xref: /linux/drivers/gpu/drm/amd/amdgpu/amdgpu_gfx.c (revision 38077562e0594a294eaf4d8e6bbd8c1c26c2540f)
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  * Copyright 2008 Red Hat Inc.
4  * Copyright 2009 Jerome Glisse.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  *
24  */
25 
26 #include <linux/firmware.h>
27 #include <linux/pm_runtime.h>
28 
29 #include "amdgpu.h"
30 #include "amdgpu_gfx.h"
31 #include "amdgpu_rlc.h"
32 #include "amdgpu_ras.h"
33 #include "amdgpu_reset.h"
34 #include "amdgpu_xcp.h"
35 #include "amdgpu_xgmi.h"
36 
37 /* delay 0.1 second to enable gfx off feature */
38 #define GFX_OFF_DELAY_ENABLE         msecs_to_jiffies(100)
39 
40 #define GFX_OFF_NO_DELAY 0
41 
42 /*
43  * GPU GFX IP block helpers function.
44  */
45 
46 int amdgpu_gfx_mec_queue_to_bit(struct amdgpu_device *adev, int mec,
47 				int pipe, int queue)
48 {
49 	int bit = 0;
50 
51 	bit += mec * adev->gfx.mec.num_pipe_per_mec
52 		* adev->gfx.mec.num_queue_per_pipe;
53 	bit += pipe * adev->gfx.mec.num_queue_per_pipe;
54 	bit += queue;
55 
56 	return bit;
57 }
58 
59 void amdgpu_queue_mask_bit_to_mec_queue(struct amdgpu_device *adev, int bit,
60 				 int *mec, int *pipe, int *queue)
61 {
62 	*queue = bit % adev->gfx.mec.num_queue_per_pipe;
63 	*pipe = (bit / adev->gfx.mec.num_queue_per_pipe)
64 		% adev->gfx.mec.num_pipe_per_mec;
65 	*mec = (bit / adev->gfx.mec.num_queue_per_pipe)
66 	       / adev->gfx.mec.num_pipe_per_mec;
67 
68 }
69 
70 bool amdgpu_gfx_is_mec_queue_enabled(struct amdgpu_device *adev,
71 				     int xcc_id, int mec, int pipe, int queue)
72 {
73 	return test_bit(amdgpu_gfx_mec_queue_to_bit(adev, mec, pipe, queue),
74 			adev->gfx.mec_bitmap[xcc_id].queue_bitmap);
75 }
76 
77 int amdgpu_gfx_me_queue_to_bit(struct amdgpu_device *adev,
78 			       int me, int pipe, int queue)
79 {
80 	int bit = 0;
81 
82 	bit += me * adev->gfx.me.num_pipe_per_me
83 		* adev->gfx.me.num_queue_per_pipe;
84 	bit += pipe * adev->gfx.me.num_queue_per_pipe;
85 	bit += queue;
86 
87 	return bit;
88 }
89 
90 bool amdgpu_gfx_is_me_queue_enabled(struct amdgpu_device *adev,
91 				    int me, int pipe, int queue)
92 {
93 	return test_bit(amdgpu_gfx_me_queue_to_bit(adev, me, pipe, queue),
94 			adev->gfx.me.queue_bitmap);
95 }
96 
97 /**
98  * amdgpu_gfx_parse_disable_cu - Parse the disable_cu module parameter
99  *
100  * @mask: array in which the per-shader array disable masks will be stored
101  * @max_se: number of SEs
102  * @max_sh: number of SHs
103  *
104  * The bitmask of CUs to be disabled in the shader array determined by se and
105  * sh is stored in mask[se * max_sh + sh].
106  */
107 void amdgpu_gfx_parse_disable_cu(unsigned int *mask, unsigned int max_se, unsigned int max_sh)
108 {
109 	unsigned int se, sh, cu;
110 	const char *p;
111 
112 	memset(mask, 0, sizeof(*mask) * max_se * max_sh);
113 
114 	if (!amdgpu_disable_cu || !*amdgpu_disable_cu)
115 		return;
116 
117 	p = amdgpu_disable_cu;
118 	for (;;) {
119 		char *next;
120 		int ret = sscanf(p, "%u.%u.%u", &se, &sh, &cu);
121 
122 		if (ret < 3) {
123 			DRM_ERROR("amdgpu: could not parse disable_cu\n");
124 			return;
125 		}
126 
127 		if (se < max_se && sh < max_sh && cu < 16) {
128 			DRM_INFO("amdgpu: disabling CU %u.%u.%u\n", se, sh, cu);
129 			mask[se * max_sh + sh] |= 1u << cu;
130 		} else {
131 			DRM_ERROR("amdgpu: disable_cu %u.%u.%u is out of range\n",
132 				  se, sh, cu);
133 		}
134 
135 		next = strchr(p, ',');
136 		if (!next)
137 			break;
138 		p = next + 1;
139 	}
140 }
141 
142 static bool amdgpu_gfx_is_graphics_multipipe_capable(struct amdgpu_device *adev)
143 {
144 	return amdgpu_async_gfx_ring && adev->gfx.me.num_pipe_per_me > 1;
145 }
146 
147 static bool amdgpu_gfx_is_compute_multipipe_capable(struct amdgpu_device *adev)
148 {
149 	if (amdgpu_compute_multipipe != -1) {
150 		DRM_INFO("amdgpu: forcing compute pipe policy %d\n",
151 			 amdgpu_compute_multipipe);
152 		return amdgpu_compute_multipipe == 1;
153 	}
154 
155 	if (amdgpu_ip_version(adev, GC_HWIP, 0) > IP_VERSION(9, 0, 0))
156 		return true;
157 
158 	/* FIXME: spreading the queues across pipes causes perf regressions
159 	 * on POLARIS11 compute workloads */
160 	if (adev->asic_type == CHIP_POLARIS11)
161 		return false;
162 
163 	return adev->gfx.mec.num_mec > 1;
164 }
165 
166 bool amdgpu_gfx_is_high_priority_graphics_queue(struct amdgpu_device *adev,
167 						struct amdgpu_ring *ring)
168 {
169 	int queue = ring->queue;
170 	int pipe = ring->pipe;
171 
172 	/* Policy: use pipe1 queue0 as high priority graphics queue if we
173 	 * have more than one gfx pipe.
174 	 */
175 	if (amdgpu_gfx_is_graphics_multipipe_capable(adev) &&
176 	    adev->gfx.num_gfx_rings > 1 && pipe == 1 && queue == 0) {
177 		int me = ring->me;
178 		int bit;
179 
180 		bit = amdgpu_gfx_me_queue_to_bit(adev, me, pipe, queue);
181 		if (ring == &adev->gfx.gfx_ring[bit])
182 			return true;
183 	}
184 
185 	return false;
186 }
187 
188 bool amdgpu_gfx_is_high_priority_compute_queue(struct amdgpu_device *adev,
189 					       struct amdgpu_ring *ring)
190 {
191 	/* Policy: use 1st queue as high priority compute queue if we
192 	 * have more than one compute queue.
193 	 */
194 	if (adev->gfx.num_compute_rings > 1 &&
195 	    ring == &adev->gfx.compute_ring[0])
196 		return true;
197 
198 	return false;
199 }
200 
201 void amdgpu_gfx_compute_queue_acquire(struct amdgpu_device *adev)
202 {
203 	int i, j, queue, pipe;
204 	bool multipipe_policy = amdgpu_gfx_is_compute_multipipe_capable(adev);
205 	int max_queues_per_mec = min(adev->gfx.mec.num_pipe_per_mec *
206 				     adev->gfx.mec.num_queue_per_pipe,
207 				     adev->gfx.num_compute_rings);
208 	int num_xcc = adev->gfx.xcc_mask ? NUM_XCC(adev->gfx.xcc_mask) : 1;
209 
210 	if (multipipe_policy) {
211 		/* policy: make queues evenly cross all pipes on MEC1 only
212 		 * for multiple xcc, just use the original policy for simplicity */
213 		for (j = 0; j < num_xcc; j++) {
214 			for (i = 0; i < max_queues_per_mec; i++) {
215 				pipe = i % adev->gfx.mec.num_pipe_per_mec;
216 				queue = (i / adev->gfx.mec.num_pipe_per_mec) %
217 					 adev->gfx.mec.num_queue_per_pipe;
218 
219 				set_bit(pipe * adev->gfx.mec.num_queue_per_pipe + queue,
220 					adev->gfx.mec_bitmap[j].queue_bitmap);
221 			}
222 		}
223 	} else {
224 		/* policy: amdgpu owns all queues in the given pipe */
225 		for (j = 0; j < num_xcc; j++) {
226 			for (i = 0; i < max_queues_per_mec; ++i)
227 				set_bit(i, adev->gfx.mec_bitmap[j].queue_bitmap);
228 		}
229 	}
230 
231 	for (j = 0; j < num_xcc; j++) {
232 		dev_dbg(adev->dev, "mec queue bitmap weight=%d\n",
233 			bitmap_weight(adev->gfx.mec_bitmap[j].queue_bitmap, AMDGPU_MAX_COMPUTE_QUEUES));
234 	}
235 }
236 
237 void amdgpu_gfx_graphics_queue_acquire(struct amdgpu_device *adev)
238 {
239 	int i, queue, pipe;
240 	bool multipipe_policy = amdgpu_gfx_is_graphics_multipipe_capable(adev);
241 	int max_queues_per_me = adev->gfx.me.num_pipe_per_me *
242 					adev->gfx.me.num_queue_per_pipe;
243 
244 	if (multipipe_policy) {
245 		/* policy: amdgpu owns the first queue per pipe at this stage
246 		 * will extend to mulitple queues per pipe later */
247 		for (i = 0; i < max_queues_per_me; i++) {
248 			pipe = i % adev->gfx.me.num_pipe_per_me;
249 			queue = (i / adev->gfx.me.num_pipe_per_me) %
250 				adev->gfx.me.num_queue_per_pipe;
251 
252 			set_bit(pipe * adev->gfx.me.num_queue_per_pipe + queue,
253 				adev->gfx.me.queue_bitmap);
254 		}
255 	} else {
256 		for (i = 0; i < max_queues_per_me; ++i)
257 			set_bit(i, adev->gfx.me.queue_bitmap);
258 	}
259 
260 	/* update the number of active graphics rings */
261 	adev->gfx.num_gfx_rings =
262 		bitmap_weight(adev->gfx.me.queue_bitmap, AMDGPU_MAX_GFX_QUEUES);
263 }
264 
265 static int amdgpu_gfx_kiq_acquire(struct amdgpu_device *adev,
266 				  struct amdgpu_ring *ring, int xcc_id)
267 {
268 	int queue_bit;
269 	int mec, pipe, queue;
270 
271 	queue_bit = adev->gfx.mec.num_mec
272 		    * adev->gfx.mec.num_pipe_per_mec
273 		    * adev->gfx.mec.num_queue_per_pipe;
274 
275 	while (--queue_bit >= 0) {
276 		if (test_bit(queue_bit, adev->gfx.mec_bitmap[xcc_id].queue_bitmap))
277 			continue;
278 
279 		amdgpu_queue_mask_bit_to_mec_queue(adev, queue_bit, &mec, &pipe, &queue);
280 
281 		/*
282 		 * 1. Using pipes 2/3 from MEC 2 seems cause problems.
283 		 * 2. It must use queue id 0, because CGPG_IDLE/SAVE/LOAD/RUN
284 		 * only can be issued on queue 0.
285 		 */
286 		if ((mec == 1 && pipe > 1) || queue != 0)
287 			continue;
288 
289 		ring->me = mec + 1;
290 		ring->pipe = pipe;
291 		ring->queue = queue;
292 
293 		return 0;
294 	}
295 
296 	dev_err(adev->dev, "Failed to find a queue for KIQ\n");
297 	return -EINVAL;
298 }
299 
300 int amdgpu_gfx_kiq_init_ring(struct amdgpu_device *adev, int xcc_id)
301 {
302 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
303 	struct amdgpu_irq_src *irq = &kiq->irq;
304 	struct amdgpu_ring *ring = &kiq->ring;
305 	int r = 0;
306 
307 	spin_lock_init(&kiq->ring_lock);
308 
309 	ring->adev = NULL;
310 	ring->ring_obj = NULL;
311 	ring->use_doorbell = true;
312 	ring->xcc_id = xcc_id;
313 	ring->vm_hub = AMDGPU_GFXHUB(xcc_id);
314 	ring->doorbell_index =
315 		(adev->doorbell_index.kiq +
316 		 xcc_id * adev->doorbell_index.xcc_doorbell_range)
317 		<< 1;
318 
319 	r = amdgpu_gfx_kiq_acquire(adev, ring, xcc_id);
320 	if (r)
321 		return r;
322 
323 	ring->eop_gpu_addr = kiq->eop_gpu_addr;
324 	ring->no_scheduler = true;
325 	snprintf(ring->name, sizeof(ring->name), "kiq_%hhu.%hhu.%hhu.%hhu",
326 		 (unsigned char)xcc_id, (unsigned char)ring->me,
327 		 (unsigned char)ring->pipe, (unsigned char)ring->queue);
328 	r = amdgpu_ring_init(adev, ring, 1024, irq, AMDGPU_CP_KIQ_IRQ_DRIVER0,
329 			     AMDGPU_RING_PRIO_DEFAULT, NULL);
330 	if (r)
331 		dev_warn(adev->dev, "(%d) failed to init kiq ring\n", r);
332 
333 	return r;
334 }
335 
336 void amdgpu_gfx_kiq_free_ring(struct amdgpu_ring *ring)
337 {
338 	amdgpu_ring_fini(ring);
339 }
340 
341 void amdgpu_gfx_kiq_fini(struct amdgpu_device *adev, int xcc_id)
342 {
343 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
344 
345 	amdgpu_bo_free_kernel(&kiq->eop_obj, &kiq->eop_gpu_addr, NULL);
346 }
347 
348 int amdgpu_gfx_kiq_init(struct amdgpu_device *adev,
349 			unsigned int hpd_size, int xcc_id)
350 {
351 	int r;
352 	u32 *hpd;
353 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
354 
355 	r = amdgpu_bo_create_kernel(adev, hpd_size, PAGE_SIZE,
356 				    AMDGPU_GEM_DOMAIN_GTT, &kiq->eop_obj,
357 				    &kiq->eop_gpu_addr, (void **)&hpd);
358 	if (r) {
359 		dev_warn(adev->dev, "failed to create KIQ bo (%d).\n", r);
360 		return r;
361 	}
362 
363 	memset(hpd, 0, hpd_size);
364 
365 	r = amdgpu_bo_reserve(kiq->eop_obj, true);
366 	if (unlikely(r != 0))
367 		dev_warn(adev->dev, "(%d) reserve kiq eop bo failed\n", r);
368 	amdgpu_bo_kunmap(kiq->eop_obj);
369 	amdgpu_bo_unreserve(kiq->eop_obj);
370 
371 	return 0;
372 }
373 
374 /* create MQD for each compute/gfx queue */
375 int amdgpu_gfx_mqd_sw_init(struct amdgpu_device *adev,
376 			   unsigned int mqd_size, int xcc_id)
377 {
378 	int r, i, j;
379 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
380 	struct amdgpu_ring *ring = &kiq->ring;
381 	u32 domain = AMDGPU_GEM_DOMAIN_GTT;
382 
383 #if !defined(CONFIG_ARM) && !defined(CONFIG_ARM64)
384 	/* Only enable on gfx10 and 11 for now to avoid changing behavior on older chips */
385 	if (amdgpu_ip_version(adev, GC_HWIP, 0) >= IP_VERSION(10, 0, 0))
386 		domain |= AMDGPU_GEM_DOMAIN_VRAM;
387 #endif
388 
389 	/* create MQD for KIQ */
390 	if (!adev->enable_mes_kiq && !ring->mqd_obj) {
391 		/* originaly the KIQ MQD is put in GTT domain, but for SRIOV VRAM domain is a must
392 		 * otherwise hypervisor trigger SAVE_VF fail after driver unloaded which mean MQD
393 		 * deallocated and gart_unbind, to strict diverage we decide to use VRAM domain for
394 		 * KIQ MQD no matter SRIOV or Bare-metal
395 		 */
396 		r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE,
397 					    AMDGPU_GEM_DOMAIN_VRAM |
398 					    AMDGPU_GEM_DOMAIN_GTT,
399 					    &ring->mqd_obj,
400 					    &ring->mqd_gpu_addr,
401 					    &ring->mqd_ptr);
402 		if (r) {
403 			dev_warn(adev->dev, "failed to create ring mqd ob (%d)", r);
404 			return r;
405 		}
406 
407 		/* prepare MQD backup */
408 		kiq->mqd_backup = kzalloc(mqd_size, GFP_KERNEL);
409 		if (!kiq->mqd_backup) {
410 			dev_warn(adev->dev,
411 				 "no memory to create MQD backup for ring %s\n", ring->name);
412 			return -ENOMEM;
413 		}
414 	}
415 
416 	if (adev->asic_type >= CHIP_NAVI10 && amdgpu_async_gfx_ring) {
417 		/* create MQD for each KGQ */
418 		for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
419 			ring = &adev->gfx.gfx_ring[i];
420 			if (!ring->mqd_obj) {
421 				r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE,
422 							    domain, &ring->mqd_obj,
423 							    &ring->mqd_gpu_addr, &ring->mqd_ptr);
424 				if (r) {
425 					dev_warn(adev->dev, "failed to create ring mqd bo (%d)", r);
426 					return r;
427 				}
428 
429 				ring->mqd_size = mqd_size;
430 				/* prepare MQD backup */
431 				adev->gfx.me.mqd_backup[i] = kzalloc(mqd_size, GFP_KERNEL);
432 				if (!adev->gfx.me.mqd_backup[i]) {
433 					dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name);
434 					return -ENOMEM;
435 				}
436 			}
437 		}
438 	}
439 
440 	/* create MQD for each KCQ */
441 	for (i = 0; i < adev->gfx.num_compute_rings; i++) {
442 		j = i + xcc_id * adev->gfx.num_compute_rings;
443 		ring = &adev->gfx.compute_ring[j];
444 		if (!ring->mqd_obj) {
445 			r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE,
446 						    domain, &ring->mqd_obj,
447 						    &ring->mqd_gpu_addr, &ring->mqd_ptr);
448 			if (r) {
449 				dev_warn(adev->dev, "failed to create ring mqd bo (%d)", r);
450 				return r;
451 			}
452 
453 			ring->mqd_size = mqd_size;
454 			/* prepare MQD backup */
455 			adev->gfx.mec.mqd_backup[j] = kzalloc(mqd_size, GFP_KERNEL);
456 			if (!adev->gfx.mec.mqd_backup[j]) {
457 				dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name);
458 				return -ENOMEM;
459 			}
460 		}
461 	}
462 
463 	return 0;
464 }
465 
466 void amdgpu_gfx_mqd_sw_fini(struct amdgpu_device *adev, int xcc_id)
467 {
468 	struct amdgpu_ring *ring = NULL;
469 	int i, j;
470 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
471 
472 	if (adev->asic_type >= CHIP_NAVI10 && amdgpu_async_gfx_ring) {
473 		for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
474 			ring = &adev->gfx.gfx_ring[i];
475 			kfree(adev->gfx.me.mqd_backup[i]);
476 			amdgpu_bo_free_kernel(&ring->mqd_obj,
477 					      &ring->mqd_gpu_addr,
478 					      &ring->mqd_ptr);
479 		}
480 	}
481 
482 	for (i = 0; i < adev->gfx.num_compute_rings; i++) {
483 		j = i + xcc_id * adev->gfx.num_compute_rings;
484 		ring = &adev->gfx.compute_ring[j];
485 		kfree(adev->gfx.mec.mqd_backup[j]);
486 		amdgpu_bo_free_kernel(&ring->mqd_obj,
487 				      &ring->mqd_gpu_addr,
488 				      &ring->mqd_ptr);
489 	}
490 
491 	ring = &kiq->ring;
492 	kfree(kiq->mqd_backup);
493 	amdgpu_bo_free_kernel(&ring->mqd_obj,
494 			      &ring->mqd_gpu_addr,
495 			      &ring->mqd_ptr);
496 }
497 
498 int amdgpu_gfx_disable_kcq(struct amdgpu_device *adev, int xcc_id)
499 {
500 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
501 	struct amdgpu_ring *kiq_ring = &kiq->ring;
502 	int i, r = 0;
503 	int j;
504 
505 	if (adev->enable_mes) {
506 		for (i = 0; i < adev->gfx.num_compute_rings; i++) {
507 			j = i + xcc_id * adev->gfx.num_compute_rings;
508 			amdgpu_mes_unmap_legacy_queue(adev,
509 						   &adev->gfx.compute_ring[j],
510 						   RESET_QUEUES, 0, 0);
511 		}
512 		return 0;
513 	}
514 
515 	if (!kiq->pmf || !kiq->pmf->kiq_unmap_queues)
516 		return -EINVAL;
517 
518 	spin_lock(&kiq->ring_lock);
519 	if (amdgpu_ring_alloc(kiq_ring, kiq->pmf->unmap_queues_size *
520 					adev->gfx.num_compute_rings)) {
521 		spin_unlock(&kiq->ring_lock);
522 		return -ENOMEM;
523 	}
524 
525 	for (i = 0; i < adev->gfx.num_compute_rings; i++) {
526 		j = i + xcc_id * adev->gfx.num_compute_rings;
527 		kiq->pmf->kiq_unmap_queues(kiq_ring,
528 					   &adev->gfx.compute_ring[j],
529 					   RESET_QUEUES, 0, 0);
530 	}
531 
532 	/**
533 	 * This is workaround: only skip kiq_ring test
534 	 * during ras recovery in suspend stage for gfx9.4.3
535 	 */
536 	if ((amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 3) ||
537 	    amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 4)) &&
538 	    amdgpu_ras_in_recovery(adev)) {
539 		spin_unlock(&kiq->ring_lock);
540 		return 0;
541 	}
542 
543 	if (kiq_ring->sched.ready && !adev->job_hang)
544 		r = amdgpu_ring_test_helper(kiq_ring);
545 	spin_unlock(&kiq->ring_lock);
546 
547 	return r;
548 }
549 
550 int amdgpu_gfx_disable_kgq(struct amdgpu_device *adev, int xcc_id)
551 {
552 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
553 	struct amdgpu_ring *kiq_ring = &kiq->ring;
554 	int i, r = 0;
555 	int j;
556 
557 	if (adev->enable_mes) {
558 		if (amdgpu_gfx_is_master_xcc(adev, xcc_id)) {
559 			for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
560 				j = i + xcc_id * adev->gfx.num_gfx_rings;
561 				amdgpu_mes_unmap_legacy_queue(adev,
562 						      &adev->gfx.gfx_ring[j],
563 						      PREEMPT_QUEUES, 0, 0);
564 			}
565 		}
566 		return 0;
567 	}
568 
569 	if (!kiq->pmf || !kiq->pmf->kiq_unmap_queues)
570 		return -EINVAL;
571 
572 	spin_lock(&kiq->ring_lock);
573 	if (amdgpu_gfx_is_master_xcc(adev, xcc_id)) {
574 		if (amdgpu_ring_alloc(kiq_ring, kiq->pmf->unmap_queues_size *
575 						adev->gfx.num_gfx_rings)) {
576 			spin_unlock(&kiq->ring_lock);
577 			return -ENOMEM;
578 		}
579 
580 		for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
581 			j = i + xcc_id * adev->gfx.num_gfx_rings;
582 			kiq->pmf->kiq_unmap_queues(kiq_ring,
583 						   &adev->gfx.gfx_ring[j],
584 						   PREEMPT_QUEUES, 0, 0);
585 		}
586 	}
587 
588 	if (adev->gfx.kiq[0].ring.sched.ready && !adev->job_hang)
589 		r = amdgpu_ring_test_helper(kiq_ring);
590 	spin_unlock(&kiq->ring_lock);
591 
592 	return r;
593 }
594 
595 int amdgpu_queue_mask_bit_to_set_resource_bit(struct amdgpu_device *adev,
596 					int queue_bit)
597 {
598 	int mec, pipe, queue;
599 	int set_resource_bit = 0;
600 
601 	amdgpu_queue_mask_bit_to_mec_queue(adev, queue_bit, &mec, &pipe, &queue);
602 
603 	set_resource_bit = mec * 4 * 8 + pipe * 8 + queue;
604 
605 	return set_resource_bit;
606 }
607 
608 static int amdgpu_gfx_mes_enable_kcq(struct amdgpu_device *adev, int xcc_id)
609 {
610 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
611 	struct amdgpu_ring *kiq_ring = &kiq->ring;
612 	uint64_t queue_mask = ~0ULL;
613 	int r, i, j;
614 
615 	amdgpu_device_flush_hdp(adev, NULL);
616 
617 	if (!adev->enable_uni_mes) {
618 		spin_lock(&kiq->ring_lock);
619 		r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->set_resources_size);
620 		if (r) {
621 			dev_err(adev->dev, "Failed to lock KIQ (%d).\n", r);
622 			spin_unlock(&kiq->ring_lock);
623 			return r;
624 		}
625 
626 		kiq->pmf->kiq_set_resources(kiq_ring, queue_mask);
627 		r = amdgpu_ring_test_helper(kiq_ring);
628 		spin_unlock(&kiq->ring_lock);
629 		if (r)
630 			dev_err(adev->dev, "KIQ failed to set resources\n");
631 	}
632 
633 	for (i = 0; i < adev->gfx.num_compute_rings; i++) {
634 		j = i + xcc_id * adev->gfx.num_compute_rings;
635 		r = amdgpu_mes_map_legacy_queue(adev,
636 						&adev->gfx.compute_ring[j]);
637 		if (r) {
638 			dev_err(adev->dev, "failed to map compute queue\n");
639 			return r;
640 		}
641 	}
642 
643 	return 0;
644 }
645 
646 int amdgpu_gfx_enable_kcq(struct amdgpu_device *adev, int xcc_id)
647 {
648 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
649 	struct amdgpu_ring *kiq_ring = &kiq->ring;
650 	uint64_t queue_mask = 0;
651 	int r, i, j;
652 
653 	if (adev->mes.enable_legacy_queue_map)
654 		return amdgpu_gfx_mes_enable_kcq(adev, xcc_id);
655 
656 	if (!kiq->pmf || !kiq->pmf->kiq_map_queues || !kiq->pmf->kiq_set_resources)
657 		return -EINVAL;
658 
659 	for (i = 0; i < AMDGPU_MAX_COMPUTE_QUEUES; ++i) {
660 		if (!test_bit(i, adev->gfx.mec_bitmap[xcc_id].queue_bitmap))
661 			continue;
662 
663 		/* This situation may be hit in the future if a new HW
664 		 * generation exposes more than 64 queues. If so, the
665 		 * definition of queue_mask needs updating */
666 		if (WARN_ON(i > (sizeof(queue_mask)*8))) {
667 			DRM_ERROR("Invalid KCQ enabled: %d\n", i);
668 			break;
669 		}
670 
671 		queue_mask |= (1ull << amdgpu_queue_mask_bit_to_set_resource_bit(adev, i));
672 	}
673 
674 	amdgpu_device_flush_hdp(adev, NULL);
675 
676 	DRM_INFO("kiq ring mec %d pipe %d q %d\n", kiq_ring->me, kiq_ring->pipe,
677 		 kiq_ring->queue);
678 
679 	spin_lock(&kiq->ring_lock);
680 	r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->map_queues_size *
681 					adev->gfx.num_compute_rings +
682 					kiq->pmf->set_resources_size);
683 	if (r) {
684 		DRM_ERROR("Failed to lock KIQ (%d).\n", r);
685 		spin_unlock(&kiq->ring_lock);
686 		return r;
687 	}
688 
689 	kiq->pmf->kiq_set_resources(kiq_ring, queue_mask);
690 	for (i = 0; i < adev->gfx.num_compute_rings; i++) {
691 		j = i + xcc_id * adev->gfx.num_compute_rings;
692 		kiq->pmf->kiq_map_queues(kiq_ring,
693 					 &adev->gfx.compute_ring[j]);
694 	}
695 
696 	r = amdgpu_ring_test_helper(kiq_ring);
697 	spin_unlock(&kiq->ring_lock);
698 	if (r)
699 		DRM_ERROR("KCQ enable failed\n");
700 
701 	return r;
702 }
703 
704 int amdgpu_gfx_enable_kgq(struct amdgpu_device *adev, int xcc_id)
705 {
706 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
707 	struct amdgpu_ring *kiq_ring = &kiq->ring;
708 	int r, i, j;
709 
710 	if (!kiq->pmf || !kiq->pmf->kiq_map_queues)
711 		return -EINVAL;
712 
713 	amdgpu_device_flush_hdp(adev, NULL);
714 
715 	if (adev->mes.enable_legacy_queue_map) {
716 		for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
717 			j = i + xcc_id * adev->gfx.num_gfx_rings;
718 			r = amdgpu_mes_map_legacy_queue(adev,
719 							&adev->gfx.gfx_ring[j]);
720 			if (r) {
721 				DRM_ERROR("failed to map gfx queue\n");
722 				return r;
723 			}
724 		}
725 
726 		return 0;
727 	}
728 
729 	spin_lock(&kiq->ring_lock);
730 	/* No need to map kcq on the slave */
731 	if (amdgpu_gfx_is_master_xcc(adev, xcc_id)) {
732 		r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->map_queues_size *
733 						adev->gfx.num_gfx_rings);
734 		if (r) {
735 			DRM_ERROR("Failed to lock KIQ (%d).\n", r);
736 			spin_unlock(&kiq->ring_lock);
737 			return r;
738 		}
739 
740 		for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
741 			j = i + xcc_id * adev->gfx.num_gfx_rings;
742 			kiq->pmf->kiq_map_queues(kiq_ring,
743 						 &adev->gfx.gfx_ring[j]);
744 		}
745 	}
746 
747 	r = amdgpu_ring_test_helper(kiq_ring);
748 	spin_unlock(&kiq->ring_lock);
749 	if (r)
750 		DRM_ERROR("KGQ enable failed\n");
751 
752 	return r;
753 }
754 
755 /* amdgpu_gfx_off_ctrl - Handle gfx off feature enable/disable
756  *
757  * @adev: amdgpu_device pointer
758  * @bool enable true: enable gfx off feature, false: disable gfx off feature
759  *
760  * 1. gfx off feature will be enabled by gfx ip after gfx cg gp enabled.
761  * 2. other client can send request to disable gfx off feature, the request should be honored.
762  * 3. other client can cancel their request of disable gfx off feature
763  * 4. other client should not send request to enable gfx off feature before disable gfx off feature.
764  */
765 
766 void amdgpu_gfx_off_ctrl(struct amdgpu_device *adev, bool enable)
767 {
768 	unsigned long delay = GFX_OFF_DELAY_ENABLE;
769 
770 	if (!(adev->pm.pp_feature & PP_GFXOFF_MASK))
771 		return;
772 
773 	mutex_lock(&adev->gfx.gfx_off_mutex);
774 
775 	if (enable) {
776 		/* If the count is already 0, it means there's an imbalance bug somewhere.
777 		 * Note that the bug may be in a different caller than the one which triggers the
778 		 * WARN_ON_ONCE.
779 		 */
780 		if (WARN_ON_ONCE(adev->gfx.gfx_off_req_count == 0))
781 			goto unlock;
782 
783 		adev->gfx.gfx_off_req_count--;
784 
785 		if (adev->gfx.gfx_off_req_count == 0 &&
786 		    !adev->gfx.gfx_off_state) {
787 			/* If going to s2idle, no need to wait */
788 			if (adev->in_s0ix) {
789 				if (!amdgpu_dpm_set_powergating_by_smu(adev,
790 						AMD_IP_BLOCK_TYPE_GFX, true))
791 					adev->gfx.gfx_off_state = true;
792 			} else {
793 				schedule_delayed_work(&adev->gfx.gfx_off_delay_work,
794 					      delay);
795 			}
796 		}
797 	} else {
798 		if (adev->gfx.gfx_off_req_count == 0) {
799 			cancel_delayed_work_sync(&adev->gfx.gfx_off_delay_work);
800 
801 			if (adev->gfx.gfx_off_state &&
802 			    !amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_GFX, false)) {
803 				adev->gfx.gfx_off_state = false;
804 
805 				if (adev->gfx.funcs->init_spm_golden) {
806 					dev_dbg(adev->dev,
807 						"GFXOFF is disabled, re-init SPM golden settings\n");
808 					amdgpu_gfx_init_spm_golden(adev);
809 				}
810 			}
811 		}
812 
813 		adev->gfx.gfx_off_req_count++;
814 	}
815 
816 unlock:
817 	mutex_unlock(&adev->gfx.gfx_off_mutex);
818 }
819 
820 int amdgpu_set_gfx_off_residency(struct amdgpu_device *adev, bool value)
821 {
822 	int r = 0;
823 
824 	mutex_lock(&adev->gfx.gfx_off_mutex);
825 
826 	r = amdgpu_dpm_set_residency_gfxoff(adev, value);
827 
828 	mutex_unlock(&adev->gfx.gfx_off_mutex);
829 
830 	return r;
831 }
832 
833 int amdgpu_get_gfx_off_residency(struct amdgpu_device *adev, u32 *value)
834 {
835 	int r = 0;
836 
837 	mutex_lock(&adev->gfx.gfx_off_mutex);
838 
839 	r = amdgpu_dpm_get_residency_gfxoff(adev, value);
840 
841 	mutex_unlock(&adev->gfx.gfx_off_mutex);
842 
843 	return r;
844 }
845 
846 int amdgpu_get_gfx_off_entrycount(struct amdgpu_device *adev, u64 *value)
847 {
848 	int r = 0;
849 
850 	mutex_lock(&adev->gfx.gfx_off_mutex);
851 
852 	r = amdgpu_dpm_get_entrycount_gfxoff(adev, value);
853 
854 	mutex_unlock(&adev->gfx.gfx_off_mutex);
855 
856 	return r;
857 }
858 
859 int amdgpu_get_gfx_off_status(struct amdgpu_device *adev, uint32_t *value)
860 {
861 
862 	int r = 0;
863 
864 	mutex_lock(&adev->gfx.gfx_off_mutex);
865 
866 	r = amdgpu_dpm_get_status_gfxoff(adev, value);
867 
868 	mutex_unlock(&adev->gfx.gfx_off_mutex);
869 
870 	return r;
871 }
872 
873 int amdgpu_gfx_ras_late_init(struct amdgpu_device *adev, struct ras_common_if *ras_block)
874 {
875 	int r;
876 
877 	if (amdgpu_ras_is_supported(adev, ras_block->block)) {
878 		if (!amdgpu_persistent_edc_harvesting_supported(adev)) {
879 			r = amdgpu_ras_reset_error_status(adev, AMDGPU_RAS_BLOCK__GFX);
880 			if (r)
881 				return r;
882 		}
883 
884 		r = amdgpu_ras_block_late_init(adev, ras_block);
885 		if (r)
886 			return r;
887 
888 		if (adev->gfx.cp_ecc_error_irq.funcs) {
889 			r = amdgpu_irq_get(adev, &adev->gfx.cp_ecc_error_irq, 0);
890 			if (r)
891 				goto late_fini;
892 		}
893 	} else {
894 		amdgpu_ras_feature_enable_on_boot(adev, ras_block, 0);
895 	}
896 
897 	return 0;
898 late_fini:
899 	amdgpu_ras_block_late_fini(adev, ras_block);
900 	return r;
901 }
902 
903 int amdgpu_gfx_ras_sw_init(struct amdgpu_device *adev)
904 {
905 	int err = 0;
906 	struct amdgpu_gfx_ras *ras = NULL;
907 
908 	/* adev->gfx.ras is NULL, which means gfx does not
909 	 * support ras function, then do nothing here.
910 	 */
911 	if (!adev->gfx.ras)
912 		return 0;
913 
914 	ras = adev->gfx.ras;
915 
916 	err = amdgpu_ras_register_ras_block(adev, &ras->ras_block);
917 	if (err) {
918 		dev_err(adev->dev, "Failed to register gfx ras block!\n");
919 		return err;
920 	}
921 
922 	strcpy(ras->ras_block.ras_comm.name, "gfx");
923 	ras->ras_block.ras_comm.block = AMDGPU_RAS_BLOCK__GFX;
924 	ras->ras_block.ras_comm.type = AMDGPU_RAS_ERROR__MULTI_UNCORRECTABLE;
925 	adev->gfx.ras_if = &ras->ras_block.ras_comm;
926 
927 	/* If not define special ras_late_init function, use gfx default ras_late_init */
928 	if (!ras->ras_block.ras_late_init)
929 		ras->ras_block.ras_late_init = amdgpu_gfx_ras_late_init;
930 
931 	/* If not defined special ras_cb function, use default ras_cb */
932 	if (!ras->ras_block.ras_cb)
933 		ras->ras_block.ras_cb = amdgpu_gfx_process_ras_data_cb;
934 
935 	return 0;
936 }
937 
938 int amdgpu_gfx_poison_consumption_handler(struct amdgpu_device *adev,
939 						struct amdgpu_iv_entry *entry)
940 {
941 	if (adev->gfx.ras && adev->gfx.ras->poison_consumption_handler)
942 		return adev->gfx.ras->poison_consumption_handler(adev, entry);
943 
944 	return 0;
945 }
946 
947 int amdgpu_gfx_process_ras_data_cb(struct amdgpu_device *adev,
948 		void *err_data,
949 		struct amdgpu_iv_entry *entry)
950 {
951 	/* TODO ue will trigger an interrupt.
952 	 *
953 	 * When “Full RAS” is enabled, the per-IP interrupt sources should
954 	 * be disabled and the driver should only look for the aggregated
955 	 * interrupt via sync flood
956 	 */
957 	if (!amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__GFX)) {
958 		kgd2kfd_set_sram_ecc_flag(adev->kfd.dev);
959 		if (adev->gfx.ras && adev->gfx.ras->ras_block.hw_ops &&
960 		    adev->gfx.ras->ras_block.hw_ops->query_ras_error_count)
961 			adev->gfx.ras->ras_block.hw_ops->query_ras_error_count(adev, err_data);
962 		amdgpu_ras_reset_gpu(adev);
963 	}
964 	return AMDGPU_RAS_SUCCESS;
965 }
966 
967 int amdgpu_gfx_cp_ecc_error_irq(struct amdgpu_device *adev,
968 				  struct amdgpu_irq_src *source,
969 				  struct amdgpu_iv_entry *entry)
970 {
971 	struct ras_common_if *ras_if = adev->gfx.ras_if;
972 	struct ras_dispatch_if ih_data = {
973 		.entry = entry,
974 	};
975 
976 	if (!ras_if)
977 		return 0;
978 
979 	ih_data.head = *ras_if;
980 
981 	DRM_ERROR("CP ECC ERROR IRQ\n");
982 	amdgpu_ras_interrupt_dispatch(adev, &ih_data);
983 	return 0;
984 }
985 
986 void amdgpu_gfx_ras_error_func(struct amdgpu_device *adev,
987 		void *ras_error_status,
988 		void (*func)(struct amdgpu_device *adev, void *ras_error_status,
989 				int xcc_id))
990 {
991 	int i;
992 	int num_xcc = adev->gfx.xcc_mask ? NUM_XCC(adev->gfx.xcc_mask) : 1;
993 	uint32_t xcc_mask = GENMASK(num_xcc - 1, 0);
994 	struct ras_err_data *err_data = (struct ras_err_data *)ras_error_status;
995 
996 	if (err_data) {
997 		err_data->ue_count = 0;
998 		err_data->ce_count = 0;
999 	}
1000 
1001 	for_each_inst(i, xcc_mask)
1002 		func(adev, ras_error_status, i);
1003 }
1004 
1005 uint32_t amdgpu_kiq_rreg(struct amdgpu_device *adev, uint32_t reg, uint32_t xcc_id)
1006 {
1007 	signed long r, cnt = 0;
1008 	unsigned long flags;
1009 	uint32_t seq, reg_val_offs = 0, value = 0;
1010 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
1011 	struct amdgpu_ring *ring = &kiq->ring;
1012 
1013 	if (amdgpu_device_skip_hw_access(adev))
1014 		return 0;
1015 
1016 	if (adev->mes.ring[0].sched.ready)
1017 		return amdgpu_mes_rreg(adev, reg);
1018 
1019 	BUG_ON(!ring->funcs->emit_rreg);
1020 
1021 	spin_lock_irqsave(&kiq->ring_lock, flags);
1022 	if (amdgpu_device_wb_get(adev, &reg_val_offs)) {
1023 		pr_err("critical bug! too many kiq readers\n");
1024 		goto failed_unlock;
1025 	}
1026 	r = amdgpu_ring_alloc(ring, 32);
1027 	if (r)
1028 		goto failed_unlock;
1029 
1030 	amdgpu_ring_emit_rreg(ring, reg, reg_val_offs);
1031 	r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT);
1032 	if (r)
1033 		goto failed_undo;
1034 
1035 	amdgpu_ring_commit(ring);
1036 	spin_unlock_irqrestore(&kiq->ring_lock, flags);
1037 
1038 	r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
1039 
1040 	/* don't wait anymore for gpu reset case because this way may
1041 	 * block gpu_recover() routine forever, e.g. this virt_kiq_rreg
1042 	 * is triggered in TTM and ttm_bo_lock_delayed_workqueue() will
1043 	 * never return if we keep waiting in virt_kiq_rreg, which cause
1044 	 * gpu_recover() hang there.
1045 	 *
1046 	 * also don't wait anymore for IRQ context
1047 	 * */
1048 	if (r < 1 && (amdgpu_in_reset(adev) || in_interrupt()))
1049 		goto failed_kiq_read;
1050 
1051 	might_sleep();
1052 	while (r < 1 && cnt++ < MAX_KIQ_REG_TRY) {
1053 		msleep(MAX_KIQ_REG_BAILOUT_INTERVAL);
1054 		r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
1055 	}
1056 
1057 	if (cnt > MAX_KIQ_REG_TRY)
1058 		goto failed_kiq_read;
1059 
1060 	mb();
1061 	value = adev->wb.wb[reg_val_offs];
1062 	amdgpu_device_wb_free(adev, reg_val_offs);
1063 	return value;
1064 
1065 failed_undo:
1066 	amdgpu_ring_undo(ring);
1067 failed_unlock:
1068 	spin_unlock_irqrestore(&kiq->ring_lock, flags);
1069 failed_kiq_read:
1070 	if (reg_val_offs)
1071 		amdgpu_device_wb_free(adev, reg_val_offs);
1072 	dev_err(adev->dev, "failed to read reg:%x\n", reg);
1073 	return ~0;
1074 }
1075 
1076 void amdgpu_kiq_wreg(struct amdgpu_device *adev, uint32_t reg, uint32_t v, uint32_t xcc_id)
1077 {
1078 	signed long r, cnt = 0;
1079 	unsigned long flags;
1080 	uint32_t seq;
1081 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
1082 	struct amdgpu_ring *ring = &kiq->ring;
1083 
1084 	BUG_ON(!ring->funcs->emit_wreg);
1085 
1086 	if (amdgpu_device_skip_hw_access(adev))
1087 		return;
1088 
1089 	if (adev->mes.ring[0].sched.ready) {
1090 		amdgpu_mes_wreg(adev, reg, v);
1091 		return;
1092 	}
1093 
1094 	spin_lock_irqsave(&kiq->ring_lock, flags);
1095 	r = amdgpu_ring_alloc(ring, 32);
1096 	if (r)
1097 		goto failed_unlock;
1098 
1099 	amdgpu_ring_emit_wreg(ring, reg, v);
1100 	r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT);
1101 	if (r)
1102 		goto failed_undo;
1103 
1104 	amdgpu_ring_commit(ring);
1105 	spin_unlock_irqrestore(&kiq->ring_lock, flags);
1106 
1107 	r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
1108 
1109 	/* don't wait anymore for gpu reset case because this way may
1110 	 * block gpu_recover() routine forever, e.g. this virt_kiq_rreg
1111 	 * is triggered in TTM and ttm_bo_lock_delayed_workqueue() will
1112 	 * never return if we keep waiting in virt_kiq_rreg, which cause
1113 	 * gpu_recover() hang there.
1114 	 *
1115 	 * also don't wait anymore for IRQ context
1116 	 * */
1117 	if (r < 1 && (amdgpu_in_reset(adev) || in_interrupt()))
1118 		goto failed_kiq_write;
1119 
1120 	might_sleep();
1121 	while (r < 1 && cnt++ < MAX_KIQ_REG_TRY) {
1122 
1123 		msleep(MAX_KIQ_REG_BAILOUT_INTERVAL);
1124 		r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
1125 	}
1126 
1127 	if (cnt > MAX_KIQ_REG_TRY)
1128 		goto failed_kiq_write;
1129 
1130 	return;
1131 
1132 failed_undo:
1133 	amdgpu_ring_undo(ring);
1134 failed_unlock:
1135 	spin_unlock_irqrestore(&kiq->ring_lock, flags);
1136 failed_kiq_write:
1137 	dev_err(adev->dev, "failed to write reg:%x\n", reg);
1138 }
1139 
1140 int amdgpu_gfx_get_num_kcq(struct amdgpu_device *adev)
1141 {
1142 	if (amdgpu_num_kcq == -1) {
1143 		return 8;
1144 	} else if (amdgpu_num_kcq > 8 || amdgpu_num_kcq < 0) {
1145 		dev_warn(adev->dev, "set kernel compute queue number to 8 due to invalid parameter provided by user\n");
1146 		return 8;
1147 	}
1148 	return amdgpu_num_kcq;
1149 }
1150 
1151 void amdgpu_gfx_cp_init_microcode(struct amdgpu_device *adev,
1152 				  uint32_t ucode_id)
1153 {
1154 	const struct gfx_firmware_header_v1_0 *cp_hdr;
1155 	const struct gfx_firmware_header_v2_0 *cp_hdr_v2_0;
1156 	struct amdgpu_firmware_info *info = NULL;
1157 	const struct firmware *ucode_fw;
1158 	unsigned int fw_size;
1159 
1160 	switch (ucode_id) {
1161 	case AMDGPU_UCODE_ID_CP_PFP:
1162 		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1163 			adev->gfx.pfp_fw->data;
1164 		adev->gfx.pfp_fw_version =
1165 			le32_to_cpu(cp_hdr->header.ucode_version);
1166 		adev->gfx.pfp_feature_version =
1167 			le32_to_cpu(cp_hdr->ucode_feature_version);
1168 		ucode_fw = adev->gfx.pfp_fw;
1169 		fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes);
1170 		break;
1171 	case AMDGPU_UCODE_ID_CP_RS64_PFP:
1172 		cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1173 			adev->gfx.pfp_fw->data;
1174 		adev->gfx.pfp_fw_version =
1175 			le32_to_cpu(cp_hdr_v2_0->header.ucode_version);
1176 		adev->gfx.pfp_feature_version =
1177 			le32_to_cpu(cp_hdr_v2_0->ucode_feature_version);
1178 		ucode_fw = adev->gfx.pfp_fw;
1179 		fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes);
1180 		break;
1181 	case AMDGPU_UCODE_ID_CP_RS64_PFP_P0_STACK:
1182 	case AMDGPU_UCODE_ID_CP_RS64_PFP_P1_STACK:
1183 		cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1184 			adev->gfx.pfp_fw->data;
1185 		ucode_fw = adev->gfx.pfp_fw;
1186 		fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes);
1187 		break;
1188 	case AMDGPU_UCODE_ID_CP_ME:
1189 		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1190 			adev->gfx.me_fw->data;
1191 		adev->gfx.me_fw_version =
1192 			le32_to_cpu(cp_hdr->header.ucode_version);
1193 		adev->gfx.me_feature_version =
1194 			le32_to_cpu(cp_hdr->ucode_feature_version);
1195 		ucode_fw = adev->gfx.me_fw;
1196 		fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes);
1197 		break;
1198 	case AMDGPU_UCODE_ID_CP_RS64_ME:
1199 		cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1200 			adev->gfx.me_fw->data;
1201 		adev->gfx.me_fw_version =
1202 			le32_to_cpu(cp_hdr_v2_0->header.ucode_version);
1203 		adev->gfx.me_feature_version =
1204 			le32_to_cpu(cp_hdr_v2_0->ucode_feature_version);
1205 		ucode_fw = adev->gfx.me_fw;
1206 		fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes);
1207 		break;
1208 	case AMDGPU_UCODE_ID_CP_RS64_ME_P0_STACK:
1209 	case AMDGPU_UCODE_ID_CP_RS64_ME_P1_STACK:
1210 		cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1211 			adev->gfx.me_fw->data;
1212 		ucode_fw = adev->gfx.me_fw;
1213 		fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes);
1214 		break;
1215 	case AMDGPU_UCODE_ID_CP_CE:
1216 		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1217 			adev->gfx.ce_fw->data;
1218 		adev->gfx.ce_fw_version =
1219 			le32_to_cpu(cp_hdr->header.ucode_version);
1220 		adev->gfx.ce_feature_version =
1221 			le32_to_cpu(cp_hdr->ucode_feature_version);
1222 		ucode_fw = adev->gfx.ce_fw;
1223 		fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes);
1224 		break;
1225 	case AMDGPU_UCODE_ID_CP_MEC1:
1226 		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1227 			adev->gfx.mec_fw->data;
1228 		adev->gfx.mec_fw_version =
1229 			le32_to_cpu(cp_hdr->header.ucode_version);
1230 		adev->gfx.mec_feature_version =
1231 			le32_to_cpu(cp_hdr->ucode_feature_version);
1232 		ucode_fw = adev->gfx.mec_fw;
1233 		fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes) -
1234 			  le32_to_cpu(cp_hdr->jt_size) * 4;
1235 		break;
1236 	case AMDGPU_UCODE_ID_CP_MEC1_JT:
1237 		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1238 			adev->gfx.mec_fw->data;
1239 		ucode_fw = adev->gfx.mec_fw;
1240 		fw_size = le32_to_cpu(cp_hdr->jt_size) * 4;
1241 		break;
1242 	case AMDGPU_UCODE_ID_CP_MEC2:
1243 		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1244 			adev->gfx.mec2_fw->data;
1245 		adev->gfx.mec2_fw_version =
1246 			le32_to_cpu(cp_hdr->header.ucode_version);
1247 		adev->gfx.mec2_feature_version =
1248 			le32_to_cpu(cp_hdr->ucode_feature_version);
1249 		ucode_fw = adev->gfx.mec2_fw;
1250 		fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes) -
1251 			  le32_to_cpu(cp_hdr->jt_size) * 4;
1252 		break;
1253 	case AMDGPU_UCODE_ID_CP_MEC2_JT:
1254 		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1255 			adev->gfx.mec2_fw->data;
1256 		ucode_fw = adev->gfx.mec2_fw;
1257 		fw_size = le32_to_cpu(cp_hdr->jt_size) * 4;
1258 		break;
1259 	case AMDGPU_UCODE_ID_CP_RS64_MEC:
1260 		cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1261 			adev->gfx.mec_fw->data;
1262 		adev->gfx.mec_fw_version =
1263 			le32_to_cpu(cp_hdr_v2_0->header.ucode_version);
1264 		adev->gfx.mec_feature_version =
1265 			le32_to_cpu(cp_hdr_v2_0->ucode_feature_version);
1266 		ucode_fw = adev->gfx.mec_fw;
1267 		fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes);
1268 		break;
1269 	case AMDGPU_UCODE_ID_CP_RS64_MEC_P0_STACK:
1270 	case AMDGPU_UCODE_ID_CP_RS64_MEC_P1_STACK:
1271 	case AMDGPU_UCODE_ID_CP_RS64_MEC_P2_STACK:
1272 	case AMDGPU_UCODE_ID_CP_RS64_MEC_P3_STACK:
1273 		cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1274 			adev->gfx.mec_fw->data;
1275 		ucode_fw = adev->gfx.mec_fw;
1276 		fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes);
1277 		break;
1278 	default:
1279 		dev_err(adev->dev, "Invalid ucode id %u\n", ucode_id);
1280 		return;
1281 	}
1282 
1283 	if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
1284 		info = &adev->firmware.ucode[ucode_id];
1285 		info->ucode_id = ucode_id;
1286 		info->fw = ucode_fw;
1287 		adev->firmware.fw_size += ALIGN(fw_size, PAGE_SIZE);
1288 	}
1289 }
1290 
1291 bool amdgpu_gfx_is_master_xcc(struct amdgpu_device *adev, int xcc_id)
1292 {
1293 	return !(xcc_id % (adev->gfx.num_xcc_per_xcp ?
1294 			adev->gfx.num_xcc_per_xcp : 1));
1295 }
1296 
1297 static ssize_t amdgpu_gfx_get_current_compute_partition(struct device *dev,
1298 						struct device_attribute *addr,
1299 						char *buf)
1300 {
1301 	struct drm_device *ddev = dev_get_drvdata(dev);
1302 	struct amdgpu_device *adev = drm_to_adev(ddev);
1303 	int mode;
1304 
1305 	mode = amdgpu_xcp_query_partition_mode(adev->xcp_mgr,
1306 					       AMDGPU_XCP_FL_NONE);
1307 
1308 	return sysfs_emit(buf, "%s\n", amdgpu_gfx_compute_mode_desc(mode));
1309 }
1310 
1311 static ssize_t amdgpu_gfx_set_compute_partition(struct device *dev,
1312 						struct device_attribute *addr,
1313 						const char *buf, size_t count)
1314 {
1315 	struct drm_device *ddev = dev_get_drvdata(dev);
1316 	struct amdgpu_device *adev = drm_to_adev(ddev);
1317 	enum amdgpu_gfx_partition mode;
1318 	int ret = 0, num_xcc;
1319 
1320 	num_xcc = NUM_XCC(adev->gfx.xcc_mask);
1321 	if (num_xcc % 2 != 0)
1322 		return -EINVAL;
1323 
1324 	if (!strncasecmp("SPX", buf, strlen("SPX"))) {
1325 		mode = AMDGPU_SPX_PARTITION_MODE;
1326 	} else if (!strncasecmp("DPX", buf, strlen("DPX"))) {
1327 		/*
1328 		 * DPX mode needs AIDs to be in multiple of 2.
1329 		 * Each AID connects 2 XCCs.
1330 		 */
1331 		if (num_xcc%4)
1332 			return -EINVAL;
1333 		mode = AMDGPU_DPX_PARTITION_MODE;
1334 	} else if (!strncasecmp("TPX", buf, strlen("TPX"))) {
1335 		if (num_xcc != 6)
1336 			return -EINVAL;
1337 		mode = AMDGPU_TPX_PARTITION_MODE;
1338 	} else if (!strncasecmp("QPX", buf, strlen("QPX"))) {
1339 		if (num_xcc != 8)
1340 			return -EINVAL;
1341 		mode = AMDGPU_QPX_PARTITION_MODE;
1342 	} else if (!strncasecmp("CPX", buf, strlen("CPX"))) {
1343 		mode = AMDGPU_CPX_PARTITION_MODE;
1344 	} else {
1345 		return -EINVAL;
1346 	}
1347 
1348 	ret = amdgpu_xcp_switch_partition_mode(adev->xcp_mgr, mode);
1349 
1350 	if (ret)
1351 		return ret;
1352 
1353 	return count;
1354 }
1355 
1356 static const char *xcp_desc[] = {
1357 	[AMDGPU_SPX_PARTITION_MODE] = "SPX",
1358 	[AMDGPU_DPX_PARTITION_MODE] = "DPX",
1359 	[AMDGPU_TPX_PARTITION_MODE] = "TPX",
1360 	[AMDGPU_QPX_PARTITION_MODE] = "QPX",
1361 	[AMDGPU_CPX_PARTITION_MODE] = "CPX",
1362 };
1363 
1364 static ssize_t amdgpu_gfx_get_available_compute_partition(struct device *dev,
1365 						struct device_attribute *addr,
1366 						char *buf)
1367 {
1368 	struct drm_device *ddev = dev_get_drvdata(dev);
1369 	struct amdgpu_device *adev = drm_to_adev(ddev);
1370 	struct amdgpu_xcp_mgr *xcp_mgr = adev->xcp_mgr;
1371 	int size = 0, mode;
1372 	char *sep = "";
1373 
1374 	if (!xcp_mgr || !xcp_mgr->avail_xcp_modes)
1375 		return sysfs_emit(buf, "Not supported\n");
1376 
1377 	for_each_inst(mode, xcp_mgr->avail_xcp_modes) {
1378 		size += sysfs_emit_at(buf, size, "%s%s", sep, xcp_desc[mode]);
1379 		sep = ", ";
1380 	}
1381 
1382 	size += sysfs_emit_at(buf, size, "\n");
1383 
1384 	return size;
1385 }
1386 
1387 static int amdgpu_gfx_run_cleaner_shader_job(struct amdgpu_ring *ring)
1388 {
1389 	struct amdgpu_device *adev = ring->adev;
1390 	struct drm_gpu_scheduler *sched = &ring->sched;
1391 	struct drm_sched_entity entity;
1392 	struct dma_fence *f;
1393 	struct amdgpu_job *job;
1394 	struct amdgpu_ib *ib;
1395 	int i, r;
1396 
1397 	/* Initialize the scheduler entity */
1398 	r = drm_sched_entity_init(&entity, DRM_SCHED_PRIORITY_NORMAL,
1399 				  &sched, 1, NULL);
1400 	if (r) {
1401 		dev_err(adev->dev, "Failed setting up GFX kernel entity.\n");
1402 		goto err;
1403 	}
1404 
1405 	r = amdgpu_job_alloc_with_ib(ring->adev, &entity, NULL,
1406 				     64, 0,
1407 				     &job);
1408 	if (r)
1409 		goto err;
1410 
1411 	job->enforce_isolation = true;
1412 
1413 	ib = &job->ibs[0];
1414 	for (i = 0; i <= ring->funcs->align_mask; ++i)
1415 		ib->ptr[i] = ring->funcs->nop;
1416 	ib->length_dw = ring->funcs->align_mask + 1;
1417 
1418 	f = amdgpu_job_submit(job);
1419 
1420 	r = dma_fence_wait(f, false);
1421 	if (r)
1422 		goto err;
1423 
1424 	dma_fence_put(f);
1425 
1426 	/* Clean up the scheduler entity */
1427 	drm_sched_entity_destroy(&entity);
1428 	return 0;
1429 
1430 err:
1431 	return r;
1432 }
1433 
1434 static int amdgpu_gfx_run_cleaner_shader(struct amdgpu_device *adev, int xcp_id)
1435 {
1436 	int num_xcc = NUM_XCC(adev->gfx.xcc_mask);
1437 	struct amdgpu_ring *ring;
1438 	int num_xcc_to_clear;
1439 	int i, r, xcc_id;
1440 
1441 	if (adev->gfx.num_xcc_per_xcp)
1442 		num_xcc_to_clear = adev->gfx.num_xcc_per_xcp;
1443 	else
1444 		num_xcc_to_clear = 1;
1445 
1446 	for (xcc_id = 0; xcc_id < num_xcc; xcc_id++) {
1447 		for (i = 0; i < adev->gfx.num_compute_rings; i++) {
1448 			ring = &adev->gfx.compute_ring[i + xcc_id * adev->gfx.num_compute_rings];
1449 			if ((ring->xcp_id == xcp_id) && ring->sched.ready) {
1450 				r = amdgpu_gfx_run_cleaner_shader_job(ring);
1451 				if (r)
1452 					return r;
1453 				num_xcc_to_clear--;
1454 				break;
1455 			}
1456 		}
1457 	}
1458 
1459 	if (num_xcc_to_clear)
1460 		return -ENOENT;
1461 
1462 	return 0;
1463 }
1464 
1465 static ssize_t amdgpu_gfx_set_run_cleaner_shader(struct device *dev,
1466 						 struct device_attribute *attr,
1467 						 const char *buf,
1468 						 size_t count)
1469 {
1470 	struct drm_device *ddev = dev_get_drvdata(dev);
1471 	struct amdgpu_device *adev = drm_to_adev(ddev);
1472 	int ret;
1473 	long value;
1474 
1475 	if (amdgpu_in_reset(adev))
1476 		return -EPERM;
1477 	if (adev->in_suspend && !adev->in_runpm)
1478 		return -EPERM;
1479 
1480 	ret = kstrtol(buf, 0, &value);
1481 
1482 	if (ret)
1483 		return -EINVAL;
1484 
1485 	if (value < 0)
1486 		return -EINVAL;
1487 
1488 	if (adev->xcp_mgr) {
1489 		if (value >= adev->xcp_mgr->num_xcps)
1490 			return -EINVAL;
1491 	} else {
1492 		if (value > 1)
1493 			return -EINVAL;
1494 	}
1495 
1496 	ret = pm_runtime_get_sync(ddev->dev);
1497 	if (ret < 0) {
1498 		pm_runtime_put_autosuspend(ddev->dev);
1499 		return ret;
1500 	}
1501 
1502 	ret = amdgpu_gfx_run_cleaner_shader(adev, value);
1503 
1504 	pm_runtime_mark_last_busy(ddev->dev);
1505 	pm_runtime_put_autosuspend(ddev->dev);
1506 
1507 	if (ret)
1508 		return ret;
1509 
1510 	return count;
1511 }
1512 
1513 static ssize_t amdgpu_gfx_get_enforce_isolation(struct device *dev,
1514 						struct device_attribute *attr,
1515 						char *buf)
1516 {
1517 	struct drm_device *ddev = dev_get_drvdata(dev);
1518 	struct amdgpu_device *adev = drm_to_adev(ddev);
1519 	int i;
1520 	ssize_t size = 0;
1521 
1522 	if (adev->xcp_mgr) {
1523 		for (i = 0; i < adev->xcp_mgr->num_xcps; i++) {
1524 			size += sysfs_emit_at(buf, size, "%u", adev->enforce_isolation[i]);
1525 			if (i < (adev->xcp_mgr->num_xcps - 1))
1526 				size += sysfs_emit_at(buf, size, " ");
1527 		}
1528 		buf[size++] = '\n';
1529 	} else {
1530 		size = sysfs_emit_at(buf, 0, "%u\n", adev->enforce_isolation[0]);
1531 	}
1532 
1533 	return size;
1534 }
1535 
1536 static ssize_t amdgpu_gfx_set_enforce_isolation(struct device *dev,
1537 						struct device_attribute *attr,
1538 						const char *buf, size_t count)
1539 {
1540 	struct drm_device *ddev = dev_get_drvdata(dev);
1541 	struct amdgpu_device *adev = drm_to_adev(ddev);
1542 	long partition_values[MAX_XCP] = {0};
1543 	int ret, i, num_partitions;
1544 	const char *input_buf = buf;
1545 
1546 	for (i = 0; i < (adev->xcp_mgr ? adev->xcp_mgr->num_xcps : 1); i++) {
1547 		ret = sscanf(input_buf, "%ld", &partition_values[i]);
1548 		if (ret <= 0)
1549 			break;
1550 
1551 		/* Move the pointer to the next value in the string */
1552 		input_buf = strchr(input_buf, ' ');
1553 		if (input_buf) {
1554 			input_buf++;
1555 		} else {
1556 			i++;
1557 			break;
1558 		}
1559 	}
1560 	num_partitions = i;
1561 
1562 	if (adev->xcp_mgr && num_partitions != adev->xcp_mgr->num_xcps)
1563 		return -EINVAL;
1564 
1565 	if (!adev->xcp_mgr && num_partitions != 1)
1566 		return -EINVAL;
1567 
1568 	for (i = 0; i < num_partitions; i++) {
1569 		if (partition_values[i] != 0 && partition_values[i] != 1)
1570 			return -EINVAL;
1571 	}
1572 
1573 	mutex_lock(&adev->enforce_isolation_mutex);
1574 
1575 	for (i = 0; i < num_partitions; i++) {
1576 		if (adev->enforce_isolation[i] && !partition_values[i]) {
1577 			/* Going from enabled to disabled */
1578 			amdgpu_vmid_free_reserved(adev, AMDGPU_GFXHUB(i));
1579 		} else if (!adev->enforce_isolation[i] && partition_values[i]) {
1580 			/* Going from disabled to enabled */
1581 			amdgpu_vmid_alloc_reserved(adev, AMDGPU_GFXHUB(i));
1582 		}
1583 		adev->enforce_isolation[i] = partition_values[i];
1584 	}
1585 
1586 	mutex_unlock(&adev->enforce_isolation_mutex);
1587 
1588 	return count;
1589 }
1590 
1591 static DEVICE_ATTR(run_cleaner_shader, 0200,
1592 		   NULL, amdgpu_gfx_set_run_cleaner_shader);
1593 
1594 static DEVICE_ATTR(enforce_isolation, 0644,
1595 		   amdgpu_gfx_get_enforce_isolation,
1596 		   amdgpu_gfx_set_enforce_isolation);
1597 
1598 static DEVICE_ATTR(current_compute_partition, 0644,
1599 		   amdgpu_gfx_get_current_compute_partition,
1600 		   amdgpu_gfx_set_compute_partition);
1601 
1602 static DEVICE_ATTR(available_compute_partition, 0444,
1603 		   amdgpu_gfx_get_available_compute_partition, NULL);
1604 
1605 int amdgpu_gfx_sysfs_init(struct amdgpu_device *adev)
1606 {
1607 	struct amdgpu_xcp_mgr *xcp_mgr = adev->xcp_mgr;
1608 	bool xcp_switch_supported;
1609 	int r;
1610 
1611 	if (!xcp_mgr)
1612 		return 0;
1613 
1614 	xcp_switch_supported =
1615 		(xcp_mgr->funcs && xcp_mgr->funcs->switch_partition_mode);
1616 
1617 	if (!xcp_switch_supported)
1618 		dev_attr_current_compute_partition.attr.mode &=
1619 			~(S_IWUSR | S_IWGRP | S_IWOTH);
1620 
1621 	r = device_create_file(adev->dev, &dev_attr_current_compute_partition);
1622 	if (r)
1623 		return r;
1624 
1625 	if (xcp_switch_supported)
1626 		r = device_create_file(adev->dev,
1627 				       &dev_attr_available_compute_partition);
1628 
1629 	return r;
1630 }
1631 
1632 void amdgpu_gfx_sysfs_fini(struct amdgpu_device *adev)
1633 {
1634 	struct amdgpu_xcp_mgr *xcp_mgr = adev->xcp_mgr;
1635 	bool xcp_switch_supported;
1636 
1637 	if (!xcp_mgr)
1638 		return;
1639 
1640 	xcp_switch_supported =
1641 		(xcp_mgr->funcs && xcp_mgr->funcs->switch_partition_mode);
1642 	device_remove_file(adev->dev, &dev_attr_current_compute_partition);
1643 
1644 	if (xcp_switch_supported)
1645 		device_remove_file(adev->dev,
1646 				   &dev_attr_available_compute_partition);
1647 }
1648 
1649 int amdgpu_gfx_sysfs_isolation_shader_init(struct amdgpu_device *adev)
1650 {
1651 	int r;
1652 
1653 	r = device_create_file(adev->dev, &dev_attr_enforce_isolation);
1654 	if (r)
1655 		return r;
1656 
1657 	r = device_create_file(adev->dev, &dev_attr_run_cleaner_shader);
1658 	if (r)
1659 		return r;
1660 
1661 	return 0;
1662 }
1663 
1664 void amdgpu_gfx_sysfs_isolation_shader_fini(struct amdgpu_device *adev)
1665 {
1666 	device_remove_file(adev->dev, &dev_attr_enforce_isolation);
1667 	device_remove_file(adev->dev, &dev_attr_run_cleaner_shader);
1668 }
1669 
1670 int amdgpu_gfx_cleaner_shader_sw_init(struct amdgpu_device *adev,
1671 				      unsigned int cleaner_shader_size)
1672 {
1673 	if (!adev->gfx.enable_cleaner_shader)
1674 		return -EOPNOTSUPP;
1675 
1676 	return amdgpu_bo_create_kernel(adev, cleaner_shader_size, PAGE_SIZE,
1677 				       AMDGPU_GEM_DOMAIN_VRAM | AMDGPU_GEM_DOMAIN_GTT,
1678 				       &adev->gfx.cleaner_shader_obj,
1679 				       &adev->gfx.cleaner_shader_gpu_addr,
1680 				       (void **)&adev->gfx.cleaner_shader_cpu_ptr);
1681 }
1682 
1683 void amdgpu_gfx_cleaner_shader_sw_fini(struct amdgpu_device *adev)
1684 {
1685 	if (!adev->gfx.enable_cleaner_shader)
1686 		return;
1687 
1688 	amdgpu_bo_free_kernel(&adev->gfx.cleaner_shader_obj,
1689 			      &adev->gfx.cleaner_shader_gpu_addr,
1690 			      (void **)&adev->gfx.cleaner_shader_cpu_ptr);
1691 }
1692 
1693 void amdgpu_gfx_cleaner_shader_init(struct amdgpu_device *adev,
1694 				    unsigned int cleaner_shader_size,
1695 				    const void *cleaner_shader_ptr)
1696 {
1697 	if (!adev->gfx.enable_cleaner_shader)
1698 		return;
1699 
1700 	if (adev->gfx.cleaner_shader_cpu_ptr && cleaner_shader_ptr)
1701 		memcpy_toio(adev->gfx.cleaner_shader_cpu_ptr, cleaner_shader_ptr,
1702 			    cleaner_shader_size);
1703 }
1704 
1705 /**
1706  * amdgpu_gfx_kfd_sch_ctrl - Control the KFD scheduler from the KGD (Graphics Driver)
1707  * @adev: amdgpu_device pointer
1708  * @idx: Index of the scheduler to control
1709  * @enable: Whether to enable or disable the KFD scheduler
1710  *
1711  * This function is used to control the KFD (Kernel Fusion Driver) scheduler
1712  * from the KGD. It is part of the cleaner shader feature. This function plays
1713  * a key role in enforcing process isolation on the GPU.
1714  *
1715  * The function uses a reference count mechanism (kfd_sch_req_count) to keep
1716  * track of the number of requests to enable the KFD scheduler. When a request
1717  * to enable the KFD scheduler is made, the reference count is decremented.
1718  * When the reference count reaches zero, a delayed work is scheduled to
1719  * enforce isolation after a delay of GFX_SLICE_PERIOD.
1720  *
1721  * When a request to disable the KFD scheduler is made, the function first
1722  * checks if the reference count is zero. If it is, it cancels the delayed work
1723  * for enforcing isolation and checks if the KFD scheduler is active. If the
1724  * KFD scheduler is active, it sends a request to stop the KFD scheduler and
1725  * sets the KFD scheduler state to inactive. Then, it increments the reference
1726  * count.
1727  *
1728  * The function is synchronized using the kfd_sch_mutex to ensure that the KFD
1729  * scheduler state and reference count are updated atomically.
1730  *
1731  * Note: If the reference count is already zero when a request to enable the
1732  * KFD scheduler is made, it means there's an imbalance bug somewhere. The
1733  * function triggers a warning in this case.
1734  */
1735 static void amdgpu_gfx_kfd_sch_ctrl(struct amdgpu_device *adev, u32 idx,
1736 				    bool enable)
1737 {
1738 	mutex_lock(&adev->gfx.kfd_sch_mutex);
1739 
1740 	if (enable) {
1741 		/* If the count is already 0, it means there's an imbalance bug somewhere.
1742 		 * Note that the bug may be in a different caller than the one which triggers the
1743 		 * WARN_ON_ONCE.
1744 		 */
1745 		if (WARN_ON_ONCE(adev->gfx.kfd_sch_req_count[idx] == 0)) {
1746 			dev_err(adev->dev, "Attempted to enable KFD scheduler when reference count is already zero\n");
1747 			goto unlock;
1748 		}
1749 
1750 		adev->gfx.kfd_sch_req_count[idx]--;
1751 
1752 		if (adev->gfx.kfd_sch_req_count[idx] == 0 &&
1753 		    adev->gfx.kfd_sch_inactive[idx]) {
1754 			schedule_delayed_work(&adev->gfx.enforce_isolation[idx].work,
1755 					      msecs_to_jiffies(adev->gfx.enforce_isolation_time[idx]));
1756 		}
1757 	} else {
1758 		if (adev->gfx.kfd_sch_req_count[idx] == 0) {
1759 			cancel_delayed_work_sync(&adev->gfx.enforce_isolation[idx].work);
1760 			if (!adev->gfx.kfd_sch_inactive[idx]) {
1761 				amdgpu_amdkfd_stop_sched(adev, idx);
1762 				adev->gfx.kfd_sch_inactive[idx] = true;
1763 			}
1764 		}
1765 
1766 		adev->gfx.kfd_sch_req_count[idx]++;
1767 	}
1768 
1769 unlock:
1770 	mutex_unlock(&adev->gfx.kfd_sch_mutex);
1771 }
1772 
1773 /**
1774  * amdgpu_gfx_enforce_isolation_handler - work handler for enforcing shader isolation
1775  *
1776  * @work: work_struct.
1777  *
1778  * This function is the work handler for enforcing shader isolation on AMD GPUs.
1779  * It counts the number of emitted fences for each GFX and compute ring. If there
1780  * are any fences, it schedules the `enforce_isolation_work` to be run after a
1781  * delay of `GFX_SLICE_PERIOD`. If there are no fences, it signals the Kernel Fusion
1782  * Driver (KFD) to resume the runqueue. The function is synchronized using the
1783  * `enforce_isolation_mutex`.
1784  */
1785 void amdgpu_gfx_enforce_isolation_handler(struct work_struct *work)
1786 {
1787 	struct amdgpu_isolation_work *isolation_work =
1788 		container_of(work, struct amdgpu_isolation_work, work.work);
1789 	struct amdgpu_device *adev = isolation_work->adev;
1790 	u32 i, idx, fences = 0;
1791 
1792 	if (isolation_work->xcp_id == AMDGPU_XCP_NO_PARTITION)
1793 		idx = 0;
1794 	else
1795 		idx = isolation_work->xcp_id;
1796 
1797 	if (idx >= MAX_XCP)
1798 		return;
1799 
1800 	mutex_lock(&adev->enforce_isolation_mutex);
1801 	for (i = 0; i < AMDGPU_MAX_GFX_RINGS; ++i) {
1802 		if (isolation_work->xcp_id == adev->gfx.gfx_ring[i].xcp_id)
1803 			fences += amdgpu_fence_count_emitted(&adev->gfx.gfx_ring[i]);
1804 	}
1805 	for (i = 0; i < (AMDGPU_MAX_COMPUTE_RINGS * AMDGPU_MAX_GC_INSTANCES); ++i) {
1806 		if (isolation_work->xcp_id == adev->gfx.compute_ring[i].xcp_id)
1807 			fences += amdgpu_fence_count_emitted(&adev->gfx.compute_ring[i]);
1808 	}
1809 	if (fences) {
1810 		/* we've already had our timeslice, so let's wrap this up */
1811 		schedule_delayed_work(&adev->gfx.enforce_isolation[idx].work,
1812 				      msecs_to_jiffies(1));
1813 	} else {
1814 		/* Tell KFD to resume the runqueue */
1815 		if (adev->kfd.init_complete) {
1816 			WARN_ON_ONCE(!adev->gfx.kfd_sch_inactive[idx]);
1817 			WARN_ON_ONCE(adev->gfx.kfd_sch_req_count[idx]);
1818 				amdgpu_amdkfd_start_sched(adev, idx);
1819 				adev->gfx.kfd_sch_inactive[idx] = false;
1820 		}
1821 	}
1822 	mutex_unlock(&adev->enforce_isolation_mutex);
1823 }
1824 
1825 static void
1826 amdgpu_gfx_enforce_isolation_wait_for_kfd(struct amdgpu_device *adev,
1827 					  u32 idx)
1828 {
1829 	unsigned long cjiffies;
1830 	bool wait = false;
1831 
1832 	mutex_lock(&adev->enforce_isolation_mutex);
1833 	if (adev->enforce_isolation[idx]) {
1834 		/* set the initial values if nothing is set */
1835 		if (!adev->gfx.enforce_isolation_jiffies[idx]) {
1836 			adev->gfx.enforce_isolation_jiffies[idx] = jiffies;
1837 			adev->gfx.enforce_isolation_time[idx] =	GFX_SLICE_PERIOD_MS;
1838 		}
1839 		/* Make sure KFD gets a chance to run */
1840 		if (amdgpu_amdkfd_compute_active(adev, idx)) {
1841 			cjiffies = jiffies;
1842 			if (time_after(cjiffies, adev->gfx.enforce_isolation_jiffies[idx])) {
1843 				cjiffies -= adev->gfx.enforce_isolation_jiffies[idx];
1844 				if ((jiffies_to_msecs(cjiffies) >= GFX_SLICE_PERIOD_MS)) {
1845 					/* if our time is up, let KGD work drain before scheduling more */
1846 					wait = true;
1847 					/* reset the timer period */
1848 					adev->gfx.enforce_isolation_time[idx] =	GFX_SLICE_PERIOD_MS;
1849 				} else {
1850 					/* set the timer period to what's left in our time slice */
1851 					adev->gfx.enforce_isolation_time[idx] =
1852 						GFX_SLICE_PERIOD_MS - jiffies_to_msecs(cjiffies);
1853 				}
1854 			} else {
1855 				/* if jiffies wrap around we will just wait a little longer */
1856 				adev->gfx.enforce_isolation_jiffies[idx] = jiffies;
1857 			}
1858 		} else {
1859 			/* if there is no KFD work, then set the full slice period */
1860 			adev->gfx.enforce_isolation_jiffies[idx] = jiffies;
1861 			adev->gfx.enforce_isolation_time[idx] = GFX_SLICE_PERIOD_MS;
1862 		}
1863 	}
1864 	mutex_unlock(&adev->enforce_isolation_mutex);
1865 
1866 	if (wait)
1867 		msleep(GFX_SLICE_PERIOD_MS);
1868 }
1869 
1870 void amdgpu_gfx_enforce_isolation_ring_begin_use(struct amdgpu_ring *ring)
1871 {
1872 	struct amdgpu_device *adev = ring->adev;
1873 	u32 idx;
1874 
1875 	if (!adev->gfx.enable_cleaner_shader)
1876 		return;
1877 
1878 	if (ring->xcp_id == AMDGPU_XCP_NO_PARTITION)
1879 		idx = 0;
1880 	else
1881 		idx = ring->xcp_id;
1882 
1883 	if (idx >= MAX_XCP)
1884 		return;
1885 
1886 	/* Don't submit more work until KFD has had some time */
1887 	amdgpu_gfx_enforce_isolation_wait_for_kfd(adev, idx);
1888 
1889 	mutex_lock(&adev->enforce_isolation_mutex);
1890 	if (adev->enforce_isolation[idx]) {
1891 		if (adev->kfd.init_complete)
1892 			amdgpu_gfx_kfd_sch_ctrl(adev, idx, false);
1893 	}
1894 	mutex_unlock(&adev->enforce_isolation_mutex);
1895 }
1896 
1897 void amdgpu_gfx_enforce_isolation_ring_end_use(struct amdgpu_ring *ring)
1898 {
1899 	struct amdgpu_device *adev = ring->adev;
1900 	u32 idx;
1901 
1902 	if (!adev->gfx.enable_cleaner_shader)
1903 		return;
1904 
1905 	if (ring->xcp_id == AMDGPU_XCP_NO_PARTITION)
1906 		idx = 0;
1907 	else
1908 		idx = ring->xcp_id;
1909 
1910 	if (idx >= MAX_XCP)
1911 		return;
1912 
1913 	mutex_lock(&adev->enforce_isolation_mutex);
1914 	if (adev->enforce_isolation[idx]) {
1915 		if (adev->kfd.init_complete)
1916 			amdgpu_gfx_kfd_sch_ctrl(adev, idx, true);
1917 	}
1918 	mutex_unlock(&adev->enforce_isolation_mutex);
1919 }
1920