev->gfx.me.num_pipe_per_me) % 257 adev->gfx.me.num_queue_per_pipe; 258 259 set_bit(pipe * adev->gfx.me.num_queue_per_pipe + queue, 260 adev->gfx.me.queue_bitmap); 261 } 262 } else { 263 for (i = 0; i < max_queues_per_me; ++i) 264 set_bit(i, adev->gfx.me.queue_bitmap); 265 } 266 267 /* update the number of active graphics rings */ 268 adev->gfx.num_gfx_rings = 269 bitmap_weight(adev->gfx.me.queue_bitmap, AMDGPU_MAX_GFX_QUEUES); 270 } 271 272 static int amdgpu_gfx_kiq_acquire(struct amdgpu_device *adev, 273 struct amdgpu_ring *ring, int xcc_id) 274 { 275 int queue_bit; 276 int mec, pipe, queue; 277 278 queue_bit = adev->gfx.mec.num_mec 279 * adev->gfx.mec.num_pipe_per_mec 280 * adev->gfx.mec.num_queue_per_pipe; 281 282 while (--queue_bit >= 0) { 283 if (test_bit(queue_bit, adev->gfx.mec_bitmap[xcc_id].queue_bitmap)) 284 continue; 285 286 amdgpu_queue_mask_bit_to_mec_queue(adev, queue_bit, &mec, &pipe, &queue); 287 288 /* 289 * 1. Using pipes 2/3 from MEC 2 seems cause problems. 290 * 2. It must use queue id 0, because CGPG_IDLE/SAVE/LOAD/RUN 291 * only can be issued on queue 0. 292 */ 293 if ((mec == 1 && pipe > 1) || queue != 0) 294 continue; 295 296 ring->me = mec + 1; 297 ring->pipe = pipe; 298 ring->queue = queue; 299 300 return 0; 301 } 302 303 dev_err(adev->dev, "Failed to find a queue for KIQ\n"); 304 return -EINVAL; 305 } 306 307 int amdgpu_gfx_kiq_init_ring(struct amdgpu_device *adev, 308 struct amdgpu_ring *ring, 309 struct amdgpu_irq_src *irq, int xcc_id) 310 { 311 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 312 int r = 0; 313 314 spin_lock_init(&kiq->ring_lock); 315 316 ring->adev = NULL; 317 ring->ring_obj = NULL; 318 ring->use_doorbell = true; 319 ring->xcc_id = xcc_id; 320 ring->vm_hub = AMDGPU_GFXHUB(xcc_id); 321 ring->doorbell_index = 322 (adev->doorbell_index.kiq + 323 xcc_id * adev->doorbell_index.xcc_doorbell_range) 324 << 1; 325 326 r = amdgpu_gfx_kiq_acquire(adev, ring, xcc_id); 327 if (r) 328 return r; 329 330 ring->eop_gpu_addr = kiq->eop_gpu_addr; 331 ring->no_scheduler = true; 332 sprintf(ring->name, "kiq_%d.%d.%d.%d", xcc_id, ring->me, ring->pipe, ring->queue); 333 r = amdgpu_ring_init(adev, ring, 1024, irq, AMDGPU_CP_KIQ_IRQ_DRIVER0, 334 AMDGPU_RING_PRIO_DEFAULT, NULL); 335 if (r) 336 dev_warn(adev->dev, "(%d) failed to init kiq ring\n", r); 337 338 return r; 339 } 340 341 void amdgpu_gfx_kiq_free_ring(struct amdgpu_ring *ring) 342 { 343 amdgpu_ring_fini(ring); 344 } 345 346 void amdgpu_gfx_kiq_fini(struct amdgpu_device *adev, int xcc_id) 347 { 348 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 349 350 amdgpu_bo_free_kernel(&kiq->eop_obj, &kiq->eop_gpu_addr, NULL); 351 } 352 353 int amdgpu_gfx_kiq_init(struct amdgpu_device *adev, 354 unsigned int hpd_size, int xcc_id) 355 { 356 int r; 357 u32 *hpd; 358 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 359 360 r = amdgpu_bo_create_kernel(adev, hpd_size, PAGE_SIZE, 361 AMDGPU_GEM_DOMAIN_GTT, &kiq->eop_obj, 362 &kiq->eop_gpu_addr, (void **)&hpd); 363 if (r) { 364 dev_warn(adev->dev, "failed to create KIQ bo (%d).\n", r); 365 return r; 366 } 367 368 memset(hpd, 0, hpd_size); 369 370 r = amdgpu_bo_reserve(kiq->eop_obj, true); 371 if (unlikely(r != 0)) 372 dev_warn(adev->dev, "(%d) reserve kiq eop bo failed\n", r); 373 amdgpu_bo_kunmap(kiq->eop_obj); 374 amdgpu_bo_unreserve(kiq->eop_obj); 375 376 return 0; 377 } 378 379 /* create MQD for each compute/gfx queue */ 380 int amdgpu_gfx_mqd_sw_init(struct amdgpu_device *adev, 381 unsigned int mqd_size, int xcc_id) 382 { 383 int r, i, j; 384 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 385 struct amdgpu_ring *ring = &kiq->ring; 386 u32 domain = AMDGPU_GEM_DOMAIN_GTT; 387 388 #if !defined(CONFIG_ARM) && !defined(CONFIG_ARM64) 389 /* Only enable on gfx10 and 11 for now to avoid changing behavior on older chips */ 390 if (amdgpu_ip_version(adev, GC_HWIP, 0) >= IP_VERSION(10, 0, 0)) 391 domain |= AMDGPU_GEM_DOMAIN_VRAM; 392 #endif 393 394 /* create MQD for KIQ */ 395 if (!adev->enable_mes_kiq && !ring->mqd_obj) { 396 /* originaly the KIQ MQD is put in GTT domain, but for SRIOV VRAM domain is a must 397 * otherwise hypervisor trigger SAVE_VF fail after driver unloaded which mean MQD 398 * deallocated and gart_unbind, to strict diverage we decide to use VRAM domain for 399 * KIQ MQD no matter SRIOV or Bare-metal 400 */ 401 r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE, 402 AMDGPU_GEM_DOMAIN_VRAM | 403 AMDGPU_GEM_DOMAIN_GTT, 404 &ring->mqd_obj, 405 &ring->mqd_gpu_addr, 406 &ring->mqd_ptr); 407 if (r) { 408 dev_warn(adev->dev, "failed to create ring mqd ob (%d)", r); 409 return r; 410 } 411 412 /* prepare MQD backup */ 413 kiq->mqd_backup = kmalloc(mqd_size, GFP_KERNEL); 414 if (!kiq->mqd_backup) { 415 dev_warn(adev->dev, 416 "no memory to create MQD backup for ring %s\n", ring->name); 417 return -ENOMEM; 418 } 419 } 420 421 if (adev->asic_type >= CHIP_NAVI10 && amdgpu_async_gfx_ring) { 422 /* create MQD for each KGQ */ 423 for (i = 0; i < adev->gfx.num_gfx_rings; i++) { 424 ring = &adev->gfx.gfx_ring[i]; 425 if (!ring->mqd_obj) { 426 r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE, 427 domain, &ring->mqd_obj, 428 &ring->mqd_gpu_addr, &ring->mqd_ptr); 429 if (r) { 430 dev_warn(adev->dev, "failed to create ring mqd bo (%d)", r); 431 return r; 432 } 433 434 ring->mqd_size = mqd_size; 435 /* prepare MQD backup */ 436 adev->gfx.me.mqd_backup[i] = kmalloc(mqd_size, GFP_KERNEL); 437 if (!adev->gfx.me.mqd_backup[i]) { 438 dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name); 439 return -ENOMEM; 440 } 441 } 442 } 443 } 444 445 /* create MQD for each KCQ */ 446 for (i = 0; i < adev->gfx.num_compute_rings; i++) { 447 j = i + xcc_id * adev->gfx.num_compute_rings; 448 ring = &adev->gfx.compute_ring[j]; 449 if (!ring->mqd_obj) { 450 r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE, 451 domain, &ring->mqd_obj, 452 &ring->mqd_gpu_addr, &ring->mqd_ptr); 453 if (r) { 454 dev_warn(adev->dev, "failed to create ring mqd bo (%d)", r); 455 return r; 456 } 457 458 ring->mqd_size = mqd_size; 459 /* prepare MQD backup */ 460 adev->gfx.mec.mqd_backup[j] = kmalloc(mqd_size, GFP_KERNEL); 461 if (!adev->gfx.mec.mqd_backup[j]) { 462 dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name); 463 return -ENOMEM; 464 } 465 } 466 } 467 468 return 0; 469 } 470 471 void amdgpu_gfx_mqd_sw_fini(struct amdgpu_device *adev, int xcc_id) 472 { 473 struct amdgpu_ring *ring = NULL; 474 int i, j; 475 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 476 477 if (adev->asic_type >= CHIP_NAVI10 && amdgpu_async_gfx_ring) { 478 for (i = 0; i < adev->gfx.num_gfx_rings; i++) { 479 ring = &adev->gfx.gfx_ring[i]; 480 kfree(adev->gfx.me.mqd_backup[i]); 481 amdgpu_bo_free_kernel(&ring->mqd_obj, 482 &ring->mqd_gpu_addr, 483 &ring->mqd_ptr); 484 } 485 } 486 487 for (i = 0; i < adev->gfx.num_compute_rings; i++) { 488 j = i + xcc_id * adev->gfx.num_compute_rings; 489 ring = &adev->gfx.compute_ring[j]; 490 kfree(adev->gfx.mec.mqd_backup[j]); 491 amdgpu_bo_free_kernel(&ring->mqd_obj, 492 &ring->mqd_gpu_addr, 493 &ring->mqd_ptr); 494 } 495 496 ring = &kiq->ring; 497 kfree(kiq->mqd_backup); 498 amdgpu_bo_free_kernel(&ring->mqd_obj, 499 &ring->mqd_gpu_addr, 500 &ring->mqd_ptr); 501 } 502 503 int amdgpu_gfx_disable_kcq(struct amdgpu_device *adev, int xcc_id) 504 { 505 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 506 struct amdgpu_ring *kiq_ring = &kiq->ring; 507 struct amdgpu_hive_info *hive; 508 struct amdgpu_ras *ras; 509 int hive_ras_recovery = 0; 510 int i, r = 0; 511 int j; 512 513 if (!kiq->pmf || !kiq->pmf->kiq_unmap_queues) 514 return -EINVAL; 515 516 spin_lock(&kiq->ring_lock); 517 if (amdgpu_ring_alloc(kiq_ring, kiq->pmf->unmap_queues_size * 518 adev->gfx.num_compute_rings)) { 519 spin_unlock(&kiq->ring_lock); 520 return -ENOMEM; 521 } 522 523 for (i = 0; i < adev->gfx.num_compute_rings; i++) { 524 j = i + xcc_id * adev->gfx.num_compute_rings; 525 kiq->pmf->kiq_unmap_queues(kiq_ring, 526 &adev->gfx.compute_ring[j], 527 RESET_QUEUES, 0, 0); 528 } 529 530 /** 531 * This is workaround: only skip kiq_ring test 532 * during ras recovery in suspend stage for gfx9.4.3 533 */ 534 hive = amdgpu_get_xgmi_hive(adev); 535 if (hive) { 536 hive_ras_recovery = atomic_read(&hive->ras_recovery); 537 amdgpu_put_xgmi_hive(hive); 538 } 539 540 ras = amdgpu_ras_get_context(adev); 541 if ((amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 3)) && 542 ras && (atomic_read(&ras->in_recovery) || hive_ras_recovery)) { 543 spin_unlock(&kiq->ring_lock); 544 return 0; 545 } 546 547 if (kiq_ring->sched.ready && !adev->job_hang) 548 r = amdgpu_ring_test_helper(kiq_ring); 549 spin_unlock(&kiq->ring_lock); 550 551 return r; 552 } 553 554 int amdgpu_gfx_disable_kgq(struct amdgpu_device *adev, int xcc_id) 555 { 556 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 557 struct amdgpu_ring *kiq_ring = &kiq->ring; 558 int i, r = 0; 559 int j; 560 561 if (!kiq->pmf || !kiq->pmf->kiq_unmap_queues) 562 return -EINVAL; 563 564 spin_lock(&kiq->ring_lock); 565 if (amdgpu_gfx_is_master_xcc(adev, xcc_id)) { 566 if (amdgpu_ring_alloc(kiq_ring, kiq->pmf->unmap_queues_size * 567 adev->gfx.num_gfx_rings)) { 568 spin_unlock(&kiq->ring_lock); 569 return -ENOMEM; 570 } 571 572 for (i = 0; i < adev->gfx.num_gfx_rings; i++) { 573 j = i + xcc_id * adev->gfx.num_gfx_rings; 574 kiq->pmf->kiq_unmap_queues(kiq_ring, 575 &adev->gfx.gfx_ring[j], 576 PREEMPT_QUEUES, 0, 0); 577 } 578 } 579 580 if (adev->gfx.kiq[0].ring.sched.ready && !adev->job_hang) 581 r = amdgpu_ring_test_helper(kiq_ring); 582 spin_unlock(&kiq->ring_lock); 583 584 return r; 585 } 586 587 int amdgpu_queue_mask_bit_to_set_resource_bit(struct amdgpu_device *adev, 588 int queue_bit) 589 { 590 int mec, pipe, queue; 591 int set_resource_bit = 0; 592 593 amdgpu_queue_mask_bit_to_mec_queue(adev, queue_bit, &mec, &pipe, &queue); 594 595 set_resource_bit = mec * 4 * 8 + pipe * 8 + queue; 596 597 return set_resource_bit; 598 } 599 600 int amdgpu_gfx_enable_kcq(struct amdgpu_device *adev, int xcc_id) 601 { 602 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 603 struct amdgpu_ring *kiq_ring = &kiq->ring; 604 uint64_t queue_mask = 0; 605 int r, i, j; 606 607 if (!kiq->pmf || !kiq->pmf->kiq_map_queues || !kiq->pmf->kiq_set_resources) 608 return -EINVAL; 609 610 for (i = 0; i < AMDGPU_MAX_COMPUTE_QUEUES; ++i) { 611 if (!test_bit(i, adev->gfx.mec_bitmap[xcc_id].queue_bitmap)) 612 continue; 613 614 /* This situation may be hit in the future if a new HW 615 * generation exposes more than 64 queues. If so, the 616 * definition of queue_mask needs updating */ 617 if (WARN_ON(i > (sizeof(queue_mask)*8))) { 618 DRM_ERROR("Invalid KCQ enabled: %d\n", i); 619 break; 620 } 621 622 queue_mask |= (1ull << amdgpu_queue_mask_bit_to_set_resource_bit(adev, i)); 623 } 624 625 DRM_INFO("kiq ring mec %d pipe %d q %d\n", kiq_ring->me, kiq_ring->pipe, 626 kiq_ring->queue); 627 amdgpu_device_flush_hdp(adev, NULL); 628 629 spin_lock(&kiq->ring_lock); 630 r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->map_queues_size * 631 adev->gfx.num_compute_rings + 632 kiq->pmf->set_resources_size); 633 if (r) { 634 DRM_ERROR("Failed to lock KIQ (%d).\n", r); 635 spin_unlock(&kiq->ring_lock); 636 return r; 637 } 638 639 if (adev->enable_mes) 640 queue_mask = ~0ULL; 641 642 kiq->pmf->kiq_set_resources(kiq_ring, queue_mask); 643 for (i = 0; i < adev->gfx.num_compute_rings; i++) { 644 j = i + xcc_id * adev->gfx.num_compute_rings; 645 kiq->pmf->kiq_map_queues(kiq_ring, 646 &adev->gfx.compute_ring[j]); 647 } 648 649 r = amdgpu_ring_test_helper(kiq_ring); 650 spin_unlock(&kiq->ring_lock); 651 if (r) 652 DRM_ERROR("KCQ enable failed\n"); 653 654 return r; 655 } 656 657 int amdgpu_gfx_enable_kgq(struct amdgpu_device *adev, int xcc_id) 658 { 659 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 660 struct amdgpu_ring *kiq_ring = &kiq->ring; 661 int r, i, j; 662 663 if (!kiq->pmf || !kiq->pmf->kiq_map_queues) 664 return -EINVAL; 665 666 amdgpu_device_flush_hdp(adev, NULL); 667 668 spin_lock(&kiq->ring_lock); 669 /* No need to map kcq on the slave */ 670 if (amdgpu_gfx_is_master_xcc(adev, xcc_id)) { 671 r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->map_queues_size * 672 adev->gfx.num_gfx_rings); 673 if (r) { 674 DRM_ERROR("Failed to lock KIQ (%d).\n", r); 675 spin_unlock(&kiq->ring_lock); 676 return r; 677 } 678 679 for (i = 0; i < adev->gfx.num_gfx_rings; i++) { 680 j = i + xcc_id * adev->gfx.num_gfx_rings; 681 kiq->pmf->kiq_map_queues(kiq_ring, 682 &adev->gfx.gfx_ring[j]); 683 } 684 } 685 686 r = amdgpu_ring_test_helper(kiq_ring); 687 spin_unlock(&kiq->ring_lock); 688 if (r) 689 DRM_ERROR("KCQ enable failed\n"); 690 691 return r; 692 } 693 694 /* amdgpu_gfx_off_ctrl - Handle gfx off feature enable/disable 695 * 696 * @adev: amdgpu_device pointer 697 * @bool enable true: enable gfx off feature, false: disable gfx off feature 698 * 699 * 1. gfx off feature will be enabled by gfx ip after gfx cg gp enabled. 700 * 2. other client can send request to disable gfx off feature, the request should be honored. 701 * 3. other client can cancel their request of disable gfx off feature 702 * 4. other client should not send request to enable gfx off feature before disable gfx off feature. 703 */ 704 705 void amdgpu_gfx_off_ctrl(struct amdgpu_device *adev, bool enable) 706 { 707 unsigned long delay = GFX_OFF_DELAY_ENABLE; 708 709 if (!(adev->pm.pp_feature & PP_GFXOFF_MASK)) 710 return; 711 712 mutex_lock(&adev->gfx.gfx_off_mutex); 713 714 if (enable) { 715 /* If the count is already 0, it means there's an imbalance bug somewhere. 716 * Note that the bug may be in a different caller than the one which triggers the 717 * WARN_ON_ONCE. 718 */ 719 if (WARN_ON_ONCE(adev->gfx.gfx_off_req_count == 0)) 720 goto unlock; 721 722 adev->gfx.gfx_off_req_count--; 723 724 if (adev->gfx.gfx_off_req_count == 0 && 725 !adev->gfx.gfx_off_state) { 726 /* If going to s2idle, no need to wait */ 727 if (adev->in_s0ix) { 728 if (!amdgpu_dpm_set_powergating_by_smu(adev, 729 AMD_IP_BLOCK_TYPE_GFX, true)) 730 adev->gfx.gfx_off_state = true; 731 } else { 732 schedule_delayed_work(&adev->gfx.gfx_off_delay_work, 733 delay); 734 } 735 } 736 } else { 737 if (adev->gfx.gfx_off_req_count == 0) { 738 cancel_delayed_work_sync(&adev->gfx.gfx_off_delay_work); 739 740 if (adev->gfx.gfx_off_state && 741 !amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_GFX, false)) { 742 adev->gfx.gfx_off_state = false; 743 744 if (adev->gfx.funcs->init_spm_golden) { 745 dev_dbg(adev->dev, 746 "GFXOFF is disabled, re-init SPM golden settings\n"); 747 amdgpu_gfx_init_spm_golden(adev); 748 } 749 } 750 } 751 752 adev->gfx.gfx_off_req_count++; 753 } 754 755 unlock: 756 mutex_unlock(&adev->gfx.gfx_off_mutex); 757 } 758 759 int amdgpu_set_gfx_off_residency(struct amdgpu_device *adev, bool value) 760 { 761 int r = 0; 762 763 mutex_lock(&adev->gfx.gfx_off_mutex); 764 765 r = amdgpu_dpm_set_residency_gfxoff(adev, value); 766 767 mutex_unlock(&adev->gfx.gfx_off_mutex); 768 769 return r; 770 } 771 772 int amdgpu_get_gfx_off_residency(struct amdgpu_device *adev, u32 *value) 773 { 774 int r = 0; 775 776 mutex_lock(&adev->gfx.gfx_off_mutex); 777 778 r = amdgpu_dpm_get_residency_gfxoff(adev, value); 779 780 mutex_unlock(&adev->gfx.gfx_off_mutex); 781 782 return r; 783 } 784 785 int amdgpu_get_gfx_off_entrycount(struct amdgpu_device *adev, u64 *value) 786 { 787 int r = 0; 788 789 mutex_lock(&adev->gfx.gfx_off_mutex); 790 791 r = amdgpu_dpm_get_entrycount_gfxoff(adev, value); 792 793 mutex_unlock(&adev->gfx.gfx_off_mutex); 794 795 return r; 796 } 797 798 int amdgpu_get_gfx_off_status(struct amdgpu_device *adev, uint32_t *value) 799 { 800 801 int r = 0; 802 803 mutex_lock(&adev->gfx.gfx_off_mutex); 804 805 r = amdgpu_dpm_get_status_gfxoff(adev, value); 806 807 mutex_unlock(&adev->gfx.gfx_off_mutex); 808 809 return r; 810 } 811 812 int amdgpu_gfx_ras_late_init(struct amdgpu_device *adev, struct ras_common_if *ras_block) 813 { 814 int r; 815 816 if (amdgpu_ras_is_supported(adev, ras_block->block)) { 817 if (!amdgpu_persistent_edc_harvesting_supported(adev)) 818 amdgpu_ras_reset_error_status(adev, AMDGPU_RAS_BLOCK__GFX); 819 820 r = amdgpu_ras_block_late_init(adev, ras_block); 821 if (r) 822 return r; 823 824 if (adev->gfx.cp_ecc_error_irq.funcs) { 825 r = amdgpu_irq_get(adev, &adev->gfx.cp_ecc_error_irq, 0); 826 if (r) 827 goto late_fini; 828 } 829 } else { 830 amdgpu_ras_feature_enable_on_boot(adev, ras_block, 0); 831 } 832 833 return 0; 834 late_fini: 835 amdgpu_ras_block_late_fini(adev, ras_block); 836 return r; 837 } 838 839 int amdgpu_gfx_ras_sw_init(struct amdgpu_device *adev) 840 { 841 int err = 0; 842 struct amdgpu_gfx_ras *ras = NULL; 843 844 /* adev->gfx.ras is NULL, which means gfx does not 845 * support ras function, then do nothing here. 846 */ 847 if (!adev->gfx.ras) 848 return 0; 849 850 ras = adev->gfx.ras; 851 852 err = amdgpu_ras_register_ras_block(adev, &ras->ras_block); 853 if (err) { 854 dev_err(adev->dev, "Failed to register gfx ras block!\n"); 855 return err; 856 } 857 858 strcpy(ras->ras_block.ras_comm.name, "gfx"); 859 ras->ras_block.ras_comm.block = AMDGPU_RAS_BLOCK__GFX; 860 ras->ras_block.ras_comm.type = AMDGPU_RAS_ERROR__MULTI_UNCORRECTABLE; 861 adev->gfx.ras_if = &ras->ras_block.ras_comm; 862 863 /* If not define special ras_late_init function, use gfx default ras_late_init */ 864 if (!ras->ras_block.ras_late_init) 865 ras->ras_block.ras_late_init = amdgpu_gfx_ras_late_init; 866 867 /* If not defined special ras_cb function, use default ras_cb */ 868 if (!ras->ras_block.ras_cb) 869 ras->ras_block.ras_cb = amdgpu_gfx_process_ras_data_cb; 870 871 return 0; 872 } 873 874 int amdgpu_gfx_poison_consumption_handler(struct amdgpu_device *adev, 875 struct amdgpu_iv_entry *entry) 876 { 877 if (adev->gfx.ras && adev->gfx.ras->poison_consumption_handler) 878 return adev->gfx.ras->poison_consumption_handler(adev, entry); 879 880 return 0; 881 } 882 883 int amdgpu_gfx_process_ras_data_cb(struct amdgpu_device *adev, 884 void *err_data, 885 struct amdgpu_iv_entry *entry) 886 { 887 /* TODO ue will trigger an interrupt. 888 * 889 * When “Full RAS” is enabled, the per-IP interrupt sources should 890 * be disabled and the driver should only look for the aggregated 891 * interrupt via sync flood 892 */ 893 if (!amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__GFX)) { 894 kgd2kfd_set_sram_ecc_flag(adev->kfd.dev); 895 if (adev->gfx.ras && adev->gfx.ras->ras_block.hw_ops && 896 adev->gfx.ras->ras_block.hw_ops->query_ras_error_count) 897 adev->gfx.ras->ras_block.hw_ops->query_ras_error_count(adev, err_data); 898 amdgpu_ras_reset_gpu(adev); 899 } 900 return AMDGPU_RAS_SUCCESS; 901 } 902 903 int amdgpu_gfx_cp_ecc_error_irq(struct amdgpu_device *adev, 904 struct amdgpu_irq_src *source, 905 struct amdgpu_iv_entry *entry) 906 { 907 struct ras_common_if *ras_if = adev->gfx.ras_if; 908 struct ras_dispatch_if ih_data = { 909 .entry = entry, 910 }; 911 912 if (!ras_if) 913 return 0; 914 915 ih_data.head = *ras_if; 916 917 DRM_ERROR("CP ECC ERROR IRQ\n"); 918 amdgpu_ras_interrupt_dispatch(adev, &ih_data); 919 return 0; 920 } 921 922 void amdgpu_gfx_ras_error_func(struct amdgpu_device *adev, 923 void *ras_error_status, 924 void (*func)(struct amdgpu_device *adev, void *ras_error_status, 925 int xcc_id)) 926 { 927 int i; 928 int num_xcc = adev->gfx.xcc_mask ? NUM_XCC(adev->gfx.xcc_mask) : 1; 929 uint32_t xcc_mask = GENMASK(num_xcc - 1, 0); 930 struct ras_err_data *err_data = (struct ras_err_data *)ras_error_status; 931 932 if (err_data) { 933 err_data->ue_count = 0; 934 err_data->ce_count = 0; 935 } 936 937 for_each_inst(i, xcc_mask) 938 func(adev, ras_error_status, i); 939 } 940 941 uint32_t amdgpu_kiq_rreg(struct amdgpu_device *adev, uint32_t reg, uint32_t xcc_id) 942 { 943 signed long r, cnt = 0; 944 unsigned long flags; 945 uint32_t seq, reg_val_offs = 0, value = 0; 946 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 947 struct amdgpu_ring *ring = &kiq->ring; 948 949 if (amdgpu_device_skip_hw_access(adev)) 950 return 0; 951 952 if (adev->mes.ring.sched.ready) 953 return amdgpu_mes_rreg(adev, reg); 954 955 BUG_ON(!ring->funcs->emit_rreg); 956 957 spin_lock_irqsave(&kiq->ring_lock, flags); 958 if (amdgpu_device_wb_get(adev, ®_val_offs)) { 959 pr_err("critical bug! too many kiq readers\n"); 960 goto failed_unlock; 961 } 962 amdgpu_ring_alloc(ring, 32); 963 amdgpu_ring_emit_rreg(ring, reg, reg_val_offs); 964 r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT); 965 if (r) 966 goto failed_undo; 967 968 amdgpu_ring_commit(ring); 969 spin_unlock_irqrestore(&kiq->ring_lock, flags); 970 971 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); 972 973 /* don't wait anymore for gpu reset case because this way may 974 * block gpu_recover() routine forever, e.g. this virt_kiq_rreg 975 * is triggered in TTM and ttm_bo_lock_delayed_workqueue() will 976 * never return if we keep waiting in virt_kiq_rreg, which cause 977 * gpu_recover() hang there. 978 * 979 * also don't wait anymore for IRQ context 980 * */ 981 if (r < 1 && (amdgpu_in_reset(adev) || in_interrupt())) 982 goto failed_kiq_read; 983 984 might_sleep(); 985 while (r < 1 && cnt++ < MAX_KIQ_REG_TRY) { 986 msleep(MAX_KIQ_REG_BAILOUT_INTERVAL); 987 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); 988 } 989 990 if (cnt > MAX_KIQ_REG_TRY) 991 goto failed_kiq_read; 992 993 mb(); 994 value = adev->wb.wb[reg_val_offs]; 995 amdgpu_device_wb_free(adev, reg_val_offs); 996 return value; 997 998 failed_undo: 999 amdgpu_ring_undo(ring); 1000 failed_unlock: 1001 spin_unlock_irqrestore(&kiq->ring_lock, flags); 1002 failed_kiq_read: 1003 if (reg_val_offs) 1004 amdgpu_device_wb_free(adev, reg_val_offs); 1005 dev_err(adev->dev, "failed to read reg:%x\n", reg); 1006 return ~0; 1007 } 1008 1009 void amdgpu_kiq_wreg(struct amdgpu_device *adev, uint32_t reg, uint32_t v, uint32_t xcc_id) 1010 { 1011 signed long r, cnt = 0; 1012 unsigned long flags; 1013 uint32_t seq; 1014 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 1015 struct amdgpu_ring *ring = &kiq->ring; 1016 1017 BUG_ON(!ring->funcs->emit_wreg); 1018 1019 if (amdgpu_device_skip_hw_access(adev)) 1020 return; 1021 1022 if (adev->mes.ring.sched.ready) { 1023 amdgpu_mes_wreg(adev, reg, v); 1024 return; 1025 } 1026 1027 spin_lock_irqsave(&kiq->ring_lock, flags); 1028 amdgpu_ring_alloc(ring, 32); 1029 amdgpu_ring_emit_wreg(ring, reg, v); 1030 r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT); 1031 if (r) 1032 goto failed_undo; 1033 1034 amdgpu_ring_commit(ring); 1035 spin_unlock_irqrestore(&kiq->ring_lock, flags); 1036 1037 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); 1038 1039 /* don't wait anymore for gpu reset case because this way may 1040 * block gpu_recover() routine forever, e.g. this virt_kiq_rreg 1041 * is triggered in TTM and ttm_bo_lock_delayed_workqueue() will 1042 * never return if we keep waiting in virt_kiq_rreg, which cause 1043 * gpu_recover() hang there. 1044 * 1045 * also don't wait anymore for IRQ context 1046 * */ 1047 if (r < 1 && (amdgpu_in_reset(adev) || in_interrupt())) 1048 goto failed_kiq_write; 1049 1050 might_sleep(); 1051 while (r < 1 && cnt++ < MAX_KIQ_REG_TRY) { 1052 1053 msleep(MAX_KIQ_REG_BAILOUT_INTERVAL); 1054 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); 1055 } 1056 1057 if (cnt > MAX_KIQ_REG_TRY) 1058 goto failed_kiq_write; 1059 1060 return; 1061 1062 failed_undo: 1063 amdgpu_ring_undo(ring); 1064 spin_unlock_irqrestore(&kiq->ring_lock, flags); 1065 failed_kiq_write: 1066 dev_err(adev->dev, "failed to write reg:%x\n", reg); 1067 } 1068 1069 int amdgpu_gfx_get_num_kcq(struct amdgpu_device *adev) 1070 { 1071 if (amdgpu_num_kcq == -1) { 1072 return 8; 1073 } else if (amdgpu_num_kcq > 8 || amdgpu_num_kcq < 0) { 1074 dev_warn(adev->dev, "set kernel compute queue number to 8 due to invalid parameter provided by user\n"); 1075 return 8; 1076 } 1077 return amdgpu_num_kcq; 1078 } 1079 1080 void amdgpu_gfx_cp_init_microcode(struct amdgpu_device *adev, 1081 uint32_t ucode_id) 1082 { 1083 const struct gfx_firmware_header_v1_0 *cp_hdr; 1084 const struct gfx_firmware_header_v2_0 *cp_hdr_v2_0; 1085 struct amdgpu_firmware_info *info = NULL; 1086 const struct firmware *ucode_fw; 1087 unsigned int fw_size; 1088 1089 switch (ucode_id) { 1090 case AMDGPU_UCODE_ID_CP_PFP: 1091 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1092 adev->gfx.pfp_fw->data; 1093 adev->gfx.pfp_fw_version = 1094 le32_to_cpu(cp_hdr->header.ucode_version); 1095 adev->gfx.pfp_feature_version = 1096 le32_to_cpu(cp_hdr->ucode_feature_version); 1097 ucode_fw = adev->gfx.pfp_fw; 1098 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes); 1099 break; 1100 case AMDGPU_UCODE_ID_CP_RS64_PFP: 1101 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) 1102 adev->gfx.pfp_fw->data; 1103 adev->gfx.pfp_fw_version = 1104 le32_to_cpu(cp_hdr_v2_0->header.ucode_version); 1105 adev->gfx.pfp_feature_version = 1106 le32_to_cpu(cp_hdr_v2_0->ucode_feature_version); 1107 ucode_fw = adev->gfx.pfp_fw; 1108 fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes); 1109 break; 1110 case AMDGPU_UCODE_ID_CP_RS64_PFP_P0_STACK: 1111 case AMDGPU_UCODE_ID_CP_RS64_PFP_P1_STACK: 1112 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) 1113 adev->gfx.pfp_fw->data; 1114 ucode_fw = adev->gfx.pfp_fw; 1115 fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes); 1116 break; 1117 case AMDGPU_UCODE_ID_CP_ME: 1118 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1119 adev->gfx.me_fw->data; 1120 adev->gfx.me_fw_version = 1121 le32_to_cpu(cp_hdr->header.ucode_version); 1122 adev->gfx.me_feature_version = 1123 le32_to_cpu(cp_hdr->ucode_feature_version); 1124 ucode_fw = adev->gfx.me_fw; 1125 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes); 1126 break; 1127 case AMDGPU_UCODE_ID_CP_RS64_ME: 1128 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) 1129 adev->gfx.me_fw->data; 1130 adev->gfx.me_fw_version = 1131 le32_to_cpu(cp_hdr_v2_0->header.ucode_version); 1132 adev->gfx.me_feature_version = 1133 le32_to_cpu(cp_hdr_v2_0->ucode_feature_version); 1134 ucode_fw = adev->gfx.me_fw; 1135 fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes); 1136 break; 1137 case AMDGPU_UCODE_ID_CP_RS64_ME_P0_STACK: 1138 case AMDGPU_UCODE_ID_CP_RS64_ME_P1_STACK: 1139 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) 1140 adev->gfx.me_fw->data; 1141 ucode_fw = adev->gfx.me_fw; 1142 fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes); 1143 break; 1144 case AMDGPU_UCODE_ID_CP_CE: 1145 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1146 adev->gfx.ce_fw->data; 1147 adev->gfx.ce_fw_version = 1148 le32_to_cpu(cp_hdr->header.ucode_version); 1149 adev->gfx.ce_feature_version = 1150 le32_to_cpu(cp_hdr->ucode_feature_version); 1151 ucode_fw = adev->gfx.ce_fw; 1152 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes); 1153 break; 1154 case AMDGPU_UCODE_ID_CP_MEC1: 1155 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1156 adev->gfx.mec_fw->data; 1157 adev->gfx.mec_fw_version = 1158 le32_to_cpu(cp_hdr->header.ucode_version); 1159 adev->gfx.mec_feature_version = 1160 le32_to_cpu(cp_hdr->ucode_feature_version); 1161 ucode_fw = adev->gfx.mec_fw; 1162 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes) - 1163 le32_to_cpu(cp_hdr->jt_size) * 4; 1164 break; 1165 case AMDGPU_UCODE_ID_CP_MEC1_JT: 1166 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1167 adev->gfx.mec_fw->data; 1168 ucode_fw = adev->gfx.mec_fw; 1169 fw_size = le32_to_cpu(cp_hdr->jt_size) * 4; 1170 break; 1171 case AMDGPU_UCODE_ID_CP_MEC2: 1172 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1173 adev->gfx.mec2_fw->data; 1174 adev->gfx.mec2_fw_version = 1175 le32_to_cpu(cp_hdr->header.ucode_version); 1176 adev->gfx.mec2_feature_version = 1177 le32_to_cpu(cp_hdr->ucode_feature_version); 1178 ucode_fw = adev->gfx.mec2_fw; 1179 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes) - 1180 le32_to_cpu(cp_hdr->jt_size) * 4; 1181 break; 1182 case AMDGPU_UCODE_ID_CP_MEC2_JT: 1183 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1184 adev->gfx.mec2_fw->data; 1185 ucode_fw = adev->gfx.mec2_fw; 1186 fw_size = le32_to_cpu(cp_hdr->jt_size) * 4; 1187 break; 1188 case AMDGPU_UCODE_ID_CP_RS64_MEC: 1189 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) 1190 adev->gfx.mec_fw->data; 1191 adev->gfx.mec_fw_version = 1192 le32_to_cpu(cp_hdr_v2_0->header.ucode_version); 1193 adev->gfx.mec_feature_version = 1194 le32_to_cpu(cp_hdr_v2_0->ucode_feature_version); 1195 ucode_fw = adev->gfx.mec_fw; 1196 fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes); 1197 break; 1198 case AMDGPU_UCODE_ID_CP_RS64_MEC_P0_STACK: 1199 case AMDGPU_UCODE_ID_CP_RS64_MEC_P1_STACK: 1200 case AMDGPU_UCODE_ID_CP_RS64_MEC_P2_STACK: 1201 case AMDGPU_UCODE_ID_CP_RS64_MEC_P3_STACK: 1202 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) 1203 adev->gfx.mec_fw->data; 1204 ucode_fw = adev->gfx.mec_fw; 1205 fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes); 1206 break; 1207 default: 1208 break; 1209 } 1210 1211 if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) { 1212 info = &adev->firmware.ucode[ucode_id]; 1213 info->ucode_id = ucode_id; 1214 info->fw = ucode_fw; 1215 adev->firmware.fw_size += ALIGN(fw_size, PAGE_SIZE); 1216 } 1217 } 1218 1219 bool amdgpu_gfx_is_master_xcc(struct amdgpu_device *adev, int xcc_id) 1220 { 1221 return !(xcc_id % (adev->gfx.num_xcc_per_xcp ? 1222 adev->gfx.num_xcc_per_xcp : 1)); 1223 } 1224 1225 static ssize_t amdgpu_gfx_get_current_compute_partition(struct device *dev, 1226 struct device_attribute *addr, 1227 char *buf) 1228 { 1229 struct drm_device *ddev = dev_get_drvdata(dev); 1230 struct amdgpu_device *adev = drm_to_adev(ddev); 1231 int mode; 1232 1233 mode = amdgpu_xcp_query_partition_mode(adev->xcp_mgr, 1234 AMDGPU_XCP_FL_NONE); 1235 1236 return sysfs_emit(buf, "%s\n", amdgpu_gfx_compute_mode_desc(mode)); 1237 } 1238 1239 static ssize_t amdgpu_gfx_set_compute_partition(struct device *dev, 1240 struct device_attribute *addr, 1241 const char *buf, size_t count) 1242 { 1243 struct drm_device *ddev = dev_get_drvdata(dev); 1244 struct amdgpu_device *adev = drm_to_adev(ddev); 1245 enum amdgpu_gfx_partition mode; 1246 int ret = 0, num_xcc; 1247 1248 num_xcc = NUM_XCC(adev->gfx.xcc_mask); 1249 if (num_xcc % 2 != 0) 1250 return -EINVAL; 1251 1252 if (!strncasecmp("SPX", buf, strlen("SPX"))) { 1253 mode = AMDGPU_SPX_PARTITION_MODE; 1254 } else if (!strncasecmp("DPX", buf, strlen("DPX"))) { 1255 /* 1256 * DPX mode needs AIDs to be in multiple of 2. 1257 * Each AID connects 2 XCCs. 1258 */ 1259 if (num_xcc%4) 1260 return -EINVAL; 1261 mode = AMDGPU_DPX_PARTITION_MODE; 1262 } else if (!strncasecmp("TPX", buf, strlen("TPX"))) { 1263 if (num_xcc != 6) 1264 return -EINVAL; 1265 mode = AMDGPU_TPX_PARTITION_MODE; 1266 } else if (!strncasecmp("QPX", buf, strlen("QPX"))) { 1267 if (num_xcc != 8) 1268 return -EINVAL; 1269 mode = AMDGPU_QPX_PARTITION_MODE; 1270 } else if (!strncasecmp("CPX", buf, strlen("CPX"))) { 1271 mode = AMDGPU_CPX_PARTITION_MODE; 1272 } else { 1273 return -EINVAL; 1274 } 1275 1276 ret = amdgpu_xcp_switch_partition_mode(adev->xcp_mgr, mode); 1277 1278 if (ret) 1279 return ret; 1280 1281 return count; 1282 } 1283 1284 static ssize_t amdgpu_gfx_get_available_compute_partition(struct device *dev, 1285 struct device_attribute *addr, 1286 char *buf) 1287 { 1288 struct drm_device *ddev = dev_get_drvdata(dev); 1289 struct amdgpu_device *adev = drm_to_adev(ddev); 1290 char *supported_partition; 1291 1292 /* TBD */ 1293 switch (NUM_XCC(adev->gfx.xcc_mask)) { 1294 case 8: 1295 supported_partition = "SPX, DPX, QPX, CPX"; 1296 break; 1297 case 6: 1298 supported_partition = "SPX, TPX, CPX"; 1299 break; 1300 case 4: 1301 supported_partition = "SPX, DPX, CPX"; 1302 break; 1303 /* this seems only existing in emulation phase */ 1304 case 2: 1305 supported_partition = "SPX, CPX"; 1306 break; 1307 default: 1308 supported_partition = "Not supported"; 1309 break; 1310 } 1311 1312 return sysfs_emit(buf, "%s\n", supported_partition); 1313 } 1314 1315 static DEVICE_ATTR(current_compute_partition, 0644, 1316 amdgpu_gfx_get_current_compute_partition, 1317 amdgpu_gfx_set_compute_partition); 1318 1319 static DEVICE_ATTR(available_compute_partition, 0444, 1320 amdgpu_gfx_get_available_compute_partition, NULL); 1321 1322 int amdgpu_gfx_sysfs_init(struct amdgpu_device *adev) 1323 { 1324 int r; 1325 1326 r = device_create_file(adev->dev, &dev_attr_current_compute_partition); 1327 if (r) 1328 return r; 1329 1330 r = device_create_file(adev->dev, &dev_attr_available_compute_partition); 1331 1332 return r; 1333 } 1334 1335 void amdgpu_gfx_sysfs_fini(struct amdgpu_device *adev) 1336 { 1337 device_remove_file(adev->dev, &dev_attr_current_compute_partition); 1338 device_remove_file(adev->dev, &dev_attr_available_compute_partition); 1339 } 1340