1 /* 2 * Copyright 2014 Advanced Micro Devices, Inc. 3 * Copyright 2008 Red Hat Inc. 4 * Copyright 2009 Jerome Glisse. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 * 24 */ 25 26 #include <linux/firmware.h> 27 #include <linux/pm_runtime.h> 28 29 #include "amdgpu.h" 30 #include "amdgpu_gfx.h" 31 #include "amdgpu_rlc.h" 32 #include "amdgpu_ras.h" 33 #include "amdgpu_reset.h" 34 #include "amdgpu_xcp.h" 35 #include "amdgpu_xgmi.h" 36 #include "nvd.h" 37 38 /* delay 0.1 second to enable gfx off feature */ 39 #define GFX_OFF_DELAY_ENABLE msecs_to_jiffies(100) 40 41 #define GFX_OFF_NO_DELAY 0 42 43 /* 44 * GPU GFX IP block helpers function. 45 */ 46 47 int amdgpu_gfx_mec_queue_to_bit(struct amdgpu_device *adev, int mec, 48 int pipe, int queue) 49 { 50 int bit = 0; 51 52 bit += mec * adev->gfx.mec.num_pipe_per_mec 53 * adev->gfx.mec.num_queue_per_pipe; 54 bit += pipe * adev->gfx.mec.num_queue_per_pipe; 55 bit += queue; 56 57 return bit; 58 } 59 60 void amdgpu_queue_mask_bit_to_mec_queue(struct amdgpu_device *adev, int bit, 61 int *mec, int *pipe, int *queue) 62 { 63 *queue = bit % adev->gfx.mec.num_queue_per_pipe; 64 *pipe = (bit / adev->gfx.mec.num_queue_per_pipe) 65 % adev->gfx.mec.num_pipe_per_mec; 66 *mec = (bit / adev->gfx.mec.num_queue_per_pipe) 67 / adev->gfx.mec.num_pipe_per_mec; 68 69 } 70 71 bool amdgpu_gfx_is_mec_queue_enabled(struct amdgpu_device *adev, 72 int xcc_id, int mec, int pipe, int queue) 73 { 74 return test_bit(amdgpu_gfx_mec_queue_to_bit(adev, mec, pipe, queue), 75 adev->gfx.mec_bitmap[xcc_id].queue_bitmap); 76 } 77 78 static int amdgpu_gfx_me_queue_to_bit(struct amdgpu_device *adev, 79 int me, int pipe, int queue) 80 { 81 int num_queue_per_pipe = 1; /* we only enable 1 KGQ per pipe */ 82 int bit = 0; 83 84 bit += me * adev->gfx.me.num_pipe_per_me 85 * num_queue_per_pipe; 86 bit += pipe * num_queue_per_pipe; 87 bit += queue; 88 89 return bit; 90 } 91 92 bool amdgpu_gfx_is_me_queue_enabled(struct amdgpu_device *adev, 93 int me, int pipe, int queue) 94 { 95 return test_bit(amdgpu_gfx_me_queue_to_bit(adev, me, pipe, queue), 96 adev->gfx.me.queue_bitmap); 97 } 98 99 /** 100 * amdgpu_gfx_parse_disable_cu - Parse the disable_cu module parameter 101 * 102 * @mask: array in which the per-shader array disable masks will be stored 103 * @max_se: number of SEs 104 * @max_sh: number of SHs 105 * 106 * The bitmask of CUs to be disabled in the shader array determined by se and 107 * sh is stored in mask[se * max_sh + sh]. 108 */ 109 void amdgpu_gfx_parse_disable_cu(unsigned int *mask, unsigned int max_se, unsigned int max_sh) 110 { 111 unsigned int se, sh, cu; 112 const char *p; 113 114 memset(mask, 0, sizeof(*mask) * max_se * max_sh); 115 116 if (!amdgpu_disable_cu || !*amdgpu_disable_cu) 117 return; 118 119 p = amdgpu_disable_cu; 120 for (;;) { 121 char *next; 122 int ret = sscanf(p, "%u.%u.%u", &se, &sh, &cu); 123 124 if (ret < 3) { 125 DRM_ERROR("amdgpu: could not parse disable_cu\n"); 126 return; 127 } 128 129 if (se < max_se && sh < max_sh && cu < 16) { 130 DRM_INFO("amdgpu: disabling CU %u.%u.%u\n", se, sh, cu); 131 mask[se * max_sh + sh] |= 1u << cu; 132 } else { 133 DRM_ERROR("amdgpu: disable_cu %u.%u.%u is out of range\n", 134 se, sh, cu); 135 } 136 137 next = strchr(p, ','); 138 if (!next) 139 break; 140 p = next + 1; 141 } 142 } 143 144 static bool amdgpu_gfx_is_graphics_multipipe_capable(struct amdgpu_device *adev) 145 { 146 return amdgpu_async_gfx_ring && adev->gfx.me.num_pipe_per_me > 1; 147 } 148 149 static bool amdgpu_gfx_is_compute_multipipe_capable(struct amdgpu_device *adev) 150 { 151 if (amdgpu_compute_multipipe != -1) { 152 dev_info(adev->dev, "amdgpu: forcing compute pipe policy %d\n", 153 amdgpu_compute_multipipe); 154 return amdgpu_compute_multipipe == 1; 155 } 156 157 if (amdgpu_ip_version(adev, GC_HWIP, 0) > IP_VERSION(9, 0, 0)) 158 return true; 159 160 /* FIXME: spreading the queues across pipes causes perf regressions 161 * on POLARIS11 compute workloads */ 162 if (adev->asic_type == CHIP_POLARIS11) 163 return false; 164 165 return adev->gfx.mec.num_mec > 1; 166 } 167 168 bool amdgpu_gfx_is_high_priority_graphics_queue(struct amdgpu_device *adev, 169 struct amdgpu_ring *ring) 170 { 171 int queue = ring->queue; 172 int pipe = ring->pipe; 173 174 /* Policy: use pipe1 queue0 as high priority graphics queue if we 175 * have more than one gfx pipe. 176 */ 177 if (amdgpu_gfx_is_graphics_multipipe_capable(adev) && 178 adev->gfx.num_gfx_rings > 1 && pipe == 1 && queue == 0) { 179 int me = ring->me; 180 int bit; 181 182 bit = amdgpu_gfx_me_queue_to_bit(adev, me, pipe, queue); 183 if (ring == &adev->gfx.gfx_ring[bit]) 184 return true; 185 } 186 187 return false; 188 } 189 190 bool amdgpu_gfx_is_high_priority_compute_queue(struct amdgpu_device *adev, 191 struct amdgpu_ring *ring) 192 { 193 /* Policy: use 1st queue as high priority compute queue if we 194 * have more than one compute queue. 195 */ 196 if (adev->gfx.num_compute_rings > 1 && 197 ring == &adev->gfx.compute_ring[0]) 198 return true; 199 200 return false; 201 } 202 203 void amdgpu_gfx_compute_queue_acquire(struct amdgpu_device *adev) 204 { 205 int i, j, queue, pipe; 206 bool multipipe_policy = amdgpu_gfx_is_compute_multipipe_capable(adev); 207 int max_queues_per_mec = min(adev->gfx.mec.num_pipe_per_mec * 208 adev->gfx.mec.num_queue_per_pipe, 209 adev->gfx.num_compute_rings); 210 int num_xcc = adev->gfx.xcc_mask ? NUM_XCC(adev->gfx.xcc_mask) : 1; 211 212 if (multipipe_policy) { 213 /* policy: make queues evenly cross all pipes on MEC1 only 214 * for multiple xcc, just use the original policy for simplicity */ 215 for (j = 0; j < num_xcc; j++) { 216 for (i = 0; i < max_queues_per_mec; i++) { 217 pipe = i % adev->gfx.mec.num_pipe_per_mec; 218 queue = (i / adev->gfx.mec.num_pipe_per_mec) % 219 adev->gfx.mec.num_queue_per_pipe; 220 221 set_bit(pipe * adev->gfx.mec.num_queue_per_pipe + queue, 222 adev->gfx.mec_bitmap[j].queue_bitmap); 223 } 224 } 225 } else { 226 /* policy: amdgpu owns all queues in the given pipe */ 227 for (j = 0; j < num_xcc; j++) { 228 for (i = 0; i < max_queues_per_mec; ++i) 229 set_bit(i, adev->gfx.mec_bitmap[j].queue_bitmap); 230 } 231 } 232 233 for (j = 0; j < num_xcc; j++) { 234 dev_dbg(adev->dev, "mec queue bitmap weight=%d\n", 235 bitmap_weight(adev->gfx.mec_bitmap[j].queue_bitmap, AMDGPU_MAX_COMPUTE_QUEUES)); 236 } 237 } 238 239 void amdgpu_gfx_graphics_queue_acquire(struct amdgpu_device *adev) 240 { 241 int i, queue, pipe; 242 bool multipipe_policy = amdgpu_gfx_is_graphics_multipipe_capable(adev); 243 int num_queue_per_pipe = 1; /* we only enable 1 KGQ per pipe */ 244 int max_queues_per_me = adev->gfx.me.num_pipe_per_me * num_queue_per_pipe; 245 246 if (multipipe_policy) { 247 /* policy: amdgpu owns the first queue per pipe at this stage 248 * will extend to mulitple queues per pipe later */ 249 for (i = 0; i < max_queues_per_me; i++) { 250 pipe = i % adev->gfx.me.num_pipe_per_me; 251 queue = (i / adev->gfx.me.num_pipe_per_me) % 252 num_queue_per_pipe; 253 254 set_bit(pipe * num_queue_per_pipe + queue, 255 adev->gfx.me.queue_bitmap); 256 } 257 } else { 258 for (i = 0; i < max_queues_per_me; ++i) 259 set_bit(i, adev->gfx.me.queue_bitmap); 260 } 261 262 /* update the number of active graphics rings */ 263 if (adev->gfx.num_gfx_rings) 264 adev->gfx.num_gfx_rings = 265 bitmap_weight(adev->gfx.me.queue_bitmap, AMDGPU_MAX_GFX_QUEUES); 266 } 267 268 static int amdgpu_gfx_kiq_acquire(struct amdgpu_device *adev, 269 struct amdgpu_ring *ring, int xcc_id) 270 { 271 int queue_bit; 272 int mec, pipe, queue; 273 274 queue_bit = adev->gfx.mec.num_mec 275 * adev->gfx.mec.num_pipe_per_mec 276 * adev->gfx.mec.num_queue_per_pipe; 277 278 while (--queue_bit >= 0) { 279 if (test_bit(queue_bit, adev->gfx.mec_bitmap[xcc_id].queue_bitmap)) 280 continue; 281 282 amdgpu_queue_mask_bit_to_mec_queue(adev, queue_bit, &mec, &pipe, &queue); 283 284 /* 285 * 1. Using pipes 2/3 from MEC 2 seems cause problems. 286 * 2. It must use queue id 0, because CGPG_IDLE/SAVE/LOAD/RUN 287 * only can be issued on queue 0. 288 */ 289 if ((mec == 1 && pipe > 1) || queue != 0) 290 continue; 291 292 ring->me = mec + 1; 293 ring->pipe = pipe; 294 ring->queue = queue; 295 296 return 0; 297 } 298 299 dev_err(adev->dev, "Failed to find a queue for KIQ\n"); 300 return -EINVAL; 301 } 302 303 int amdgpu_gfx_kiq_init_ring(struct amdgpu_device *adev, int xcc_id) 304 { 305 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 306 struct amdgpu_irq_src *irq = &kiq->irq; 307 struct amdgpu_ring *ring = &kiq->ring; 308 int r = 0; 309 310 spin_lock_init(&kiq->ring_lock); 311 312 ring->adev = NULL; 313 ring->ring_obj = NULL; 314 ring->use_doorbell = true; 315 ring->xcc_id = xcc_id; 316 ring->vm_hub = AMDGPU_GFXHUB(xcc_id); 317 ring->doorbell_index = 318 (adev->doorbell_index.kiq + 319 xcc_id * adev->doorbell_index.xcc_doorbell_range) 320 << 1; 321 322 r = amdgpu_gfx_kiq_acquire(adev, ring, xcc_id); 323 if (r) 324 return r; 325 326 ring->eop_gpu_addr = kiq->eop_gpu_addr; 327 ring->no_scheduler = true; 328 snprintf(ring->name, sizeof(ring->name), "kiq_%hhu.%hhu.%hhu.%hhu", 329 (unsigned char)xcc_id, (unsigned char)ring->me, 330 (unsigned char)ring->pipe, (unsigned char)ring->queue); 331 r = amdgpu_ring_init(adev, ring, 1024, irq, AMDGPU_CP_KIQ_IRQ_DRIVER0, 332 AMDGPU_RING_PRIO_DEFAULT, NULL); 333 if (r) 334 dev_warn(adev->dev, "(%d) failed to init kiq ring\n", r); 335 336 return r; 337 } 338 339 void amdgpu_gfx_kiq_free_ring(struct amdgpu_ring *ring) 340 { 341 amdgpu_ring_fini(ring); 342 } 343 344 void amdgpu_gfx_kiq_fini(struct amdgpu_device *adev, int xcc_id) 345 { 346 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 347 348 amdgpu_bo_free_kernel(&kiq->eop_obj, &kiq->eop_gpu_addr, NULL); 349 } 350 351 int amdgpu_gfx_kiq_init(struct amdgpu_device *adev, 352 unsigned int hpd_size, int xcc_id) 353 { 354 int r; 355 u32 *hpd; 356 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 357 358 r = amdgpu_bo_create_kernel(adev, hpd_size, PAGE_SIZE, 359 AMDGPU_GEM_DOMAIN_GTT, &kiq->eop_obj, 360 &kiq->eop_gpu_addr, (void **)&hpd); 361 if (r) { 362 dev_warn(adev->dev, "failed to create KIQ bo (%d).\n", r); 363 return r; 364 } 365 366 memset(hpd, 0, hpd_size); 367 368 r = amdgpu_bo_reserve(kiq->eop_obj, true); 369 if (unlikely(r != 0)) 370 dev_warn(adev->dev, "(%d) reserve kiq eop bo failed\n", r); 371 amdgpu_bo_kunmap(kiq->eop_obj); 372 amdgpu_bo_unreserve(kiq->eop_obj); 373 374 return 0; 375 } 376 377 /* create MQD for each compute/gfx queue */ 378 int amdgpu_gfx_mqd_sw_init(struct amdgpu_device *adev, 379 unsigned int mqd_size, int xcc_id) 380 { 381 int r, i, j; 382 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 383 struct amdgpu_ring *ring = &kiq->ring; 384 u32 domain = AMDGPU_GEM_DOMAIN_GTT; 385 386 #if !defined(CONFIG_ARM) && !defined(CONFIG_ARM64) 387 /* Only enable on gfx10 and 11 for now to avoid changing behavior on older chips */ 388 if (amdgpu_ip_version(adev, GC_HWIP, 0) >= IP_VERSION(10, 0, 0)) 389 domain |= AMDGPU_GEM_DOMAIN_VRAM; 390 #endif 391 392 /* create MQD for KIQ */ 393 if (!adev->enable_mes_kiq && !ring->mqd_obj) { 394 /* originaly the KIQ MQD is put in GTT domain, but for SRIOV VRAM domain is a must 395 * otherwise hypervisor trigger SAVE_VF fail after driver unloaded which mean MQD 396 * deallocated and gart_unbind, to strict diverage we decide to use VRAM domain for 397 * KIQ MQD no matter SRIOV or Bare-metal 398 */ 399 r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE, 400 AMDGPU_GEM_DOMAIN_VRAM | 401 AMDGPU_GEM_DOMAIN_GTT, 402 &ring->mqd_obj, 403 &ring->mqd_gpu_addr, 404 &ring->mqd_ptr); 405 if (r) { 406 dev_warn(adev->dev, "failed to create ring mqd ob (%d)", r); 407 return r; 408 } 409 410 /* prepare MQD backup */ 411 kiq->mqd_backup = kzalloc(mqd_size, GFP_KERNEL); 412 if (!kiq->mqd_backup) { 413 dev_warn(adev->dev, 414 "no memory to create MQD backup for ring %s\n", ring->name); 415 return -ENOMEM; 416 } 417 } 418 419 if (adev->asic_type >= CHIP_NAVI10 && amdgpu_async_gfx_ring) { 420 /* create MQD for each KGQ */ 421 for (i = 0; i < adev->gfx.num_gfx_rings; i++) { 422 ring = &adev->gfx.gfx_ring[i]; 423 if (!ring->mqd_obj) { 424 r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE, 425 domain, &ring->mqd_obj, 426 &ring->mqd_gpu_addr, &ring->mqd_ptr); 427 if (r) { 428 dev_warn(adev->dev, "failed to create ring mqd bo (%d)", r); 429 return r; 430 } 431 432 ring->mqd_size = mqd_size; 433 /* prepare MQD backup */ 434 adev->gfx.me.mqd_backup[i] = kzalloc(mqd_size, GFP_KERNEL); 435 if (!adev->gfx.me.mqd_backup[i]) { 436 dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name); 437 return -ENOMEM; 438 } 439 } 440 } 441 } 442 443 /* create MQD for each KCQ */ 444 for (i = 0; i < adev->gfx.num_compute_rings; i++) { 445 j = i + xcc_id * adev->gfx.num_compute_rings; 446 ring = &adev->gfx.compute_ring[j]; 447 if (!ring->mqd_obj) { 448 r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE, 449 domain, &ring->mqd_obj, 450 &ring->mqd_gpu_addr, &ring->mqd_ptr); 451 if (r) { 452 dev_warn(adev->dev, "failed to create ring mqd bo (%d)", r); 453 return r; 454 } 455 456 ring->mqd_size = mqd_size; 457 /* prepare MQD backup */ 458 adev->gfx.mec.mqd_backup[j] = kzalloc(mqd_size, GFP_KERNEL); 459 if (!adev->gfx.mec.mqd_backup[j]) { 460 dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name); 461 return -ENOMEM; 462 } 463 } 464 } 465 466 return 0; 467 } 468 469 void amdgpu_gfx_mqd_sw_fini(struct amdgpu_device *adev, int xcc_id) 470 { 471 struct amdgpu_ring *ring = NULL; 472 int i, j; 473 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 474 475 if (adev->asic_type >= CHIP_NAVI10 && amdgpu_async_gfx_ring) { 476 for (i = 0; i < adev->gfx.num_gfx_rings; i++) { 477 ring = &adev->gfx.gfx_ring[i]; 478 kfree(adev->gfx.me.mqd_backup[i]); 479 amdgpu_bo_free_kernel(&ring->mqd_obj, 480 &ring->mqd_gpu_addr, 481 &ring->mqd_ptr); 482 } 483 } 484 485 for (i = 0; i < adev->gfx.num_compute_rings; i++) { 486 j = i + xcc_id * adev->gfx.num_compute_rings; 487 ring = &adev->gfx.compute_ring[j]; 488 kfree(adev->gfx.mec.mqd_backup[j]); 489 amdgpu_bo_free_kernel(&ring->mqd_obj, 490 &ring->mqd_gpu_addr, 491 &ring->mqd_ptr); 492 } 493 494 ring = &kiq->ring; 495 kfree(kiq->mqd_backup); 496 amdgpu_bo_free_kernel(&ring->mqd_obj, 497 &ring->mqd_gpu_addr, 498 &ring->mqd_ptr); 499 } 500 501 int amdgpu_gfx_disable_kcq(struct amdgpu_device *adev, int xcc_id) 502 { 503 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 504 struct amdgpu_ring *kiq_ring = &kiq->ring; 505 int i, r = 0; 506 int j; 507 508 if (adev->enable_mes) { 509 for (i = 0; i < adev->gfx.num_compute_rings; i++) { 510 j = i + xcc_id * adev->gfx.num_compute_rings; 511 amdgpu_mes_unmap_legacy_queue(adev, 512 &adev->gfx.compute_ring[j], 513 RESET_QUEUES, 0, 0); 514 } 515 return 0; 516 } 517 518 if (!kiq->pmf || !kiq->pmf->kiq_unmap_queues) 519 return -EINVAL; 520 521 if (!kiq_ring->sched.ready || amdgpu_in_reset(adev)) 522 return 0; 523 524 spin_lock(&kiq->ring_lock); 525 if (amdgpu_ring_alloc(kiq_ring, kiq->pmf->unmap_queues_size * 526 adev->gfx.num_compute_rings)) { 527 spin_unlock(&kiq->ring_lock); 528 return -ENOMEM; 529 } 530 531 for (i = 0; i < adev->gfx.num_compute_rings; i++) { 532 j = i + xcc_id * adev->gfx.num_compute_rings; 533 kiq->pmf->kiq_unmap_queues(kiq_ring, 534 &adev->gfx.compute_ring[j], 535 RESET_QUEUES, 0, 0); 536 } 537 /* Submit unmap queue packet */ 538 amdgpu_ring_commit(kiq_ring); 539 /* 540 * Ring test will do a basic scratch register change check. Just run 541 * this to ensure that unmap queues that is submitted before got 542 * processed successfully before returning. 543 */ 544 r = amdgpu_ring_test_helper(kiq_ring); 545 546 spin_unlock(&kiq->ring_lock); 547 548 return r; 549 } 550 551 int amdgpu_gfx_disable_kgq(struct amdgpu_device *adev, int xcc_id) 552 { 553 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 554 struct amdgpu_ring *kiq_ring = &kiq->ring; 555 int i, r = 0; 556 int j; 557 558 if (adev->enable_mes) { 559 if (amdgpu_gfx_is_master_xcc(adev, xcc_id)) { 560 for (i = 0; i < adev->gfx.num_gfx_rings; i++) { 561 j = i + xcc_id * adev->gfx.num_gfx_rings; 562 amdgpu_mes_unmap_legacy_queue(adev, 563 &adev->gfx.gfx_ring[j], 564 PREEMPT_QUEUES, 0, 0); 565 } 566 } 567 return 0; 568 } 569 570 if (!kiq->pmf || !kiq->pmf->kiq_unmap_queues) 571 return -EINVAL; 572 573 if (!adev->gfx.kiq[0].ring.sched.ready || amdgpu_in_reset(adev)) 574 return 0; 575 576 if (amdgpu_gfx_is_master_xcc(adev, xcc_id)) { 577 spin_lock(&kiq->ring_lock); 578 if (amdgpu_ring_alloc(kiq_ring, kiq->pmf->unmap_queues_size * 579 adev->gfx.num_gfx_rings)) { 580 spin_unlock(&kiq->ring_lock); 581 return -ENOMEM; 582 } 583 584 for (i = 0; i < adev->gfx.num_gfx_rings; i++) { 585 j = i + xcc_id * adev->gfx.num_gfx_rings; 586 kiq->pmf->kiq_unmap_queues(kiq_ring, 587 &adev->gfx.gfx_ring[j], 588 PREEMPT_QUEUES, 0, 0); 589 } 590 /* Submit unmap queue packet */ 591 amdgpu_ring_commit(kiq_ring); 592 593 /* 594 * Ring test will do a basic scratch register change check. 595 * Just run this to ensure that unmap queues that is submitted 596 * before got processed successfully before returning. 597 */ 598 r = amdgpu_ring_test_helper(kiq_ring); 599 spin_unlock(&kiq->ring_lock); 600 } 601 602 return r; 603 } 604 605 int amdgpu_queue_mask_bit_to_set_resource_bit(struct amdgpu_device *adev, 606 int queue_bit) 607 { 608 int mec, pipe, queue; 609 int set_resource_bit = 0; 610 611 amdgpu_queue_mask_bit_to_mec_queue(adev, queue_bit, &mec, &pipe, &queue); 612 613 set_resource_bit = mec * 4 * 8 + pipe * 8 + queue; 614 615 return set_resource_bit; 616 } 617 618 static int amdgpu_gfx_mes_enable_kcq(struct amdgpu_device *adev, int xcc_id) 619 { 620 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 621 struct amdgpu_ring *kiq_ring = &kiq->ring; 622 uint64_t queue_mask = ~0ULL; 623 int r, i, j; 624 625 amdgpu_device_flush_hdp(adev, NULL); 626 627 if (!adev->enable_uni_mes) { 628 spin_lock(&kiq->ring_lock); 629 r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->set_resources_size); 630 if (r) { 631 dev_err(adev->dev, "Failed to lock KIQ (%d).\n", r); 632 spin_unlock(&kiq->ring_lock); 633 return r; 634 } 635 636 kiq->pmf->kiq_set_resources(kiq_ring, queue_mask); 637 r = amdgpu_ring_test_helper(kiq_ring); 638 spin_unlock(&kiq->ring_lock); 639 if (r) 640 dev_err(adev->dev, "KIQ failed to set resources\n"); 641 } 642 643 for (i = 0; i < adev->gfx.num_compute_rings; i++) { 644 j = i + xcc_id * adev->gfx.num_compute_rings; 645 r = amdgpu_mes_map_legacy_queue(adev, 646 &adev->gfx.compute_ring[j]); 647 if (r) { 648 dev_err(adev->dev, "failed to map compute queue\n"); 649 return r; 650 } 651 } 652 653 return 0; 654 } 655 656 int amdgpu_gfx_enable_kcq(struct amdgpu_device *adev, int xcc_id) 657 { 658 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 659 struct amdgpu_ring *kiq_ring = &kiq->ring; 660 uint64_t queue_mask = 0; 661 int r, i, j; 662 663 if (adev->mes.enable_legacy_queue_map) 664 return amdgpu_gfx_mes_enable_kcq(adev, xcc_id); 665 666 if (!kiq->pmf || !kiq->pmf->kiq_map_queues || !kiq->pmf->kiq_set_resources) 667 return -EINVAL; 668 669 for (i = 0; i < AMDGPU_MAX_COMPUTE_QUEUES; ++i) { 670 if (!test_bit(i, adev->gfx.mec_bitmap[xcc_id].queue_bitmap)) 671 continue; 672 673 /* This situation may be hit in the future if a new HW 674 * generation exposes more than 64 queues. If so, the 675 * definition of queue_mask needs updating */ 676 if (WARN_ON(i > (sizeof(queue_mask)*8))) { 677 dev_err(adev->dev, "Invalid KCQ enabled: %d\n", i); 678 break; 679 } 680 681 queue_mask |= (1ull << amdgpu_queue_mask_bit_to_set_resource_bit(adev, i)); 682 } 683 684 amdgpu_device_flush_hdp(adev, NULL); 685 686 dev_info(adev->dev, "kiq ring mec %d pipe %d q %d\n", kiq_ring->me, 687 kiq_ring->pipe, kiq_ring->queue); 688 689 spin_lock(&kiq->ring_lock); 690 r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->map_queues_size * 691 adev->gfx.num_compute_rings + 692 kiq->pmf->set_resources_size); 693 if (r) { 694 dev_err(adev->dev, "Failed to lock KIQ (%d).\n", r); 695 spin_unlock(&kiq->ring_lock); 696 return r; 697 } 698 699 kiq->pmf->kiq_set_resources(kiq_ring, queue_mask); 700 for (i = 0; i < adev->gfx.num_compute_rings; i++) { 701 j = i + xcc_id * adev->gfx.num_compute_rings; 702 kiq->pmf->kiq_map_queues(kiq_ring, 703 &adev->gfx.compute_ring[j]); 704 } 705 /* Submit map queue packet */ 706 amdgpu_ring_commit(kiq_ring); 707 /* 708 * Ring test will do a basic scratch register change check. Just run 709 * this to ensure that map queues that is submitted before got 710 * processed successfully before returning. 711 */ 712 r = amdgpu_ring_test_helper(kiq_ring); 713 spin_unlock(&kiq->ring_lock); 714 if (r) 715 dev_err(adev->dev, "KCQ enable failed\n"); 716 717 return r; 718 } 719 720 int amdgpu_gfx_enable_kgq(struct amdgpu_device *adev, int xcc_id) 721 { 722 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 723 struct amdgpu_ring *kiq_ring = &kiq->ring; 724 int r, i, j; 725 726 if (!kiq->pmf || !kiq->pmf->kiq_map_queues) 727 return -EINVAL; 728 729 amdgpu_device_flush_hdp(adev, NULL); 730 731 if (adev->mes.enable_legacy_queue_map) { 732 for (i = 0; i < adev->gfx.num_gfx_rings; i++) { 733 j = i + xcc_id * adev->gfx.num_gfx_rings; 734 r = amdgpu_mes_map_legacy_queue(adev, 735 &adev->gfx.gfx_ring[j]); 736 if (r) { 737 dev_err(adev->dev, "failed to map gfx queue\n"); 738 return r; 739 } 740 } 741 742 return 0; 743 } 744 745 spin_lock(&kiq->ring_lock); 746 /* No need to map kcq on the slave */ 747 if (amdgpu_gfx_is_master_xcc(adev, xcc_id)) { 748 r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->map_queues_size * 749 adev->gfx.num_gfx_rings); 750 if (r) { 751 dev_err(adev->dev, "Failed to lock KIQ (%d).\n", r); 752 spin_unlock(&kiq->ring_lock); 753 return r; 754 } 755 756 for (i = 0; i < adev->gfx.num_gfx_rings; i++) { 757 j = i + xcc_id * adev->gfx.num_gfx_rings; 758 kiq->pmf->kiq_map_queues(kiq_ring, 759 &adev->gfx.gfx_ring[j]); 760 } 761 } 762 /* Submit map queue packet */ 763 amdgpu_ring_commit(kiq_ring); 764 /* 765 * Ring test will do a basic scratch register change check. Just run 766 * this to ensure that map queues that is submitted before got 767 * processed successfully before returning. 768 */ 769 r = amdgpu_ring_test_helper(kiq_ring); 770 spin_unlock(&kiq->ring_lock); 771 if (r) 772 dev_err(adev->dev, "KGQ enable failed\n"); 773 774 return r; 775 } 776 777 static void amdgpu_gfx_do_off_ctrl(struct amdgpu_device *adev, bool enable, 778 bool no_delay) 779 { 780 unsigned long delay = GFX_OFF_DELAY_ENABLE; 781 782 if (!(adev->pm.pp_feature & PP_GFXOFF_MASK)) 783 return; 784 785 mutex_lock(&adev->gfx.gfx_off_mutex); 786 787 if (enable) { 788 /* If the count is already 0, it means there's an imbalance bug somewhere. 789 * Note that the bug may be in a different caller than the one which triggers the 790 * WARN_ON_ONCE. 791 */ 792 if (WARN_ON_ONCE(adev->gfx.gfx_off_req_count == 0)) 793 goto unlock; 794 795 adev->gfx.gfx_off_req_count--; 796 797 if (adev->gfx.gfx_off_req_count == 0 && 798 !adev->gfx.gfx_off_state) { 799 /* If going to s2idle, no need to wait */ 800 if (no_delay) { 801 if (!amdgpu_dpm_set_powergating_by_smu(adev, 802 AMD_IP_BLOCK_TYPE_GFX, true, 0)) 803 adev->gfx.gfx_off_state = true; 804 } else { 805 schedule_delayed_work(&adev->gfx.gfx_off_delay_work, 806 delay); 807 } 808 } 809 } else { 810 if (adev->gfx.gfx_off_req_count == 0) { 811 cancel_delayed_work_sync(&adev->gfx.gfx_off_delay_work); 812 813 if (adev->gfx.gfx_off_state && 814 !amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_GFX, false, 0)) { 815 adev->gfx.gfx_off_state = false; 816 817 if (adev->gfx.funcs->init_spm_golden) { 818 dev_dbg(adev->dev, 819 "GFXOFF is disabled, re-init SPM golden settings\n"); 820 amdgpu_gfx_init_spm_golden(adev); 821 } 822 } 823 } 824 825 adev->gfx.gfx_off_req_count++; 826 } 827 828 unlock: 829 mutex_unlock(&adev->gfx.gfx_off_mutex); 830 } 831 832 /* amdgpu_gfx_off_ctrl - Handle gfx off feature enable/disable 833 * 834 * @adev: amdgpu_device pointer 835 * @bool enable true: enable gfx off feature, false: disable gfx off feature 836 * 837 * 1. gfx off feature will be enabled by gfx ip after gfx cg pg enabled. 838 * 2. other client can send request to disable gfx off feature, the request should be honored. 839 * 3. other client can cancel their request of disable gfx off feature 840 * 4. other client should not send request to enable gfx off feature before disable gfx off feature. 841 * 842 * gfx off allow will be delayed by GFX_OFF_DELAY_ENABLE ms. 843 */ 844 void amdgpu_gfx_off_ctrl(struct amdgpu_device *adev, bool enable) 845 { 846 /* If going to s2idle, no need to wait */ 847 bool no_delay = adev->in_s0ix ? true : false; 848 849 amdgpu_gfx_do_off_ctrl(adev, enable, no_delay); 850 } 851 852 /* amdgpu_gfx_off_ctrl_immediate - Handle gfx off feature enable/disable 853 * 854 * @adev: amdgpu_device pointer 855 * @bool enable true: enable gfx off feature, false: disable gfx off feature 856 * 857 * 1. gfx off feature will be enabled by gfx ip after gfx cg pg enabled. 858 * 2. other client can send request to disable gfx off feature, the request should be honored. 859 * 3. other client can cancel their request of disable gfx off feature 860 * 4. other client should not send request to enable gfx off feature before disable gfx off feature. 861 * 862 * gfx off allow will be issued immediately. 863 */ 864 void amdgpu_gfx_off_ctrl_immediate(struct amdgpu_device *adev, bool enable) 865 { 866 amdgpu_gfx_do_off_ctrl(adev, enable, true); 867 } 868 869 int amdgpu_set_gfx_off_residency(struct amdgpu_device *adev, bool value) 870 { 871 int r = 0; 872 873 mutex_lock(&adev->gfx.gfx_off_mutex); 874 875 r = amdgpu_dpm_set_residency_gfxoff(adev, value); 876 877 mutex_unlock(&adev->gfx.gfx_off_mutex); 878 879 return r; 880 } 881 882 int amdgpu_get_gfx_off_residency(struct amdgpu_device *adev, u32 *value) 883 { 884 int r = 0; 885 886 mutex_lock(&adev->gfx.gfx_off_mutex); 887 888 r = amdgpu_dpm_get_residency_gfxoff(adev, value); 889 890 mutex_unlock(&adev->gfx.gfx_off_mutex); 891 892 return r; 893 } 894 895 int amdgpu_get_gfx_off_entrycount(struct amdgpu_device *adev, u64 *value) 896 { 897 int r = 0; 898 899 mutex_lock(&adev->gfx.gfx_off_mutex); 900 901 r = amdgpu_dpm_get_entrycount_gfxoff(adev, value); 902 903 mutex_unlock(&adev->gfx.gfx_off_mutex); 904 905 return r; 906 } 907 908 int amdgpu_get_gfx_off_status(struct amdgpu_device *adev, uint32_t *value) 909 { 910 911 int r = 0; 912 913 mutex_lock(&adev->gfx.gfx_off_mutex); 914 915 r = amdgpu_dpm_get_status_gfxoff(adev, value); 916 917 mutex_unlock(&adev->gfx.gfx_off_mutex); 918 919 return r; 920 } 921 922 int amdgpu_gfx_ras_late_init(struct amdgpu_device *adev, struct ras_common_if *ras_block) 923 { 924 int r; 925 926 if (amdgpu_ras_is_supported(adev, ras_block->block)) { 927 if (!amdgpu_persistent_edc_harvesting_supported(adev)) { 928 r = amdgpu_ras_reset_error_status(adev, AMDGPU_RAS_BLOCK__GFX); 929 if (r) 930 return r; 931 } 932 933 r = amdgpu_ras_block_late_init(adev, ras_block); 934 if (r) 935 return r; 936 937 if (amdgpu_sriov_vf(adev)) 938 return r; 939 940 if (adev->gfx.cp_ecc_error_irq.funcs) { 941 r = amdgpu_irq_get(adev, &adev->gfx.cp_ecc_error_irq, 0); 942 if (r) 943 goto late_fini; 944 } 945 } else { 946 amdgpu_ras_feature_enable_on_boot(adev, ras_block, 0); 947 } 948 949 return 0; 950 late_fini: 951 amdgpu_ras_block_late_fini(adev, ras_block); 952 return r; 953 } 954 955 int amdgpu_gfx_ras_sw_init(struct amdgpu_device *adev) 956 { 957 int err = 0; 958 struct amdgpu_gfx_ras *ras = NULL; 959 960 /* adev->gfx.ras is NULL, which means gfx does not 961 * support ras function, then do nothing here. 962 */ 963 if (!adev->gfx.ras) 964 return 0; 965 966 ras = adev->gfx.ras; 967 968 err = amdgpu_ras_register_ras_block(adev, &ras->ras_block); 969 if (err) { 970 dev_err(adev->dev, "Failed to register gfx ras block!\n"); 971 return err; 972 } 973 974 strcpy(ras->ras_block.ras_comm.name, "gfx"); 975 ras->ras_block.ras_comm.block = AMDGPU_RAS_BLOCK__GFX; 976 ras->ras_block.ras_comm.type = AMDGPU_RAS_ERROR__MULTI_UNCORRECTABLE; 977 adev->gfx.ras_if = &ras->ras_block.ras_comm; 978 979 /* If not define special ras_late_init function, use gfx default ras_late_init */ 980 if (!ras->ras_block.ras_late_init) 981 ras->ras_block.ras_late_init = amdgpu_gfx_ras_late_init; 982 983 /* If not defined special ras_cb function, use default ras_cb */ 984 if (!ras->ras_block.ras_cb) 985 ras->ras_block.ras_cb = amdgpu_gfx_process_ras_data_cb; 986 987 return 0; 988 } 989 990 int amdgpu_gfx_poison_consumption_handler(struct amdgpu_device *adev, 991 struct amdgpu_iv_entry *entry) 992 { 993 if (adev->gfx.ras && adev->gfx.ras->poison_consumption_handler) 994 return adev->gfx.ras->poison_consumption_handler(adev, entry); 995 996 return 0; 997 } 998 999 int amdgpu_gfx_process_ras_data_cb(struct amdgpu_device *adev, 1000 void *err_data, 1001 struct amdgpu_iv_entry *entry) 1002 { 1003 /* TODO ue will trigger an interrupt. 1004 * 1005 * When “Full RAS” is enabled, the per-IP interrupt sources should 1006 * be disabled and the driver should only look for the aggregated 1007 * interrupt via sync flood 1008 */ 1009 if (!amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__GFX)) { 1010 kgd2kfd_set_sram_ecc_flag(adev->kfd.dev); 1011 if (adev->gfx.ras && adev->gfx.ras->ras_block.hw_ops && 1012 adev->gfx.ras->ras_block.hw_ops->query_ras_error_count) 1013 adev->gfx.ras->ras_block.hw_ops->query_ras_error_count(adev, err_data); 1014 amdgpu_ras_reset_gpu(adev); 1015 } 1016 return AMDGPU_RAS_SUCCESS; 1017 } 1018 1019 int amdgpu_gfx_cp_ecc_error_irq(struct amdgpu_device *adev, 1020 struct amdgpu_irq_src *source, 1021 struct amdgpu_iv_entry *entry) 1022 { 1023 struct ras_common_if *ras_if = adev->gfx.ras_if; 1024 struct ras_dispatch_if ih_data = { 1025 .entry = entry, 1026 }; 1027 1028 if (!ras_if) 1029 return 0; 1030 1031 ih_data.head = *ras_if; 1032 1033 dev_err(adev->dev, "CP ECC ERROR IRQ\n"); 1034 amdgpu_ras_interrupt_dispatch(adev, &ih_data); 1035 return 0; 1036 } 1037 1038 void amdgpu_gfx_ras_error_func(struct amdgpu_device *adev, 1039 void *ras_error_status, 1040 void (*func)(struct amdgpu_device *adev, void *ras_error_status, 1041 int xcc_id)) 1042 { 1043 int i; 1044 int num_xcc = adev->gfx.xcc_mask ? NUM_XCC(adev->gfx.xcc_mask) : 1; 1045 uint32_t xcc_mask = GENMASK(num_xcc - 1, 0); 1046 struct ras_err_data *err_data = (struct ras_err_data *)ras_error_status; 1047 1048 if (err_data) { 1049 err_data->ue_count = 0; 1050 err_data->ce_count = 0; 1051 } 1052 1053 for_each_inst(i, xcc_mask) 1054 func(adev, ras_error_status, i); 1055 } 1056 1057 uint32_t amdgpu_kiq_rreg(struct amdgpu_device *adev, uint32_t reg, uint32_t xcc_id) 1058 { 1059 signed long r, cnt = 0; 1060 unsigned long flags; 1061 uint32_t seq, reg_val_offs = 0, value = 0; 1062 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 1063 struct amdgpu_ring *ring = &kiq->ring; 1064 1065 if (amdgpu_device_skip_hw_access(adev)) 1066 return 0; 1067 1068 if (adev->mes.ring[0].sched.ready) 1069 return amdgpu_mes_rreg(adev, reg); 1070 1071 BUG_ON(!ring->funcs->emit_rreg); 1072 1073 spin_lock_irqsave(&kiq->ring_lock, flags); 1074 if (amdgpu_device_wb_get(adev, ®_val_offs)) { 1075 pr_err("critical bug! too many kiq readers\n"); 1076 goto failed_unlock; 1077 } 1078 r = amdgpu_ring_alloc(ring, 32); 1079 if (r) 1080 goto failed_unlock; 1081 1082 amdgpu_ring_emit_rreg(ring, reg, reg_val_offs); 1083 r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT); 1084 if (r) 1085 goto failed_undo; 1086 1087 amdgpu_ring_commit(ring); 1088 spin_unlock_irqrestore(&kiq->ring_lock, flags); 1089 1090 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); 1091 1092 /* don't wait anymore for gpu reset case because this way may 1093 * block gpu_recover() routine forever, e.g. this virt_kiq_rreg 1094 * is triggered in TTM and ttm_bo_lock_delayed_workqueue() will 1095 * never return if we keep waiting in virt_kiq_rreg, which cause 1096 * gpu_recover() hang there. 1097 * 1098 * also don't wait anymore for IRQ context 1099 * */ 1100 if (r < 1 && (amdgpu_in_reset(adev) || in_interrupt())) 1101 goto failed_kiq_read; 1102 1103 might_sleep(); 1104 while (r < 1 && cnt++ < MAX_KIQ_REG_TRY) { 1105 msleep(MAX_KIQ_REG_BAILOUT_INTERVAL); 1106 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); 1107 } 1108 1109 if (cnt > MAX_KIQ_REG_TRY) 1110 goto failed_kiq_read; 1111 1112 mb(); 1113 value = adev->wb.wb[reg_val_offs]; 1114 amdgpu_device_wb_free(adev, reg_val_offs); 1115 return value; 1116 1117 failed_undo: 1118 amdgpu_ring_undo(ring); 1119 failed_unlock: 1120 spin_unlock_irqrestore(&kiq->ring_lock, flags); 1121 failed_kiq_read: 1122 if (reg_val_offs) 1123 amdgpu_device_wb_free(adev, reg_val_offs); 1124 dev_err(adev->dev, "failed to read reg:%x\n", reg); 1125 return ~0; 1126 } 1127 1128 void amdgpu_kiq_wreg(struct amdgpu_device *adev, uint32_t reg, uint32_t v, uint32_t xcc_id) 1129 { 1130 signed long r, cnt = 0; 1131 unsigned long flags; 1132 uint32_t seq; 1133 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 1134 struct amdgpu_ring *ring = &kiq->ring; 1135 1136 BUG_ON(!ring->funcs->emit_wreg); 1137 1138 if (amdgpu_device_skip_hw_access(adev)) 1139 return; 1140 1141 if (adev->mes.ring[0].sched.ready) { 1142 amdgpu_mes_wreg(adev, reg, v); 1143 return; 1144 } 1145 1146 spin_lock_irqsave(&kiq->ring_lock, flags); 1147 r = amdgpu_ring_alloc(ring, 32); 1148 if (r) 1149 goto failed_unlock; 1150 1151 amdgpu_ring_emit_wreg(ring, reg, v); 1152 r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT); 1153 if (r) 1154 goto failed_undo; 1155 1156 amdgpu_ring_commit(ring); 1157 spin_unlock_irqrestore(&kiq->ring_lock, flags); 1158 1159 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); 1160 1161 /* don't wait anymore for gpu reset case because this way may 1162 * block gpu_recover() routine forever, e.g. this virt_kiq_rreg 1163 * is triggered in TTM and ttm_bo_lock_delayed_workqueue() will 1164 * never return if we keep waiting in virt_kiq_rreg, which cause 1165 * gpu_recover() hang there. 1166 * 1167 * also don't wait anymore for IRQ context 1168 * */ 1169 if (r < 1 && (amdgpu_in_reset(adev) || in_interrupt())) 1170 goto failed_kiq_write; 1171 1172 might_sleep(); 1173 while (r < 1 && cnt++ < MAX_KIQ_REG_TRY) { 1174 1175 msleep(MAX_KIQ_REG_BAILOUT_INTERVAL); 1176 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); 1177 } 1178 1179 if (cnt > MAX_KIQ_REG_TRY) 1180 goto failed_kiq_write; 1181 1182 return; 1183 1184 failed_undo: 1185 amdgpu_ring_undo(ring); 1186 failed_unlock: 1187 spin_unlock_irqrestore(&kiq->ring_lock, flags); 1188 failed_kiq_write: 1189 dev_err(adev->dev, "failed to write reg:%x\n", reg); 1190 } 1191 1192 int amdgpu_gfx_get_num_kcq(struct amdgpu_device *adev) 1193 { 1194 if (amdgpu_num_kcq == -1) { 1195 return 8; 1196 } else if (amdgpu_num_kcq > 8 || amdgpu_num_kcq < 0) { 1197 dev_warn(adev->dev, "set kernel compute queue number to 8 due to invalid parameter provided by user\n"); 1198 return 8; 1199 } 1200 return amdgpu_num_kcq; 1201 } 1202 1203 void amdgpu_gfx_cp_init_microcode(struct amdgpu_device *adev, 1204 uint32_t ucode_id) 1205 { 1206 const struct gfx_firmware_header_v1_0 *cp_hdr; 1207 const struct gfx_firmware_header_v2_0 *cp_hdr_v2_0; 1208 struct amdgpu_firmware_info *info = NULL; 1209 const struct firmware *ucode_fw; 1210 unsigned int fw_size; 1211 1212 switch (ucode_id) { 1213 case AMDGPU_UCODE_ID_CP_PFP: 1214 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1215 adev->gfx.pfp_fw->data; 1216 adev->gfx.pfp_fw_version = 1217 le32_to_cpu(cp_hdr->header.ucode_version); 1218 adev->gfx.pfp_feature_version = 1219 le32_to_cpu(cp_hdr->ucode_feature_version); 1220 ucode_fw = adev->gfx.pfp_fw; 1221 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes); 1222 break; 1223 case AMDGPU_UCODE_ID_CP_RS64_PFP: 1224 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) 1225 adev->gfx.pfp_fw->data; 1226 adev->gfx.pfp_fw_version = 1227 le32_to_cpu(cp_hdr_v2_0->header.ucode_version); 1228 adev->gfx.pfp_feature_version = 1229 le32_to_cpu(cp_hdr_v2_0->ucode_feature_version); 1230 ucode_fw = adev->gfx.pfp_fw; 1231 fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes); 1232 break; 1233 case AMDGPU_UCODE_ID_CP_RS64_PFP_P0_STACK: 1234 case AMDGPU_UCODE_ID_CP_RS64_PFP_P1_STACK: 1235 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) 1236 adev->gfx.pfp_fw->data; 1237 ucode_fw = adev->gfx.pfp_fw; 1238 fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes); 1239 break; 1240 case AMDGPU_UCODE_ID_CP_ME: 1241 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1242 adev->gfx.me_fw->data; 1243 adev->gfx.me_fw_version = 1244 le32_to_cpu(cp_hdr->header.ucode_version); 1245 adev->gfx.me_feature_version = 1246 le32_to_cpu(cp_hdr->ucode_feature_version); 1247 ucode_fw = adev->gfx.me_fw; 1248 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes); 1249 break; 1250 case AMDGPU_UCODE_ID_CP_RS64_ME: 1251 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) 1252 adev->gfx.me_fw->data; 1253 adev->gfx.me_fw_version = 1254 le32_to_cpu(cp_hdr_v2_0->header.ucode_version); 1255 adev->gfx.me_feature_version = 1256 le32_to_cpu(cp_hdr_v2_0->ucode_feature_version); 1257 ucode_fw = adev->gfx.me_fw; 1258 fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes); 1259 break; 1260 case AMDGPU_UCODE_ID_CP_RS64_ME_P0_STACK: 1261 case AMDGPU_UCODE_ID_CP_RS64_ME_P1_STACK: 1262 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) 1263 adev->gfx.me_fw->data; 1264 ucode_fw = adev->gfx.me_fw; 1265 fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes); 1266 break; 1267 case AMDGPU_UCODE_ID_CP_CE: 1268 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1269 adev->gfx.ce_fw->data; 1270 adev->gfx.ce_fw_version = 1271 le32_to_cpu(cp_hdr->header.ucode_version); 1272 adev->gfx.ce_feature_version = 1273 le32_to_cpu(cp_hdr->ucode_feature_version); 1274 ucode_fw = adev->gfx.ce_fw; 1275 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes); 1276 break; 1277 case AMDGPU_UCODE_ID_CP_MEC1: 1278 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1279 adev->gfx.mec_fw->data; 1280 adev->gfx.mec_fw_version = 1281 le32_to_cpu(cp_hdr->header.ucode_version); 1282 adev->gfx.mec_feature_version = 1283 le32_to_cpu(cp_hdr->ucode_feature_version); 1284 ucode_fw = adev->gfx.mec_fw; 1285 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes) - 1286 le32_to_cpu(cp_hdr->jt_size) * 4; 1287 break; 1288 case AMDGPU_UCODE_ID_CP_MEC1_JT: 1289 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1290 adev->gfx.mec_fw->data; 1291 ucode_fw = adev->gfx.mec_fw; 1292 fw_size = le32_to_cpu(cp_hdr->jt_size) * 4; 1293 break; 1294 case AMDGPU_UCODE_ID_CP_MEC2: 1295 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1296 adev->gfx.mec2_fw->data; 1297 adev->gfx.mec2_fw_version = 1298 le32_to_cpu(cp_hdr->header.ucode_version); 1299 adev->gfx.mec2_feature_version = 1300 le32_to_cpu(cp_hdr->ucode_feature_version); 1301 ucode_fw = adev->gfx.mec2_fw; 1302 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes) - 1303 le32_to_cpu(cp_hdr->jt_size) * 4; 1304 break; 1305 case AMDGPU_UCODE_ID_CP_MEC2_JT: 1306 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1307 adev->gfx.mec2_fw->data; 1308 ucode_fw = adev->gfx.mec2_fw; 1309 fw_size = le32_to_cpu(cp_hdr->jt_size) * 4; 1310 break; 1311 case AMDGPU_UCODE_ID_CP_RS64_MEC: 1312 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) 1313 adev->gfx.mec_fw->data; 1314 adev->gfx.mec_fw_version = 1315 le32_to_cpu(cp_hdr_v2_0->header.ucode_version); 1316 adev->gfx.mec_feature_version = 1317 le32_to_cpu(cp_hdr_v2_0->ucode_feature_version); 1318 ucode_fw = adev->gfx.mec_fw; 1319 fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes); 1320 break; 1321 case AMDGPU_UCODE_ID_CP_RS64_MEC_P0_STACK: 1322 case AMDGPU_UCODE_ID_CP_RS64_MEC_P1_STACK: 1323 case AMDGPU_UCODE_ID_CP_RS64_MEC_P2_STACK: 1324 case AMDGPU_UCODE_ID_CP_RS64_MEC_P3_STACK: 1325 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) 1326 adev->gfx.mec_fw->data; 1327 ucode_fw = adev->gfx.mec_fw; 1328 fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes); 1329 break; 1330 default: 1331 dev_err(adev->dev, "Invalid ucode id %u\n", ucode_id); 1332 return; 1333 } 1334 1335 if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) { 1336 info = &adev->firmware.ucode[ucode_id]; 1337 info->ucode_id = ucode_id; 1338 info->fw = ucode_fw; 1339 adev->firmware.fw_size += ALIGN(fw_size, PAGE_SIZE); 1340 } 1341 } 1342 1343 bool amdgpu_gfx_is_master_xcc(struct amdgpu_device *adev, int xcc_id) 1344 { 1345 return !(xcc_id % (adev->gfx.num_xcc_per_xcp ? 1346 adev->gfx.num_xcc_per_xcp : 1)); 1347 } 1348 1349 static ssize_t amdgpu_gfx_get_current_compute_partition(struct device *dev, 1350 struct device_attribute *addr, 1351 char *buf) 1352 { 1353 struct drm_device *ddev = dev_get_drvdata(dev); 1354 struct amdgpu_device *adev = drm_to_adev(ddev); 1355 int mode; 1356 1357 /* Only minimal precaution taken to reject requests while in reset.*/ 1358 if (amdgpu_in_reset(adev)) 1359 return -EPERM; 1360 1361 mode = amdgpu_xcp_query_partition_mode(adev->xcp_mgr, 1362 AMDGPU_XCP_FL_NONE); 1363 1364 return sysfs_emit(buf, "%s\n", amdgpu_gfx_compute_mode_desc(mode)); 1365 } 1366 1367 static ssize_t amdgpu_gfx_set_compute_partition(struct device *dev, 1368 struct device_attribute *addr, 1369 const char *buf, size_t count) 1370 { 1371 struct drm_device *ddev = dev_get_drvdata(dev); 1372 struct amdgpu_device *adev = drm_to_adev(ddev); 1373 enum amdgpu_gfx_partition mode; 1374 int ret = 0, num_xcc; 1375 1376 num_xcc = NUM_XCC(adev->gfx.xcc_mask); 1377 if (num_xcc % 2 != 0) 1378 return -EINVAL; 1379 1380 if (!strncasecmp("SPX", buf, strlen("SPX"))) { 1381 mode = AMDGPU_SPX_PARTITION_MODE; 1382 } else if (!strncasecmp("DPX", buf, strlen("DPX"))) { 1383 /* 1384 * DPX mode needs AIDs to be in multiple of 2. 1385 * Each AID connects 2 XCCs. 1386 */ 1387 if (num_xcc%4) 1388 return -EINVAL; 1389 mode = AMDGPU_DPX_PARTITION_MODE; 1390 } else if (!strncasecmp("TPX", buf, strlen("TPX"))) { 1391 if (num_xcc != 6) 1392 return -EINVAL; 1393 mode = AMDGPU_TPX_PARTITION_MODE; 1394 } else if (!strncasecmp("QPX", buf, strlen("QPX"))) { 1395 if (num_xcc != 8) 1396 return -EINVAL; 1397 mode = AMDGPU_QPX_PARTITION_MODE; 1398 } else if (!strncasecmp("CPX", buf, strlen("CPX"))) { 1399 mode = AMDGPU_CPX_PARTITION_MODE; 1400 } else { 1401 return -EINVAL; 1402 } 1403 1404 /* Don't allow a switch while under reset */ 1405 if (!down_read_trylock(&adev->reset_domain->sem)) 1406 return -EPERM; 1407 1408 ret = amdgpu_xcp_switch_partition_mode(adev->xcp_mgr, mode); 1409 1410 up_read(&adev->reset_domain->sem); 1411 1412 if (ret) 1413 return ret; 1414 1415 return count; 1416 } 1417 1418 static const char *xcp_desc[] = { 1419 [AMDGPU_SPX_PARTITION_MODE] = "SPX", 1420 [AMDGPU_DPX_PARTITION_MODE] = "DPX", 1421 [AMDGPU_TPX_PARTITION_MODE] = "TPX", 1422 [AMDGPU_QPX_PARTITION_MODE] = "QPX", 1423 [AMDGPU_CPX_PARTITION_MODE] = "CPX", 1424 }; 1425 1426 static ssize_t amdgpu_gfx_get_available_compute_partition(struct device *dev, 1427 struct device_attribute *addr, 1428 char *buf) 1429 { 1430 struct drm_device *ddev = dev_get_drvdata(dev); 1431 struct amdgpu_device *adev = drm_to_adev(ddev); 1432 struct amdgpu_xcp_mgr *xcp_mgr = adev->xcp_mgr; 1433 int size = 0, mode; 1434 char *sep = ""; 1435 1436 if (!xcp_mgr || !xcp_mgr->avail_xcp_modes) 1437 return sysfs_emit(buf, "Not supported\n"); 1438 1439 for_each_inst(mode, xcp_mgr->avail_xcp_modes) { 1440 size += sysfs_emit_at(buf, size, "%s%s", sep, xcp_desc[mode]); 1441 sep = ", "; 1442 } 1443 1444 size += sysfs_emit_at(buf, size, "\n"); 1445 1446 return size; 1447 } 1448 1449 static int amdgpu_gfx_run_cleaner_shader_job(struct amdgpu_ring *ring) 1450 { 1451 struct amdgpu_device *adev = ring->adev; 1452 struct drm_gpu_scheduler *sched = &ring->sched; 1453 struct drm_sched_entity entity; 1454 static atomic_t counter; 1455 struct dma_fence *f; 1456 struct amdgpu_job *job; 1457 struct amdgpu_ib *ib; 1458 void *owner; 1459 int i, r; 1460 1461 /* Initialize the scheduler entity */ 1462 r = drm_sched_entity_init(&entity, DRM_SCHED_PRIORITY_NORMAL, 1463 &sched, 1, NULL); 1464 if (r) { 1465 dev_err(adev->dev, "Failed setting up GFX kernel entity.\n"); 1466 goto err; 1467 } 1468 1469 /* 1470 * Use some unique dummy value as the owner to make sure we execute 1471 * the cleaner shader on each submission. The value just need to change 1472 * for each submission and is otherwise meaningless. 1473 */ 1474 owner = (void *)(unsigned long)atomic_inc_return(&counter); 1475 1476 r = amdgpu_job_alloc_with_ib(ring->adev, &entity, owner, 1477 64, 0, &job); 1478 if (r) 1479 goto err; 1480 1481 job->enforce_isolation = true; 1482 /* always run the cleaner shader */ 1483 job->run_cleaner_shader = true; 1484 1485 ib = &job->ibs[0]; 1486 for (i = 0; i <= ring->funcs->align_mask; ++i) 1487 ib->ptr[i] = ring->funcs->nop; 1488 ib->length_dw = ring->funcs->align_mask + 1; 1489 1490 f = amdgpu_job_submit(job); 1491 1492 r = dma_fence_wait(f, false); 1493 if (r) 1494 goto err; 1495 1496 dma_fence_put(f); 1497 1498 /* Clean up the scheduler entity */ 1499 drm_sched_entity_destroy(&entity); 1500 return 0; 1501 1502 err: 1503 return r; 1504 } 1505 1506 static int amdgpu_gfx_run_cleaner_shader(struct amdgpu_device *adev, int xcp_id) 1507 { 1508 int num_xcc = NUM_XCC(adev->gfx.xcc_mask); 1509 struct amdgpu_ring *ring; 1510 int num_xcc_to_clear; 1511 int i, r, xcc_id; 1512 1513 if (adev->gfx.num_xcc_per_xcp) 1514 num_xcc_to_clear = adev->gfx.num_xcc_per_xcp; 1515 else 1516 num_xcc_to_clear = 1; 1517 1518 for (xcc_id = 0; xcc_id < num_xcc; xcc_id++) { 1519 for (i = 0; i < adev->gfx.num_compute_rings; i++) { 1520 ring = &adev->gfx.compute_ring[i + xcc_id * adev->gfx.num_compute_rings]; 1521 if ((ring->xcp_id == xcp_id) && ring->sched.ready) { 1522 r = amdgpu_gfx_run_cleaner_shader_job(ring); 1523 if (r) 1524 return r; 1525 num_xcc_to_clear--; 1526 break; 1527 } 1528 } 1529 } 1530 1531 if (num_xcc_to_clear) 1532 return -ENOENT; 1533 1534 return 0; 1535 } 1536 1537 /** 1538 * amdgpu_gfx_set_run_cleaner_shader - Execute the AMDGPU GFX Cleaner Shader 1539 * @dev: The device structure 1540 * @attr: The device attribute structure 1541 * @buf: The buffer containing the input data 1542 * @count: The size of the input data 1543 * 1544 * Provides the sysfs interface to manually run a cleaner shader, which is 1545 * used to clear the GPU state between different tasks. Writing a value to the 1546 * 'run_cleaner_shader' sysfs file triggers the cleaner shader execution. 1547 * The value written corresponds to the partition index on multi-partition 1548 * devices. On single-partition devices, the value should be '0'. 1549 * 1550 * The cleaner shader clears the Local Data Store (LDS) and General Purpose 1551 * Registers (GPRs) to ensure data isolation between GPU workloads. 1552 * 1553 * Return: The number of bytes written to the sysfs file. 1554 */ 1555 static ssize_t amdgpu_gfx_set_run_cleaner_shader(struct device *dev, 1556 struct device_attribute *attr, 1557 const char *buf, 1558 size_t count) 1559 { 1560 struct drm_device *ddev = dev_get_drvdata(dev); 1561 struct amdgpu_device *adev = drm_to_adev(ddev); 1562 int ret; 1563 long value; 1564 1565 if (amdgpu_in_reset(adev)) 1566 return -EPERM; 1567 if (adev->in_suspend && !adev->in_runpm) 1568 return -EPERM; 1569 1570 if (adev->gfx.disable_kq) 1571 return -EPERM; 1572 1573 ret = kstrtol(buf, 0, &value); 1574 1575 if (ret) 1576 return -EINVAL; 1577 1578 if (value < 0) 1579 return -EINVAL; 1580 1581 if (adev->xcp_mgr) { 1582 if (value >= adev->xcp_mgr->num_xcps) 1583 return -EINVAL; 1584 } else { 1585 if (value > 1) 1586 return -EINVAL; 1587 } 1588 1589 ret = pm_runtime_get_sync(ddev->dev); 1590 if (ret < 0) { 1591 pm_runtime_put_autosuspend(ddev->dev); 1592 return ret; 1593 } 1594 1595 ret = amdgpu_gfx_run_cleaner_shader(adev, value); 1596 1597 pm_runtime_mark_last_busy(ddev->dev); 1598 pm_runtime_put_autosuspend(ddev->dev); 1599 1600 if (ret) 1601 return ret; 1602 1603 return count; 1604 } 1605 1606 /** 1607 * amdgpu_gfx_get_enforce_isolation - Query AMDGPU GFX Enforce Isolation Settings 1608 * @dev: The device structure 1609 * @attr: The device attribute structure 1610 * @buf: The buffer to store the output data 1611 * 1612 * Provides the sysfs read interface to get the current settings of the 'enforce_isolation' 1613 * feature for each GPU partition. Reading from the 'enforce_isolation' 1614 * sysfs file returns the isolation settings for all partitions, where '0' 1615 * indicates disabled, '1' indicates enabled, and '2' indicates enabled in legacy mode, 1616 * and '3' indicates enabled without cleaner shader. 1617 * 1618 * Return: The number of bytes read from the sysfs file. 1619 */ 1620 static ssize_t amdgpu_gfx_get_enforce_isolation(struct device *dev, 1621 struct device_attribute *attr, 1622 char *buf) 1623 { 1624 struct drm_device *ddev = dev_get_drvdata(dev); 1625 struct amdgpu_device *adev = drm_to_adev(ddev); 1626 int i; 1627 ssize_t size = 0; 1628 1629 if (adev->xcp_mgr) { 1630 for (i = 0; i < adev->xcp_mgr->num_xcps; i++) { 1631 size += sysfs_emit_at(buf, size, "%u", adev->enforce_isolation[i]); 1632 if (i < (adev->xcp_mgr->num_xcps - 1)) 1633 size += sysfs_emit_at(buf, size, " "); 1634 } 1635 buf[size++] = '\n'; 1636 } else { 1637 size = sysfs_emit_at(buf, 0, "%u\n", adev->enforce_isolation[0]); 1638 } 1639 1640 return size; 1641 } 1642 1643 /** 1644 * amdgpu_gfx_set_enforce_isolation - Control AMDGPU GFX Enforce Isolation 1645 * @dev: The device structure 1646 * @attr: The device attribute structure 1647 * @buf: The buffer containing the input data 1648 * @count: The size of the input data 1649 * 1650 * This function allows control over the 'enforce_isolation' feature, which 1651 * serializes access to the graphics engine. Writing '0' to disable, '1' to 1652 * enable isolation with cleaner shader, '2' to enable legacy isolation without 1653 * cleaner shader, or '3' to enable process isolation without submitting the 1654 * cleaner shader to the 'enforce_isolation' sysfs file sets the isolation mode 1655 * for each partition. The input should specify the setting for all 1656 * partitions. 1657 * 1658 * Return: The number of bytes written to the sysfs file. 1659 */ 1660 static ssize_t amdgpu_gfx_set_enforce_isolation(struct device *dev, 1661 struct device_attribute *attr, 1662 const char *buf, size_t count) 1663 { 1664 struct drm_device *ddev = dev_get_drvdata(dev); 1665 struct amdgpu_device *adev = drm_to_adev(ddev); 1666 long partition_values[MAX_XCP] = {0}; 1667 int ret, i, num_partitions; 1668 const char *input_buf = buf; 1669 1670 for (i = 0; i < (adev->xcp_mgr ? adev->xcp_mgr->num_xcps : 1); i++) { 1671 ret = sscanf(input_buf, "%ld", &partition_values[i]); 1672 if (ret <= 0) 1673 break; 1674 1675 /* Move the pointer to the next value in the string */ 1676 input_buf = strchr(input_buf, ' '); 1677 if (input_buf) { 1678 input_buf++; 1679 } else { 1680 i++; 1681 break; 1682 } 1683 } 1684 num_partitions = i; 1685 1686 if (adev->xcp_mgr && num_partitions != adev->xcp_mgr->num_xcps) 1687 return -EINVAL; 1688 1689 if (!adev->xcp_mgr && num_partitions != 1) 1690 return -EINVAL; 1691 1692 for (i = 0; i < num_partitions; i++) { 1693 if (partition_values[i] != 0 && 1694 partition_values[i] != 1 && 1695 partition_values[i] != 2 && 1696 partition_values[i] != 3) 1697 return -EINVAL; 1698 } 1699 1700 mutex_lock(&adev->enforce_isolation_mutex); 1701 for (i = 0; i < num_partitions; i++) { 1702 switch (partition_values[i]) { 1703 case 0: 1704 default: 1705 adev->enforce_isolation[i] = AMDGPU_ENFORCE_ISOLATION_DISABLE; 1706 break; 1707 case 1: 1708 adev->enforce_isolation[i] = 1709 AMDGPU_ENFORCE_ISOLATION_ENABLE; 1710 break; 1711 case 2: 1712 adev->enforce_isolation[i] = 1713 AMDGPU_ENFORCE_ISOLATION_ENABLE_LEGACY; 1714 break; 1715 case 3: 1716 adev->enforce_isolation[i] = 1717 AMDGPU_ENFORCE_ISOLATION_NO_CLEANER_SHADER; 1718 break; 1719 } 1720 } 1721 mutex_unlock(&adev->enforce_isolation_mutex); 1722 1723 amdgpu_mes_update_enforce_isolation(adev); 1724 1725 return count; 1726 } 1727 1728 static ssize_t amdgpu_gfx_get_gfx_reset_mask(struct device *dev, 1729 struct device_attribute *attr, 1730 char *buf) 1731 { 1732 struct drm_device *ddev = dev_get_drvdata(dev); 1733 struct amdgpu_device *adev = drm_to_adev(ddev); 1734 1735 if (!adev) 1736 return -ENODEV; 1737 1738 return amdgpu_show_reset_mask(buf, adev->gfx.gfx_supported_reset); 1739 } 1740 1741 static ssize_t amdgpu_gfx_get_compute_reset_mask(struct device *dev, 1742 struct device_attribute *attr, 1743 char *buf) 1744 { 1745 struct drm_device *ddev = dev_get_drvdata(dev); 1746 struct amdgpu_device *adev = drm_to_adev(ddev); 1747 1748 if (!adev) 1749 return -ENODEV; 1750 1751 return amdgpu_show_reset_mask(buf, adev->gfx.compute_supported_reset); 1752 } 1753 1754 static DEVICE_ATTR(run_cleaner_shader, 0200, 1755 NULL, amdgpu_gfx_set_run_cleaner_shader); 1756 1757 static DEVICE_ATTR(enforce_isolation, 0644, 1758 amdgpu_gfx_get_enforce_isolation, 1759 amdgpu_gfx_set_enforce_isolation); 1760 1761 static DEVICE_ATTR(current_compute_partition, 0644, 1762 amdgpu_gfx_get_current_compute_partition, 1763 amdgpu_gfx_set_compute_partition); 1764 1765 static DEVICE_ATTR(available_compute_partition, 0444, 1766 amdgpu_gfx_get_available_compute_partition, NULL); 1767 static DEVICE_ATTR(gfx_reset_mask, 0444, 1768 amdgpu_gfx_get_gfx_reset_mask, NULL); 1769 1770 static DEVICE_ATTR(compute_reset_mask, 0444, 1771 amdgpu_gfx_get_compute_reset_mask, NULL); 1772 1773 static int amdgpu_gfx_sysfs_xcp_init(struct amdgpu_device *adev) 1774 { 1775 struct amdgpu_xcp_mgr *xcp_mgr = adev->xcp_mgr; 1776 bool xcp_switch_supported; 1777 int r; 1778 1779 if (!xcp_mgr) 1780 return 0; 1781 1782 xcp_switch_supported = 1783 (xcp_mgr->funcs && xcp_mgr->funcs->switch_partition_mode); 1784 1785 if (!xcp_switch_supported) 1786 dev_attr_current_compute_partition.attr.mode &= 1787 ~(S_IWUSR | S_IWGRP | S_IWOTH); 1788 1789 r = device_create_file(adev->dev, &dev_attr_current_compute_partition); 1790 if (r) 1791 return r; 1792 1793 if (xcp_switch_supported) 1794 r = device_create_file(adev->dev, 1795 &dev_attr_available_compute_partition); 1796 1797 return r; 1798 } 1799 1800 static void amdgpu_gfx_sysfs_xcp_fini(struct amdgpu_device *adev) 1801 { 1802 struct amdgpu_xcp_mgr *xcp_mgr = adev->xcp_mgr; 1803 bool xcp_switch_supported; 1804 1805 if (!xcp_mgr) 1806 return; 1807 1808 xcp_switch_supported = 1809 (xcp_mgr->funcs && xcp_mgr->funcs->switch_partition_mode); 1810 device_remove_file(adev->dev, &dev_attr_current_compute_partition); 1811 1812 if (xcp_switch_supported) 1813 device_remove_file(adev->dev, 1814 &dev_attr_available_compute_partition); 1815 } 1816 1817 static int amdgpu_gfx_sysfs_isolation_shader_init(struct amdgpu_device *adev) 1818 { 1819 int r; 1820 1821 r = device_create_file(adev->dev, &dev_attr_enforce_isolation); 1822 if (r) 1823 return r; 1824 if (adev->gfx.enable_cleaner_shader) 1825 r = device_create_file(adev->dev, &dev_attr_run_cleaner_shader); 1826 1827 return r; 1828 } 1829 1830 static void amdgpu_gfx_sysfs_isolation_shader_fini(struct amdgpu_device *adev) 1831 { 1832 device_remove_file(adev->dev, &dev_attr_enforce_isolation); 1833 if (adev->gfx.enable_cleaner_shader) 1834 device_remove_file(adev->dev, &dev_attr_run_cleaner_shader); 1835 } 1836 1837 static int amdgpu_gfx_sysfs_reset_mask_init(struct amdgpu_device *adev) 1838 { 1839 int r = 0; 1840 1841 if (!amdgpu_gpu_recovery) 1842 return r; 1843 1844 if (adev->gfx.num_gfx_rings) { 1845 r = device_create_file(adev->dev, &dev_attr_gfx_reset_mask); 1846 if (r) 1847 return r; 1848 } 1849 1850 if (adev->gfx.num_compute_rings) { 1851 r = device_create_file(adev->dev, &dev_attr_compute_reset_mask); 1852 if (r) 1853 return r; 1854 } 1855 1856 return r; 1857 } 1858 1859 static void amdgpu_gfx_sysfs_reset_mask_fini(struct amdgpu_device *adev) 1860 { 1861 if (!amdgpu_gpu_recovery) 1862 return; 1863 1864 if (adev->gfx.num_gfx_rings) 1865 device_remove_file(adev->dev, &dev_attr_gfx_reset_mask); 1866 1867 if (adev->gfx.num_compute_rings) 1868 device_remove_file(adev->dev, &dev_attr_compute_reset_mask); 1869 } 1870 1871 int amdgpu_gfx_sysfs_init(struct amdgpu_device *adev) 1872 { 1873 int r; 1874 1875 r = amdgpu_gfx_sysfs_xcp_init(adev); 1876 if (r) { 1877 dev_err(adev->dev, "failed to create xcp sysfs files"); 1878 return r; 1879 } 1880 1881 r = amdgpu_gfx_sysfs_isolation_shader_init(adev); 1882 if (r) 1883 dev_err(adev->dev, "failed to create isolation sysfs files"); 1884 1885 r = amdgpu_gfx_sysfs_reset_mask_init(adev); 1886 if (r) 1887 dev_err(adev->dev, "failed to create reset mask sysfs files"); 1888 1889 return r; 1890 } 1891 1892 void amdgpu_gfx_sysfs_fini(struct amdgpu_device *adev) 1893 { 1894 if (adev->dev->kobj.sd) { 1895 amdgpu_gfx_sysfs_xcp_fini(adev); 1896 amdgpu_gfx_sysfs_isolation_shader_fini(adev); 1897 amdgpu_gfx_sysfs_reset_mask_fini(adev); 1898 } 1899 } 1900 1901 int amdgpu_gfx_cleaner_shader_sw_init(struct amdgpu_device *adev, 1902 unsigned int cleaner_shader_size) 1903 { 1904 if (!adev->gfx.enable_cleaner_shader) 1905 return -EOPNOTSUPP; 1906 1907 return amdgpu_bo_create_kernel(adev, cleaner_shader_size, PAGE_SIZE, 1908 AMDGPU_GEM_DOMAIN_VRAM | AMDGPU_GEM_DOMAIN_GTT, 1909 &adev->gfx.cleaner_shader_obj, 1910 &adev->gfx.cleaner_shader_gpu_addr, 1911 (void **)&adev->gfx.cleaner_shader_cpu_ptr); 1912 } 1913 1914 void amdgpu_gfx_cleaner_shader_sw_fini(struct amdgpu_device *adev) 1915 { 1916 if (!adev->gfx.enable_cleaner_shader) 1917 return; 1918 1919 amdgpu_bo_free_kernel(&adev->gfx.cleaner_shader_obj, 1920 &adev->gfx.cleaner_shader_gpu_addr, 1921 (void **)&adev->gfx.cleaner_shader_cpu_ptr); 1922 } 1923 1924 void amdgpu_gfx_cleaner_shader_init(struct amdgpu_device *adev, 1925 unsigned int cleaner_shader_size, 1926 const void *cleaner_shader_ptr) 1927 { 1928 if (!adev->gfx.enable_cleaner_shader) 1929 return; 1930 1931 if (adev->gfx.cleaner_shader_cpu_ptr && cleaner_shader_ptr) 1932 memcpy_toio(adev->gfx.cleaner_shader_cpu_ptr, cleaner_shader_ptr, 1933 cleaner_shader_size); 1934 } 1935 1936 /** 1937 * amdgpu_gfx_kfd_sch_ctrl - Control the KFD scheduler from the KGD (Graphics Driver) 1938 * @adev: amdgpu_device pointer 1939 * @idx: Index of the scheduler to control 1940 * @enable: Whether to enable or disable the KFD scheduler 1941 * 1942 * This function is used to control the KFD (Kernel Fusion Driver) scheduler 1943 * from the KGD. It is part of the cleaner shader feature. This function plays 1944 * a key role in enforcing process isolation on the GPU. 1945 * 1946 * The function uses a reference count mechanism (kfd_sch_req_count) to keep 1947 * track of the number of requests to enable the KFD scheduler. When a request 1948 * to enable the KFD scheduler is made, the reference count is decremented. 1949 * When the reference count reaches zero, a delayed work is scheduled to 1950 * enforce isolation after a delay of GFX_SLICE_PERIOD. 1951 * 1952 * When a request to disable the KFD scheduler is made, the function first 1953 * checks if the reference count is zero. If it is, it cancels the delayed work 1954 * for enforcing isolation and checks if the KFD scheduler is active. If the 1955 * KFD scheduler is active, it sends a request to stop the KFD scheduler and 1956 * sets the KFD scheduler state to inactive. Then, it increments the reference 1957 * count. 1958 * 1959 * The function is synchronized using the kfd_sch_mutex to ensure that the KFD 1960 * scheduler state and reference count are updated atomically. 1961 * 1962 * Note: If the reference count is already zero when a request to enable the 1963 * KFD scheduler is made, it means there's an imbalance bug somewhere. The 1964 * function triggers a warning in this case. 1965 */ 1966 static void amdgpu_gfx_kfd_sch_ctrl(struct amdgpu_device *adev, u32 idx, 1967 bool enable) 1968 { 1969 mutex_lock(&adev->gfx.userq_sch_mutex); 1970 1971 if (enable) { 1972 /* If the count is already 0, it means there's an imbalance bug somewhere. 1973 * Note that the bug may be in a different caller than the one which triggers the 1974 * WARN_ON_ONCE. 1975 */ 1976 if (WARN_ON_ONCE(adev->gfx.userq_sch_req_count[idx] == 0)) { 1977 dev_err(adev->dev, "Attempted to enable KFD scheduler when reference count is already zero\n"); 1978 goto unlock; 1979 } 1980 1981 adev->gfx.userq_sch_req_count[idx]--; 1982 1983 if (adev->gfx.userq_sch_req_count[idx] == 0 && 1984 adev->gfx.userq_sch_inactive[idx]) { 1985 schedule_delayed_work(&adev->gfx.enforce_isolation[idx].work, 1986 msecs_to_jiffies(adev->gfx.enforce_isolation_time[idx])); 1987 } 1988 } else { 1989 if (adev->gfx.userq_sch_req_count[idx] == 0) { 1990 cancel_delayed_work_sync(&adev->gfx.enforce_isolation[idx].work); 1991 if (!adev->gfx.userq_sch_inactive[idx]) { 1992 amdgpu_userq_stop_sched_for_enforce_isolation(adev, idx); 1993 if (adev->kfd.init_complete) 1994 amdgpu_amdkfd_stop_sched(adev, idx); 1995 adev->gfx.userq_sch_inactive[idx] = true; 1996 } 1997 } 1998 1999 adev->gfx.userq_sch_req_count[idx]++; 2000 } 2001 2002 unlock: 2003 mutex_unlock(&adev->gfx.userq_sch_mutex); 2004 } 2005 2006 /** 2007 * amdgpu_gfx_enforce_isolation_handler - work handler for enforcing shader isolation 2008 * 2009 * @work: work_struct. 2010 * 2011 * This function is the work handler for enforcing shader isolation on AMD GPUs. 2012 * It counts the number of emitted fences for each GFX and compute ring. If there 2013 * are any fences, it schedules the `enforce_isolation_work` to be run after a 2014 * delay of `GFX_SLICE_PERIOD`. If there are no fences, it signals the Kernel Fusion 2015 * Driver (KFD) to resume the runqueue. The function is synchronized using the 2016 * `enforce_isolation_mutex`. 2017 */ 2018 void amdgpu_gfx_enforce_isolation_handler(struct work_struct *work) 2019 { 2020 struct amdgpu_isolation_work *isolation_work = 2021 container_of(work, struct amdgpu_isolation_work, work.work); 2022 struct amdgpu_device *adev = isolation_work->adev; 2023 u32 i, idx, fences = 0; 2024 2025 if (isolation_work->xcp_id == AMDGPU_XCP_NO_PARTITION) 2026 idx = 0; 2027 else 2028 idx = isolation_work->xcp_id; 2029 2030 if (idx >= MAX_XCP) 2031 return; 2032 2033 mutex_lock(&adev->enforce_isolation_mutex); 2034 for (i = 0; i < AMDGPU_MAX_GFX_RINGS; ++i) { 2035 if (isolation_work->xcp_id == adev->gfx.gfx_ring[i].xcp_id) 2036 fences += amdgpu_fence_count_emitted(&adev->gfx.gfx_ring[i]); 2037 } 2038 for (i = 0; i < (AMDGPU_MAX_COMPUTE_RINGS * AMDGPU_MAX_GC_INSTANCES); ++i) { 2039 if (isolation_work->xcp_id == adev->gfx.compute_ring[i].xcp_id) 2040 fences += amdgpu_fence_count_emitted(&adev->gfx.compute_ring[i]); 2041 } 2042 if (fences) { 2043 /* we've already had our timeslice, so let's wrap this up */ 2044 schedule_delayed_work(&adev->gfx.enforce_isolation[idx].work, 2045 msecs_to_jiffies(1)); 2046 } else { 2047 /* Tell KFD to resume the runqueue */ 2048 WARN_ON_ONCE(!adev->gfx.userq_sch_inactive[idx]); 2049 WARN_ON_ONCE(adev->gfx.userq_sch_req_count[idx]); 2050 2051 amdgpu_userq_start_sched_for_enforce_isolation(adev, idx); 2052 if (adev->kfd.init_complete) 2053 amdgpu_amdkfd_start_sched(adev, idx); 2054 adev->gfx.userq_sch_inactive[idx] = false; 2055 } 2056 mutex_unlock(&adev->enforce_isolation_mutex); 2057 } 2058 2059 /** 2060 * amdgpu_gfx_enforce_isolation_wait_for_kfd - Manage KFD wait period for process isolation 2061 * @adev: amdgpu_device pointer 2062 * @idx: Index of the GPU partition 2063 * 2064 * When kernel submissions come in, the jobs are given a time slice and once 2065 * that time slice is up, if there are KFD user queues active, kernel 2066 * submissions are blocked until KFD has had its time slice. Once the KFD time 2067 * slice is up, KFD user queues are preempted and kernel submissions are 2068 * unblocked and allowed to run again. 2069 */ 2070 static void 2071 amdgpu_gfx_enforce_isolation_wait_for_kfd(struct amdgpu_device *adev, 2072 u32 idx) 2073 { 2074 unsigned long cjiffies; 2075 bool wait = false; 2076 2077 mutex_lock(&adev->enforce_isolation_mutex); 2078 if (adev->enforce_isolation[idx] == AMDGPU_ENFORCE_ISOLATION_ENABLE) { 2079 /* set the initial values if nothing is set */ 2080 if (!adev->gfx.enforce_isolation_jiffies[idx]) { 2081 adev->gfx.enforce_isolation_jiffies[idx] = jiffies; 2082 adev->gfx.enforce_isolation_time[idx] = GFX_SLICE_PERIOD_MS; 2083 } 2084 /* Make sure KFD gets a chance to run */ 2085 if (amdgpu_amdkfd_compute_active(adev, idx)) { 2086 cjiffies = jiffies; 2087 if (time_after(cjiffies, adev->gfx.enforce_isolation_jiffies[idx])) { 2088 cjiffies -= adev->gfx.enforce_isolation_jiffies[idx]; 2089 if ((jiffies_to_msecs(cjiffies) >= GFX_SLICE_PERIOD_MS)) { 2090 /* if our time is up, let KGD work drain before scheduling more */ 2091 wait = true; 2092 /* reset the timer period */ 2093 adev->gfx.enforce_isolation_time[idx] = GFX_SLICE_PERIOD_MS; 2094 } else { 2095 /* set the timer period to what's left in our time slice */ 2096 adev->gfx.enforce_isolation_time[idx] = 2097 GFX_SLICE_PERIOD_MS - jiffies_to_msecs(cjiffies); 2098 } 2099 } else { 2100 /* if jiffies wrap around we will just wait a little longer */ 2101 adev->gfx.enforce_isolation_jiffies[idx] = jiffies; 2102 } 2103 } else { 2104 /* if there is no KFD work, then set the full slice period */ 2105 adev->gfx.enforce_isolation_jiffies[idx] = jiffies; 2106 adev->gfx.enforce_isolation_time[idx] = GFX_SLICE_PERIOD_MS; 2107 } 2108 } 2109 mutex_unlock(&adev->enforce_isolation_mutex); 2110 2111 if (wait) 2112 msleep(GFX_SLICE_PERIOD_MS); 2113 } 2114 2115 /** 2116 * amdgpu_gfx_enforce_isolation_ring_begin_use - Begin use of a ring with enforced isolation 2117 * @ring: Pointer to the amdgpu_ring structure 2118 * 2119 * Ring begin_use helper implementation for gfx which serializes access to the 2120 * gfx IP between kernel submission IOCTLs and KFD user queues when isolation 2121 * enforcement is enabled. The kernel submission IOCTLs and KFD user queues 2122 * each get a time slice when both are active. 2123 */ 2124 void amdgpu_gfx_enforce_isolation_ring_begin_use(struct amdgpu_ring *ring) 2125 { 2126 struct amdgpu_device *adev = ring->adev; 2127 u32 idx; 2128 bool sched_work = false; 2129 2130 if (!adev->gfx.enable_cleaner_shader) 2131 return; 2132 2133 if (ring->xcp_id == AMDGPU_XCP_NO_PARTITION) 2134 idx = 0; 2135 else 2136 idx = ring->xcp_id; 2137 2138 if (idx >= MAX_XCP) 2139 return; 2140 2141 /* Don't submit more work until KFD has had some time */ 2142 amdgpu_gfx_enforce_isolation_wait_for_kfd(adev, idx); 2143 2144 mutex_lock(&adev->enforce_isolation_mutex); 2145 if (adev->enforce_isolation[idx] == AMDGPU_ENFORCE_ISOLATION_ENABLE) { 2146 if (adev->kfd.init_complete) 2147 sched_work = true; 2148 } 2149 mutex_unlock(&adev->enforce_isolation_mutex); 2150 2151 if (sched_work) 2152 amdgpu_gfx_kfd_sch_ctrl(adev, idx, false); 2153 } 2154 2155 /** 2156 * amdgpu_gfx_enforce_isolation_ring_end_use - End use of a ring with enforced isolation 2157 * @ring: Pointer to the amdgpu_ring structure 2158 * 2159 * Ring end_use helper implementation for gfx which serializes access to the 2160 * gfx IP between kernel submission IOCTLs and KFD user queues when isolation 2161 * enforcement is enabled. The kernel submission IOCTLs and KFD user queues 2162 * each get a time slice when both are active. 2163 */ 2164 void amdgpu_gfx_enforce_isolation_ring_end_use(struct amdgpu_ring *ring) 2165 { 2166 struct amdgpu_device *adev = ring->adev; 2167 u32 idx; 2168 bool sched_work = false; 2169 2170 if (!adev->gfx.enable_cleaner_shader) 2171 return; 2172 2173 if (ring->xcp_id == AMDGPU_XCP_NO_PARTITION) 2174 idx = 0; 2175 else 2176 idx = ring->xcp_id; 2177 2178 if (idx >= MAX_XCP) 2179 return; 2180 2181 mutex_lock(&adev->enforce_isolation_mutex); 2182 if (adev->enforce_isolation[idx] == AMDGPU_ENFORCE_ISOLATION_ENABLE) { 2183 if (adev->kfd.init_complete) 2184 sched_work = true; 2185 } 2186 mutex_unlock(&adev->enforce_isolation_mutex); 2187 2188 if (sched_work) 2189 amdgpu_gfx_kfd_sch_ctrl(adev, idx, true); 2190 } 2191 2192 void amdgpu_gfx_profile_idle_work_handler(struct work_struct *work) 2193 { 2194 struct amdgpu_device *adev = 2195 container_of(work, struct amdgpu_device, gfx.idle_work.work); 2196 enum PP_SMC_POWER_PROFILE profile; 2197 u32 i, fences = 0; 2198 int r; 2199 2200 if (adev->gfx.num_gfx_rings) 2201 profile = PP_SMC_POWER_PROFILE_FULLSCREEN3D; 2202 else 2203 profile = PP_SMC_POWER_PROFILE_COMPUTE; 2204 2205 for (i = 0; i < AMDGPU_MAX_GFX_RINGS; ++i) 2206 fences += amdgpu_fence_count_emitted(&adev->gfx.gfx_ring[i]); 2207 for (i = 0; i < (AMDGPU_MAX_COMPUTE_RINGS * AMDGPU_MAX_GC_INSTANCES); ++i) 2208 fences += amdgpu_fence_count_emitted(&adev->gfx.compute_ring[i]); 2209 if (!fences && !atomic_read(&adev->gfx.total_submission_cnt)) { 2210 mutex_lock(&adev->gfx.workload_profile_mutex); 2211 if (adev->gfx.workload_profile_active) { 2212 r = amdgpu_dpm_switch_power_profile(adev, profile, false); 2213 if (r) 2214 dev_warn(adev->dev, "(%d) failed to disable %s power profile mode\n", r, 2215 profile == PP_SMC_POWER_PROFILE_FULLSCREEN3D ? 2216 "fullscreen 3D" : "compute"); 2217 adev->gfx.workload_profile_active = false; 2218 } 2219 mutex_unlock(&adev->gfx.workload_profile_mutex); 2220 } else { 2221 schedule_delayed_work(&adev->gfx.idle_work, GFX_PROFILE_IDLE_TIMEOUT); 2222 } 2223 } 2224 2225 void amdgpu_gfx_profile_ring_begin_use(struct amdgpu_ring *ring) 2226 { 2227 struct amdgpu_device *adev = ring->adev; 2228 enum PP_SMC_POWER_PROFILE profile; 2229 int r; 2230 2231 if (amdgpu_dpm_is_overdrive_enabled(adev)) 2232 return; 2233 2234 if (adev->gfx.num_gfx_rings) 2235 profile = PP_SMC_POWER_PROFILE_FULLSCREEN3D; 2236 else 2237 profile = PP_SMC_POWER_PROFILE_COMPUTE; 2238 2239 atomic_inc(&adev->gfx.total_submission_cnt); 2240 2241 cancel_delayed_work_sync(&adev->gfx.idle_work); 2242 2243 /* We can safely return early here because we've cancelled the 2244 * the delayed work so there is no one else to set it to false 2245 * and we don't care if someone else sets it to true. 2246 */ 2247 if (adev->gfx.workload_profile_active) 2248 return; 2249 2250 mutex_lock(&adev->gfx.workload_profile_mutex); 2251 if (!adev->gfx.workload_profile_active) { 2252 r = amdgpu_dpm_switch_power_profile(adev, profile, true); 2253 if (r) 2254 dev_warn(adev->dev, "(%d) failed to disable %s power profile mode\n", r, 2255 profile == PP_SMC_POWER_PROFILE_FULLSCREEN3D ? 2256 "fullscreen 3D" : "compute"); 2257 adev->gfx.workload_profile_active = true; 2258 } 2259 mutex_unlock(&adev->gfx.workload_profile_mutex); 2260 } 2261 2262 void amdgpu_gfx_profile_ring_end_use(struct amdgpu_ring *ring) 2263 { 2264 struct amdgpu_device *adev = ring->adev; 2265 2266 if (amdgpu_dpm_is_overdrive_enabled(adev)) 2267 return; 2268 2269 atomic_dec(&ring->adev->gfx.total_submission_cnt); 2270 2271 schedule_delayed_work(&ring->adev->gfx.idle_work, GFX_PROFILE_IDLE_TIMEOUT); 2272 } 2273 2274 /** 2275 * amdgpu_gfx_csb_preamble_start - Set CSB preamble start 2276 * 2277 * @buffer: This is an output variable that gets the PACKET3 preamble setup. 2278 * 2279 * Return: 2280 * return the latest index. 2281 */ 2282 u32 amdgpu_gfx_csb_preamble_start(volatile u32 *buffer) 2283 { 2284 u32 count = 0; 2285 2286 buffer[count++] = cpu_to_le32(PACKET3(PACKET3_PREAMBLE_CNTL, 0)); 2287 buffer[count++] = cpu_to_le32(PACKET3_PREAMBLE_BEGIN_CLEAR_STATE); 2288 2289 buffer[count++] = cpu_to_le32(PACKET3(PACKET3_CONTEXT_CONTROL, 1)); 2290 buffer[count++] = cpu_to_le32(0x80000000); 2291 buffer[count++] = cpu_to_le32(0x80000000); 2292 2293 return count; 2294 } 2295 2296 /** 2297 * amdgpu_gfx_csb_data_parser - Parser CS data 2298 * 2299 * @adev: amdgpu_device pointer used to get the CS data and other gfx info. 2300 * @buffer: This is an output variable that gets the PACKET3 preamble end. 2301 * @count: Index to start set the preemble end. 2302 * 2303 * Return: 2304 * return the latest index. 2305 */ 2306 u32 amdgpu_gfx_csb_data_parser(struct amdgpu_device *adev, volatile u32 *buffer, u32 count) 2307 { 2308 const struct cs_section_def *sect = NULL; 2309 const struct cs_extent_def *ext = NULL; 2310 u32 i; 2311 2312 for (sect = adev->gfx.rlc.cs_data; sect->section != NULL; ++sect) { 2313 for (ext = sect->section; ext->extent != NULL; ++ext) { 2314 if (sect->id == SECT_CONTEXT) { 2315 buffer[count++] = cpu_to_le32(PACKET3(PACKET3_SET_CONTEXT_REG, ext->reg_count)); 2316 buffer[count++] = cpu_to_le32(ext->reg_index - PACKET3_SET_CONTEXT_REG_START); 2317 2318 for (i = 0; i < ext->reg_count; i++) 2319 buffer[count++] = cpu_to_le32(ext->extent[i]); 2320 } 2321 } 2322 } 2323 2324 return count; 2325 } 2326 2327 /** 2328 * amdgpu_gfx_csb_preamble_end - Set CSB preamble end 2329 * 2330 * @buffer: This is an output variable that gets the PACKET3 preamble end. 2331 * @count: Index to start set the preemble end. 2332 */ 2333 void amdgpu_gfx_csb_preamble_end(volatile u32 *buffer, u32 count) 2334 { 2335 buffer[count++] = cpu_to_le32(PACKET3(PACKET3_PREAMBLE_CNTL, 0)); 2336 buffer[count++] = cpu_to_le32(PACKET3_PREAMBLE_END_CLEAR_STATE); 2337 2338 buffer[count++] = cpu_to_le32(PACKET3(PACKET3_CLEAR_STATE, 0)); 2339 buffer[count++] = cpu_to_le32(0); 2340 } 2341 2342 /* 2343 * debugfs for to enable/disable gfx job submission to specific core. 2344 */ 2345 #if defined(CONFIG_DEBUG_FS) 2346 static int amdgpu_debugfs_gfx_sched_mask_set(void *data, u64 val) 2347 { 2348 struct amdgpu_device *adev = (struct amdgpu_device *)data; 2349 u32 i; 2350 u64 mask = 0; 2351 struct amdgpu_ring *ring; 2352 2353 if (!adev) 2354 return -ENODEV; 2355 2356 mask = (1ULL << adev->gfx.num_gfx_rings) - 1; 2357 if ((val & mask) == 0) 2358 return -EINVAL; 2359 2360 for (i = 0; i < adev->gfx.num_gfx_rings; ++i) { 2361 ring = &adev->gfx.gfx_ring[i]; 2362 if (val & (1 << i)) 2363 ring->sched.ready = true; 2364 else 2365 ring->sched.ready = false; 2366 } 2367 /* publish sched.ready flag update effective immediately across smp */ 2368 smp_rmb(); 2369 return 0; 2370 } 2371 2372 static int amdgpu_debugfs_gfx_sched_mask_get(void *data, u64 *val) 2373 { 2374 struct amdgpu_device *adev = (struct amdgpu_device *)data; 2375 u32 i; 2376 u64 mask = 0; 2377 struct amdgpu_ring *ring; 2378 2379 if (!adev) 2380 return -ENODEV; 2381 for (i = 0; i < adev->gfx.num_gfx_rings; ++i) { 2382 ring = &adev->gfx.gfx_ring[i]; 2383 if (ring->sched.ready) 2384 mask |= 1ULL << i; 2385 } 2386 2387 *val = mask; 2388 return 0; 2389 } 2390 2391 DEFINE_DEBUGFS_ATTRIBUTE(amdgpu_debugfs_gfx_sched_mask_fops, 2392 amdgpu_debugfs_gfx_sched_mask_get, 2393 amdgpu_debugfs_gfx_sched_mask_set, "%llx\n"); 2394 2395 #endif 2396 2397 void amdgpu_debugfs_gfx_sched_mask_init(struct amdgpu_device *adev) 2398 { 2399 #if defined(CONFIG_DEBUG_FS) 2400 struct drm_minor *minor = adev_to_drm(adev)->primary; 2401 struct dentry *root = minor->debugfs_root; 2402 char name[32]; 2403 2404 if (!(adev->gfx.num_gfx_rings > 1)) 2405 return; 2406 sprintf(name, "amdgpu_gfx_sched_mask"); 2407 debugfs_create_file(name, 0600, root, adev, 2408 &amdgpu_debugfs_gfx_sched_mask_fops); 2409 #endif 2410 } 2411 2412 /* 2413 * debugfs for to enable/disable compute job submission to specific core. 2414 */ 2415 #if defined(CONFIG_DEBUG_FS) 2416 static int amdgpu_debugfs_compute_sched_mask_set(void *data, u64 val) 2417 { 2418 struct amdgpu_device *adev = (struct amdgpu_device *)data; 2419 u32 i; 2420 u64 mask = 0; 2421 struct amdgpu_ring *ring; 2422 2423 if (!adev) 2424 return -ENODEV; 2425 2426 mask = (1ULL << adev->gfx.num_compute_rings) - 1; 2427 if ((val & mask) == 0) 2428 return -EINVAL; 2429 2430 for (i = 0; i < adev->gfx.num_compute_rings; ++i) { 2431 ring = &adev->gfx.compute_ring[i]; 2432 if (val & (1 << i)) 2433 ring->sched.ready = true; 2434 else 2435 ring->sched.ready = false; 2436 } 2437 2438 /* publish sched.ready flag update effective immediately across smp */ 2439 smp_rmb(); 2440 return 0; 2441 } 2442 2443 static int amdgpu_debugfs_compute_sched_mask_get(void *data, u64 *val) 2444 { 2445 struct amdgpu_device *adev = (struct amdgpu_device *)data; 2446 u32 i; 2447 u64 mask = 0; 2448 struct amdgpu_ring *ring; 2449 2450 if (!adev) 2451 return -ENODEV; 2452 for (i = 0; i < adev->gfx.num_compute_rings; ++i) { 2453 ring = &adev->gfx.compute_ring[i]; 2454 if (ring->sched.ready) 2455 mask |= 1ULL << i; 2456 } 2457 2458 *val = mask; 2459 return 0; 2460 } 2461 2462 DEFINE_DEBUGFS_ATTRIBUTE(amdgpu_debugfs_compute_sched_mask_fops, 2463 amdgpu_debugfs_compute_sched_mask_get, 2464 amdgpu_debugfs_compute_sched_mask_set, "%llx\n"); 2465 2466 #endif 2467 2468 void amdgpu_debugfs_compute_sched_mask_init(struct amdgpu_device *adev) 2469 { 2470 #if defined(CONFIG_DEBUG_FS) 2471 struct drm_minor *minor = adev_to_drm(adev)->primary; 2472 struct dentry *root = minor->debugfs_root; 2473 char name[32]; 2474 2475 if (!(adev->gfx.num_compute_rings > 1)) 2476 return; 2477 sprintf(name, "amdgpu_compute_sched_mask"); 2478 debugfs_create_file(name, 0600, root, adev, 2479 &amdgpu_debugfs_compute_sched_mask_fops); 2480 #endif 2481 } 2482