1 /* 2 * Copyright 2014 Advanced Micro Devices, Inc. 3 * Copyright 2008 Red Hat Inc. 4 * Copyright 2009 Jerome Glisse. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 * 24 */ 25 26 #include <linux/firmware.h> 27 #include <linux/pm_runtime.h> 28 29 #include "amdgpu.h" 30 #include "amdgpu_gfx.h" 31 #include "amdgpu_rlc.h" 32 #include "amdgpu_ras.h" 33 #include "amdgpu_reset.h" 34 #include "amdgpu_xcp.h" 35 #include "amdgpu_xgmi.h" 36 #include "amdgpu_mes.h" 37 #include "nvd.h" 38 39 /* delay 0.1 second to enable gfx off feature */ 40 #define GFX_OFF_DELAY_ENABLE msecs_to_jiffies(100) 41 42 #define GFX_OFF_NO_DELAY 0 43 44 /* 45 * GPU GFX IP block helpers function. 46 */ 47 48 int amdgpu_gfx_mec_queue_to_bit(struct amdgpu_device *adev, int mec, 49 int pipe, int queue) 50 { 51 int bit = 0; 52 53 bit += mec * adev->gfx.mec.num_pipe_per_mec 54 * adev->gfx.mec.num_queue_per_pipe; 55 bit += pipe * adev->gfx.mec.num_queue_per_pipe; 56 bit += queue; 57 58 return bit; 59 } 60 61 void amdgpu_queue_mask_bit_to_mec_queue(struct amdgpu_device *adev, int bit, 62 int *mec, int *pipe, int *queue) 63 { 64 *queue = bit % adev->gfx.mec.num_queue_per_pipe; 65 *pipe = (bit / adev->gfx.mec.num_queue_per_pipe) 66 % adev->gfx.mec.num_pipe_per_mec; 67 *mec = (bit / adev->gfx.mec.num_queue_per_pipe) 68 / adev->gfx.mec.num_pipe_per_mec; 69 70 } 71 72 bool amdgpu_gfx_is_mec_queue_enabled(struct amdgpu_device *adev, 73 int xcc_id, int mec, int pipe, int queue) 74 { 75 return test_bit(amdgpu_gfx_mec_queue_to_bit(adev, mec, pipe, queue), 76 adev->gfx.mec_bitmap[xcc_id].queue_bitmap); 77 } 78 79 static int amdgpu_gfx_me_queue_to_bit(struct amdgpu_device *adev, 80 int me, int pipe, int queue) 81 { 82 int num_queue_per_pipe = 1; /* we only enable 1 KGQ per pipe */ 83 int bit = 0; 84 85 bit += me * adev->gfx.me.num_pipe_per_me 86 * num_queue_per_pipe; 87 bit += pipe * num_queue_per_pipe; 88 bit += queue; 89 90 return bit; 91 } 92 93 bool amdgpu_gfx_is_me_queue_enabled(struct amdgpu_device *adev, 94 int me, int pipe, int queue) 95 { 96 return test_bit(amdgpu_gfx_me_queue_to_bit(adev, me, pipe, queue), 97 adev->gfx.me.queue_bitmap); 98 } 99 100 /** 101 * amdgpu_gfx_parse_disable_cu - Parse the disable_cu module parameter 102 * 103 * @adev: amdgpu device pointer 104 * @mask: array in which the per-shader array disable masks will be stored 105 * @max_se: number of SEs 106 * @max_sh: number of SHs 107 * 108 * The bitmask of CUs to be disabled in the shader array determined by se and 109 * sh is stored in mask[se * max_sh + sh]. 110 */ 111 void amdgpu_gfx_parse_disable_cu(struct amdgpu_device *adev, unsigned int *mask, 112 unsigned int max_se, unsigned int max_sh) 113 { 114 unsigned int se, sh, cu; 115 const char *p; 116 117 memset(mask, 0, sizeof(*mask) * max_se * max_sh); 118 119 if (!amdgpu_disable_cu || !*amdgpu_disable_cu) 120 return; 121 122 p = amdgpu_disable_cu; 123 for (;;) { 124 char *next; 125 int ret = sscanf(p, "%u.%u.%u", &se, &sh, &cu); 126 127 if (ret < 3) { 128 drm_err(adev_to_drm(adev), "could not parse disable_cu\n"); 129 return; 130 } 131 132 if (se < max_se && sh < max_sh && cu < 16) { 133 drm_info(adev_to_drm(adev), "Disabling CU %u.%u.%u\n", se, sh, cu); 134 mask[se * max_sh + sh] |= 1u << cu; 135 } else { 136 drm_err(adev_to_drm(adev), "disable_cu %u.%u.%u is out of range\n", 137 se, sh, cu); 138 } 139 140 next = strchr(p, ','); 141 if (!next) 142 break; 143 p = next + 1; 144 } 145 } 146 147 static bool amdgpu_gfx_is_graphics_multipipe_capable(struct amdgpu_device *adev) 148 { 149 return amdgpu_async_gfx_ring && adev->gfx.me.num_pipe_per_me > 1; 150 } 151 152 static bool amdgpu_gfx_is_compute_multipipe_capable(struct amdgpu_device *adev) 153 { 154 if (amdgpu_compute_multipipe != -1) { 155 dev_info(adev->dev, " forcing compute pipe policy %d\n", 156 amdgpu_compute_multipipe); 157 return amdgpu_compute_multipipe == 1; 158 } 159 160 if (amdgpu_ip_version(adev, GC_HWIP, 0) > IP_VERSION(9, 0, 0)) 161 return true; 162 163 /* FIXME: spreading the queues across pipes causes perf regressions 164 * on POLARIS11 compute workloads */ 165 if (adev->asic_type == CHIP_POLARIS11) 166 return false; 167 168 return adev->gfx.mec.num_mec > 1; 169 } 170 171 bool amdgpu_gfx_is_high_priority_graphics_queue(struct amdgpu_device *adev, 172 struct amdgpu_ring *ring) 173 { 174 int queue = ring->queue; 175 int pipe = ring->pipe; 176 177 /* Policy: use pipe1 queue0 as high priority graphics queue if we 178 * have more than one gfx pipe. 179 */ 180 if (amdgpu_gfx_is_graphics_multipipe_capable(adev) && 181 adev->gfx.num_gfx_rings > 1 && pipe == 1 && queue == 0) { 182 int me = ring->me; 183 int bit; 184 185 bit = amdgpu_gfx_me_queue_to_bit(adev, me, pipe, queue); 186 if (ring == &adev->gfx.gfx_ring[bit]) 187 return true; 188 } 189 190 return false; 191 } 192 193 bool amdgpu_gfx_is_high_priority_compute_queue(struct amdgpu_device *adev, 194 struct amdgpu_ring *ring) 195 { 196 /* Policy: use 1st queue as high priority compute queue if we 197 * have more than one compute queue. 198 */ 199 if (adev->gfx.num_compute_rings > 1 && 200 ring == &adev->gfx.compute_ring[0]) 201 return true; 202 203 return false; 204 } 205 206 void amdgpu_gfx_compute_queue_acquire(struct amdgpu_device *adev) 207 { 208 int i, j, queue, pipe; 209 bool multipipe_policy = amdgpu_gfx_is_compute_multipipe_capable(adev); 210 int max_queues_per_mec = min(adev->gfx.mec.num_pipe_per_mec * 211 adev->gfx.mec.num_queue_per_pipe, 212 adev->gfx.num_compute_rings); 213 int num_xcc = adev->gfx.xcc_mask ? NUM_XCC(adev->gfx.xcc_mask) : 1; 214 215 if (multipipe_policy) { 216 /* policy: make queues evenly cross all pipes on MEC1 only 217 * for multiple xcc, just use the original policy for simplicity */ 218 for (j = 0; j < num_xcc; j++) { 219 for (i = 0; i < max_queues_per_mec; i++) { 220 pipe = i % adev->gfx.mec.num_pipe_per_mec; 221 queue = (i / adev->gfx.mec.num_pipe_per_mec) % 222 adev->gfx.mec.num_queue_per_pipe; 223 224 set_bit(pipe * adev->gfx.mec.num_queue_per_pipe + queue, 225 adev->gfx.mec_bitmap[j].queue_bitmap); 226 } 227 } 228 } else { 229 /* policy: amdgpu owns all queues in the given pipe */ 230 for (j = 0; j < num_xcc; j++) { 231 for (i = 0; i < max_queues_per_mec; ++i) 232 set_bit(i, adev->gfx.mec_bitmap[j].queue_bitmap); 233 } 234 } 235 236 for (j = 0; j < num_xcc; j++) { 237 dev_dbg(adev->dev, "mec queue bitmap weight=%d\n", 238 bitmap_weight(adev->gfx.mec_bitmap[j].queue_bitmap, AMDGPU_MAX_COMPUTE_QUEUES)); 239 } 240 } 241 242 void amdgpu_gfx_graphics_queue_acquire(struct amdgpu_device *adev) 243 { 244 int i, queue, pipe; 245 bool multipipe_policy = amdgpu_gfx_is_graphics_multipipe_capable(adev); 246 int num_queue_per_pipe = 1; /* we only enable 1 KGQ per pipe */ 247 int max_queues_per_me = adev->gfx.me.num_pipe_per_me * num_queue_per_pipe; 248 249 if (multipipe_policy) { 250 /* policy: amdgpu owns the first queue per pipe at this stage 251 * will extend to mulitple queues per pipe later */ 252 for (i = 0; i < max_queues_per_me; i++) { 253 pipe = i % adev->gfx.me.num_pipe_per_me; 254 queue = (i / adev->gfx.me.num_pipe_per_me) % 255 num_queue_per_pipe; 256 257 set_bit(pipe * num_queue_per_pipe + queue, 258 adev->gfx.me.queue_bitmap); 259 } 260 } else { 261 for (i = 0; i < max_queues_per_me; ++i) 262 set_bit(i, adev->gfx.me.queue_bitmap); 263 } 264 265 /* update the number of active graphics rings */ 266 if (adev->gfx.num_gfx_rings) 267 adev->gfx.num_gfx_rings = 268 bitmap_weight(adev->gfx.me.queue_bitmap, AMDGPU_MAX_GFX_QUEUES); 269 } 270 271 static int amdgpu_gfx_kiq_acquire(struct amdgpu_device *adev, 272 struct amdgpu_ring *ring, int xcc_id) 273 { 274 int queue_bit; 275 int mec, pipe, queue; 276 277 queue_bit = adev->gfx.mec.num_mec 278 * adev->gfx.mec.num_pipe_per_mec 279 * adev->gfx.mec.num_queue_per_pipe; 280 281 while (--queue_bit >= 0) { 282 if (test_bit(queue_bit, adev->gfx.mec_bitmap[xcc_id].queue_bitmap)) 283 continue; 284 285 amdgpu_queue_mask_bit_to_mec_queue(adev, queue_bit, &mec, &pipe, &queue); 286 287 /* 288 * 1. Using pipes 2/3 from MEC 2 seems cause problems. 289 * 2. It must use queue id 0, because CGPG_IDLE/SAVE/LOAD/RUN 290 * only can be issued on queue 0. 291 */ 292 if ((mec == 1 && pipe > 1) || queue != 0) 293 continue; 294 295 ring->me = mec + 1; 296 ring->pipe = pipe; 297 ring->queue = queue; 298 299 return 0; 300 } 301 302 dev_err(adev->dev, "Failed to find a queue for KIQ\n"); 303 return -EINVAL; 304 } 305 306 int amdgpu_gfx_kiq_init_ring(struct amdgpu_device *adev, int xcc_id) 307 { 308 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 309 struct amdgpu_irq_src *irq = &kiq->irq; 310 struct amdgpu_ring *ring = &kiq->ring; 311 int r = 0; 312 313 spin_lock_init(&kiq->ring_lock); 314 315 ring->adev = NULL; 316 ring->ring_obj = NULL; 317 ring->use_doorbell = true; 318 ring->xcc_id = xcc_id; 319 ring->vm_hub = AMDGPU_GFXHUB(xcc_id); 320 ring->doorbell_index = 321 (adev->doorbell_index.kiq + 322 xcc_id * adev->doorbell_index.xcc_doorbell_range) 323 << 1; 324 325 r = amdgpu_gfx_kiq_acquire(adev, ring, xcc_id); 326 if (r) 327 return r; 328 329 ring->eop_gpu_addr = kiq->eop_gpu_addr; 330 ring->no_scheduler = true; 331 snprintf(ring->name, sizeof(ring->name), "kiq_%hhu.%hhu.%hhu.%hhu", 332 (unsigned char)xcc_id, (unsigned char)ring->me, 333 (unsigned char)ring->pipe, (unsigned char)ring->queue); 334 r = amdgpu_ring_init(adev, ring, 1024, irq, AMDGPU_CP_KIQ_IRQ_DRIVER0, 335 AMDGPU_RING_PRIO_DEFAULT, NULL); 336 if (r) 337 dev_warn(adev->dev, "(%d) failed to init kiq ring\n", r); 338 339 return r; 340 } 341 342 void amdgpu_gfx_kiq_free_ring(struct amdgpu_ring *ring) 343 { 344 amdgpu_ring_fini(ring); 345 } 346 347 void amdgpu_gfx_kiq_fini(struct amdgpu_device *adev, int xcc_id) 348 { 349 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 350 351 amdgpu_bo_free_kernel(&kiq->eop_obj, &kiq->eop_gpu_addr, NULL); 352 } 353 354 int amdgpu_gfx_kiq_init(struct amdgpu_device *adev, 355 unsigned int hpd_size, int xcc_id) 356 { 357 int r; 358 u32 *hpd; 359 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 360 361 r = amdgpu_bo_create_kernel(adev, hpd_size, PAGE_SIZE, 362 AMDGPU_GEM_DOMAIN_GTT, &kiq->eop_obj, 363 &kiq->eop_gpu_addr, (void **)&hpd); 364 if (r) { 365 dev_warn(adev->dev, "failed to create KIQ bo (%d).\n", r); 366 return r; 367 } 368 369 memset(hpd, 0, hpd_size); 370 371 r = amdgpu_bo_reserve(kiq->eop_obj, true); 372 if (unlikely(r != 0)) 373 dev_warn(adev->dev, "(%d) reserve kiq eop bo failed\n", r); 374 amdgpu_bo_kunmap(kiq->eop_obj); 375 amdgpu_bo_unreserve(kiq->eop_obj); 376 377 return 0; 378 } 379 380 /* create MQD for each compute/gfx queue */ 381 int amdgpu_gfx_mqd_sw_init(struct amdgpu_device *adev, 382 unsigned int mqd_size, int xcc_id) 383 { 384 int r, i, j; 385 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 386 struct amdgpu_ring *ring = &kiq->ring; 387 u32 domain = AMDGPU_GEM_DOMAIN_GTT; 388 u32 gfx_mqd_size = max(adev->mqds[AMDGPU_HW_IP_GFX].mqd_size, mqd_size); 389 u32 compute_mqd_size = max(adev->mqds[AMDGPU_HW_IP_COMPUTE].mqd_size, mqd_size); 390 391 #if !defined(CONFIG_ARM) && !defined(CONFIG_ARM64) 392 /* Only enable on gfx10 and 11 for now to avoid changing behavior on older chips */ 393 if (amdgpu_ip_version(adev, GC_HWIP, 0) >= IP_VERSION(10, 0, 0)) 394 domain |= AMDGPU_GEM_DOMAIN_VRAM; 395 #endif 396 397 /* create MQD for KIQ */ 398 if (!adev->enable_mes_kiq && !ring->mqd_obj) { 399 /* originaly the KIQ MQD is put in GTT domain, but for SRIOV VRAM domain is a must 400 * otherwise hypervisor trigger SAVE_VF fail after driver unloaded which mean MQD 401 * deallocated and gart_unbind, to strict diverage we decide to use VRAM domain for 402 * KIQ MQD no matter SRIOV or Bare-metal 403 */ 404 r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE, 405 AMDGPU_GEM_DOMAIN_VRAM | 406 AMDGPU_GEM_DOMAIN_GTT, 407 &ring->mqd_obj, 408 &ring->mqd_gpu_addr, 409 &ring->mqd_ptr); 410 if (r) { 411 dev_warn(adev->dev, "failed to create ring mqd ob (%d)", r); 412 return r; 413 } 414 415 /* prepare MQD backup */ 416 kiq->mqd_backup = kzalloc(mqd_size, GFP_KERNEL); 417 if (!kiq->mqd_backup) { 418 dev_warn(adev->dev, 419 "no memory to create MQD backup for ring %s\n", ring->name); 420 return -ENOMEM; 421 } 422 } 423 424 if (adev->asic_type >= CHIP_NAVI10 && amdgpu_async_gfx_ring) { 425 /* create MQD for each KGQ */ 426 for (i = 0; i < adev->gfx.num_gfx_rings; i++) { 427 ring = &adev->gfx.gfx_ring[i]; 428 if (!ring->mqd_obj) { 429 r = amdgpu_bo_create_kernel(adev, AMDGPU_MQD_SIZE_ALIGN(gfx_mqd_size), 430 PAGE_SIZE, domain, &ring->mqd_obj, 431 &ring->mqd_gpu_addr, &ring->mqd_ptr); 432 if (r) { 433 dev_warn(adev->dev, "failed to create ring mqd bo (%d)", r); 434 return r; 435 } 436 437 ring->mqd_size = gfx_mqd_size; 438 /* prepare MQD backup */ 439 adev->gfx.me.mqd_backup[i] = kzalloc(gfx_mqd_size, GFP_KERNEL); 440 if (!adev->gfx.me.mqd_backup[i]) { 441 dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name); 442 return -ENOMEM; 443 } 444 } 445 } 446 } 447 448 /* create MQD for each KCQ */ 449 for (i = 0; i < adev->gfx.num_compute_rings; i++) { 450 j = i + xcc_id * adev->gfx.num_compute_rings; 451 ring = &adev->gfx.compute_ring[j]; 452 if (!ring->mqd_obj) { 453 r = amdgpu_bo_create_kernel(adev, AMDGPU_MQD_SIZE_ALIGN(compute_mqd_size), 454 PAGE_SIZE, domain, &ring->mqd_obj, 455 &ring->mqd_gpu_addr, &ring->mqd_ptr); 456 if (r) { 457 dev_warn(adev->dev, "failed to create ring mqd bo (%d)", r); 458 return r; 459 } 460 461 ring->mqd_size = compute_mqd_size; 462 /* prepare MQD backup */ 463 adev->gfx.mec.mqd_backup[j] = kzalloc(compute_mqd_size, GFP_KERNEL); 464 if (!adev->gfx.mec.mqd_backup[j]) { 465 dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name); 466 return -ENOMEM; 467 } 468 } 469 } 470 471 return 0; 472 } 473 474 void amdgpu_gfx_mqd_sw_fini(struct amdgpu_device *adev, int xcc_id) 475 { 476 struct amdgpu_ring *ring = NULL; 477 int i, j; 478 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 479 480 if (adev->asic_type >= CHIP_NAVI10 && amdgpu_async_gfx_ring) { 481 for (i = 0; i < adev->gfx.num_gfx_rings; i++) { 482 ring = &adev->gfx.gfx_ring[i]; 483 kfree(adev->gfx.me.mqd_backup[i]); 484 amdgpu_bo_free_kernel(&ring->mqd_obj, 485 &ring->mqd_gpu_addr, 486 &ring->mqd_ptr); 487 } 488 } 489 490 for (i = 0; i < adev->gfx.num_compute_rings; i++) { 491 j = i + xcc_id * adev->gfx.num_compute_rings; 492 ring = &adev->gfx.compute_ring[j]; 493 kfree(adev->gfx.mec.mqd_backup[j]); 494 amdgpu_bo_free_kernel(&ring->mqd_obj, 495 &ring->mqd_gpu_addr, 496 &ring->mqd_ptr); 497 } 498 499 ring = &kiq->ring; 500 kfree(kiq->mqd_backup); 501 amdgpu_bo_free_kernel(&ring->mqd_obj, 502 &ring->mqd_gpu_addr, 503 &ring->mqd_ptr); 504 } 505 506 int amdgpu_gfx_disable_kcq(struct amdgpu_device *adev, int xcc_id) 507 { 508 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 509 struct amdgpu_ring *kiq_ring = &kiq->ring; 510 int i, r = 0; 511 int j; 512 513 if (adev->enable_mes) { 514 for (i = 0; i < adev->gfx.num_compute_rings; i++) { 515 j = i + xcc_id * adev->gfx.num_compute_rings; 516 amdgpu_mes_unmap_legacy_queue(adev, 517 &adev->gfx.compute_ring[j], 518 RESET_QUEUES, 0, 0, xcc_id); 519 } 520 return 0; 521 } 522 523 if (!kiq->pmf || !kiq->pmf->kiq_unmap_queues) 524 return -EINVAL; 525 526 if (!kiq_ring->sched.ready || amdgpu_in_reset(adev)) 527 return 0; 528 529 spin_lock(&kiq->ring_lock); 530 if (amdgpu_ring_alloc(kiq_ring, kiq->pmf->unmap_queues_size * 531 adev->gfx.num_compute_rings)) { 532 spin_unlock(&kiq->ring_lock); 533 return -ENOMEM; 534 } 535 536 for (i = 0; i < adev->gfx.num_compute_rings; i++) { 537 j = i + xcc_id * adev->gfx.num_compute_rings; 538 kiq->pmf->kiq_unmap_queues(kiq_ring, 539 &adev->gfx.compute_ring[j], 540 RESET_QUEUES, 0, 0); 541 } 542 /* Submit unmap queue packet */ 543 amdgpu_ring_commit(kiq_ring); 544 /* 545 * Ring test will do a basic scratch register change check. Just run 546 * this to ensure that unmap queues that is submitted before got 547 * processed successfully before returning. 548 */ 549 r = amdgpu_ring_test_helper(kiq_ring); 550 551 spin_unlock(&kiq->ring_lock); 552 553 return r; 554 } 555 556 int amdgpu_gfx_disable_kgq(struct amdgpu_device *adev, int xcc_id) 557 { 558 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 559 struct amdgpu_ring *kiq_ring = &kiq->ring; 560 int i, r = 0; 561 int j; 562 563 if (adev->enable_mes) { 564 if (amdgpu_gfx_is_master_xcc(adev, xcc_id)) { 565 for (i = 0; i < adev->gfx.num_gfx_rings; i++) { 566 j = i + xcc_id * adev->gfx.num_gfx_rings; 567 amdgpu_mes_unmap_legacy_queue(adev, 568 &adev->gfx.gfx_ring[j], 569 PREEMPT_QUEUES, 0, 0, xcc_id); 570 } 571 } 572 return 0; 573 } 574 575 if (!kiq->pmf || !kiq->pmf->kiq_unmap_queues) 576 return -EINVAL; 577 578 if (!adev->gfx.kiq[0].ring.sched.ready || amdgpu_in_reset(adev)) 579 return 0; 580 581 if (amdgpu_gfx_is_master_xcc(adev, xcc_id)) { 582 spin_lock(&kiq->ring_lock); 583 if (amdgpu_ring_alloc(kiq_ring, kiq->pmf->unmap_queues_size * 584 adev->gfx.num_gfx_rings)) { 585 spin_unlock(&kiq->ring_lock); 586 return -ENOMEM; 587 } 588 589 for (i = 0; i < adev->gfx.num_gfx_rings; i++) { 590 j = i + xcc_id * adev->gfx.num_gfx_rings; 591 kiq->pmf->kiq_unmap_queues(kiq_ring, 592 &adev->gfx.gfx_ring[j], 593 PREEMPT_QUEUES, 0, 0); 594 } 595 /* Submit unmap queue packet */ 596 amdgpu_ring_commit(kiq_ring); 597 598 /* 599 * Ring test will do a basic scratch register change check. 600 * Just run this to ensure that unmap queues that is submitted 601 * before got processed successfully before returning. 602 */ 603 r = amdgpu_ring_test_helper(kiq_ring); 604 spin_unlock(&kiq->ring_lock); 605 } 606 607 return r; 608 } 609 610 int amdgpu_queue_mask_bit_to_set_resource_bit(struct amdgpu_device *adev, 611 int queue_bit) 612 { 613 int mec, pipe, queue; 614 int set_resource_bit = 0; 615 616 amdgpu_queue_mask_bit_to_mec_queue(adev, queue_bit, &mec, &pipe, &queue); 617 618 set_resource_bit = mec * 4 * 8 + pipe * 8 + queue; 619 620 return set_resource_bit; 621 } 622 623 static int amdgpu_gfx_mes_enable_kcq(struct amdgpu_device *adev, int xcc_id) 624 { 625 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 626 struct amdgpu_ring *kiq_ring = &kiq->ring; 627 uint64_t queue_mask = ~0ULL; 628 int r, i, j; 629 630 amdgpu_device_flush_hdp(adev, NULL); 631 632 if (!adev->enable_uni_mes) { 633 spin_lock(&kiq->ring_lock); 634 r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->set_resources_size); 635 if (r) { 636 dev_err(adev->dev, "Failed to lock KIQ (%d).\n", r); 637 spin_unlock(&kiq->ring_lock); 638 return r; 639 } 640 641 kiq->pmf->kiq_set_resources(kiq_ring, queue_mask); 642 r = amdgpu_ring_test_helper(kiq_ring); 643 spin_unlock(&kiq->ring_lock); 644 if (r) 645 dev_err(adev->dev, "KIQ failed to set resources\n"); 646 } 647 648 for (i = 0; i < adev->gfx.num_compute_rings; i++) { 649 j = i + xcc_id * adev->gfx.num_compute_rings; 650 r = amdgpu_mes_map_legacy_queue(adev, 651 &adev->gfx.compute_ring[j], 652 xcc_id); 653 if (r) { 654 dev_err(adev->dev, "failed to map compute queue\n"); 655 return r; 656 } 657 } 658 659 return 0; 660 } 661 662 int amdgpu_gfx_enable_kcq(struct amdgpu_device *adev, int xcc_id) 663 { 664 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 665 struct amdgpu_ring *kiq_ring = &kiq->ring; 666 uint64_t queue_mask = 0; 667 int r, i, j; 668 669 if (adev->mes.enable_legacy_queue_map) 670 return amdgpu_gfx_mes_enable_kcq(adev, xcc_id); 671 672 if (!kiq->pmf || !kiq->pmf->kiq_map_queues || !kiq->pmf->kiq_set_resources) 673 return -EINVAL; 674 675 for (i = 0; i < AMDGPU_MAX_COMPUTE_QUEUES; ++i) { 676 if (!test_bit(i, adev->gfx.mec_bitmap[xcc_id].queue_bitmap)) 677 continue; 678 679 /* This situation may be hit in the future if a new HW 680 * generation exposes more than 64 queues. If so, the 681 * definition of queue_mask needs updating */ 682 if (WARN_ON(i > (sizeof(queue_mask)*8))) { 683 dev_err(adev->dev, "Invalid KCQ enabled: %d\n", i); 684 break; 685 } 686 687 queue_mask |= (1ull << amdgpu_queue_mask_bit_to_set_resource_bit(adev, i)); 688 } 689 690 amdgpu_device_flush_hdp(adev, NULL); 691 692 dev_info(adev->dev, "kiq ring mec %d pipe %d q %d\n", kiq_ring->me, 693 kiq_ring->pipe, kiq_ring->queue); 694 695 spin_lock(&kiq->ring_lock); 696 r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->map_queues_size * 697 adev->gfx.num_compute_rings + 698 kiq->pmf->set_resources_size); 699 if (r) { 700 dev_err(adev->dev, "Failed to lock KIQ (%d).\n", r); 701 spin_unlock(&kiq->ring_lock); 702 return r; 703 } 704 705 kiq->pmf->kiq_set_resources(kiq_ring, queue_mask); 706 for (i = 0; i < adev->gfx.num_compute_rings; i++) { 707 j = i + xcc_id * adev->gfx.num_compute_rings; 708 kiq->pmf->kiq_map_queues(kiq_ring, 709 &adev->gfx.compute_ring[j]); 710 } 711 /* Submit map queue packet */ 712 amdgpu_ring_commit(kiq_ring); 713 /* 714 * Ring test will do a basic scratch register change check. Just run 715 * this to ensure that map queues that is submitted before got 716 * processed successfully before returning. 717 */ 718 r = amdgpu_ring_test_helper(kiq_ring); 719 spin_unlock(&kiq->ring_lock); 720 if (r) 721 dev_err(adev->dev, "KCQ enable failed\n"); 722 723 return r; 724 } 725 726 int amdgpu_gfx_enable_kgq(struct amdgpu_device *adev, int xcc_id) 727 { 728 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 729 struct amdgpu_ring *kiq_ring = &kiq->ring; 730 int r, i, j; 731 732 if (!kiq->pmf || !kiq->pmf->kiq_map_queues) 733 return -EINVAL; 734 735 amdgpu_device_flush_hdp(adev, NULL); 736 737 if (adev->mes.enable_legacy_queue_map) { 738 for (i = 0; i < adev->gfx.num_gfx_rings; i++) { 739 j = i + xcc_id * adev->gfx.num_gfx_rings; 740 r = amdgpu_mes_map_legacy_queue(adev, 741 &adev->gfx.gfx_ring[j], 742 xcc_id); 743 if (r) { 744 dev_err(adev->dev, "failed to map gfx queue\n"); 745 return r; 746 } 747 } 748 749 return 0; 750 } 751 752 spin_lock(&kiq->ring_lock); 753 /* No need to map kcq on the slave */ 754 if (amdgpu_gfx_is_master_xcc(adev, xcc_id)) { 755 r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->map_queues_size * 756 adev->gfx.num_gfx_rings); 757 if (r) { 758 dev_err(adev->dev, "Failed to lock KIQ (%d).\n", r); 759 spin_unlock(&kiq->ring_lock); 760 return r; 761 } 762 763 for (i = 0; i < adev->gfx.num_gfx_rings; i++) { 764 j = i + xcc_id * adev->gfx.num_gfx_rings; 765 kiq->pmf->kiq_map_queues(kiq_ring, 766 &adev->gfx.gfx_ring[j]); 767 } 768 } 769 /* Submit map queue packet */ 770 amdgpu_ring_commit(kiq_ring); 771 /* 772 * Ring test will do a basic scratch register change check. Just run 773 * this to ensure that map queues that is submitted before got 774 * processed successfully before returning. 775 */ 776 r = amdgpu_ring_test_helper(kiq_ring); 777 spin_unlock(&kiq->ring_lock); 778 if (r) 779 dev_err(adev->dev, "KGQ enable failed\n"); 780 781 return r; 782 } 783 784 static void amdgpu_gfx_do_off_ctrl(struct amdgpu_device *adev, bool enable, 785 bool no_delay) 786 { 787 unsigned long delay = GFX_OFF_DELAY_ENABLE; 788 789 if (!(adev->pm.pp_feature & PP_GFXOFF_MASK)) 790 return; 791 792 mutex_lock(&adev->gfx.gfx_off_mutex); 793 794 if (enable) { 795 /* If the count is already 0, it means there's an imbalance bug somewhere. 796 * Note that the bug may be in a different caller than the one which triggers the 797 * WARN_ON_ONCE. 798 */ 799 if (WARN_ON_ONCE(adev->gfx.gfx_off_req_count == 0)) 800 goto unlock; 801 802 adev->gfx.gfx_off_req_count--; 803 804 if (adev->gfx.gfx_off_req_count == 0 && 805 !adev->gfx.gfx_off_state) { 806 /* If going to s2idle, no need to wait */ 807 if (no_delay) { 808 if (!amdgpu_dpm_set_powergating_by_smu(adev, 809 AMD_IP_BLOCK_TYPE_GFX, true, 0)) 810 adev->gfx.gfx_off_state = true; 811 } else { 812 schedule_delayed_work(&adev->gfx.gfx_off_delay_work, 813 delay); 814 } 815 } 816 } else { 817 if (adev->gfx.gfx_off_req_count == 0) { 818 cancel_delayed_work_sync(&adev->gfx.gfx_off_delay_work); 819 820 if (adev->gfx.gfx_off_state && 821 !amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_GFX, false, 0)) { 822 adev->gfx.gfx_off_state = false; 823 824 if (adev->gfx.funcs->init_spm_golden) { 825 dev_dbg(adev->dev, 826 "GFXOFF is disabled, re-init SPM golden settings\n"); 827 amdgpu_gfx_init_spm_golden(adev); 828 } 829 } 830 } 831 832 adev->gfx.gfx_off_req_count++; 833 } 834 835 unlock: 836 mutex_unlock(&adev->gfx.gfx_off_mutex); 837 } 838 839 /* amdgpu_gfx_off_ctrl - Handle gfx off feature enable/disable 840 * 841 * @adev: amdgpu_device pointer 842 * @bool enable true: enable gfx off feature, false: disable gfx off feature 843 * 844 * 1. gfx off feature will be enabled by gfx ip after gfx cg pg enabled. 845 * 2. other client can send request to disable gfx off feature, the request should be honored. 846 * 3. other client can cancel their request of disable gfx off feature 847 * 4. other client should not send request to enable gfx off feature before disable gfx off feature. 848 * 849 * gfx off allow will be delayed by GFX_OFF_DELAY_ENABLE ms. 850 */ 851 void amdgpu_gfx_off_ctrl(struct amdgpu_device *adev, bool enable) 852 { 853 /* If going to s2idle, no need to wait */ 854 bool no_delay = adev->in_s0ix ? true : false; 855 856 amdgpu_gfx_do_off_ctrl(adev, enable, no_delay); 857 } 858 859 /* amdgpu_gfx_off_ctrl_immediate - Handle gfx off feature enable/disable 860 * 861 * @adev: amdgpu_device pointer 862 * @bool enable true: enable gfx off feature, false: disable gfx off feature 863 * 864 * 1. gfx off feature will be enabled by gfx ip after gfx cg pg enabled. 865 * 2. other client can send request to disable gfx off feature, the request should be honored. 866 * 3. other client can cancel their request of disable gfx off feature 867 * 4. other client should not send request to enable gfx off feature before disable gfx off feature. 868 * 869 * gfx off allow will be issued immediately. 870 */ 871 void amdgpu_gfx_off_ctrl_immediate(struct amdgpu_device *adev, bool enable) 872 { 873 amdgpu_gfx_do_off_ctrl(adev, enable, true); 874 } 875 876 int amdgpu_set_gfx_off_residency(struct amdgpu_device *adev, bool value) 877 { 878 int r = 0; 879 880 mutex_lock(&adev->gfx.gfx_off_mutex); 881 882 r = amdgpu_dpm_set_residency_gfxoff(adev, value); 883 884 mutex_unlock(&adev->gfx.gfx_off_mutex); 885 886 return r; 887 } 888 889 int amdgpu_get_gfx_off_residency(struct amdgpu_device *adev, u32 *value) 890 { 891 int r = 0; 892 893 mutex_lock(&adev->gfx.gfx_off_mutex); 894 895 r = amdgpu_dpm_get_residency_gfxoff(adev, value); 896 897 mutex_unlock(&adev->gfx.gfx_off_mutex); 898 899 return r; 900 } 901 902 int amdgpu_get_gfx_off_entrycount(struct amdgpu_device *adev, u64 *value) 903 { 904 int r = 0; 905 906 mutex_lock(&adev->gfx.gfx_off_mutex); 907 908 r = amdgpu_dpm_get_entrycount_gfxoff(adev, value); 909 910 mutex_unlock(&adev->gfx.gfx_off_mutex); 911 912 return r; 913 } 914 915 int amdgpu_get_gfx_off_status(struct amdgpu_device *adev, uint32_t *value) 916 { 917 918 int r = 0; 919 920 mutex_lock(&adev->gfx.gfx_off_mutex); 921 922 r = amdgpu_dpm_get_status_gfxoff(adev, value); 923 924 mutex_unlock(&adev->gfx.gfx_off_mutex); 925 926 return r; 927 } 928 929 int amdgpu_gfx_ras_late_init(struct amdgpu_device *adev, struct ras_common_if *ras_block) 930 { 931 int r; 932 933 if (amdgpu_ras_is_supported(adev, ras_block->block)) { 934 if (!amdgpu_persistent_edc_harvesting_supported(adev)) { 935 r = amdgpu_ras_reset_error_status(adev, AMDGPU_RAS_BLOCK__GFX); 936 if (r) 937 return r; 938 } 939 940 r = amdgpu_ras_block_late_init(adev, ras_block); 941 if (r) 942 return r; 943 944 if (amdgpu_sriov_vf(adev)) 945 return r; 946 947 if (adev->gfx.cp_ecc_error_irq.funcs) { 948 r = amdgpu_irq_get(adev, &adev->gfx.cp_ecc_error_irq, 0); 949 if (r) 950 goto late_fini; 951 } 952 } else { 953 amdgpu_ras_feature_enable_on_boot(adev, ras_block, 0); 954 } 955 956 return 0; 957 late_fini: 958 amdgpu_ras_block_late_fini(adev, ras_block); 959 return r; 960 } 961 962 int amdgpu_gfx_ras_sw_init(struct amdgpu_device *adev) 963 { 964 int err = 0; 965 struct amdgpu_gfx_ras *ras = NULL; 966 967 /* adev->gfx.ras is NULL, which means gfx does not 968 * support ras function, then do nothing here. 969 */ 970 if (!adev->gfx.ras) 971 return 0; 972 973 ras = adev->gfx.ras; 974 975 err = amdgpu_ras_register_ras_block(adev, &ras->ras_block); 976 if (err) { 977 dev_err(adev->dev, "Failed to register gfx ras block!\n"); 978 return err; 979 } 980 981 strcpy(ras->ras_block.ras_comm.name, "gfx"); 982 ras->ras_block.ras_comm.block = AMDGPU_RAS_BLOCK__GFX; 983 ras->ras_block.ras_comm.type = AMDGPU_RAS_ERROR__MULTI_UNCORRECTABLE; 984 adev->gfx.ras_if = &ras->ras_block.ras_comm; 985 986 /* If not define special ras_late_init function, use gfx default ras_late_init */ 987 if (!ras->ras_block.ras_late_init) 988 ras->ras_block.ras_late_init = amdgpu_gfx_ras_late_init; 989 990 /* If not defined special ras_cb function, use default ras_cb */ 991 if (!ras->ras_block.ras_cb) 992 ras->ras_block.ras_cb = amdgpu_gfx_process_ras_data_cb; 993 994 return 0; 995 } 996 997 int amdgpu_gfx_poison_consumption_handler(struct amdgpu_device *adev, 998 struct amdgpu_iv_entry *entry) 999 { 1000 if (adev->gfx.ras && adev->gfx.ras->poison_consumption_handler) 1001 return adev->gfx.ras->poison_consumption_handler(adev, entry); 1002 1003 return 0; 1004 } 1005 1006 int amdgpu_gfx_process_ras_data_cb(struct amdgpu_device *adev, 1007 void *err_data, 1008 struct amdgpu_iv_entry *entry) 1009 { 1010 /* TODO ue will trigger an interrupt. 1011 * 1012 * When “Full RAS” is enabled, the per-IP interrupt sources should 1013 * be disabled and the driver should only look for the aggregated 1014 * interrupt via sync flood 1015 */ 1016 if (!amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__GFX)) { 1017 kgd2kfd_set_sram_ecc_flag(adev->kfd.dev); 1018 if (adev->gfx.ras && adev->gfx.ras->ras_block.hw_ops && 1019 adev->gfx.ras->ras_block.hw_ops->query_ras_error_count) 1020 adev->gfx.ras->ras_block.hw_ops->query_ras_error_count(adev, err_data); 1021 amdgpu_ras_reset_gpu(adev); 1022 } 1023 return AMDGPU_RAS_SUCCESS; 1024 } 1025 1026 int amdgpu_gfx_cp_ecc_error_irq(struct amdgpu_device *adev, 1027 struct amdgpu_irq_src *source, 1028 struct amdgpu_iv_entry *entry) 1029 { 1030 struct ras_common_if *ras_if = adev->gfx.ras_if; 1031 struct ras_dispatch_if ih_data = { 1032 .entry = entry, 1033 }; 1034 1035 if (!ras_if) 1036 return 0; 1037 1038 ih_data.head = *ras_if; 1039 1040 dev_err(adev->dev, "CP ECC ERROR IRQ\n"); 1041 amdgpu_ras_interrupt_dispatch(adev, &ih_data); 1042 return 0; 1043 } 1044 1045 void amdgpu_gfx_ras_error_func(struct amdgpu_device *adev, 1046 void *ras_error_status, 1047 void (*func)(struct amdgpu_device *adev, void *ras_error_status, 1048 int xcc_id)) 1049 { 1050 int i; 1051 int num_xcc = adev->gfx.xcc_mask ? NUM_XCC(adev->gfx.xcc_mask) : 1; 1052 uint32_t xcc_mask = GENMASK(num_xcc - 1, 0); 1053 struct ras_err_data *err_data = (struct ras_err_data *)ras_error_status; 1054 1055 if (err_data) { 1056 err_data->ue_count = 0; 1057 err_data->ce_count = 0; 1058 } 1059 1060 for_each_inst(i, xcc_mask) 1061 func(adev, ras_error_status, i); 1062 } 1063 1064 uint32_t amdgpu_kiq_rreg(struct amdgpu_device *adev, uint32_t reg, uint32_t xcc_id) 1065 { 1066 signed long r, cnt = 0; 1067 unsigned long flags; 1068 uint32_t seq, reg_val_offs = 0, value = 0; 1069 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 1070 struct amdgpu_ring *ring = &kiq->ring; 1071 1072 if (amdgpu_device_skip_hw_access(adev)) 1073 return 0; 1074 1075 if (adev->mes.ring[0].sched.ready) 1076 return amdgpu_mes_rreg(adev, reg, xcc_id); 1077 1078 BUG_ON(!ring->funcs->emit_rreg); 1079 1080 spin_lock_irqsave(&kiq->ring_lock, flags); 1081 if (amdgpu_device_wb_get(adev, ®_val_offs)) { 1082 pr_err("critical bug! too many kiq readers\n"); 1083 goto failed_unlock; 1084 } 1085 r = amdgpu_ring_alloc(ring, 32); 1086 if (r) 1087 goto failed_unlock; 1088 1089 amdgpu_ring_emit_rreg(ring, reg, reg_val_offs); 1090 r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT); 1091 if (r) 1092 goto failed_undo; 1093 1094 amdgpu_ring_commit(ring); 1095 spin_unlock_irqrestore(&kiq->ring_lock, flags); 1096 1097 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); 1098 1099 /* don't wait anymore for gpu reset case because this way may 1100 * block gpu_recover() routine forever, e.g. this virt_kiq_rreg 1101 * is triggered in TTM and ttm_bo_lock_delayed_workqueue() will 1102 * never return if we keep waiting in virt_kiq_rreg, which cause 1103 * gpu_recover() hang there. 1104 * 1105 * also don't wait anymore for IRQ context 1106 * */ 1107 if (r < 1 && (amdgpu_in_reset(adev) || in_interrupt())) 1108 goto failed_kiq_read; 1109 1110 might_sleep(); 1111 while (r < 1 && cnt++ < MAX_KIQ_REG_TRY) { 1112 if (amdgpu_in_reset(adev)) 1113 goto failed_kiq_read; 1114 1115 msleep(MAX_KIQ_REG_BAILOUT_INTERVAL); 1116 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); 1117 } 1118 1119 if (cnt > MAX_KIQ_REG_TRY) 1120 goto failed_kiq_read; 1121 1122 mb(); 1123 value = adev->wb.wb[reg_val_offs]; 1124 amdgpu_device_wb_free(adev, reg_val_offs); 1125 return value; 1126 1127 failed_undo: 1128 amdgpu_ring_undo(ring); 1129 failed_unlock: 1130 spin_unlock_irqrestore(&kiq->ring_lock, flags); 1131 failed_kiq_read: 1132 if (reg_val_offs) 1133 amdgpu_device_wb_free(adev, reg_val_offs); 1134 dev_err(adev->dev, "failed to read reg:%x\n", reg); 1135 return ~0; 1136 } 1137 1138 void amdgpu_kiq_wreg(struct amdgpu_device *adev, uint32_t reg, uint32_t v, uint32_t xcc_id) 1139 { 1140 signed long r, cnt = 0; 1141 unsigned long flags; 1142 uint32_t seq; 1143 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 1144 struct amdgpu_ring *ring = &kiq->ring; 1145 1146 BUG_ON(!ring->funcs->emit_wreg); 1147 1148 if (amdgpu_device_skip_hw_access(adev)) 1149 return; 1150 1151 if (adev->mes.ring[0].sched.ready) { 1152 amdgpu_mes_wreg(adev, reg, v, xcc_id); 1153 return; 1154 } 1155 1156 spin_lock_irqsave(&kiq->ring_lock, flags); 1157 r = amdgpu_ring_alloc(ring, 32); 1158 if (r) 1159 goto failed_unlock; 1160 1161 amdgpu_ring_emit_wreg(ring, reg, v); 1162 r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT); 1163 if (r) 1164 goto failed_undo; 1165 1166 amdgpu_ring_commit(ring); 1167 spin_unlock_irqrestore(&kiq->ring_lock, flags); 1168 1169 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); 1170 1171 /* don't wait anymore for gpu reset case because this way may 1172 * block gpu_recover() routine forever, e.g. this virt_kiq_rreg 1173 * is triggered in TTM and ttm_bo_lock_delayed_workqueue() will 1174 * never return if we keep waiting in virt_kiq_rreg, which cause 1175 * gpu_recover() hang there. 1176 * 1177 * also don't wait anymore for IRQ context 1178 * */ 1179 if (r < 1 && (amdgpu_in_reset(adev) || in_interrupt())) 1180 goto failed_kiq_write; 1181 1182 might_sleep(); 1183 while (r < 1 && cnt++ < MAX_KIQ_REG_TRY) { 1184 if (amdgpu_in_reset(adev)) 1185 goto failed_kiq_write; 1186 1187 msleep(MAX_KIQ_REG_BAILOUT_INTERVAL); 1188 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); 1189 } 1190 1191 if (cnt > MAX_KIQ_REG_TRY) 1192 goto failed_kiq_write; 1193 1194 return; 1195 1196 failed_undo: 1197 amdgpu_ring_undo(ring); 1198 failed_unlock: 1199 spin_unlock_irqrestore(&kiq->ring_lock, flags); 1200 failed_kiq_write: 1201 dev_err(adev->dev, "failed to write reg:%x\n", reg); 1202 } 1203 1204 void amdgpu_gfx_get_hdp_flush_mask(struct amdgpu_ring *ring, 1205 uint32_t *hdp_flush_mask, uint32_t *reg_mem_engine) 1206 { 1207 1208 if (!ring || !hdp_flush_mask || !reg_mem_engine) { 1209 DRM_INFO("%s:invalid params\n", __func__); 1210 return; 1211 } 1212 1213 const struct nbio_hdp_flush_reg *nbio_hf_reg = ring->adev->nbio.hdp_flush_reg; 1214 1215 switch (ring->funcs->type) { 1216 case AMDGPU_RING_TYPE_GFX: 1217 *hdp_flush_mask = nbio_hf_reg->ref_and_mask_cp0 << ring->pipe; 1218 *reg_mem_engine = 1; /* pfp */ 1219 break; 1220 case AMDGPU_RING_TYPE_COMPUTE: 1221 *hdp_flush_mask = nbio_hf_reg->ref_and_mask_cp2 << ring->pipe; 1222 *reg_mem_engine = 0; 1223 break; 1224 case AMDGPU_RING_TYPE_MES: 1225 *hdp_flush_mask = nbio_hf_reg->ref_and_mask_cp8; 1226 *reg_mem_engine = 0; 1227 break; 1228 case AMDGPU_RING_TYPE_KIQ: 1229 *hdp_flush_mask = nbio_hf_reg->ref_and_mask_cp9; 1230 *reg_mem_engine = 0; 1231 break; 1232 default: 1233 DRM_ERROR("%s:unsupported ring type %d\n", __func__, ring->funcs->type); 1234 return; 1235 } 1236 } 1237 1238 int amdgpu_kiq_hdp_flush(struct amdgpu_device *adev) 1239 { 1240 signed long r, cnt = 0; 1241 unsigned long flags; 1242 uint32_t seq; 1243 struct amdgpu_kiq *kiq = &adev->gfx.kiq[0]; 1244 struct amdgpu_ring *ring = &kiq->ring; 1245 1246 if (amdgpu_device_skip_hw_access(adev)) 1247 return 0; 1248 1249 if (adev->enable_mes_kiq && adev->mes.ring[0].sched.ready) 1250 return amdgpu_mes_hdp_flush(adev); 1251 1252 if (!ring->funcs->emit_hdp_flush) { 1253 return -EOPNOTSUPP; 1254 } 1255 1256 spin_lock_irqsave(&kiq->ring_lock, flags); 1257 r = amdgpu_ring_alloc(ring, 32); 1258 if (r) 1259 goto failed_unlock; 1260 1261 amdgpu_ring_emit_hdp_flush(ring); 1262 r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT); 1263 if (r) 1264 goto failed_undo; 1265 1266 amdgpu_ring_commit(ring); 1267 spin_unlock_irqrestore(&kiq->ring_lock, flags); 1268 1269 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); 1270 1271 /* don't wait anymore for gpu reset case because this way may 1272 * block gpu_recover() routine forever, e.g. this virt_kiq_rreg 1273 * is triggered in TTM and ttm_bo_lock_delayed_workqueue() will 1274 * never return if we keep waiting in virt_kiq_rreg, which cause 1275 * gpu_recover() hang there. 1276 * 1277 * also don't wait anymore for IRQ context 1278 * */ 1279 if (r < 1 && (amdgpu_in_reset(adev) || in_interrupt())) 1280 goto failed_kiq_hdp_flush; 1281 1282 might_sleep(); 1283 while (r < 1 && cnt++ < MAX_KIQ_REG_TRY) { 1284 if (amdgpu_in_reset(adev)) 1285 goto failed_kiq_hdp_flush; 1286 1287 msleep(MAX_KIQ_REG_BAILOUT_INTERVAL); 1288 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); 1289 } 1290 1291 if (cnt > MAX_KIQ_REG_TRY) { 1292 dev_err(adev->dev, "failed to flush HDP via KIQ timeout\n"); 1293 return -ETIMEDOUT; 1294 } 1295 1296 return 0; 1297 1298 failed_undo: 1299 amdgpu_ring_undo(ring); 1300 failed_unlock: 1301 spin_unlock_irqrestore(&kiq->ring_lock, flags); 1302 failed_kiq_hdp_flush: 1303 if (!amdgpu_in_reset(adev)) 1304 dev_err(adev->dev, "failed to flush HDP via KIQ\n"); 1305 return r < 0 ? r : -EIO; 1306 } 1307 1308 int amdgpu_gfx_get_num_kcq(struct amdgpu_device *adev) 1309 { 1310 if (amdgpu_num_kcq == -1) { 1311 return 8; 1312 } else if (amdgpu_num_kcq > 8 || amdgpu_num_kcq < 0) { 1313 dev_warn(adev->dev, "set kernel compute queue number to 8 due to invalid parameter provided by user\n"); 1314 return 8; 1315 } 1316 return amdgpu_num_kcq; 1317 } 1318 1319 void amdgpu_gfx_cp_init_microcode(struct amdgpu_device *adev, 1320 uint32_t ucode_id) 1321 { 1322 const struct gfx_firmware_header_v1_0 *cp_hdr; 1323 const struct gfx_firmware_header_v2_0 *cp_hdr_v2_0; 1324 struct amdgpu_firmware_info *info = NULL; 1325 const struct firmware *ucode_fw; 1326 unsigned int fw_size; 1327 1328 switch (ucode_id) { 1329 case AMDGPU_UCODE_ID_CP_PFP: 1330 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1331 adev->gfx.pfp_fw->data; 1332 adev->gfx.pfp_fw_version = 1333 le32_to_cpu(cp_hdr->header.ucode_version); 1334 adev->gfx.pfp_feature_version = 1335 le32_to_cpu(cp_hdr->ucode_feature_version); 1336 ucode_fw = adev->gfx.pfp_fw; 1337 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes); 1338 break; 1339 case AMDGPU_UCODE_ID_CP_RS64_PFP: 1340 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) 1341 adev->gfx.pfp_fw->data; 1342 adev->gfx.pfp_fw_version = 1343 le32_to_cpu(cp_hdr_v2_0->header.ucode_version); 1344 adev->gfx.pfp_feature_version = 1345 le32_to_cpu(cp_hdr_v2_0->ucode_feature_version); 1346 ucode_fw = adev->gfx.pfp_fw; 1347 fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes); 1348 break; 1349 case AMDGPU_UCODE_ID_CP_RS64_PFP_P0_STACK: 1350 case AMDGPU_UCODE_ID_CP_RS64_PFP_P1_STACK: 1351 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) 1352 adev->gfx.pfp_fw->data; 1353 ucode_fw = adev->gfx.pfp_fw; 1354 fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes); 1355 break; 1356 case AMDGPU_UCODE_ID_CP_ME: 1357 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1358 adev->gfx.me_fw->data; 1359 adev->gfx.me_fw_version = 1360 le32_to_cpu(cp_hdr->header.ucode_version); 1361 adev->gfx.me_feature_version = 1362 le32_to_cpu(cp_hdr->ucode_feature_version); 1363 ucode_fw = adev->gfx.me_fw; 1364 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes); 1365 break; 1366 case AMDGPU_UCODE_ID_CP_RS64_ME: 1367 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) 1368 adev->gfx.me_fw->data; 1369 adev->gfx.me_fw_version = 1370 le32_to_cpu(cp_hdr_v2_0->header.ucode_version); 1371 adev->gfx.me_feature_version = 1372 le32_to_cpu(cp_hdr_v2_0->ucode_feature_version); 1373 ucode_fw = adev->gfx.me_fw; 1374 fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes); 1375 break; 1376 case AMDGPU_UCODE_ID_CP_RS64_ME_P0_STACK: 1377 case AMDGPU_UCODE_ID_CP_RS64_ME_P1_STACK: 1378 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) 1379 adev->gfx.me_fw->data; 1380 ucode_fw = adev->gfx.me_fw; 1381 fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes); 1382 break; 1383 case AMDGPU_UCODE_ID_CP_CE: 1384 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1385 adev->gfx.ce_fw->data; 1386 adev->gfx.ce_fw_version = 1387 le32_to_cpu(cp_hdr->header.ucode_version); 1388 adev->gfx.ce_feature_version = 1389 le32_to_cpu(cp_hdr->ucode_feature_version); 1390 ucode_fw = adev->gfx.ce_fw; 1391 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes); 1392 break; 1393 case AMDGPU_UCODE_ID_CP_MEC1: 1394 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1395 adev->gfx.mec_fw->data; 1396 adev->gfx.mec_fw_version = 1397 le32_to_cpu(cp_hdr->header.ucode_version); 1398 adev->gfx.mec_feature_version = 1399 le32_to_cpu(cp_hdr->ucode_feature_version); 1400 ucode_fw = adev->gfx.mec_fw; 1401 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes) - 1402 le32_to_cpu(cp_hdr->jt_size) * 4; 1403 break; 1404 case AMDGPU_UCODE_ID_CP_MEC1_JT: 1405 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1406 adev->gfx.mec_fw->data; 1407 ucode_fw = adev->gfx.mec_fw; 1408 fw_size = le32_to_cpu(cp_hdr->jt_size) * 4; 1409 break; 1410 case AMDGPU_UCODE_ID_CP_MEC2: 1411 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1412 adev->gfx.mec2_fw->data; 1413 adev->gfx.mec2_fw_version = 1414 le32_to_cpu(cp_hdr->header.ucode_version); 1415 adev->gfx.mec2_feature_version = 1416 le32_to_cpu(cp_hdr->ucode_feature_version); 1417 ucode_fw = adev->gfx.mec2_fw; 1418 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes) - 1419 le32_to_cpu(cp_hdr->jt_size) * 4; 1420 break; 1421 case AMDGPU_UCODE_ID_CP_MEC2_JT: 1422 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1423 adev->gfx.mec2_fw->data; 1424 ucode_fw = adev->gfx.mec2_fw; 1425 fw_size = le32_to_cpu(cp_hdr->jt_size) * 4; 1426 break; 1427 case AMDGPU_UCODE_ID_CP_RS64_MEC: 1428 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) 1429 adev->gfx.mec_fw->data; 1430 adev->gfx.mec_fw_version = 1431 le32_to_cpu(cp_hdr_v2_0->header.ucode_version); 1432 adev->gfx.mec_feature_version = 1433 le32_to_cpu(cp_hdr_v2_0->ucode_feature_version); 1434 ucode_fw = adev->gfx.mec_fw; 1435 fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes); 1436 break; 1437 case AMDGPU_UCODE_ID_CP_RS64_MEC_P0_STACK: 1438 case AMDGPU_UCODE_ID_CP_RS64_MEC_P1_STACK: 1439 case AMDGPU_UCODE_ID_CP_RS64_MEC_P2_STACK: 1440 case AMDGPU_UCODE_ID_CP_RS64_MEC_P3_STACK: 1441 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) 1442 adev->gfx.mec_fw->data; 1443 ucode_fw = adev->gfx.mec_fw; 1444 fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes); 1445 break; 1446 default: 1447 dev_err(adev->dev, "Invalid ucode id %u\n", ucode_id); 1448 return; 1449 } 1450 1451 if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) { 1452 info = &adev->firmware.ucode[ucode_id]; 1453 info->ucode_id = ucode_id; 1454 info->fw = ucode_fw; 1455 adev->firmware.fw_size += ALIGN(fw_size, PAGE_SIZE); 1456 } 1457 } 1458 1459 bool amdgpu_gfx_is_master_xcc(struct amdgpu_device *adev, int xcc_id) 1460 { 1461 return !(xcc_id % (adev->gfx.num_xcc_per_xcp ? 1462 adev->gfx.num_xcc_per_xcp : 1)); 1463 } 1464 1465 static ssize_t amdgpu_gfx_get_current_compute_partition(struct device *dev, 1466 struct device_attribute *addr, 1467 char *buf) 1468 { 1469 struct drm_device *ddev = dev_get_drvdata(dev); 1470 struct amdgpu_device *adev = drm_to_adev(ddev); 1471 int mode; 1472 1473 /* Only minimal precaution taken to reject requests while in reset.*/ 1474 if (amdgpu_in_reset(adev)) 1475 return -EPERM; 1476 1477 mode = amdgpu_xcp_query_partition_mode(adev->xcp_mgr, 1478 AMDGPU_XCP_FL_NONE); 1479 1480 return sysfs_emit(buf, "%s\n", amdgpu_gfx_compute_mode_desc(mode)); 1481 } 1482 1483 static ssize_t amdgpu_gfx_set_compute_partition(struct device *dev, 1484 struct device_attribute *addr, 1485 const char *buf, size_t count) 1486 { 1487 struct drm_device *ddev = dev_get_drvdata(dev); 1488 struct amdgpu_device *adev = drm_to_adev(ddev); 1489 enum amdgpu_gfx_partition mode; 1490 int ret = 0, num_xcc; 1491 1492 num_xcc = NUM_XCC(adev->gfx.xcc_mask); 1493 if (num_xcc % 2 != 0) 1494 return -EINVAL; 1495 1496 if (!strncasecmp("SPX", buf, strlen("SPX"))) { 1497 mode = AMDGPU_SPX_PARTITION_MODE; 1498 } else if (!strncasecmp("DPX", buf, strlen("DPX"))) { 1499 /* 1500 * DPX mode needs AIDs to be in multiple of 2. 1501 * Each AID connects 2 XCCs. 1502 */ 1503 if (num_xcc%4) 1504 return -EINVAL; 1505 mode = AMDGPU_DPX_PARTITION_MODE; 1506 } else if (!strncasecmp("TPX", buf, strlen("TPX"))) { 1507 if (num_xcc != 6) 1508 return -EINVAL; 1509 mode = AMDGPU_TPX_PARTITION_MODE; 1510 } else if (!strncasecmp("QPX", buf, strlen("QPX"))) { 1511 if (num_xcc != 8) 1512 return -EINVAL; 1513 mode = AMDGPU_QPX_PARTITION_MODE; 1514 } else if (!strncasecmp("CPX", buf, strlen("CPX"))) { 1515 mode = AMDGPU_CPX_PARTITION_MODE; 1516 } else { 1517 return -EINVAL; 1518 } 1519 1520 /* Don't allow a switch while under reset */ 1521 if (!down_read_trylock(&adev->reset_domain->sem)) 1522 return -EPERM; 1523 1524 ret = amdgpu_xcp_switch_partition_mode(adev->xcp_mgr, mode); 1525 1526 up_read(&adev->reset_domain->sem); 1527 1528 if (ret) 1529 return ret; 1530 1531 return count; 1532 } 1533 1534 static const char *xcp_desc[] = { 1535 [AMDGPU_SPX_PARTITION_MODE] = "SPX", 1536 [AMDGPU_DPX_PARTITION_MODE] = "DPX", 1537 [AMDGPU_TPX_PARTITION_MODE] = "TPX", 1538 [AMDGPU_QPX_PARTITION_MODE] = "QPX", 1539 [AMDGPU_CPX_PARTITION_MODE] = "CPX", 1540 }; 1541 1542 static ssize_t amdgpu_gfx_get_available_compute_partition(struct device *dev, 1543 struct device_attribute *addr, 1544 char *buf) 1545 { 1546 struct drm_device *ddev = dev_get_drvdata(dev); 1547 struct amdgpu_device *adev = drm_to_adev(ddev); 1548 struct amdgpu_xcp_mgr *xcp_mgr = adev->xcp_mgr; 1549 int size = 0, mode; 1550 char *sep = ""; 1551 1552 if (!xcp_mgr || !xcp_mgr->avail_xcp_modes) 1553 return sysfs_emit(buf, "Not supported\n"); 1554 1555 for_each_inst(mode, xcp_mgr->avail_xcp_modes) { 1556 size += sysfs_emit_at(buf, size, "%s%s", sep, xcp_desc[mode]); 1557 sep = ", "; 1558 } 1559 1560 size += sysfs_emit_at(buf, size, "\n"); 1561 1562 return size; 1563 } 1564 1565 static int amdgpu_gfx_run_cleaner_shader_job(struct amdgpu_ring *ring) 1566 { 1567 struct amdgpu_device *adev = ring->adev; 1568 struct drm_gpu_scheduler *sched = &ring->sched; 1569 struct drm_sched_entity entity; 1570 static atomic_t counter; 1571 struct dma_fence *f; 1572 struct amdgpu_job *job; 1573 struct amdgpu_ib *ib; 1574 void *owner; 1575 int i, r; 1576 1577 /* Initialize the scheduler entity */ 1578 r = drm_sched_entity_init(&entity, DRM_SCHED_PRIORITY_NORMAL, 1579 &sched, 1, NULL); 1580 if (r) { 1581 dev_err(adev->dev, "Failed setting up GFX kernel entity.\n"); 1582 goto err; 1583 } 1584 1585 /* 1586 * Use some unique dummy value as the owner to make sure we execute 1587 * the cleaner shader on each submission. The value just need to change 1588 * for each submission and is otherwise meaningless. 1589 */ 1590 owner = (void *)(unsigned long)atomic_inc_return(&counter); 1591 1592 r = amdgpu_job_alloc_with_ib(ring->adev, &entity, owner, 1593 64, 0, &job, 1594 AMDGPU_KERNEL_JOB_ID_CLEANER_SHADER); 1595 if (r) 1596 goto err; 1597 1598 job->enforce_isolation = true; 1599 /* always run the cleaner shader */ 1600 job->run_cleaner_shader = true; 1601 1602 ib = &job->ibs[0]; 1603 for (i = 0; i <= ring->funcs->align_mask; ++i) 1604 ib->ptr[i] = ring->funcs->nop; 1605 ib->length_dw = ring->funcs->align_mask + 1; 1606 1607 f = amdgpu_job_submit(job); 1608 1609 r = dma_fence_wait(f, false); 1610 if (r) 1611 goto err; 1612 1613 dma_fence_put(f); 1614 1615 /* Clean up the scheduler entity */ 1616 drm_sched_entity_destroy(&entity); 1617 return 0; 1618 1619 err: 1620 return r; 1621 } 1622 1623 static int amdgpu_gfx_run_cleaner_shader(struct amdgpu_device *adev, int xcp_id) 1624 { 1625 int num_xcc = NUM_XCC(adev->gfx.xcc_mask); 1626 struct amdgpu_ring *ring; 1627 int num_xcc_to_clear; 1628 int i, r, xcc_id; 1629 1630 if (adev->gfx.num_xcc_per_xcp) 1631 num_xcc_to_clear = adev->gfx.num_xcc_per_xcp; 1632 else 1633 num_xcc_to_clear = 1; 1634 1635 for (xcc_id = 0; xcc_id < num_xcc; xcc_id++) { 1636 for (i = 0; i < adev->gfx.num_compute_rings; i++) { 1637 ring = &adev->gfx.compute_ring[i + xcc_id * adev->gfx.num_compute_rings]; 1638 if ((ring->xcp_id == xcp_id) && ring->sched.ready) { 1639 r = amdgpu_gfx_run_cleaner_shader_job(ring); 1640 if (r) 1641 return r; 1642 num_xcc_to_clear--; 1643 break; 1644 } 1645 } 1646 } 1647 1648 if (num_xcc_to_clear) 1649 return -ENOENT; 1650 1651 return 0; 1652 } 1653 1654 /** 1655 * amdgpu_gfx_set_run_cleaner_shader - Execute the AMDGPU GFX Cleaner Shader 1656 * @dev: The device structure 1657 * @attr: The device attribute structure 1658 * @buf: The buffer containing the input data 1659 * @count: The size of the input data 1660 * 1661 * Provides the sysfs interface to manually run a cleaner shader, which is 1662 * used to clear the GPU state between different tasks. Writing a value to the 1663 * 'run_cleaner_shader' sysfs file triggers the cleaner shader execution. 1664 * The value written corresponds to the partition index on multi-partition 1665 * devices. On single-partition devices, the value should be '0'. 1666 * 1667 * The cleaner shader clears the Local Data Store (LDS) and General Purpose 1668 * Registers (GPRs) to ensure data isolation between GPU workloads. 1669 * 1670 * Return: The number of bytes written to the sysfs file. 1671 */ 1672 static ssize_t amdgpu_gfx_set_run_cleaner_shader(struct device *dev, 1673 struct device_attribute *attr, 1674 const char *buf, 1675 size_t count) 1676 { 1677 struct drm_device *ddev = dev_get_drvdata(dev); 1678 struct amdgpu_device *adev = drm_to_adev(ddev); 1679 int ret; 1680 long value; 1681 1682 if (amdgpu_in_reset(adev)) 1683 return -EPERM; 1684 if (adev->in_suspend && !adev->in_runpm) 1685 return -EPERM; 1686 1687 if (adev->gfx.disable_kq) 1688 return -EPERM; 1689 1690 ret = kstrtol(buf, 0, &value); 1691 1692 if (ret) 1693 return -EINVAL; 1694 1695 if (value < 0) 1696 return -EINVAL; 1697 1698 if (adev->xcp_mgr) { 1699 if (value >= adev->xcp_mgr->num_xcps) 1700 return -EINVAL; 1701 } else { 1702 if (value > 1) 1703 return -EINVAL; 1704 } 1705 1706 ret = pm_runtime_get_sync(ddev->dev); 1707 if (ret < 0) { 1708 pm_runtime_put_autosuspend(ddev->dev); 1709 return ret; 1710 } 1711 1712 ret = amdgpu_gfx_run_cleaner_shader(adev, value); 1713 1714 pm_runtime_put_autosuspend(ddev->dev); 1715 1716 if (ret) 1717 return ret; 1718 1719 return count; 1720 } 1721 1722 /** 1723 * amdgpu_gfx_get_enforce_isolation - Query AMDGPU GFX Enforce Isolation Settings 1724 * @dev: The device structure 1725 * @attr: The device attribute structure 1726 * @buf: The buffer to store the output data 1727 * 1728 * Provides the sysfs read interface to get the current settings of the 'enforce_isolation' 1729 * feature for each GPU partition. Reading from the 'enforce_isolation' 1730 * sysfs file returns the isolation settings for all partitions, where '0' 1731 * indicates disabled, '1' indicates enabled, and '2' indicates enabled in legacy mode, 1732 * and '3' indicates enabled without cleaner shader. 1733 * 1734 * Return: The number of bytes read from the sysfs file. 1735 */ 1736 static ssize_t amdgpu_gfx_get_enforce_isolation(struct device *dev, 1737 struct device_attribute *attr, 1738 char *buf) 1739 { 1740 struct drm_device *ddev = dev_get_drvdata(dev); 1741 struct amdgpu_device *adev = drm_to_adev(ddev); 1742 int i; 1743 ssize_t size = 0; 1744 1745 if (adev->xcp_mgr) { 1746 for (i = 0; i < adev->xcp_mgr->num_xcps; i++) { 1747 size += sysfs_emit_at(buf, size, "%u", adev->enforce_isolation[i]); 1748 if (i < (adev->xcp_mgr->num_xcps - 1)) 1749 size += sysfs_emit_at(buf, size, " "); 1750 } 1751 buf[size++] = '\n'; 1752 } else { 1753 size = sysfs_emit_at(buf, 0, "%u\n", adev->enforce_isolation[0]); 1754 } 1755 1756 return size; 1757 } 1758 1759 /** 1760 * amdgpu_gfx_set_enforce_isolation - Control AMDGPU GFX Enforce Isolation 1761 * @dev: The device structure 1762 * @attr: The device attribute structure 1763 * @buf: The buffer containing the input data 1764 * @count: The size of the input data 1765 * 1766 * This function allows control over the 'enforce_isolation' feature, which 1767 * serializes access to the graphics engine. Writing '0' to disable, '1' to 1768 * enable isolation with cleaner shader, '2' to enable legacy isolation without 1769 * cleaner shader, or '3' to enable process isolation without submitting the 1770 * cleaner shader to the 'enforce_isolation' sysfs file sets the isolation mode 1771 * for each partition. The input should specify the setting for all 1772 * partitions. 1773 * 1774 * Return: The number of bytes written to the sysfs file. 1775 */ 1776 static ssize_t amdgpu_gfx_set_enforce_isolation(struct device *dev, 1777 struct device_attribute *attr, 1778 const char *buf, size_t count) 1779 { 1780 struct drm_device *ddev = dev_get_drvdata(dev); 1781 struct amdgpu_device *adev = drm_to_adev(ddev); 1782 long partition_values[MAX_XCP] = {0}; 1783 int ret, i, num_partitions; 1784 const char *input_buf = buf; 1785 1786 for (i = 0; i < (adev->xcp_mgr ? adev->xcp_mgr->num_xcps : 1); i++) { 1787 ret = sscanf(input_buf, "%ld", &partition_values[i]); 1788 if (ret <= 0) 1789 break; 1790 1791 /* Move the pointer to the next value in the string */ 1792 input_buf = strchr(input_buf, ' '); 1793 if (input_buf) { 1794 input_buf++; 1795 } else { 1796 i++; 1797 break; 1798 } 1799 } 1800 num_partitions = i; 1801 1802 if (adev->xcp_mgr && num_partitions != adev->xcp_mgr->num_xcps) 1803 return -EINVAL; 1804 1805 if (!adev->xcp_mgr && num_partitions != 1) 1806 return -EINVAL; 1807 1808 for (i = 0; i < num_partitions; i++) { 1809 if (partition_values[i] != 0 && 1810 partition_values[i] != 1 && 1811 partition_values[i] != 2 && 1812 partition_values[i] != 3) 1813 return -EINVAL; 1814 } 1815 1816 mutex_lock(&adev->enforce_isolation_mutex); 1817 for (i = 0; i < num_partitions; i++) { 1818 switch (partition_values[i]) { 1819 case 0: 1820 default: 1821 adev->enforce_isolation[i] = AMDGPU_ENFORCE_ISOLATION_DISABLE; 1822 break; 1823 case 1: 1824 adev->enforce_isolation[i] = 1825 AMDGPU_ENFORCE_ISOLATION_ENABLE; 1826 break; 1827 case 2: 1828 adev->enforce_isolation[i] = 1829 AMDGPU_ENFORCE_ISOLATION_ENABLE_LEGACY; 1830 break; 1831 case 3: 1832 adev->enforce_isolation[i] = 1833 AMDGPU_ENFORCE_ISOLATION_NO_CLEANER_SHADER; 1834 break; 1835 } 1836 } 1837 mutex_unlock(&adev->enforce_isolation_mutex); 1838 1839 amdgpu_mes_update_enforce_isolation(adev); 1840 1841 return count; 1842 } 1843 1844 static ssize_t amdgpu_gfx_get_gfx_reset_mask(struct device *dev, 1845 struct device_attribute *attr, 1846 char *buf) 1847 { 1848 struct drm_device *ddev = dev_get_drvdata(dev); 1849 struct amdgpu_device *adev = drm_to_adev(ddev); 1850 1851 if (!adev) 1852 return -ENODEV; 1853 1854 return amdgpu_show_reset_mask(buf, adev->gfx.gfx_supported_reset); 1855 } 1856 1857 static ssize_t amdgpu_gfx_get_compute_reset_mask(struct device *dev, 1858 struct device_attribute *attr, 1859 char *buf) 1860 { 1861 struct drm_device *ddev = dev_get_drvdata(dev); 1862 struct amdgpu_device *adev = drm_to_adev(ddev); 1863 1864 if (!adev) 1865 return -ENODEV; 1866 1867 return amdgpu_show_reset_mask(buf, adev->gfx.compute_supported_reset); 1868 } 1869 1870 static DEVICE_ATTR(run_cleaner_shader, 0200, 1871 NULL, amdgpu_gfx_set_run_cleaner_shader); 1872 1873 static DEVICE_ATTR(enforce_isolation, 0644, 1874 amdgpu_gfx_get_enforce_isolation, 1875 amdgpu_gfx_set_enforce_isolation); 1876 1877 static DEVICE_ATTR(current_compute_partition, 0644, 1878 amdgpu_gfx_get_current_compute_partition, 1879 amdgpu_gfx_set_compute_partition); 1880 1881 static DEVICE_ATTR(available_compute_partition, 0444, 1882 amdgpu_gfx_get_available_compute_partition, NULL); 1883 static DEVICE_ATTR(gfx_reset_mask, 0444, 1884 amdgpu_gfx_get_gfx_reset_mask, NULL); 1885 1886 static DEVICE_ATTR(compute_reset_mask, 0444, 1887 amdgpu_gfx_get_compute_reset_mask, NULL); 1888 1889 static int amdgpu_gfx_sysfs_xcp_init(struct amdgpu_device *adev) 1890 { 1891 struct amdgpu_xcp_mgr *xcp_mgr = adev->xcp_mgr; 1892 bool xcp_switch_supported; 1893 int r; 1894 1895 if (!xcp_mgr) 1896 return 0; 1897 1898 xcp_switch_supported = 1899 (xcp_mgr->funcs && xcp_mgr->funcs->switch_partition_mode); 1900 1901 if (!xcp_switch_supported) 1902 dev_attr_current_compute_partition.attr.mode &= 1903 ~(S_IWUSR | S_IWGRP | S_IWOTH); 1904 1905 r = device_create_file(adev->dev, &dev_attr_current_compute_partition); 1906 if (r) 1907 return r; 1908 1909 if (xcp_switch_supported) 1910 r = device_create_file(adev->dev, 1911 &dev_attr_available_compute_partition); 1912 1913 return r; 1914 } 1915 1916 static void amdgpu_gfx_sysfs_xcp_fini(struct amdgpu_device *adev) 1917 { 1918 struct amdgpu_xcp_mgr *xcp_mgr = adev->xcp_mgr; 1919 bool xcp_switch_supported; 1920 1921 if (!xcp_mgr) 1922 return; 1923 1924 xcp_switch_supported = 1925 (xcp_mgr->funcs && xcp_mgr->funcs->switch_partition_mode); 1926 device_remove_file(adev->dev, &dev_attr_current_compute_partition); 1927 1928 if (xcp_switch_supported) 1929 device_remove_file(adev->dev, 1930 &dev_attr_available_compute_partition); 1931 } 1932 1933 static int amdgpu_gfx_sysfs_isolation_shader_init(struct amdgpu_device *adev) 1934 { 1935 int r; 1936 1937 r = device_create_file(adev->dev, &dev_attr_enforce_isolation); 1938 if (r) 1939 return r; 1940 if (adev->gfx.enable_cleaner_shader) 1941 r = device_create_file(adev->dev, &dev_attr_run_cleaner_shader); 1942 1943 return r; 1944 } 1945 1946 static void amdgpu_gfx_sysfs_isolation_shader_fini(struct amdgpu_device *adev) 1947 { 1948 device_remove_file(adev->dev, &dev_attr_enforce_isolation); 1949 if (adev->gfx.enable_cleaner_shader) 1950 device_remove_file(adev->dev, &dev_attr_run_cleaner_shader); 1951 } 1952 1953 static int amdgpu_gfx_sysfs_reset_mask_init(struct amdgpu_device *adev) 1954 { 1955 int r = 0; 1956 1957 if (!amdgpu_gpu_recovery) 1958 return r; 1959 1960 if (adev->gfx.num_gfx_rings) { 1961 r = device_create_file(adev->dev, &dev_attr_gfx_reset_mask); 1962 if (r) 1963 return r; 1964 } 1965 1966 if (adev->gfx.num_compute_rings) { 1967 r = device_create_file(adev->dev, &dev_attr_compute_reset_mask); 1968 if (r) 1969 return r; 1970 } 1971 1972 return r; 1973 } 1974 1975 static void amdgpu_gfx_sysfs_reset_mask_fini(struct amdgpu_device *adev) 1976 { 1977 if (!amdgpu_gpu_recovery) 1978 return; 1979 1980 if (adev->gfx.num_gfx_rings) 1981 device_remove_file(adev->dev, &dev_attr_gfx_reset_mask); 1982 1983 if (adev->gfx.num_compute_rings) 1984 device_remove_file(adev->dev, &dev_attr_compute_reset_mask); 1985 } 1986 1987 int amdgpu_gfx_sysfs_init(struct amdgpu_device *adev) 1988 { 1989 int r; 1990 1991 r = amdgpu_gfx_sysfs_xcp_init(adev); 1992 if (r) { 1993 dev_err(adev->dev, "failed to create xcp sysfs files"); 1994 return r; 1995 } 1996 1997 r = amdgpu_gfx_sysfs_isolation_shader_init(adev); 1998 if (r) 1999 dev_err(adev->dev, "failed to create isolation sysfs files"); 2000 2001 r = amdgpu_gfx_sysfs_reset_mask_init(adev); 2002 if (r) 2003 dev_err(adev->dev, "failed to create reset mask sysfs files"); 2004 2005 return r; 2006 } 2007 2008 void amdgpu_gfx_sysfs_fini(struct amdgpu_device *adev) 2009 { 2010 if (adev->dev->kobj.sd) { 2011 amdgpu_gfx_sysfs_xcp_fini(adev); 2012 amdgpu_gfx_sysfs_isolation_shader_fini(adev); 2013 amdgpu_gfx_sysfs_reset_mask_fini(adev); 2014 } 2015 } 2016 2017 int amdgpu_gfx_cleaner_shader_sw_init(struct amdgpu_device *adev, 2018 unsigned int cleaner_shader_size) 2019 { 2020 if (!adev->gfx.enable_cleaner_shader) 2021 return -EOPNOTSUPP; 2022 2023 return amdgpu_bo_create_kernel(adev, cleaner_shader_size, PAGE_SIZE, 2024 AMDGPU_GEM_DOMAIN_VRAM | AMDGPU_GEM_DOMAIN_GTT, 2025 &adev->gfx.cleaner_shader_obj, 2026 &adev->gfx.cleaner_shader_gpu_addr, 2027 (void **)&adev->gfx.cleaner_shader_cpu_ptr); 2028 } 2029 2030 void amdgpu_gfx_cleaner_shader_sw_fini(struct amdgpu_device *adev) 2031 { 2032 if (!adev->gfx.enable_cleaner_shader) 2033 return; 2034 2035 amdgpu_bo_free_kernel(&adev->gfx.cleaner_shader_obj, 2036 &adev->gfx.cleaner_shader_gpu_addr, 2037 (void **)&adev->gfx.cleaner_shader_cpu_ptr); 2038 } 2039 2040 void amdgpu_gfx_cleaner_shader_init(struct amdgpu_device *adev, 2041 unsigned int cleaner_shader_size, 2042 const void *cleaner_shader_ptr) 2043 { 2044 if (!adev->gfx.enable_cleaner_shader) 2045 return; 2046 2047 if (adev->gfx.cleaner_shader_cpu_ptr && cleaner_shader_ptr) 2048 memcpy_toio(adev->gfx.cleaner_shader_cpu_ptr, cleaner_shader_ptr, 2049 cleaner_shader_size); 2050 } 2051 2052 /** 2053 * amdgpu_gfx_kfd_sch_ctrl - Control the KFD scheduler from the KGD (Graphics Driver) 2054 * @adev: amdgpu_device pointer 2055 * @idx: Index of the scheduler to control 2056 * @enable: Whether to enable or disable the KFD scheduler 2057 * 2058 * This function is used to control the KFD (Kernel Fusion Driver) scheduler 2059 * from the KGD. It is part of the cleaner shader feature. This function plays 2060 * a key role in enforcing process isolation on the GPU. 2061 * 2062 * The function uses a reference count mechanism (kfd_sch_req_count) to keep 2063 * track of the number of requests to enable the KFD scheduler. When a request 2064 * to enable the KFD scheduler is made, the reference count is decremented. 2065 * When the reference count reaches zero, a delayed work is scheduled to 2066 * enforce isolation after a delay of GFX_SLICE_PERIOD. 2067 * 2068 * When a request to disable the KFD scheduler is made, the function first 2069 * checks if the reference count is zero. If it is, it cancels the delayed work 2070 * for enforcing isolation and checks if the KFD scheduler is active. If the 2071 * KFD scheduler is active, it sends a request to stop the KFD scheduler and 2072 * sets the KFD scheduler state to inactive. Then, it increments the reference 2073 * count. 2074 * 2075 * The function is synchronized using the kfd_sch_mutex to ensure that the KFD 2076 * scheduler state and reference count are updated atomically. 2077 * 2078 * Note: If the reference count is already zero when a request to enable the 2079 * KFD scheduler is made, it means there's an imbalance bug somewhere. The 2080 * function triggers a warning in this case. 2081 */ 2082 static void amdgpu_gfx_kfd_sch_ctrl(struct amdgpu_device *adev, u32 idx, 2083 bool enable) 2084 { 2085 mutex_lock(&adev->gfx.userq_sch_mutex); 2086 2087 if (enable) { 2088 /* If the count is already 0, it means there's an imbalance bug somewhere. 2089 * Note that the bug may be in a different caller than the one which triggers the 2090 * WARN_ON_ONCE. 2091 */ 2092 if (WARN_ON_ONCE(adev->gfx.userq_sch_req_count[idx] == 0)) { 2093 dev_err(adev->dev, "Attempted to enable KFD scheduler when reference count is already zero\n"); 2094 goto unlock; 2095 } 2096 2097 adev->gfx.userq_sch_req_count[idx]--; 2098 2099 if (adev->gfx.userq_sch_req_count[idx] == 0 && 2100 adev->gfx.userq_sch_inactive[idx]) { 2101 schedule_delayed_work(&adev->gfx.enforce_isolation[idx].work, 2102 msecs_to_jiffies(adev->gfx.enforce_isolation_time[idx])); 2103 } 2104 } else { 2105 if (adev->gfx.userq_sch_req_count[idx] == 0) { 2106 cancel_delayed_work_sync(&adev->gfx.enforce_isolation[idx].work); 2107 if (!adev->gfx.userq_sch_inactive[idx]) { 2108 amdgpu_userq_stop_sched_for_enforce_isolation(adev, idx); 2109 if (adev->kfd.init_complete) 2110 amdgpu_amdkfd_stop_sched(adev, idx); 2111 adev->gfx.userq_sch_inactive[idx] = true; 2112 } 2113 } 2114 2115 adev->gfx.userq_sch_req_count[idx]++; 2116 } 2117 2118 unlock: 2119 mutex_unlock(&adev->gfx.userq_sch_mutex); 2120 } 2121 2122 /** 2123 * amdgpu_gfx_enforce_isolation_handler - work handler for enforcing shader isolation 2124 * 2125 * @work: work_struct. 2126 * 2127 * This function is the work handler for enforcing shader isolation on AMD GPUs. 2128 * It counts the number of emitted fences for each GFX and compute ring. If there 2129 * are any fences, it schedules the `enforce_isolation_work` to be run after a 2130 * delay of `GFX_SLICE_PERIOD`. If there are no fences, it signals the Kernel Fusion 2131 * Driver (KFD) to resume the runqueue. The function is synchronized using the 2132 * `enforce_isolation_mutex`. 2133 */ 2134 void amdgpu_gfx_enforce_isolation_handler(struct work_struct *work) 2135 { 2136 struct amdgpu_isolation_work *isolation_work = 2137 container_of(work, struct amdgpu_isolation_work, work.work); 2138 struct amdgpu_device *adev = isolation_work->adev; 2139 u32 i, idx, fences = 0; 2140 2141 if (isolation_work->xcp_id == AMDGPU_XCP_NO_PARTITION) 2142 idx = 0; 2143 else 2144 idx = isolation_work->xcp_id; 2145 2146 if (idx >= MAX_XCP) 2147 return; 2148 2149 mutex_lock(&adev->enforce_isolation_mutex); 2150 for (i = 0; i < AMDGPU_MAX_GFX_RINGS; ++i) { 2151 if (isolation_work->xcp_id == adev->gfx.gfx_ring[i].xcp_id) 2152 fences += amdgpu_fence_count_emitted(&adev->gfx.gfx_ring[i]); 2153 } 2154 for (i = 0; i < (AMDGPU_MAX_COMPUTE_RINGS * AMDGPU_MAX_GC_INSTANCES); ++i) { 2155 if (isolation_work->xcp_id == adev->gfx.compute_ring[i].xcp_id) 2156 fences += amdgpu_fence_count_emitted(&adev->gfx.compute_ring[i]); 2157 } 2158 if (fences) { 2159 /* we've already had our timeslice, so let's wrap this up */ 2160 schedule_delayed_work(&adev->gfx.enforce_isolation[idx].work, 2161 msecs_to_jiffies(1)); 2162 } else { 2163 /* Tell KFD to resume the runqueue */ 2164 WARN_ON_ONCE(!adev->gfx.userq_sch_inactive[idx]); 2165 WARN_ON_ONCE(adev->gfx.userq_sch_req_count[idx]); 2166 2167 amdgpu_userq_start_sched_for_enforce_isolation(adev, idx); 2168 if (adev->kfd.init_complete) 2169 amdgpu_amdkfd_start_sched(adev, idx); 2170 adev->gfx.userq_sch_inactive[idx] = false; 2171 } 2172 mutex_unlock(&adev->enforce_isolation_mutex); 2173 } 2174 2175 /** 2176 * amdgpu_gfx_enforce_isolation_wait_for_kfd - Manage KFD wait period for process isolation 2177 * @adev: amdgpu_device pointer 2178 * @idx: Index of the GPU partition 2179 * 2180 * When kernel submissions come in, the jobs are given a time slice and once 2181 * that time slice is up, if there are KFD user queues active, kernel 2182 * submissions are blocked until KFD has had its time slice. Once the KFD time 2183 * slice is up, KFD user queues are preempted and kernel submissions are 2184 * unblocked and allowed to run again. 2185 */ 2186 static void 2187 amdgpu_gfx_enforce_isolation_wait_for_kfd(struct amdgpu_device *adev, 2188 u32 idx) 2189 { 2190 unsigned long cjiffies; 2191 bool wait = false; 2192 2193 mutex_lock(&adev->enforce_isolation_mutex); 2194 if (adev->enforce_isolation[idx] == AMDGPU_ENFORCE_ISOLATION_ENABLE) { 2195 /* set the initial values if nothing is set */ 2196 if (!adev->gfx.enforce_isolation_jiffies[idx]) { 2197 adev->gfx.enforce_isolation_jiffies[idx] = jiffies; 2198 adev->gfx.enforce_isolation_time[idx] = GFX_SLICE_PERIOD_MS; 2199 } 2200 /* Make sure KFD gets a chance to run */ 2201 if (amdgpu_amdkfd_compute_active(adev, idx)) { 2202 cjiffies = jiffies; 2203 if (time_after(cjiffies, adev->gfx.enforce_isolation_jiffies[idx])) { 2204 cjiffies -= adev->gfx.enforce_isolation_jiffies[idx]; 2205 if ((jiffies_to_msecs(cjiffies) >= GFX_SLICE_PERIOD_MS)) { 2206 /* if our time is up, let KGD work drain before scheduling more */ 2207 wait = true; 2208 /* reset the timer period */ 2209 adev->gfx.enforce_isolation_time[idx] = GFX_SLICE_PERIOD_MS; 2210 } else { 2211 /* set the timer period to what's left in our time slice */ 2212 adev->gfx.enforce_isolation_time[idx] = 2213 GFX_SLICE_PERIOD_MS - jiffies_to_msecs(cjiffies); 2214 } 2215 } else { 2216 /* if jiffies wrap around we will just wait a little longer */ 2217 adev->gfx.enforce_isolation_jiffies[idx] = jiffies; 2218 } 2219 } else { 2220 /* if there is no KFD work, then set the full slice period */ 2221 adev->gfx.enforce_isolation_jiffies[idx] = jiffies; 2222 adev->gfx.enforce_isolation_time[idx] = GFX_SLICE_PERIOD_MS; 2223 } 2224 } 2225 mutex_unlock(&adev->enforce_isolation_mutex); 2226 2227 if (wait) 2228 msleep(GFX_SLICE_PERIOD_MS); 2229 } 2230 2231 /** 2232 * amdgpu_gfx_enforce_isolation_ring_begin_use - Begin use of a ring with enforced isolation 2233 * @ring: Pointer to the amdgpu_ring structure 2234 * 2235 * Ring begin_use helper implementation for gfx which serializes access to the 2236 * gfx IP between kernel submission IOCTLs and KFD user queues when isolation 2237 * enforcement is enabled. The kernel submission IOCTLs and KFD user queues 2238 * each get a time slice when both are active. 2239 */ 2240 void amdgpu_gfx_enforce_isolation_ring_begin_use(struct amdgpu_ring *ring) 2241 { 2242 struct amdgpu_device *adev = ring->adev; 2243 u32 idx; 2244 bool sched_work = false; 2245 2246 if (!adev->gfx.enable_cleaner_shader) 2247 return; 2248 2249 if (ring->xcp_id == AMDGPU_XCP_NO_PARTITION) 2250 idx = 0; 2251 else 2252 idx = ring->xcp_id; 2253 2254 if (idx >= MAX_XCP) 2255 return; 2256 2257 /* Don't submit more work until KFD has had some time */ 2258 amdgpu_gfx_enforce_isolation_wait_for_kfd(adev, idx); 2259 2260 mutex_lock(&adev->enforce_isolation_mutex); 2261 if (adev->enforce_isolation[idx] == AMDGPU_ENFORCE_ISOLATION_ENABLE) { 2262 if (adev->kfd.init_complete) 2263 sched_work = true; 2264 } 2265 mutex_unlock(&adev->enforce_isolation_mutex); 2266 2267 if (sched_work) 2268 amdgpu_gfx_kfd_sch_ctrl(adev, idx, false); 2269 } 2270 2271 /** 2272 * amdgpu_gfx_enforce_isolation_ring_end_use - End use of a ring with enforced isolation 2273 * @ring: Pointer to the amdgpu_ring structure 2274 * 2275 * Ring end_use helper implementation for gfx which serializes access to the 2276 * gfx IP between kernel submission IOCTLs and KFD user queues when isolation 2277 * enforcement is enabled. The kernel submission IOCTLs and KFD user queues 2278 * each get a time slice when both are active. 2279 */ 2280 void amdgpu_gfx_enforce_isolation_ring_end_use(struct amdgpu_ring *ring) 2281 { 2282 struct amdgpu_device *adev = ring->adev; 2283 u32 idx; 2284 bool sched_work = false; 2285 2286 if (!adev->gfx.enable_cleaner_shader) 2287 return; 2288 2289 if (ring->xcp_id == AMDGPU_XCP_NO_PARTITION) 2290 idx = 0; 2291 else 2292 idx = ring->xcp_id; 2293 2294 if (idx >= MAX_XCP) 2295 return; 2296 2297 mutex_lock(&adev->enforce_isolation_mutex); 2298 if (adev->enforce_isolation[idx] == AMDGPU_ENFORCE_ISOLATION_ENABLE) { 2299 if (adev->kfd.init_complete) 2300 sched_work = true; 2301 } 2302 mutex_unlock(&adev->enforce_isolation_mutex); 2303 2304 if (sched_work) 2305 amdgpu_gfx_kfd_sch_ctrl(adev, idx, true); 2306 } 2307 2308 void amdgpu_gfx_profile_idle_work_handler(struct work_struct *work) 2309 { 2310 struct amdgpu_device *adev = 2311 container_of(work, struct amdgpu_device, gfx.idle_work.work); 2312 enum PP_SMC_POWER_PROFILE profile; 2313 u32 i, fences = 0; 2314 int r; 2315 2316 if (adev->gfx.num_gfx_rings) 2317 profile = PP_SMC_POWER_PROFILE_FULLSCREEN3D; 2318 else 2319 profile = PP_SMC_POWER_PROFILE_COMPUTE; 2320 2321 for (i = 0; i < AMDGPU_MAX_GFX_RINGS; ++i) 2322 fences += amdgpu_fence_count_emitted(&adev->gfx.gfx_ring[i]); 2323 for (i = 0; i < (AMDGPU_MAX_COMPUTE_RINGS * AMDGPU_MAX_GC_INSTANCES); ++i) 2324 fences += amdgpu_fence_count_emitted(&adev->gfx.compute_ring[i]); 2325 if (!fences && !atomic_read(&adev->gfx.total_submission_cnt)) { 2326 mutex_lock(&adev->gfx.workload_profile_mutex); 2327 if (adev->gfx.workload_profile_active) { 2328 r = amdgpu_dpm_switch_power_profile(adev, profile, false); 2329 if (r) 2330 dev_warn(adev->dev, "(%d) failed to disable %s power profile mode\n", r, 2331 profile == PP_SMC_POWER_PROFILE_FULLSCREEN3D ? 2332 "fullscreen 3D" : "compute"); 2333 adev->gfx.workload_profile_active = false; 2334 } 2335 mutex_unlock(&adev->gfx.workload_profile_mutex); 2336 } else { 2337 schedule_delayed_work(&adev->gfx.idle_work, GFX_PROFILE_IDLE_TIMEOUT); 2338 } 2339 } 2340 2341 void amdgpu_gfx_profile_ring_begin_use(struct amdgpu_ring *ring) 2342 { 2343 struct amdgpu_device *adev = ring->adev; 2344 enum PP_SMC_POWER_PROFILE profile; 2345 int r; 2346 2347 if (amdgpu_dpm_is_overdrive_enabled(adev)) 2348 return; 2349 2350 if (adev->gfx.num_gfx_rings) 2351 profile = PP_SMC_POWER_PROFILE_FULLSCREEN3D; 2352 else 2353 profile = PP_SMC_POWER_PROFILE_COMPUTE; 2354 2355 atomic_inc(&adev->gfx.total_submission_cnt); 2356 2357 cancel_delayed_work_sync(&adev->gfx.idle_work); 2358 2359 /* We can safely return early here because we've cancelled the 2360 * the delayed work so there is no one else to set it to false 2361 * and we don't care if someone else sets it to true. 2362 */ 2363 if (adev->gfx.workload_profile_active) 2364 return; 2365 2366 mutex_lock(&adev->gfx.workload_profile_mutex); 2367 if (!adev->gfx.workload_profile_active) { 2368 r = amdgpu_dpm_switch_power_profile(adev, profile, true); 2369 if (r) 2370 dev_warn(adev->dev, "(%d) failed to disable %s power profile mode\n", r, 2371 profile == PP_SMC_POWER_PROFILE_FULLSCREEN3D ? 2372 "fullscreen 3D" : "compute"); 2373 adev->gfx.workload_profile_active = true; 2374 } 2375 mutex_unlock(&adev->gfx.workload_profile_mutex); 2376 } 2377 2378 void amdgpu_gfx_profile_ring_end_use(struct amdgpu_ring *ring) 2379 { 2380 struct amdgpu_device *adev = ring->adev; 2381 2382 if (amdgpu_dpm_is_overdrive_enabled(adev)) 2383 return; 2384 2385 atomic_dec(&ring->adev->gfx.total_submission_cnt); 2386 2387 schedule_delayed_work(&ring->adev->gfx.idle_work, GFX_PROFILE_IDLE_TIMEOUT); 2388 } 2389 2390 /** 2391 * amdgpu_gfx_csb_preamble_start - Set CSB preamble start 2392 * 2393 * @buffer: This is an output variable that gets the PACKET3 preamble setup. 2394 * 2395 * Return: 2396 * return the latest index. 2397 */ 2398 u32 amdgpu_gfx_csb_preamble_start(u32 *buffer) 2399 { 2400 u32 count = 0; 2401 2402 buffer[count++] = cpu_to_le32(PACKET3(PACKET3_PREAMBLE_CNTL, 0)); 2403 buffer[count++] = cpu_to_le32(PACKET3_PREAMBLE_BEGIN_CLEAR_STATE); 2404 2405 buffer[count++] = cpu_to_le32(PACKET3(PACKET3_CONTEXT_CONTROL, 1)); 2406 buffer[count++] = cpu_to_le32(0x80000000); 2407 buffer[count++] = cpu_to_le32(0x80000000); 2408 2409 return count; 2410 } 2411 2412 /** 2413 * amdgpu_gfx_csb_data_parser - Parser CS data 2414 * 2415 * @adev: amdgpu_device pointer used to get the CS data and other gfx info. 2416 * @buffer: This is an output variable that gets the PACKET3 preamble end. 2417 * @count: Index to start set the preemble end. 2418 * 2419 * Return: 2420 * return the latest index. 2421 */ 2422 u32 amdgpu_gfx_csb_data_parser(struct amdgpu_device *adev, u32 *buffer, u32 count) 2423 { 2424 const struct cs_section_def *sect = NULL; 2425 const struct cs_extent_def *ext = NULL; 2426 u32 i; 2427 2428 for (sect = adev->gfx.rlc.cs_data; sect->section != NULL; ++sect) { 2429 for (ext = sect->section; ext->extent != NULL; ++ext) { 2430 if (sect->id == SECT_CONTEXT) { 2431 buffer[count++] = cpu_to_le32(PACKET3(PACKET3_SET_CONTEXT_REG, ext->reg_count)); 2432 buffer[count++] = cpu_to_le32(ext->reg_index - PACKET3_SET_CONTEXT_REG_START); 2433 2434 for (i = 0; i < ext->reg_count; i++) 2435 buffer[count++] = cpu_to_le32(ext->extent[i]); 2436 } 2437 } 2438 } 2439 2440 return count; 2441 } 2442 2443 /** 2444 * amdgpu_gfx_csb_preamble_end - Set CSB preamble end 2445 * 2446 * @buffer: This is an output variable that gets the PACKET3 preamble end. 2447 * @count: Index to start set the preemble end. 2448 */ 2449 void amdgpu_gfx_csb_preamble_end(u32 *buffer, u32 count) 2450 { 2451 buffer[count++] = cpu_to_le32(PACKET3(PACKET3_PREAMBLE_CNTL, 0)); 2452 buffer[count++] = cpu_to_le32(PACKET3_PREAMBLE_END_CLEAR_STATE); 2453 2454 buffer[count++] = cpu_to_le32(PACKET3(PACKET3_CLEAR_STATE, 0)); 2455 buffer[count++] = cpu_to_le32(0); 2456 } 2457 2458 /* 2459 * debugfs for to enable/disable gfx job submission to specific core. 2460 */ 2461 #if defined(CONFIG_DEBUG_FS) 2462 static int amdgpu_debugfs_gfx_sched_mask_set(void *data, u64 val) 2463 { 2464 struct amdgpu_device *adev = (struct amdgpu_device *)data; 2465 u32 i; 2466 u64 mask = 0; 2467 struct amdgpu_ring *ring; 2468 2469 if (!adev) 2470 return -ENODEV; 2471 2472 mask = (1ULL << adev->gfx.num_gfx_rings) - 1; 2473 if ((val & mask) == 0) 2474 return -EINVAL; 2475 2476 for (i = 0; i < adev->gfx.num_gfx_rings; ++i) { 2477 ring = &adev->gfx.gfx_ring[i]; 2478 if (val & (1 << i)) 2479 ring->sched.ready = true; 2480 else 2481 ring->sched.ready = false; 2482 } 2483 /* publish sched.ready flag update effective immediately across smp */ 2484 smp_rmb(); 2485 return 0; 2486 } 2487 2488 static int amdgpu_debugfs_gfx_sched_mask_get(void *data, u64 *val) 2489 { 2490 struct amdgpu_device *adev = (struct amdgpu_device *)data; 2491 u32 i; 2492 u64 mask = 0; 2493 struct amdgpu_ring *ring; 2494 2495 if (!adev) 2496 return -ENODEV; 2497 for (i = 0; i < adev->gfx.num_gfx_rings; ++i) { 2498 ring = &adev->gfx.gfx_ring[i]; 2499 if (ring->sched.ready) 2500 mask |= 1ULL << i; 2501 } 2502 2503 *val = mask; 2504 return 0; 2505 } 2506 2507 DEFINE_DEBUGFS_ATTRIBUTE(amdgpu_debugfs_gfx_sched_mask_fops, 2508 amdgpu_debugfs_gfx_sched_mask_get, 2509 amdgpu_debugfs_gfx_sched_mask_set, "%llx\n"); 2510 2511 #endif 2512 2513 void amdgpu_debugfs_gfx_sched_mask_init(struct amdgpu_device *adev) 2514 { 2515 #if defined(CONFIG_DEBUG_FS) 2516 struct drm_minor *minor = adev_to_drm(adev)->primary; 2517 struct dentry *root = minor->debugfs_root; 2518 char name[32]; 2519 2520 if (!(adev->gfx.num_gfx_rings > 1)) 2521 return; 2522 sprintf(name, "amdgpu_gfx_sched_mask"); 2523 debugfs_create_file(name, 0600, root, adev, 2524 &amdgpu_debugfs_gfx_sched_mask_fops); 2525 #endif 2526 } 2527 2528 /* 2529 * debugfs for to enable/disable compute job submission to specific core. 2530 */ 2531 #if defined(CONFIG_DEBUG_FS) 2532 static int amdgpu_debugfs_compute_sched_mask_set(void *data, u64 val) 2533 { 2534 struct amdgpu_device *adev = (struct amdgpu_device *)data; 2535 u32 i; 2536 u64 mask = 0; 2537 struct amdgpu_ring *ring; 2538 2539 if (!adev) 2540 return -ENODEV; 2541 2542 mask = (1ULL << adev->gfx.num_compute_rings) - 1; 2543 if ((val & mask) == 0) 2544 return -EINVAL; 2545 2546 for (i = 0; i < adev->gfx.num_compute_rings; ++i) { 2547 ring = &adev->gfx.compute_ring[i]; 2548 if (val & (1 << i)) 2549 ring->sched.ready = true; 2550 else 2551 ring->sched.ready = false; 2552 } 2553 2554 /* publish sched.ready flag update effective immediately across smp */ 2555 smp_rmb(); 2556 return 0; 2557 } 2558 2559 static int amdgpu_debugfs_compute_sched_mask_get(void *data, u64 *val) 2560 { 2561 struct amdgpu_device *adev = (struct amdgpu_device *)data; 2562 u32 i; 2563 u64 mask = 0; 2564 struct amdgpu_ring *ring; 2565 2566 if (!adev) 2567 return -ENODEV; 2568 for (i = 0; i < adev->gfx.num_compute_rings; ++i) { 2569 ring = &adev->gfx.compute_ring[i]; 2570 if (ring->sched.ready) 2571 mask |= 1ULL << i; 2572 } 2573 2574 *val = mask; 2575 return 0; 2576 } 2577 2578 DEFINE_DEBUGFS_ATTRIBUTE(amdgpu_debugfs_compute_sched_mask_fops, 2579 amdgpu_debugfs_compute_sched_mask_get, 2580 amdgpu_debugfs_compute_sched_mask_set, "%llx\n"); 2581 2582 #endif 2583 2584 void amdgpu_debugfs_compute_sched_mask_init(struct amdgpu_device *adev) 2585 { 2586 #if defined(CONFIG_DEBUG_FS) 2587 struct drm_minor *minor = adev_to_drm(adev)->primary; 2588 struct dentry *root = minor->debugfs_root; 2589 char name[32]; 2590 2591 if (!(adev->gfx.num_compute_rings > 1)) 2592 return; 2593 sprintf(name, "amdgpu_compute_sched_mask"); 2594 debugfs_create_file(name, 0600, root, adev, 2595 &amdgpu_debugfs_compute_sched_mask_fops); 2596 #endif 2597 } 2598 2599