xref: /linux/drivers/gpu/drm/amd/amdgpu/amdgpu_gfx.c (revision 173b0b5b0e865348684c02bd9cb1d22b5d46e458)
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  * Copyright 2008 Red Hat Inc.
4  * Copyright 2009 Jerome Glisse.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  *
24  */
25 
26 #include <linux/firmware.h>
27 #include "amdgpu.h"
28 #include "amdgpu_gfx.h"
29 #include "amdgpu_rlc.h"
30 #include "amdgpu_ras.h"
31 #include "amdgpu_xcp.h"
32 #include "amdgpu_xgmi.h"
33 
34 /* delay 0.1 second to enable gfx off feature */
35 #define GFX_OFF_DELAY_ENABLE         msecs_to_jiffies(100)
36 
37 #define GFX_OFF_NO_DELAY 0
38 
39 /*
40  * GPU GFX IP block helpers function.
41  */
42 
43 int amdgpu_gfx_mec_queue_to_bit(struct amdgpu_device *adev, int mec,
44 				int pipe, int queue)
45 {
46 	int bit = 0;
47 
48 	bit += mec * adev->gfx.mec.num_pipe_per_mec
49 		* adev->gfx.mec.num_queue_per_pipe;
50 	bit += pipe * adev->gfx.mec.num_queue_per_pipe;
51 	bit += queue;
52 
53 	return bit;
54 }
55 
56 void amdgpu_queue_mask_bit_to_mec_queue(struct amdgpu_device *adev, int bit,
57 				 int *mec, int *pipe, int *queue)
58 {
59 	*queue = bit % adev->gfx.mec.num_queue_per_pipe;
60 	*pipe = (bit / adev->gfx.mec.num_queue_per_pipe)
61 		% adev->gfx.mec.num_pipe_per_mec;
62 	*mec = (bit / adev->gfx.mec.num_queue_per_pipe)
63 	       / adev->gfx.mec.num_pipe_per_mec;
64 
65 }
66 
67 bool amdgpu_gfx_is_mec_queue_enabled(struct amdgpu_device *adev,
68 				     int xcc_id, int mec, int pipe, int queue)
69 {
70 	return test_bit(amdgpu_gfx_mec_queue_to_bit(adev, mec, pipe, queue),
71 			adev->gfx.mec_bitmap[xcc_id].queue_bitmap);
72 }
73 
74 int amdgpu_gfx_me_queue_to_bit(struct amdgpu_device *adev,
75 			       int me, int pipe, int queue)
76 {
77 	int bit = 0;
78 
79 	bit += me * adev->gfx.me.num_pipe_per_me
80 		* adev->gfx.me.num_queue_per_pipe;
81 	bit += pipe * adev->gfx.me.num_queue_per_pipe;
82 	bit += queue;
83 
84 	return bit;
85 }
86 
87 void amdgpu_gfx_bit_to_me_queue(struct amdgpu_device *adev, int bit,
88 				int *me, int *pipe, int *queue)
89 {
90 	*queue = bit % adev->gfx.me.num_queue_per_pipe;
91 	*pipe = (bit / adev->gfx.me.num_queue_per_pipe)
92 		% adev->gfx.me.num_pipe_per_me;
93 	*me = (bit / adev->gfx.me.num_queue_per_pipe)
94 		/ adev->gfx.me.num_pipe_per_me;
95 }
96 
97 bool amdgpu_gfx_is_me_queue_enabled(struct amdgpu_device *adev,
98 				    int me, int pipe, int queue)
99 {
100 	return test_bit(amdgpu_gfx_me_queue_to_bit(adev, me, pipe, queue),
101 			adev->gfx.me.queue_bitmap);
102 }
103 
104 /**
105  * amdgpu_gfx_parse_disable_cu - Parse the disable_cu module parameter
106  *
107  * @mask: array in which the per-shader array disable masks will be stored
108  * @max_se: number of SEs
109  * @max_sh: number of SHs
110  *
111  * The bitmask of CUs to be disabled in the shader array determined by se and
112  * sh is stored in mask[se * max_sh + sh].
113  */
114 void amdgpu_gfx_parse_disable_cu(unsigned int *mask, unsigned int max_se, unsigned int max_sh)
115 {
116 	unsigned int se, sh, cu;
117 	const char *p;
118 
119 	memset(mask, 0, sizeof(*mask) * max_se * max_sh);
120 
121 	if (!amdgpu_disable_cu || !*amdgpu_disable_cu)
122 		return;
123 
124 	p = amdgpu_disable_cu;
125 	for (;;) {
126 		char *next;
127 		int ret = sscanf(p, "%u.%u.%u", &se, &sh, &cu);
128 
129 		if (ret < 3) {
130 			DRM_ERROR("amdgpu: could not parse disable_cu\n");
131 			return;
132 		}
133 
134 		if (se < max_se && sh < max_sh && cu < 16) {
135 			DRM_INFO("amdgpu: disabling CU %u.%u.%u\n", se, sh, cu);
136 			mask[se * max_sh + sh] |= 1u << cu;
137 		} else {
138 			DRM_ERROR("amdgpu: disable_cu %u.%u.%u is out of range\n",
139 				  se, sh, cu);
140 		}
141 
142 		next = strchr(p, ',');
143 		if (!next)
144 			break;
145 		p = next + 1;
146 	}
147 }
148 
149 static bool amdgpu_gfx_is_graphics_multipipe_capable(struct amdgpu_device *adev)
150 {
151 	return amdgpu_async_gfx_ring && adev->gfx.me.num_pipe_per_me > 1;
152 }
153 
154 static bool amdgpu_gfx_is_compute_multipipe_capable(struct amdgpu_device *adev)
155 {
156 	if (amdgpu_compute_multipipe != -1) {
157 		DRM_INFO("amdgpu: forcing compute pipe policy %d\n",
158 			 amdgpu_compute_multipipe);
159 		return amdgpu_compute_multipipe == 1;
160 	}
161 
162 	if (amdgpu_ip_version(adev, GC_HWIP, 0) > IP_VERSION(9, 0, 0))
163 		return true;
164 
165 	/* FIXME: spreading the queues across pipes causes perf regressions
166 	 * on POLARIS11 compute workloads */
167 	if (adev->asic_type == CHIP_POLARIS11)
168 		return false;
169 
170 	return adev->gfx.mec.num_mec > 1;
171 }
172 
173 bool amdgpu_gfx_is_high_priority_graphics_queue(struct amdgpu_device *adev,
174 						struct amdgpu_ring *ring)
175 {
176 	int queue = ring->queue;
177 	int pipe = ring->pipe;
178 
179 	/* Policy: use pipe1 queue0 as high priority graphics queue if we
180 	 * have more than one gfx pipe.
181 	 */
182 	if (amdgpu_gfx_is_graphics_multipipe_capable(adev) &&
183 	    adev->gfx.num_gfx_rings > 1 && pipe == 1 && queue == 0) {
184 		int me = ring->me;
185 		int bit;
186 
187 		bit = amdgpu_gfx_me_queue_to_bit(adev, me, pipe, queue);
188 		if (ring == &adev->gfx.gfx_ring[bit])
189 			return true;
190 	}
191 
192 	return false;
193 }
194 
195 bool amdgpu_gfx_is_high_priority_compute_queue(struct amdgpu_device *adev,
196 					       struct amdgpu_ring *ring)
197 {
198 	/* Policy: use 1st queue as high priority compute queue if we
199 	 * have more than one compute queue.
200 	 */
201 	if (adev->gfx.num_compute_rings > 1 &&
202 	    ring == &adev->gfx.compute_ring[0])
203 		return true;
204 
205 	return false;
206 }
207 
208 void amdgpu_gfx_compute_queue_acquire(struct amdgpu_device *adev)
209 {
210 	int i, j, queue, pipe;
211 	bool multipipe_policy = amdgpu_gfx_is_compute_multipipe_capable(adev);
212 	int max_queues_per_mec = min(adev->gfx.mec.num_pipe_per_mec *
213 				     adev->gfx.mec.num_queue_per_pipe,
214 				     adev->gfx.num_compute_rings);
215 	int num_xcc = adev->gfx.xcc_mask ? NUM_XCC(adev->gfx.xcc_mask) : 1;
216 
217 	if (multipipe_policy) {
218 		/* policy: make queues evenly cross all pipes on MEC1 only
219 		 * for multiple xcc, just use the original policy for simplicity */
220 		for (j = 0; j < num_xcc; j++) {
221 			for (i = 0; i < max_queues_per_mec; i++) {
222 				pipe = i % adev->gfx.mec.num_pipe_per_mec;
223 				queue = (i / adev->gfx.mec.num_pipe_per_mec) %
224 					 adev->gfx.mec.num_queue_per_pipe;
225 
226 				set_bit(pipe * adev->gfx.mec.num_queue_per_pipe + queue,
227 					adev->gfx.mec_bitmap[j].queue_bitmap);
228 			}
229 		}
230 	} else {
231 		/* policy: amdgpu owns all queues in the given pipe */
232 		for (j = 0; j < num_xcc; j++) {
233 			for (i = 0; i < max_queues_per_mec; ++i)
234 				set_bit(i, adev->gfx.mec_bitmap[j].queue_bitmap);
235 		}
236 	}
237 
238 	for (j = 0; j < num_xcc; j++) {
239 		dev_dbg(adev->dev, "mec queue bitmap weight=%d\n",
240 			bitmap_weight(adev->gfx.mec_bitmap[j].queue_bitmap, AMDGPU_MAX_COMPUTE_QUEUES));
241 	}
242 }
243 
244 void amdgpu_gfx_graphics_queue_acquire(struct amdgpu_device *adev)
245 {
246 	int i, queue, pipe;
247 	bool multipipe_policy = amdgpu_gfx_is_graphics_multipipe_capable(adev);
248 	int max_queues_per_me = adev->gfx.me.num_pipe_per_me *
249 					adev->gfx.me.num_queue_per_pipe;
250 
251 	if (multipipe_policy) {
252 		/* policy: amdgpu owns the first queue per pipe at this stage
253 		 * will extend to mulitple queues per pipe later */
254 		for (i = 0; i < max_queues_per_me; i++) {
255 			pipe = i % adev->gfx.me.num_pipe_per_me;
256 			queue = (i / adev->gfx.me.num_pipe_per_me) %
257 				adev->gfx.me.num_queue_per_pipe;
258 
259 			set_bit(pipe * adev->gfx.me.num_queue_per_pipe + queue,
260 				adev->gfx.me.queue_bitmap);
261 		}
262 	} else {
263 		for (i = 0; i < max_queues_per_me; ++i)
264 			set_bit(i, adev->gfx.me.queue_bitmap);
265 	}
266 
267 	/* update the number of active graphics rings */
268 	adev->gfx.num_gfx_rings =
269 		bitmap_weight(adev->gfx.me.queue_bitmap, AMDGPU_MAX_GFX_QUEUES);
270 }
271 
272 static int amdgpu_gfx_kiq_acquire(struct amdgpu_device *adev,
273 				  struct amdgpu_ring *ring, int xcc_id)
274 {
275 	int queue_bit;
276 	int mec, pipe, queue;
277 
278 	queue_bit = adev->gfx.mec.num_mec
279 		    * adev->gfx.mec.num_pipe_per_mec
280 		    * adev->gfx.mec.num_queue_per_pipe;
281 
282 	while (--queue_bit >= 0) {
283 		if (test_bit(queue_bit, adev->gfx.mec_bitmap[xcc_id].queue_bitmap))
284 			continue;
285 
286 		amdgpu_queue_mask_bit_to_mec_queue(adev, queue_bit, &mec, &pipe, &queue);
287 
288 		/*
289 		 * 1. Using pipes 2/3 from MEC 2 seems cause problems.
290 		 * 2. It must use queue id 0, because CGPG_IDLE/SAVE/LOAD/RUN
291 		 * only can be issued on queue 0.
292 		 */
293 		if ((mec == 1 && pipe > 1) || queue != 0)
294 			continue;
295 
296 		ring->me = mec + 1;
297 		ring->pipe = pipe;
298 		ring->queue = queue;
299 
300 		return 0;
301 	}
302 
303 	dev_err(adev->dev, "Failed to find a queue for KIQ\n");
304 	return -EINVAL;
305 }
306 
307 int amdgpu_gfx_kiq_init_ring(struct amdgpu_device *adev, int xcc_id)
308 {
309 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
310 	struct amdgpu_irq_src *irq = &kiq->irq;
311 	struct amdgpu_ring *ring = &kiq->ring;
312 	int r = 0;
313 
314 	spin_lock_init(&kiq->ring_lock);
315 
316 	ring->adev = NULL;
317 	ring->ring_obj = NULL;
318 	ring->use_doorbell = true;
319 	ring->xcc_id = xcc_id;
320 	ring->vm_hub = AMDGPU_GFXHUB(xcc_id);
321 	ring->doorbell_index =
322 		(adev->doorbell_index.kiq +
323 		 xcc_id * adev->doorbell_index.xcc_doorbell_range)
324 		<< 1;
325 
326 	r = amdgpu_gfx_kiq_acquire(adev, ring, xcc_id);
327 	if (r)
328 		return r;
329 
330 	ring->eop_gpu_addr = kiq->eop_gpu_addr;
331 	ring->no_scheduler = true;
332 	snprintf(ring->name, sizeof(ring->name), "kiq_%d.%d.%d.%d",
333 		 xcc_id, ring->me, ring->pipe, ring->queue);
334 	r = amdgpu_ring_init(adev, ring, 1024, irq, AMDGPU_CP_KIQ_IRQ_DRIVER0,
335 			     AMDGPU_RING_PRIO_DEFAULT, NULL);
336 	if (r)
337 		dev_warn(adev->dev, "(%d) failed to init kiq ring\n", r);
338 
339 	return r;
340 }
341 
342 void amdgpu_gfx_kiq_free_ring(struct amdgpu_ring *ring)
343 {
344 	amdgpu_ring_fini(ring);
345 }
346 
347 void amdgpu_gfx_kiq_fini(struct amdgpu_device *adev, int xcc_id)
348 {
349 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
350 
351 	amdgpu_bo_free_kernel(&kiq->eop_obj, &kiq->eop_gpu_addr, NULL);
352 }
353 
354 int amdgpu_gfx_kiq_init(struct amdgpu_device *adev,
355 			unsigned int hpd_size, int xcc_id)
356 {
357 	int r;
358 	u32 *hpd;
359 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
360 
361 	r = amdgpu_bo_create_kernel(adev, hpd_size, PAGE_SIZE,
362 				    AMDGPU_GEM_DOMAIN_GTT, &kiq->eop_obj,
363 				    &kiq->eop_gpu_addr, (void **)&hpd);
364 	if (r) {
365 		dev_warn(adev->dev, "failed to create KIQ bo (%d).\n", r);
366 		return r;
367 	}
368 
369 	memset(hpd, 0, hpd_size);
370 
371 	r = amdgpu_bo_reserve(kiq->eop_obj, true);
372 	if (unlikely(r != 0))
373 		dev_warn(adev->dev, "(%d) reserve kiq eop bo failed\n", r);
374 	amdgpu_bo_kunmap(kiq->eop_obj);
375 	amdgpu_bo_unreserve(kiq->eop_obj);
376 
377 	return 0;
378 }
379 
380 /* create MQD for each compute/gfx queue */
381 int amdgpu_gfx_mqd_sw_init(struct amdgpu_device *adev,
382 			   unsigned int mqd_size, int xcc_id)
383 {
384 	int r, i, j;
385 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
386 	struct amdgpu_ring *ring = &kiq->ring;
387 	u32 domain = AMDGPU_GEM_DOMAIN_GTT;
388 
389 #if !defined(CONFIG_ARM) && !defined(CONFIG_ARM64)
390 	/* Only enable on gfx10 and 11 for now to avoid changing behavior on older chips */
391 	if (amdgpu_ip_version(adev, GC_HWIP, 0) >= IP_VERSION(10, 0, 0))
392 		domain |= AMDGPU_GEM_DOMAIN_VRAM;
393 #endif
394 
395 	/* create MQD for KIQ */
396 	if (!adev->enable_mes_kiq && !ring->mqd_obj) {
397 		/* originaly the KIQ MQD is put in GTT domain, but for SRIOV VRAM domain is a must
398 		 * otherwise hypervisor trigger SAVE_VF fail after driver unloaded which mean MQD
399 		 * deallocated and gart_unbind, to strict diverage we decide to use VRAM domain for
400 		 * KIQ MQD no matter SRIOV or Bare-metal
401 		 */
402 		r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE,
403 					    AMDGPU_GEM_DOMAIN_VRAM |
404 					    AMDGPU_GEM_DOMAIN_GTT,
405 					    &ring->mqd_obj,
406 					    &ring->mqd_gpu_addr,
407 					    &ring->mqd_ptr);
408 		if (r) {
409 			dev_warn(adev->dev, "failed to create ring mqd ob (%d)", r);
410 			return r;
411 		}
412 
413 		/* prepare MQD backup */
414 		kiq->mqd_backup = kmalloc(mqd_size, GFP_KERNEL);
415 		if (!kiq->mqd_backup) {
416 			dev_warn(adev->dev,
417 				 "no memory to create MQD backup for ring %s\n", ring->name);
418 			return -ENOMEM;
419 		}
420 	}
421 
422 	if (adev->asic_type >= CHIP_NAVI10 && amdgpu_async_gfx_ring) {
423 		/* create MQD for each KGQ */
424 		for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
425 			ring = &adev->gfx.gfx_ring[i];
426 			if (!ring->mqd_obj) {
427 				r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE,
428 							    domain, &ring->mqd_obj,
429 							    &ring->mqd_gpu_addr, &ring->mqd_ptr);
430 				if (r) {
431 					dev_warn(adev->dev, "failed to create ring mqd bo (%d)", r);
432 					return r;
433 				}
434 
435 				ring->mqd_size = mqd_size;
436 				/* prepare MQD backup */
437 				adev->gfx.me.mqd_backup[i] = kmalloc(mqd_size, GFP_KERNEL);
438 				if (!adev->gfx.me.mqd_backup[i]) {
439 					dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name);
440 					return -ENOMEM;
441 				}
442 			}
443 		}
444 	}
445 
446 	/* create MQD for each KCQ */
447 	for (i = 0; i < adev->gfx.num_compute_rings; i++) {
448 		j = i + xcc_id * adev->gfx.num_compute_rings;
449 		ring = &adev->gfx.compute_ring[j];
450 		if (!ring->mqd_obj) {
451 			r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE,
452 						    domain, &ring->mqd_obj,
453 						    &ring->mqd_gpu_addr, &ring->mqd_ptr);
454 			if (r) {
455 				dev_warn(adev->dev, "failed to create ring mqd bo (%d)", r);
456 				return r;
457 			}
458 
459 			ring->mqd_size = mqd_size;
460 			/* prepare MQD backup */
461 			adev->gfx.mec.mqd_backup[j] = kmalloc(mqd_size, GFP_KERNEL);
462 			if (!adev->gfx.mec.mqd_backup[j]) {
463 				dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name);
464 				return -ENOMEM;
465 			}
466 		}
467 	}
468 
469 	return 0;
470 }
471 
472 void amdgpu_gfx_mqd_sw_fini(struct amdgpu_device *adev, int xcc_id)
473 {
474 	struct amdgpu_ring *ring = NULL;
475 	int i, j;
476 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
477 
478 	if (adev->asic_type >= CHIP_NAVI10 && amdgpu_async_gfx_ring) {
479 		for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
480 			ring = &adev->gfx.gfx_ring[i];
481 			kfree(adev->gfx.me.mqd_backup[i]);
482 			amdgpu_bo_free_kernel(&ring->mqd_obj,
483 					      &ring->mqd_gpu_addr,
484 					      &ring->mqd_ptr);
485 		}
486 	}
487 
488 	for (i = 0; i < adev->gfx.num_compute_rings; i++) {
489 		j = i + xcc_id * adev->gfx.num_compute_rings;
490 		ring = &adev->gfx.compute_ring[j];
491 		kfree(adev->gfx.mec.mqd_backup[j]);
492 		amdgpu_bo_free_kernel(&ring->mqd_obj,
493 				      &ring->mqd_gpu_addr,
494 				      &ring->mqd_ptr);
495 	}
496 
497 	ring = &kiq->ring;
498 	kfree(kiq->mqd_backup);
499 	amdgpu_bo_free_kernel(&ring->mqd_obj,
500 			      &ring->mqd_gpu_addr,
501 			      &ring->mqd_ptr);
502 }
503 
504 int amdgpu_gfx_disable_kcq(struct amdgpu_device *adev, int xcc_id)
505 {
506 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
507 	struct amdgpu_ring *kiq_ring = &kiq->ring;
508 	struct amdgpu_hive_info *hive;
509 	struct amdgpu_ras *ras;
510 	int hive_ras_recovery = 0;
511 	int i, r = 0;
512 	int j;
513 
514 	if (!kiq->pmf || !kiq->pmf->kiq_unmap_queues)
515 		return -EINVAL;
516 
517 	spin_lock(&kiq->ring_lock);
518 	if (amdgpu_ring_alloc(kiq_ring, kiq->pmf->unmap_queues_size *
519 					adev->gfx.num_compute_rings)) {
520 		spin_unlock(&kiq->ring_lock);
521 		return -ENOMEM;
522 	}
523 
524 	for (i = 0; i < adev->gfx.num_compute_rings; i++) {
525 		j = i + xcc_id * adev->gfx.num_compute_rings;
526 		kiq->pmf->kiq_unmap_queues(kiq_ring,
527 					   &adev->gfx.compute_ring[j],
528 					   RESET_QUEUES, 0, 0);
529 	}
530 
531 	/**
532 	 * This is workaround: only skip kiq_ring test
533 	 * during ras recovery in suspend stage for gfx9.4.3
534 	 */
535 	hive = amdgpu_get_xgmi_hive(adev);
536 	if (hive) {
537 		hive_ras_recovery = atomic_read(&hive->ras_recovery);
538 		amdgpu_put_xgmi_hive(hive);
539 	}
540 
541 	ras = amdgpu_ras_get_context(adev);
542 	if ((amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 3)) &&
543 		ras && (atomic_read(&ras->in_recovery) || hive_ras_recovery)) {
544 		spin_unlock(&kiq->ring_lock);
545 		return 0;
546 	}
547 
548 	if (kiq_ring->sched.ready && !adev->job_hang)
549 		r = amdgpu_ring_test_helper(kiq_ring);
550 	spin_unlock(&kiq->ring_lock);
551 
552 	return r;
553 }
554 
555 int amdgpu_gfx_disable_kgq(struct amdgpu_device *adev, int xcc_id)
556 {
557 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
558 	struct amdgpu_ring *kiq_ring = &kiq->ring;
559 	int i, r = 0;
560 	int j;
561 
562 	if (!kiq->pmf || !kiq->pmf->kiq_unmap_queues)
563 		return -EINVAL;
564 
565 	spin_lock(&kiq->ring_lock);
566 	if (amdgpu_gfx_is_master_xcc(adev, xcc_id)) {
567 		if (amdgpu_ring_alloc(kiq_ring, kiq->pmf->unmap_queues_size *
568 						adev->gfx.num_gfx_rings)) {
569 			spin_unlock(&kiq->ring_lock);
570 			return -ENOMEM;
571 		}
572 
573 		for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
574 			j = i + xcc_id * adev->gfx.num_gfx_rings;
575 			kiq->pmf->kiq_unmap_queues(kiq_ring,
576 						   &adev->gfx.gfx_ring[j],
577 						   PREEMPT_QUEUES, 0, 0);
578 		}
579 	}
580 
581 	if (adev->gfx.kiq[0].ring.sched.ready && !adev->job_hang)
582 		r = amdgpu_ring_test_helper(kiq_ring);
583 	spin_unlock(&kiq->ring_lock);
584 
585 	return r;
586 }
587 
588 int amdgpu_queue_mask_bit_to_set_resource_bit(struct amdgpu_device *adev,
589 					int queue_bit)
590 {
591 	int mec, pipe, queue;
592 	int set_resource_bit = 0;
593 
594 	amdgpu_queue_mask_bit_to_mec_queue(adev, queue_bit, &mec, &pipe, &queue);
595 
596 	set_resource_bit = mec * 4 * 8 + pipe * 8 + queue;
597 
598 	return set_resource_bit;
599 }
600 
601 int amdgpu_gfx_enable_kcq(struct amdgpu_device *adev, int xcc_id)
602 {
603 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
604 	struct amdgpu_ring *kiq_ring = &kiq->ring;
605 	uint64_t queue_mask = 0;
606 	int r, i, j;
607 
608 	if (!kiq->pmf || !kiq->pmf->kiq_map_queues || !kiq->pmf->kiq_set_resources)
609 		return -EINVAL;
610 
611 	for (i = 0; i < AMDGPU_MAX_COMPUTE_QUEUES; ++i) {
612 		if (!test_bit(i, adev->gfx.mec_bitmap[xcc_id].queue_bitmap))
613 			continue;
614 
615 		/* This situation may be hit in the future if a new HW
616 		 * generation exposes more than 64 queues. If so, the
617 		 * definition of queue_mask needs updating */
618 		if (WARN_ON(i > (sizeof(queue_mask)*8))) {
619 			DRM_ERROR("Invalid KCQ enabled: %d\n", i);
620 			break;
621 		}
622 
623 		queue_mask |= (1ull << amdgpu_queue_mask_bit_to_set_resource_bit(adev, i));
624 	}
625 
626 	DRM_INFO("kiq ring mec %d pipe %d q %d\n", kiq_ring->me, kiq_ring->pipe,
627 							kiq_ring->queue);
628 	amdgpu_device_flush_hdp(adev, NULL);
629 
630 	spin_lock(&kiq->ring_lock);
631 	r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->map_queues_size *
632 					adev->gfx.num_compute_rings +
633 					kiq->pmf->set_resources_size);
634 	if (r) {
635 		DRM_ERROR("Failed to lock KIQ (%d).\n", r);
636 		spin_unlock(&kiq->ring_lock);
637 		return r;
638 	}
639 
640 	if (adev->enable_mes)
641 		queue_mask = ~0ULL;
642 
643 	kiq->pmf->kiq_set_resources(kiq_ring, queue_mask);
644 	for (i = 0; i < adev->gfx.num_compute_rings; i++) {
645 		j = i + xcc_id * adev->gfx.num_compute_rings;
646 		kiq->pmf->kiq_map_queues(kiq_ring,
647 					 &adev->gfx.compute_ring[j]);
648 	}
649 
650 	r = amdgpu_ring_test_helper(kiq_ring);
651 	spin_unlock(&kiq->ring_lock);
652 	if (r)
653 		DRM_ERROR("KCQ enable failed\n");
654 
655 	return r;
656 }
657 
658 int amdgpu_gfx_enable_kgq(struct amdgpu_device *adev, int xcc_id)
659 {
660 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
661 	struct amdgpu_ring *kiq_ring = &kiq->ring;
662 	int r, i, j;
663 
664 	if (!kiq->pmf || !kiq->pmf->kiq_map_queues)
665 		return -EINVAL;
666 
667 	amdgpu_device_flush_hdp(adev, NULL);
668 
669 	spin_lock(&kiq->ring_lock);
670 	/* No need to map kcq on the slave */
671 	if (amdgpu_gfx_is_master_xcc(adev, xcc_id)) {
672 		r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->map_queues_size *
673 						adev->gfx.num_gfx_rings);
674 		if (r) {
675 			DRM_ERROR("Failed to lock KIQ (%d).\n", r);
676 			spin_unlock(&kiq->ring_lock);
677 			return r;
678 		}
679 
680 		for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
681 			j = i + xcc_id * adev->gfx.num_gfx_rings;
682 			kiq->pmf->kiq_map_queues(kiq_ring,
683 						 &adev->gfx.gfx_ring[j]);
684 		}
685 	}
686 
687 	r = amdgpu_ring_test_helper(kiq_ring);
688 	spin_unlock(&kiq->ring_lock);
689 	if (r)
690 		DRM_ERROR("KGQ enable failed\n");
691 
692 	return r;
693 }
694 
695 /* amdgpu_gfx_off_ctrl - Handle gfx off feature enable/disable
696  *
697  * @adev: amdgpu_device pointer
698  * @bool enable true: enable gfx off feature, false: disable gfx off feature
699  *
700  * 1. gfx off feature will be enabled by gfx ip after gfx cg gp enabled.
701  * 2. other client can send request to disable gfx off feature, the request should be honored.
702  * 3. other client can cancel their request of disable gfx off feature
703  * 4. other client should not send request to enable gfx off feature before disable gfx off feature.
704  */
705 
706 void amdgpu_gfx_off_ctrl(struct amdgpu_device *adev, bool enable)
707 {
708 	unsigned long delay = GFX_OFF_DELAY_ENABLE;
709 
710 	if (!(adev->pm.pp_feature & PP_GFXOFF_MASK))
711 		return;
712 
713 	mutex_lock(&adev->gfx.gfx_off_mutex);
714 
715 	if (enable) {
716 		/* If the count is already 0, it means there's an imbalance bug somewhere.
717 		 * Note that the bug may be in a different caller than the one which triggers the
718 		 * WARN_ON_ONCE.
719 		 */
720 		if (WARN_ON_ONCE(adev->gfx.gfx_off_req_count == 0))
721 			goto unlock;
722 
723 		adev->gfx.gfx_off_req_count--;
724 
725 		if (adev->gfx.gfx_off_req_count == 0 &&
726 		    !adev->gfx.gfx_off_state) {
727 			/* If going to s2idle, no need to wait */
728 			if (adev->in_s0ix) {
729 				if (!amdgpu_dpm_set_powergating_by_smu(adev,
730 						AMD_IP_BLOCK_TYPE_GFX, true))
731 					adev->gfx.gfx_off_state = true;
732 			} else {
733 				schedule_delayed_work(&adev->gfx.gfx_off_delay_work,
734 					      delay);
735 			}
736 		}
737 	} else {
738 		if (adev->gfx.gfx_off_req_count == 0) {
739 			cancel_delayed_work_sync(&adev->gfx.gfx_off_delay_work);
740 
741 			if (adev->gfx.gfx_off_state &&
742 			    !amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_GFX, false)) {
743 				adev->gfx.gfx_off_state = false;
744 
745 				if (adev->gfx.funcs->init_spm_golden) {
746 					dev_dbg(adev->dev,
747 						"GFXOFF is disabled, re-init SPM golden settings\n");
748 					amdgpu_gfx_init_spm_golden(adev);
749 				}
750 			}
751 		}
752 
753 		adev->gfx.gfx_off_req_count++;
754 	}
755 
756 unlock:
757 	mutex_unlock(&adev->gfx.gfx_off_mutex);
758 }
759 
760 int amdgpu_set_gfx_off_residency(struct amdgpu_device *adev, bool value)
761 {
762 	int r = 0;
763 
764 	mutex_lock(&adev->gfx.gfx_off_mutex);
765 
766 	r = amdgpu_dpm_set_residency_gfxoff(adev, value);
767 
768 	mutex_unlock(&adev->gfx.gfx_off_mutex);
769 
770 	return r;
771 }
772 
773 int amdgpu_get_gfx_off_residency(struct amdgpu_device *adev, u32 *value)
774 {
775 	int r = 0;
776 
777 	mutex_lock(&adev->gfx.gfx_off_mutex);
778 
779 	r = amdgpu_dpm_get_residency_gfxoff(adev, value);
780 
781 	mutex_unlock(&adev->gfx.gfx_off_mutex);
782 
783 	return r;
784 }
785 
786 int amdgpu_get_gfx_off_entrycount(struct amdgpu_device *adev, u64 *value)
787 {
788 	int r = 0;
789 
790 	mutex_lock(&adev->gfx.gfx_off_mutex);
791 
792 	r = amdgpu_dpm_get_entrycount_gfxoff(adev, value);
793 
794 	mutex_unlock(&adev->gfx.gfx_off_mutex);
795 
796 	return r;
797 }
798 
799 int amdgpu_get_gfx_off_status(struct amdgpu_device *adev, uint32_t *value)
800 {
801 
802 	int r = 0;
803 
804 	mutex_lock(&adev->gfx.gfx_off_mutex);
805 
806 	r = amdgpu_dpm_get_status_gfxoff(adev, value);
807 
808 	mutex_unlock(&adev->gfx.gfx_off_mutex);
809 
810 	return r;
811 }
812 
813 int amdgpu_gfx_ras_late_init(struct amdgpu_device *adev, struct ras_common_if *ras_block)
814 {
815 	int r;
816 
817 	if (amdgpu_ras_is_supported(adev, ras_block->block)) {
818 		if (!amdgpu_persistent_edc_harvesting_supported(adev))
819 			amdgpu_ras_reset_error_status(adev, AMDGPU_RAS_BLOCK__GFX);
820 
821 		r = amdgpu_ras_block_late_init(adev, ras_block);
822 		if (r)
823 			return r;
824 
825 		if (adev->gfx.cp_ecc_error_irq.funcs) {
826 			r = amdgpu_irq_get(adev, &adev->gfx.cp_ecc_error_irq, 0);
827 			if (r)
828 				goto late_fini;
829 		}
830 	} else {
831 		amdgpu_ras_feature_enable_on_boot(adev, ras_block, 0);
832 	}
833 
834 	return 0;
835 late_fini:
836 	amdgpu_ras_block_late_fini(adev, ras_block);
837 	return r;
838 }
839 
840 int amdgpu_gfx_ras_sw_init(struct amdgpu_device *adev)
841 {
842 	int err = 0;
843 	struct amdgpu_gfx_ras *ras = NULL;
844 
845 	/* adev->gfx.ras is NULL, which means gfx does not
846 	 * support ras function, then do nothing here.
847 	 */
848 	if (!adev->gfx.ras)
849 		return 0;
850 
851 	ras = adev->gfx.ras;
852 
853 	err = amdgpu_ras_register_ras_block(adev, &ras->ras_block);
854 	if (err) {
855 		dev_err(adev->dev, "Failed to register gfx ras block!\n");
856 		return err;
857 	}
858 
859 	strcpy(ras->ras_block.ras_comm.name, "gfx");
860 	ras->ras_block.ras_comm.block = AMDGPU_RAS_BLOCK__GFX;
861 	ras->ras_block.ras_comm.type = AMDGPU_RAS_ERROR__MULTI_UNCORRECTABLE;
862 	adev->gfx.ras_if = &ras->ras_block.ras_comm;
863 
864 	/* If not define special ras_late_init function, use gfx default ras_late_init */
865 	if (!ras->ras_block.ras_late_init)
866 		ras->ras_block.ras_late_init = amdgpu_gfx_ras_late_init;
867 
868 	/* If not defined special ras_cb function, use default ras_cb */
869 	if (!ras->ras_block.ras_cb)
870 		ras->ras_block.ras_cb = amdgpu_gfx_process_ras_data_cb;
871 
872 	return 0;
873 }
874 
875 int amdgpu_gfx_poison_consumption_handler(struct amdgpu_device *adev,
876 						struct amdgpu_iv_entry *entry)
877 {
878 	if (adev->gfx.ras && adev->gfx.ras->poison_consumption_handler)
879 		return adev->gfx.ras->poison_consumption_handler(adev, entry);
880 
881 	return 0;
882 }
883 
884 int amdgpu_gfx_process_ras_data_cb(struct amdgpu_device *adev,
885 		void *err_data,
886 		struct amdgpu_iv_entry *entry)
887 {
888 	/* TODO ue will trigger an interrupt.
889 	 *
890 	 * When “Full RAS” is enabled, the per-IP interrupt sources should
891 	 * be disabled and the driver should only look for the aggregated
892 	 * interrupt via sync flood
893 	 */
894 	if (!amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__GFX)) {
895 		kgd2kfd_set_sram_ecc_flag(adev->kfd.dev);
896 		if (adev->gfx.ras && adev->gfx.ras->ras_block.hw_ops &&
897 		    adev->gfx.ras->ras_block.hw_ops->query_ras_error_count)
898 			adev->gfx.ras->ras_block.hw_ops->query_ras_error_count(adev, err_data);
899 		amdgpu_ras_reset_gpu(adev);
900 	}
901 	return AMDGPU_RAS_SUCCESS;
902 }
903 
904 int amdgpu_gfx_cp_ecc_error_irq(struct amdgpu_device *adev,
905 				  struct amdgpu_irq_src *source,
906 				  struct amdgpu_iv_entry *entry)
907 {
908 	struct ras_common_if *ras_if = adev->gfx.ras_if;
909 	struct ras_dispatch_if ih_data = {
910 		.entry = entry,
911 	};
912 
913 	if (!ras_if)
914 		return 0;
915 
916 	ih_data.head = *ras_if;
917 
918 	DRM_ERROR("CP ECC ERROR IRQ\n");
919 	amdgpu_ras_interrupt_dispatch(adev, &ih_data);
920 	return 0;
921 }
922 
923 void amdgpu_gfx_ras_error_func(struct amdgpu_device *adev,
924 		void *ras_error_status,
925 		void (*func)(struct amdgpu_device *adev, void *ras_error_status,
926 				int xcc_id))
927 {
928 	int i;
929 	int num_xcc = adev->gfx.xcc_mask ? NUM_XCC(adev->gfx.xcc_mask) : 1;
930 	uint32_t xcc_mask = GENMASK(num_xcc - 1, 0);
931 	struct ras_err_data *err_data = (struct ras_err_data *)ras_error_status;
932 
933 	if (err_data) {
934 		err_data->ue_count = 0;
935 		err_data->ce_count = 0;
936 	}
937 
938 	for_each_inst(i, xcc_mask)
939 		func(adev, ras_error_status, i);
940 }
941 
942 uint32_t amdgpu_kiq_rreg(struct amdgpu_device *adev, uint32_t reg, uint32_t xcc_id)
943 {
944 	signed long r, cnt = 0;
945 	unsigned long flags;
946 	uint32_t seq, reg_val_offs = 0, value = 0;
947 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
948 	struct amdgpu_ring *ring = &kiq->ring;
949 
950 	if (amdgpu_device_skip_hw_access(adev))
951 		return 0;
952 
953 	if (adev->mes.ring.sched.ready)
954 		return amdgpu_mes_rreg(adev, reg);
955 
956 	BUG_ON(!ring->funcs->emit_rreg);
957 
958 	spin_lock_irqsave(&kiq->ring_lock, flags);
959 	if (amdgpu_device_wb_get(adev, &reg_val_offs)) {
960 		pr_err("critical bug! too many kiq readers\n");
961 		goto failed_unlock;
962 	}
963 	amdgpu_ring_alloc(ring, 32);
964 	amdgpu_ring_emit_rreg(ring, reg, reg_val_offs);
965 	r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT);
966 	if (r)
967 		goto failed_undo;
968 
969 	amdgpu_ring_commit(ring);
970 	spin_unlock_irqrestore(&kiq->ring_lock, flags);
971 
972 	r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
973 
974 	/* don't wait anymore for gpu reset case because this way may
975 	 * block gpu_recover() routine forever, e.g. this virt_kiq_rreg
976 	 * is triggered in TTM and ttm_bo_lock_delayed_workqueue() will
977 	 * never return if we keep waiting in virt_kiq_rreg, which cause
978 	 * gpu_recover() hang there.
979 	 *
980 	 * also don't wait anymore for IRQ context
981 	 * */
982 	if (r < 1 && (amdgpu_in_reset(adev) || in_interrupt()))
983 		goto failed_kiq_read;
984 
985 	might_sleep();
986 	while (r < 1 && cnt++ < MAX_KIQ_REG_TRY) {
987 		msleep(MAX_KIQ_REG_BAILOUT_INTERVAL);
988 		r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
989 	}
990 
991 	if (cnt > MAX_KIQ_REG_TRY)
992 		goto failed_kiq_read;
993 
994 	mb();
995 	value = adev->wb.wb[reg_val_offs];
996 	amdgpu_device_wb_free(adev, reg_val_offs);
997 	return value;
998 
999 failed_undo:
1000 	amdgpu_ring_undo(ring);
1001 failed_unlock:
1002 	spin_unlock_irqrestore(&kiq->ring_lock, flags);
1003 failed_kiq_read:
1004 	if (reg_val_offs)
1005 		amdgpu_device_wb_free(adev, reg_val_offs);
1006 	dev_err(adev->dev, "failed to read reg:%x\n", reg);
1007 	return ~0;
1008 }
1009 
1010 void amdgpu_kiq_wreg(struct amdgpu_device *adev, uint32_t reg, uint32_t v, uint32_t xcc_id)
1011 {
1012 	signed long r, cnt = 0;
1013 	unsigned long flags;
1014 	uint32_t seq;
1015 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
1016 	struct amdgpu_ring *ring = &kiq->ring;
1017 
1018 	BUG_ON(!ring->funcs->emit_wreg);
1019 
1020 	if (amdgpu_device_skip_hw_access(adev))
1021 		return;
1022 
1023 	if (adev->mes.ring.sched.ready) {
1024 		amdgpu_mes_wreg(adev, reg, v);
1025 		return;
1026 	}
1027 
1028 	spin_lock_irqsave(&kiq->ring_lock, flags);
1029 	amdgpu_ring_alloc(ring, 32);
1030 	amdgpu_ring_emit_wreg(ring, reg, v);
1031 	r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT);
1032 	if (r)
1033 		goto failed_undo;
1034 
1035 	amdgpu_ring_commit(ring);
1036 	spin_unlock_irqrestore(&kiq->ring_lock, flags);
1037 
1038 	r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
1039 
1040 	/* don't wait anymore for gpu reset case because this way may
1041 	 * block gpu_recover() routine forever, e.g. this virt_kiq_rreg
1042 	 * is triggered in TTM and ttm_bo_lock_delayed_workqueue() will
1043 	 * never return if we keep waiting in virt_kiq_rreg, which cause
1044 	 * gpu_recover() hang there.
1045 	 *
1046 	 * also don't wait anymore for IRQ context
1047 	 * */
1048 	if (r < 1 && (amdgpu_in_reset(adev) || in_interrupt()))
1049 		goto failed_kiq_write;
1050 
1051 	might_sleep();
1052 	while (r < 1 && cnt++ < MAX_KIQ_REG_TRY) {
1053 
1054 		msleep(MAX_KIQ_REG_BAILOUT_INTERVAL);
1055 		r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
1056 	}
1057 
1058 	if (cnt > MAX_KIQ_REG_TRY)
1059 		goto failed_kiq_write;
1060 
1061 	return;
1062 
1063 failed_undo:
1064 	amdgpu_ring_undo(ring);
1065 	spin_unlock_irqrestore(&kiq->ring_lock, flags);
1066 failed_kiq_write:
1067 	dev_err(adev->dev, "failed to write reg:%x\n", reg);
1068 }
1069 
1070 int amdgpu_gfx_get_num_kcq(struct amdgpu_device *adev)
1071 {
1072 	if (amdgpu_num_kcq == -1) {
1073 		return 8;
1074 	} else if (amdgpu_num_kcq > 8 || amdgpu_num_kcq < 0) {
1075 		dev_warn(adev->dev, "set kernel compute queue number to 8 due to invalid parameter provided by user\n");
1076 		return 8;
1077 	}
1078 	return amdgpu_num_kcq;
1079 }
1080 
1081 void amdgpu_gfx_cp_init_microcode(struct amdgpu_device *adev,
1082 				  uint32_t ucode_id)
1083 {
1084 	const struct gfx_firmware_header_v1_0 *cp_hdr;
1085 	const struct gfx_firmware_header_v2_0 *cp_hdr_v2_0;
1086 	struct amdgpu_firmware_info *info = NULL;
1087 	const struct firmware *ucode_fw;
1088 	unsigned int fw_size;
1089 
1090 	switch (ucode_id) {
1091 	case AMDGPU_UCODE_ID_CP_PFP:
1092 		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1093 			adev->gfx.pfp_fw->data;
1094 		adev->gfx.pfp_fw_version =
1095 			le32_to_cpu(cp_hdr->header.ucode_version);
1096 		adev->gfx.pfp_feature_version =
1097 			le32_to_cpu(cp_hdr->ucode_feature_version);
1098 		ucode_fw = adev->gfx.pfp_fw;
1099 		fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes);
1100 		break;
1101 	case AMDGPU_UCODE_ID_CP_RS64_PFP:
1102 		cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1103 			adev->gfx.pfp_fw->data;
1104 		adev->gfx.pfp_fw_version =
1105 			le32_to_cpu(cp_hdr_v2_0->header.ucode_version);
1106 		adev->gfx.pfp_feature_version =
1107 			le32_to_cpu(cp_hdr_v2_0->ucode_feature_version);
1108 		ucode_fw = adev->gfx.pfp_fw;
1109 		fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes);
1110 		break;
1111 	case AMDGPU_UCODE_ID_CP_RS64_PFP_P0_STACK:
1112 	case AMDGPU_UCODE_ID_CP_RS64_PFP_P1_STACK:
1113 		cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1114 			adev->gfx.pfp_fw->data;
1115 		ucode_fw = adev->gfx.pfp_fw;
1116 		fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes);
1117 		break;
1118 	case AMDGPU_UCODE_ID_CP_ME:
1119 		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1120 			adev->gfx.me_fw->data;
1121 		adev->gfx.me_fw_version =
1122 			le32_to_cpu(cp_hdr->header.ucode_version);
1123 		adev->gfx.me_feature_version =
1124 			le32_to_cpu(cp_hdr->ucode_feature_version);
1125 		ucode_fw = adev->gfx.me_fw;
1126 		fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes);
1127 		break;
1128 	case AMDGPU_UCODE_ID_CP_RS64_ME:
1129 		cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1130 			adev->gfx.me_fw->data;
1131 		adev->gfx.me_fw_version =
1132 			le32_to_cpu(cp_hdr_v2_0->header.ucode_version);
1133 		adev->gfx.me_feature_version =
1134 			le32_to_cpu(cp_hdr_v2_0->ucode_feature_version);
1135 		ucode_fw = adev->gfx.me_fw;
1136 		fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes);
1137 		break;
1138 	case AMDGPU_UCODE_ID_CP_RS64_ME_P0_STACK:
1139 	case AMDGPU_UCODE_ID_CP_RS64_ME_P1_STACK:
1140 		cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1141 			adev->gfx.me_fw->data;
1142 		ucode_fw = adev->gfx.me_fw;
1143 		fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes);
1144 		break;
1145 	case AMDGPU_UCODE_ID_CP_CE:
1146 		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1147 			adev->gfx.ce_fw->data;
1148 		adev->gfx.ce_fw_version =
1149 			le32_to_cpu(cp_hdr->header.ucode_version);
1150 		adev->gfx.ce_feature_version =
1151 			le32_to_cpu(cp_hdr->ucode_feature_version);
1152 		ucode_fw = adev->gfx.ce_fw;
1153 		fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes);
1154 		break;
1155 	case AMDGPU_UCODE_ID_CP_MEC1:
1156 		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1157 			adev->gfx.mec_fw->data;
1158 		adev->gfx.mec_fw_version =
1159 			le32_to_cpu(cp_hdr->header.ucode_version);
1160 		adev->gfx.mec_feature_version =
1161 			le32_to_cpu(cp_hdr->ucode_feature_version);
1162 		ucode_fw = adev->gfx.mec_fw;
1163 		fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes) -
1164 			  le32_to_cpu(cp_hdr->jt_size) * 4;
1165 		break;
1166 	case AMDGPU_UCODE_ID_CP_MEC1_JT:
1167 		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1168 			adev->gfx.mec_fw->data;
1169 		ucode_fw = adev->gfx.mec_fw;
1170 		fw_size = le32_to_cpu(cp_hdr->jt_size) * 4;
1171 		break;
1172 	case AMDGPU_UCODE_ID_CP_MEC2:
1173 		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1174 			adev->gfx.mec2_fw->data;
1175 		adev->gfx.mec2_fw_version =
1176 			le32_to_cpu(cp_hdr->header.ucode_version);
1177 		adev->gfx.mec2_feature_version =
1178 			le32_to_cpu(cp_hdr->ucode_feature_version);
1179 		ucode_fw = adev->gfx.mec2_fw;
1180 		fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes) -
1181 			  le32_to_cpu(cp_hdr->jt_size) * 4;
1182 		break;
1183 	case AMDGPU_UCODE_ID_CP_MEC2_JT:
1184 		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1185 			adev->gfx.mec2_fw->data;
1186 		ucode_fw = adev->gfx.mec2_fw;
1187 		fw_size = le32_to_cpu(cp_hdr->jt_size) * 4;
1188 		break;
1189 	case AMDGPU_UCODE_ID_CP_RS64_MEC:
1190 		cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1191 			adev->gfx.mec_fw->data;
1192 		adev->gfx.mec_fw_version =
1193 			le32_to_cpu(cp_hdr_v2_0->header.ucode_version);
1194 		adev->gfx.mec_feature_version =
1195 			le32_to_cpu(cp_hdr_v2_0->ucode_feature_version);
1196 		ucode_fw = adev->gfx.mec_fw;
1197 		fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes);
1198 		break;
1199 	case AMDGPU_UCODE_ID_CP_RS64_MEC_P0_STACK:
1200 	case AMDGPU_UCODE_ID_CP_RS64_MEC_P1_STACK:
1201 	case AMDGPU_UCODE_ID_CP_RS64_MEC_P2_STACK:
1202 	case AMDGPU_UCODE_ID_CP_RS64_MEC_P3_STACK:
1203 		cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1204 			adev->gfx.mec_fw->data;
1205 		ucode_fw = adev->gfx.mec_fw;
1206 		fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes);
1207 		break;
1208 	default:
1209 		break;
1210 	}
1211 
1212 	if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
1213 		info = &adev->firmware.ucode[ucode_id];
1214 		info->ucode_id = ucode_id;
1215 		info->fw = ucode_fw;
1216 		adev->firmware.fw_size += ALIGN(fw_size, PAGE_SIZE);
1217 	}
1218 }
1219 
1220 bool amdgpu_gfx_is_master_xcc(struct amdgpu_device *adev, int xcc_id)
1221 {
1222 	return !(xcc_id % (adev->gfx.num_xcc_per_xcp ?
1223 			adev->gfx.num_xcc_per_xcp : 1));
1224 }
1225 
1226 static ssize_t amdgpu_gfx_get_current_compute_partition(struct device *dev,
1227 						struct device_attribute *addr,
1228 						char *buf)
1229 {
1230 	struct drm_device *ddev = dev_get_drvdata(dev);
1231 	struct amdgpu_device *adev = drm_to_adev(ddev);
1232 	int mode;
1233 
1234 	mode = amdgpu_xcp_query_partition_mode(adev->xcp_mgr,
1235 					       AMDGPU_XCP_FL_NONE);
1236 
1237 	return sysfs_emit(buf, "%s\n", amdgpu_gfx_compute_mode_desc(mode));
1238 }
1239 
1240 static ssize_t amdgpu_gfx_set_compute_partition(struct device *dev,
1241 						struct device_attribute *addr,
1242 						const char *buf, size_t count)
1243 {
1244 	struct drm_device *ddev = dev_get_drvdata(dev);
1245 	struct amdgpu_device *adev = drm_to_adev(ddev);
1246 	enum amdgpu_gfx_partition mode;
1247 	int ret = 0, num_xcc;
1248 
1249 	num_xcc = NUM_XCC(adev->gfx.xcc_mask);
1250 	if (num_xcc % 2 != 0)
1251 		return -EINVAL;
1252 
1253 	if (!strncasecmp("SPX", buf, strlen("SPX"))) {
1254 		mode = AMDGPU_SPX_PARTITION_MODE;
1255 	} else if (!strncasecmp("DPX", buf, strlen("DPX"))) {
1256 		/*
1257 		 * DPX mode needs AIDs to be in multiple of 2.
1258 		 * Each AID connects 2 XCCs.
1259 		 */
1260 		if (num_xcc%4)
1261 			return -EINVAL;
1262 		mode = AMDGPU_DPX_PARTITION_MODE;
1263 	} else if (!strncasecmp("TPX", buf, strlen("TPX"))) {
1264 		if (num_xcc != 6)
1265 			return -EINVAL;
1266 		mode = AMDGPU_TPX_PARTITION_MODE;
1267 	} else if (!strncasecmp("QPX", buf, strlen("QPX"))) {
1268 		if (num_xcc != 8)
1269 			return -EINVAL;
1270 		mode = AMDGPU_QPX_PARTITION_MODE;
1271 	} else if (!strncasecmp("CPX", buf, strlen("CPX"))) {
1272 		mode = AMDGPU_CPX_PARTITION_MODE;
1273 	} else {
1274 		return -EINVAL;
1275 	}
1276 
1277 	ret = amdgpu_xcp_switch_partition_mode(adev->xcp_mgr, mode);
1278 
1279 	if (ret)
1280 		return ret;
1281 
1282 	return count;
1283 }
1284 
1285 static ssize_t amdgpu_gfx_get_available_compute_partition(struct device *dev,
1286 						struct device_attribute *addr,
1287 						char *buf)
1288 {
1289 	struct drm_device *ddev = dev_get_drvdata(dev);
1290 	struct amdgpu_device *adev = drm_to_adev(ddev);
1291 	char *supported_partition;
1292 
1293 	/* TBD */
1294 	switch (NUM_XCC(adev->gfx.xcc_mask)) {
1295 	case 8:
1296 		supported_partition = "SPX, DPX, QPX, CPX";
1297 		break;
1298 	case 6:
1299 		supported_partition = "SPX, TPX, CPX";
1300 		break;
1301 	case 4:
1302 		supported_partition = "SPX, DPX, CPX";
1303 		break;
1304 	/* this seems only existing in emulation phase */
1305 	case 2:
1306 		supported_partition = "SPX, CPX";
1307 		break;
1308 	default:
1309 		supported_partition = "Not supported";
1310 		break;
1311 	}
1312 
1313 	return sysfs_emit(buf, "%s\n", supported_partition);
1314 }
1315 
1316 static DEVICE_ATTR(current_compute_partition, 0644,
1317 		   amdgpu_gfx_get_current_compute_partition,
1318 		   amdgpu_gfx_set_compute_partition);
1319 
1320 static DEVICE_ATTR(available_compute_partition, 0444,
1321 		   amdgpu_gfx_get_available_compute_partition, NULL);
1322 
1323 int amdgpu_gfx_sysfs_init(struct amdgpu_device *adev)
1324 {
1325 	int r;
1326 
1327 	r = device_create_file(adev->dev, &dev_attr_current_compute_partition);
1328 	if (r)
1329 		return r;
1330 
1331 	r = device_create_file(adev->dev, &dev_attr_available_compute_partition);
1332 
1333 	return r;
1334 }
1335 
1336 void amdgpu_gfx_sysfs_fini(struct amdgpu_device *adev)
1337 {
1338 	device_remove_file(adev->dev, &dev_attr_current_compute_partition);
1339 	device_remove_file(adev->dev, &dev_attr_available_compute_partition);
1340 }
1341