xref: /linux/drivers/gpu/drm/amd/amdgpu/amdgpu_gfx.c (revision 0e8655b4e852ef97655648b91ce780384a073ff4)
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  * Copyright 2008 Red Hat Inc.
4  * Copyright 2009 Jerome Glisse.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  *
24  */
25 
26 #include <linux/firmware.h>
27 #include "amdgpu.h"
28 #include "amdgpu_gfx.h"
29 #include "amdgpu_rlc.h"
30 #include "amdgpu_ras.h"
31 #include "amdgpu_xcp.h"
32 #include "amdgpu_xgmi.h"
33 
34 /* delay 0.1 second to enable gfx off feature */
35 #define GFX_OFF_DELAY_ENABLE         msecs_to_jiffies(100)
36 
37 #define GFX_OFF_NO_DELAY 0
38 
39 /*
40  * GPU GFX IP block helpers function.
41  */
42 
43 int amdgpu_gfx_mec_queue_to_bit(struct amdgpu_device *adev, int mec,
44 				int pipe, int queue)
45 {
46 	int bit = 0;
47 
48 	bit += mec * adev->gfx.mec.num_pipe_per_mec
49 		* adev->gfx.mec.num_queue_per_pipe;
50 	bit += pipe * adev->gfx.mec.num_queue_per_pipe;
51 	bit += queue;
52 
53 	return bit;
54 }
55 
56 void amdgpu_queue_mask_bit_to_mec_queue(struct amdgpu_device *adev, int bit,
57 				 int *mec, int *pipe, int *queue)
58 {
59 	*queue = bit % adev->gfx.mec.num_queue_per_pipe;
60 	*pipe = (bit / adev->gfx.mec.num_queue_per_pipe)
61 		% adev->gfx.mec.num_pipe_per_mec;
62 	*mec = (bit / adev->gfx.mec.num_queue_per_pipe)
63 	       / adev->gfx.mec.num_pipe_per_mec;
64 
65 }
66 
67 bool amdgpu_gfx_is_mec_queue_enabled(struct amdgpu_device *adev,
68 				     int xcc_id, int mec, int pipe, int queue)
69 {
70 	return test_bit(amdgpu_gfx_mec_queue_to_bit(adev, mec, pipe, queue),
71 			adev->gfx.mec_bitmap[xcc_id].queue_bitmap);
72 }
73 
74 int amdgpu_gfx_me_queue_to_bit(struct amdgpu_device *adev,
75 			       int me, int pipe, int queue)
76 {
77 	int bit = 0;
78 
79 	bit += me * adev->gfx.me.num_pipe_per_me
80 		* adev->gfx.me.num_queue_per_pipe;
81 	bit += pipe * adev->gfx.me.num_queue_per_pipe;
82 	bit += queue;
83 
84 	return bit;
85 }
86 
87 void amdgpu_gfx_bit_to_me_queue(struct amdgpu_device *adev, int bit,
88 				int *me, int *pipe, int *queue)
89 {
90 	*queue = bit % adev->gfx.me.num_queue_per_pipe;
91 	*pipe = (bit / adev->gfx.me.num_queue_per_pipe)
92 		% adev->gfx.me.num_pipe_per_me;
93 	*me = (bit / adev->gfx.me.num_queue_per_pipe)
94 		/ adev->gfx.me.num_pipe_per_me;
95 }
96 
97 bool amdgpu_gfx_is_me_queue_enabled(struct amdgpu_device *adev,
98 				    int me, int pipe, int queue)
99 {
100 	return test_bit(amdgpu_gfx_me_queue_to_bit(adev, me, pipe, queue),
101 			adev->gfx.me.queue_bitmap);
102 }
103 
104 /**
105  * amdgpu_gfx_parse_disable_cu - Parse the disable_cu module parameter
106  *
107  * @mask: array in which the per-shader array disable masks will be stored
108  * @max_se: number of SEs
109  * @max_sh: number of SHs
110  *
111  * The bitmask of CUs to be disabled in the shader array determined by se and
112  * sh is stored in mask[se * max_sh + sh].
113  */
114 void amdgpu_gfx_parse_disable_cu(unsigned int *mask, unsigned int max_se, unsigned int max_sh)
115 {
116 	unsigned int se, sh, cu;
117 	const char *p;
118 
119 	memset(mask, 0, sizeof(*mask) * max_se * max_sh);
120 
121 	if (!amdgpu_disable_cu || !*amdgpu_disable_cu)
122 		return;
123 
124 	p = amdgpu_disable_cu;
125 	for (;;) {
126 		char *next;
127 		int ret = sscanf(p, "%u.%u.%u", &se, &sh, &cu);
128 
129 		if (ret < 3) {
130 			DRM_ERROR("amdgpu: could not parse disable_cu\n");
131 			return;
132 		}
133 
134 		if (se < max_se && sh < max_sh && cu < 16) {
135 			DRM_INFO("amdgpu: disabling CU %u.%u.%u\n", se, sh, cu);
136 			mask[se * max_sh + sh] |= 1u << cu;
137 		} else {
138 			DRM_ERROR("amdgpu: disable_cu %u.%u.%u is out of range\n",
139 				  se, sh, cu);
140 		}
141 
142 		next = strchr(p, ',');
143 		if (!next)
144 			break;
145 		p = next + 1;
146 	}
147 }
148 
149 static bool amdgpu_gfx_is_graphics_multipipe_capable(struct amdgpu_device *adev)
150 {
151 	return amdgpu_async_gfx_ring && adev->gfx.me.num_pipe_per_me > 1;
152 }
153 
154 static bool amdgpu_gfx_is_compute_multipipe_capable(struct amdgpu_device *adev)
155 {
156 	if (amdgpu_compute_multipipe != -1) {
157 		DRM_INFO("amdgpu: forcing compute pipe policy %d\n",
158 			 amdgpu_compute_multipipe);
159 		return amdgpu_compute_multipipe == 1;
160 	}
161 
162 	if (amdgpu_ip_version(adev, GC_HWIP, 0) > IP_VERSION(9, 0, 0))
163 		return true;
164 
165 	/* FIXME: spreading the queues across pipes causes perf regressions
166 	 * on POLARIS11 compute workloads */
167 	if (adev->asic_type == CHIP_POLARIS11)
168 		return false;
169 
170 	return adev->gfx.mec.num_mec > 1;
171 }
172 
173 bool amdgpu_gfx_is_high_priority_graphics_queue(struct amdgpu_device *adev,
174 						struct amdgpu_ring *ring)
175 {
176 	int queue = ring->queue;
177 	int pipe = ring->pipe;
178 
179 	/* Policy: use pipe1 queue0 as high priority graphics queue if we
180 	 * have more than one gfx pipe.
181 	 */
182 	if (amdgpu_gfx_is_graphics_multipipe_capable(adev) &&
183 	    adev->gfx.num_gfx_rings > 1 && pipe == 1 && queue == 0) {
184 		int me = ring->me;
185 		int bit;
186 
187 		bit = amdgpu_gfx_me_queue_to_bit(adev, me, pipe, queue);
188 		if (ring == &adev->gfx.gfx_ring[bit])
189 			return true;
190 	}
191 
192 	return false;
193 }
194 
195 bool amdgpu_gfx_is_high_priority_compute_queue(struct amdgpu_device *adev,
196 					       struct amdgpu_ring *ring)
197 {
198 	/* Policy: use 1st queue as high priority compute queue if we
199 	 * have more than one compute queue.
200 	 */
201 	if (adev->gfx.num_compute_rings > 1 &&
202 	    ring == &adev->gfx.compute_ring[0])
203 		return true;
204 
205 	return false;
206 }
207 
208 void amdgpu_gfx_compute_queue_acquire(struct amdgpu_device *adev)
209 {
210 	int i, j, queue, pipe;
211 	bool multipipe_policy = amdgpu_gfx_is_compute_multipipe_capable(adev);
212 	int max_queues_per_mec = min(adev->gfx.mec.num_pipe_per_mec *
213 				     adev->gfx.mec.num_queue_per_pipe,
214 				     adev->gfx.num_compute_rings);
215 	int num_xcc = adev->gfx.xcc_mask ? NUM_XCC(adev->gfx.xcc_mask) : 1;
216 
217 	if (multipipe_policy) {
218 		/* policy: make queues evenly cross all pipes on MEC1 only
219 		 * for multiple xcc, just use the original policy for simplicity */
220 		for (j = 0; j < num_xcc; j++) {
221 			for (i = 0; i < max_queues_per_mec; i++) {
222 				pipe = i % adev->gfx.mec.num_pipe_per_mec;
223 				queue = (i / adev->gfx.mec.num_pipe_per_mec) %
224 					 adev->gfx.mec.num_queue_per_pipe;
225 
226 				set_bit(pipe * adev->gfx.mec.num_queue_per_pipe + queue,
227 					adev->gfx.mec_bitmap[j].queue_bitmap);
228 			}
229 		}
230 	} else {
231 		/* policy: amdgpu owns all queues in the given pipe */
232 		for (j = 0; j < num_xcc; j++) {
233 			for (i = 0; i < max_queues_per_mec; ++i)
234 				set_bit(i, adev->gfx.mec_bitmap[j].queue_bitmap);
235 		}
236 	}
237 
238 	for (j = 0; j < num_xcc; j++) {
239 		dev_dbg(adev->dev, "mec queue bitmap weight=%d\n",
240 			bitmap_weight(adev->gfx.mec_bitmap[j].queue_bitmap, AMDGPU_MAX_COMPUTE_QUEUES));
241 	}
242 }
243 
244 void amdgpu_gfx_graphics_queue_acquire(struct amdgpu_device *adev)
245 {
246 	int i, queue, pipe;
247 	bool multipipe_policy = amdgpu_gfx_is_graphics_multipipe_capable(adev);
248 	int max_queues_per_me = adev->gfx.me.num_pipe_per_me *
249 					adev->gfx.me.num_queue_per_pipe;
250 
251 	if (multipipe_policy) {
252 		/* policy: amdgpu owns the first queue per pipe at this stage
253 		 * will extend to mulitple queues per pipe later */
254 		for (i = 0; i < max_queues_per_me; i++) {
255 			pipe = i % adev->gfx.me.num_pipe_per_me;
256 			queue = (i / adev->gfx.me.num_pipe_per_me) %
257 				adev->gfx.me.num_queue_per_pipe;
258 
259 			set_bit(pipe * adev->gfx.me.num_queue_per_pipe + queue,
260 				adev->gfx.me.queue_bitmap);
261 		}
262 	} else {
263 		for (i = 0; i < max_queues_per_me; ++i)
264 			set_bit(i, adev->gfx.me.queue_bitmap);
265 	}
266 
267 	/* update the number of active graphics rings */
268 	adev->gfx.num_gfx_rings =
269 		bitmap_weight(adev->gfx.me.queue_bitmap, AMDGPU_MAX_GFX_QUEUES);
270 }
271 
272 static int amdgpu_gfx_kiq_acquire(struct amdgpu_device *adev,
273 				  struct amdgpu_ring *ring, int xcc_id)
274 {
275 	int queue_bit;
276 	int mec, pipe, queue;
277 
278 	queue_bit = adev->gfx.mec.num_mec
279 		    * adev->gfx.mec.num_pipe_per_mec
280 		    * adev->gfx.mec.num_queue_per_pipe;
281 
282 	while (--queue_bit >= 0) {
283 		if (test_bit(queue_bit, adev->gfx.mec_bitmap[xcc_id].queue_bitmap))
284 			continue;
285 
286 		amdgpu_queue_mask_bit_to_mec_queue(adev, queue_bit, &mec, &pipe, &queue);
287 
288 		/*
289 		 * 1. Using pipes 2/3 from MEC 2 seems cause problems.
290 		 * 2. It must use queue id 0, because CGPG_IDLE/SAVE/LOAD/RUN
291 		 * only can be issued on queue 0.
292 		 */
293 		if ((mec == 1 && pipe > 1) || queue != 0)
294 			continue;
295 
296 		ring->me = mec + 1;
297 		ring->pipe = pipe;
298 		ring->queue = queue;
299 
300 		return 0;
301 	}
302 
303 	dev_err(adev->dev, "Failed to find a queue for KIQ\n");
304 	return -EINVAL;
305 }
306 
307 int amdgpu_gfx_kiq_init_ring(struct amdgpu_device *adev, int xcc_id)
308 {
309 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
310 	struct amdgpu_irq_src *irq = &kiq->irq;
311 	struct amdgpu_ring *ring = &kiq->ring;
312 	int r = 0;
313 
314 	spin_lock_init(&kiq->ring_lock);
315 
316 	ring->adev = NULL;
317 	ring->ring_obj = NULL;
318 	ring->use_doorbell = true;
319 	ring->xcc_id = xcc_id;
320 	ring->vm_hub = AMDGPU_GFXHUB(xcc_id);
321 	ring->doorbell_index =
322 		(adev->doorbell_index.kiq +
323 		 xcc_id * adev->doorbell_index.xcc_doorbell_range)
324 		<< 1;
325 
326 	r = amdgpu_gfx_kiq_acquire(adev, ring, xcc_id);
327 	if (r)
328 		return r;
329 
330 	ring->eop_gpu_addr = kiq->eop_gpu_addr;
331 	ring->no_scheduler = true;
332 	snprintf(ring->name, sizeof(ring->name), "kiq_%hhu.%hhu.%hhu.%hhu",
333 		 (unsigned char)xcc_id, (unsigned char)ring->me,
334 		 (unsigned char)ring->pipe, (unsigned char)ring->queue);
335 	r = amdgpu_ring_init(adev, ring, 1024, irq, AMDGPU_CP_KIQ_IRQ_DRIVER0,
336 			     AMDGPU_RING_PRIO_DEFAULT, NULL);
337 	if (r)
338 		dev_warn(adev->dev, "(%d) failed to init kiq ring\n", r);
339 
340 	return r;
341 }
342 
343 void amdgpu_gfx_kiq_free_ring(struct amdgpu_ring *ring)
344 {
345 	amdgpu_ring_fini(ring);
346 }
347 
348 void amdgpu_gfx_kiq_fini(struct amdgpu_device *adev, int xcc_id)
349 {
350 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
351 
352 	amdgpu_bo_free_kernel(&kiq->eop_obj, &kiq->eop_gpu_addr, NULL);
353 }
354 
355 int amdgpu_gfx_kiq_init(struct amdgpu_device *adev,
356 			unsigned int hpd_size, int xcc_id)
357 {
358 	int r;
359 	u32 *hpd;
360 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
361 
362 	r = amdgpu_bo_create_kernel(adev, hpd_size, PAGE_SIZE,
363 				    AMDGPU_GEM_DOMAIN_GTT, &kiq->eop_obj,
364 				    &kiq->eop_gpu_addr, (void **)&hpd);
365 	if (r) {
366 		dev_warn(adev->dev, "failed to create KIQ bo (%d).\n", r);
367 		return r;
368 	}
369 
370 	memset(hpd, 0, hpd_size);
371 
372 	r = amdgpu_bo_reserve(kiq->eop_obj, true);
373 	if (unlikely(r != 0))
374 		dev_warn(adev->dev, "(%d) reserve kiq eop bo failed\n", r);
375 	amdgpu_bo_kunmap(kiq->eop_obj);
376 	amdgpu_bo_unreserve(kiq->eop_obj);
377 
378 	return 0;
379 }
380 
381 /* create MQD for each compute/gfx queue */
382 int amdgpu_gfx_mqd_sw_init(struct amdgpu_device *adev,
383 			   unsigned int mqd_size, int xcc_id)
384 {
385 	int r, i, j;
386 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
387 	struct amdgpu_ring *ring = &kiq->ring;
388 	u32 domain = AMDGPU_GEM_DOMAIN_GTT;
389 
390 #if !defined(CONFIG_ARM) && !defined(CONFIG_ARM64)
391 	/* Only enable on gfx10 and 11 for now to avoid changing behavior on older chips */
392 	if (amdgpu_ip_version(adev, GC_HWIP, 0) >= IP_VERSION(10, 0, 0))
393 		domain |= AMDGPU_GEM_DOMAIN_VRAM;
394 #endif
395 
396 	/* create MQD for KIQ */
397 	if (!adev->enable_mes_kiq && !ring->mqd_obj) {
398 		/* originaly the KIQ MQD is put in GTT domain, but for SRIOV VRAM domain is a must
399 		 * otherwise hypervisor trigger SAVE_VF fail after driver unloaded which mean MQD
400 		 * deallocated and gart_unbind, to strict diverage we decide to use VRAM domain for
401 		 * KIQ MQD no matter SRIOV or Bare-metal
402 		 */
403 		r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE,
404 					    AMDGPU_GEM_DOMAIN_VRAM |
405 					    AMDGPU_GEM_DOMAIN_GTT,
406 					    &ring->mqd_obj,
407 					    &ring->mqd_gpu_addr,
408 					    &ring->mqd_ptr);
409 		if (r) {
410 			dev_warn(adev->dev, "failed to create ring mqd ob (%d)", r);
411 			return r;
412 		}
413 
414 		/* prepare MQD backup */
415 		kiq->mqd_backup = kmalloc(mqd_size, GFP_KERNEL);
416 		if (!kiq->mqd_backup) {
417 			dev_warn(adev->dev,
418 				 "no memory to create MQD backup for ring %s\n", ring->name);
419 			return -ENOMEM;
420 		}
421 	}
422 
423 	if (adev->asic_type >= CHIP_NAVI10 && amdgpu_async_gfx_ring) {
424 		/* create MQD for each KGQ */
425 		for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
426 			ring = &adev->gfx.gfx_ring[i];
427 			if (!ring->mqd_obj) {
428 				r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE,
429 							    domain, &ring->mqd_obj,
430 							    &ring->mqd_gpu_addr, &ring->mqd_ptr);
431 				if (r) {
432 					dev_warn(adev->dev, "failed to create ring mqd bo (%d)", r);
433 					return r;
434 				}
435 
436 				ring->mqd_size = mqd_size;
437 				/* prepare MQD backup */
438 				adev->gfx.me.mqd_backup[i] = kmalloc(mqd_size, GFP_KERNEL);
439 				if (!adev->gfx.me.mqd_backup[i]) {
440 					dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name);
441 					return -ENOMEM;
442 				}
443 			}
444 		}
445 	}
446 
447 	/* create MQD for each KCQ */
448 	for (i = 0; i < adev->gfx.num_compute_rings; i++) {
449 		j = i + xcc_id * adev->gfx.num_compute_rings;
450 		ring = &adev->gfx.compute_ring[j];
451 		if (!ring->mqd_obj) {
452 			r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE,
453 						    domain, &ring->mqd_obj,
454 						    &ring->mqd_gpu_addr, &ring->mqd_ptr);
455 			if (r) {
456 				dev_warn(adev->dev, "failed to create ring mqd bo (%d)", r);
457 				return r;
458 			}
459 
460 			ring->mqd_size = mqd_size;
461 			/* prepare MQD backup */
462 			adev->gfx.mec.mqd_backup[j] = kmalloc(mqd_size, GFP_KERNEL);
463 			if (!adev->gfx.mec.mqd_backup[j]) {
464 				dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name);
465 				return -ENOMEM;
466 			}
467 		}
468 	}
469 
470 	return 0;
471 }
472 
473 void amdgpu_gfx_mqd_sw_fini(struct amdgpu_device *adev, int xcc_id)
474 {
475 	struct amdgpu_ring *ring = NULL;
476 	int i, j;
477 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
478 
479 	if (adev->asic_type >= CHIP_NAVI10 && amdgpu_async_gfx_ring) {
480 		for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
481 			ring = &adev->gfx.gfx_ring[i];
482 			kfree(adev->gfx.me.mqd_backup[i]);
483 			amdgpu_bo_free_kernel(&ring->mqd_obj,
484 					      &ring->mqd_gpu_addr,
485 					      &ring->mqd_ptr);
486 		}
487 	}
488 
489 	for (i = 0; i < adev->gfx.num_compute_rings; i++) {
490 		j = i + xcc_id * adev->gfx.num_compute_rings;
491 		ring = &adev->gfx.compute_ring[j];
492 		kfree(adev->gfx.mec.mqd_backup[j]);
493 		amdgpu_bo_free_kernel(&ring->mqd_obj,
494 				      &ring->mqd_gpu_addr,
495 				      &ring->mqd_ptr);
496 	}
497 
498 	ring = &kiq->ring;
499 	kfree(kiq->mqd_backup);
500 	amdgpu_bo_free_kernel(&ring->mqd_obj,
501 			      &ring->mqd_gpu_addr,
502 			      &ring->mqd_ptr);
503 }
504 
505 int amdgpu_gfx_disable_kcq(struct amdgpu_device *adev, int xcc_id)
506 {
507 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
508 	struct amdgpu_ring *kiq_ring = &kiq->ring;
509 	int i, r = 0;
510 	int j;
511 
512 	if (!kiq->pmf || !kiq->pmf->kiq_unmap_queues)
513 		return -EINVAL;
514 
515 	spin_lock(&kiq->ring_lock);
516 	if (amdgpu_ring_alloc(kiq_ring, kiq->pmf->unmap_queues_size *
517 					adev->gfx.num_compute_rings)) {
518 		spin_unlock(&kiq->ring_lock);
519 		return -ENOMEM;
520 	}
521 
522 	for (i = 0; i < adev->gfx.num_compute_rings; i++) {
523 		j = i + xcc_id * adev->gfx.num_compute_rings;
524 		kiq->pmf->kiq_unmap_queues(kiq_ring,
525 					   &adev->gfx.compute_ring[j],
526 					   RESET_QUEUES, 0, 0);
527 	}
528 
529 	/**
530 	 * This is workaround: only skip kiq_ring test
531 	 * during ras recovery in suspend stage for gfx9.4.3
532 	 */
533 	if ((amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 3) ||
534 	    amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 4)) &&
535 	    amdgpu_ras_in_recovery(adev)) {
536 		spin_unlock(&kiq->ring_lock);
537 		return 0;
538 	}
539 
540 	if (kiq_ring->sched.ready && !adev->job_hang)
541 		r = amdgpu_ring_test_helper(kiq_ring);
542 	spin_unlock(&kiq->ring_lock);
543 
544 	return r;
545 }
546 
547 int amdgpu_gfx_disable_kgq(struct amdgpu_device *adev, int xcc_id)
548 {
549 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
550 	struct amdgpu_ring *kiq_ring = &kiq->ring;
551 	int i, r = 0;
552 	int j;
553 
554 	if (!kiq->pmf || !kiq->pmf->kiq_unmap_queues)
555 		return -EINVAL;
556 
557 	spin_lock(&kiq->ring_lock);
558 	if (amdgpu_gfx_is_master_xcc(adev, xcc_id)) {
559 		if (amdgpu_ring_alloc(kiq_ring, kiq->pmf->unmap_queues_size *
560 						adev->gfx.num_gfx_rings)) {
561 			spin_unlock(&kiq->ring_lock);
562 			return -ENOMEM;
563 		}
564 
565 		for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
566 			j = i + xcc_id * adev->gfx.num_gfx_rings;
567 			kiq->pmf->kiq_unmap_queues(kiq_ring,
568 						   &adev->gfx.gfx_ring[j],
569 						   PREEMPT_QUEUES, 0, 0);
570 		}
571 	}
572 
573 	if (adev->gfx.kiq[0].ring.sched.ready && !adev->job_hang)
574 		r = amdgpu_ring_test_helper(kiq_ring);
575 	spin_unlock(&kiq->ring_lock);
576 
577 	return r;
578 }
579 
580 int amdgpu_queue_mask_bit_to_set_resource_bit(struct amdgpu_device *adev,
581 					int queue_bit)
582 {
583 	int mec, pipe, queue;
584 	int set_resource_bit = 0;
585 
586 	amdgpu_queue_mask_bit_to_mec_queue(adev, queue_bit, &mec, &pipe, &queue);
587 
588 	set_resource_bit = mec * 4 * 8 + pipe * 8 + queue;
589 
590 	return set_resource_bit;
591 }
592 
593 static int amdgpu_gfx_mes_enable_kcq(struct amdgpu_device *adev, int xcc_id)
594 {
595 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
596 	struct amdgpu_ring *kiq_ring = &kiq->ring;
597 	uint64_t queue_mask = ~0ULL;
598 	int r, i, j;
599 
600 	amdgpu_device_flush_hdp(adev, NULL);
601 
602 	if (!adev->enable_uni_mes) {
603 		spin_lock(&kiq->ring_lock);
604 		r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->set_resources_size);
605 		if (r) {
606 			dev_err(adev->dev, "Failed to lock KIQ (%d).\n", r);
607 			spin_unlock(&kiq->ring_lock);
608 			return r;
609 		}
610 
611 		kiq->pmf->kiq_set_resources(kiq_ring, queue_mask);
612 		r = amdgpu_ring_test_helper(kiq_ring);
613 		spin_unlock(&kiq->ring_lock);
614 		if (r)
615 			dev_err(adev->dev, "KIQ failed to set resources\n");
616 	}
617 
618 	for (i = 0; i < adev->gfx.num_compute_rings; i++) {
619 		j = i + xcc_id * adev->gfx.num_compute_rings;
620 		r = amdgpu_mes_map_legacy_queue(adev,
621 						&adev->gfx.compute_ring[j]);
622 		if (r) {
623 			dev_err(adev->dev, "failed to map compute queue\n");
624 			return r;
625 		}
626 	}
627 
628 	return 0;
629 }
630 
631 int amdgpu_gfx_enable_kcq(struct amdgpu_device *adev, int xcc_id)
632 {
633 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
634 	struct amdgpu_ring *kiq_ring = &kiq->ring;
635 	uint64_t queue_mask = 0;
636 	int r, i, j;
637 
638 	if (adev->enable_mes)
639 		return amdgpu_gfx_mes_enable_kcq(adev, xcc_id);
640 
641 	if (!kiq->pmf || !kiq->pmf->kiq_map_queues || !kiq->pmf->kiq_set_resources)
642 		return -EINVAL;
643 
644 	for (i = 0; i < AMDGPU_MAX_COMPUTE_QUEUES; ++i) {
645 		if (!test_bit(i, adev->gfx.mec_bitmap[xcc_id].queue_bitmap))
646 			continue;
647 
648 		/* This situation may be hit in the future if a new HW
649 		 * generation exposes more than 64 queues. If so, the
650 		 * definition of queue_mask needs updating */
651 		if (WARN_ON(i > (sizeof(queue_mask)*8))) {
652 			DRM_ERROR("Invalid KCQ enabled: %d\n", i);
653 			break;
654 		}
655 
656 		queue_mask |= (1ull << amdgpu_queue_mask_bit_to_set_resource_bit(adev, i));
657 	}
658 
659 	amdgpu_device_flush_hdp(adev, NULL);
660 
661 	DRM_INFO("kiq ring mec %d pipe %d q %d\n", kiq_ring->me, kiq_ring->pipe,
662 		 kiq_ring->queue);
663 
664 	spin_lock(&kiq->ring_lock);
665 	r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->map_queues_size *
666 					adev->gfx.num_compute_rings +
667 					kiq->pmf->set_resources_size);
668 	if (r) {
669 		DRM_ERROR("Failed to lock KIQ (%d).\n", r);
670 		spin_unlock(&kiq->ring_lock);
671 		return r;
672 	}
673 
674 	kiq->pmf->kiq_set_resources(kiq_ring, queue_mask);
675 	for (i = 0; i < adev->gfx.num_compute_rings; i++) {
676 		j = i + xcc_id * adev->gfx.num_compute_rings;
677 		kiq->pmf->kiq_map_queues(kiq_ring,
678 					 &adev->gfx.compute_ring[j]);
679 	}
680 
681 	r = amdgpu_ring_test_helper(kiq_ring);
682 	spin_unlock(&kiq->ring_lock);
683 	if (r)
684 		DRM_ERROR("KCQ enable failed\n");
685 
686 	return r;
687 }
688 
689 int amdgpu_gfx_enable_kgq(struct amdgpu_device *adev, int xcc_id)
690 {
691 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
692 	struct amdgpu_ring *kiq_ring = &kiq->ring;
693 	int r, i, j;
694 
695 	if (!kiq->pmf || !kiq->pmf->kiq_map_queues)
696 		return -EINVAL;
697 
698 	amdgpu_device_flush_hdp(adev, NULL);
699 
700 	if (adev->enable_mes) {
701 		for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
702 			j = i + xcc_id * adev->gfx.num_gfx_rings;
703 			r = amdgpu_mes_map_legacy_queue(adev,
704 							&adev->gfx.gfx_ring[j]);
705 			if (r) {
706 				DRM_ERROR("failed to map gfx queue\n");
707 				return r;
708 			}
709 		}
710 
711 		return 0;
712 	}
713 
714 	spin_lock(&kiq->ring_lock);
715 	/* No need to map kcq on the slave */
716 	if (amdgpu_gfx_is_master_xcc(adev, xcc_id)) {
717 		r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->map_queues_size *
718 						adev->gfx.num_gfx_rings);
719 		if (r) {
720 			DRM_ERROR("Failed to lock KIQ (%d).\n", r);
721 			spin_unlock(&kiq->ring_lock);
722 			return r;
723 		}
724 
725 		for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
726 			j = i + xcc_id * adev->gfx.num_gfx_rings;
727 			kiq->pmf->kiq_map_queues(kiq_ring,
728 						 &adev->gfx.gfx_ring[j]);
729 		}
730 	}
731 
732 	r = amdgpu_ring_test_helper(kiq_ring);
733 	spin_unlock(&kiq->ring_lock);
734 	if (r)
735 		DRM_ERROR("KGQ enable failed\n");
736 
737 	return r;
738 }
739 
740 /* amdgpu_gfx_off_ctrl - Handle gfx off feature enable/disable
741  *
742  * @adev: amdgpu_device pointer
743  * @bool enable true: enable gfx off feature, false: disable gfx off feature
744  *
745  * 1. gfx off feature will be enabled by gfx ip after gfx cg gp enabled.
746  * 2. other client can send request to disable gfx off feature, the request should be honored.
747  * 3. other client can cancel their request of disable gfx off feature
748  * 4. other client should not send request to enable gfx off feature before disable gfx off feature.
749  */
750 
751 void amdgpu_gfx_off_ctrl(struct amdgpu_device *adev, bool enable)
752 {
753 	unsigned long delay = GFX_OFF_DELAY_ENABLE;
754 
755 	if (!(adev->pm.pp_feature & PP_GFXOFF_MASK))
756 		return;
757 
758 	mutex_lock(&adev->gfx.gfx_off_mutex);
759 
760 	if (enable) {
761 		/* If the count is already 0, it means there's an imbalance bug somewhere.
762 		 * Note that the bug may be in a different caller than the one which triggers the
763 		 * WARN_ON_ONCE.
764 		 */
765 		if (WARN_ON_ONCE(adev->gfx.gfx_off_req_count == 0))
766 			goto unlock;
767 
768 		adev->gfx.gfx_off_req_count--;
769 
770 		if (adev->gfx.gfx_off_req_count == 0 &&
771 		    !adev->gfx.gfx_off_state) {
772 			/* If going to s2idle, no need to wait */
773 			if (adev->in_s0ix) {
774 				if (!amdgpu_dpm_set_powergating_by_smu(adev,
775 						AMD_IP_BLOCK_TYPE_GFX, true))
776 					adev->gfx.gfx_off_state = true;
777 			} else {
778 				schedule_delayed_work(&adev->gfx.gfx_off_delay_work,
779 					      delay);
780 			}
781 		}
782 	} else {
783 		if (adev->gfx.gfx_off_req_count == 0) {
784 			cancel_delayed_work_sync(&adev->gfx.gfx_off_delay_work);
785 
786 			if (adev->gfx.gfx_off_state &&
787 			    !amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_GFX, false)) {
788 				adev->gfx.gfx_off_state = false;
789 
790 				if (adev->gfx.funcs->init_spm_golden) {
791 					dev_dbg(adev->dev,
792 						"GFXOFF is disabled, re-init SPM golden settings\n");
793 					amdgpu_gfx_init_spm_golden(adev);
794 				}
795 			}
796 		}
797 
798 		adev->gfx.gfx_off_req_count++;
799 	}
800 
801 unlock:
802 	mutex_unlock(&adev->gfx.gfx_off_mutex);
803 }
804 
805 int amdgpu_set_gfx_off_residency(struct amdgpu_device *adev, bool value)
806 {
807 	int r = 0;
808 
809 	mutex_lock(&adev->gfx.gfx_off_mutex);
810 
811 	r = amdgpu_dpm_set_residency_gfxoff(adev, value);
812 
813 	mutex_unlock(&adev->gfx.gfx_off_mutex);
814 
815 	return r;
816 }
817 
818 int amdgpu_get_gfx_off_residency(struct amdgpu_device *adev, u32 *value)
819 {
820 	int r = 0;
821 
822 	mutex_lock(&adev->gfx.gfx_off_mutex);
823 
824 	r = amdgpu_dpm_get_residency_gfxoff(adev, value);
825 
826 	mutex_unlock(&adev->gfx.gfx_off_mutex);
827 
828 	return r;
829 }
830 
831 int amdgpu_get_gfx_off_entrycount(struct amdgpu_device *adev, u64 *value)
832 {
833 	int r = 0;
834 
835 	mutex_lock(&adev->gfx.gfx_off_mutex);
836 
837 	r = amdgpu_dpm_get_entrycount_gfxoff(adev, value);
838 
839 	mutex_unlock(&adev->gfx.gfx_off_mutex);
840 
841 	return r;
842 }
843 
844 int amdgpu_get_gfx_off_status(struct amdgpu_device *adev, uint32_t *value)
845 {
846 
847 	int r = 0;
848 
849 	mutex_lock(&adev->gfx.gfx_off_mutex);
850 
851 	r = amdgpu_dpm_get_status_gfxoff(adev, value);
852 
853 	mutex_unlock(&adev->gfx.gfx_off_mutex);
854 
855 	return r;
856 }
857 
858 int amdgpu_gfx_ras_late_init(struct amdgpu_device *adev, struct ras_common_if *ras_block)
859 {
860 	int r;
861 
862 	if (amdgpu_ras_is_supported(adev, ras_block->block)) {
863 		if (!amdgpu_persistent_edc_harvesting_supported(adev))
864 			amdgpu_ras_reset_error_status(adev, AMDGPU_RAS_BLOCK__GFX);
865 
866 		r = amdgpu_ras_block_late_init(adev, ras_block);
867 		if (r)
868 			return r;
869 
870 		if (adev->gfx.cp_ecc_error_irq.funcs) {
871 			r = amdgpu_irq_get(adev, &adev->gfx.cp_ecc_error_irq, 0);
872 			if (r)
873 				goto late_fini;
874 		}
875 	} else {
876 		amdgpu_ras_feature_enable_on_boot(adev, ras_block, 0);
877 	}
878 
879 	return 0;
880 late_fini:
881 	amdgpu_ras_block_late_fini(adev, ras_block);
882 	return r;
883 }
884 
885 int amdgpu_gfx_ras_sw_init(struct amdgpu_device *adev)
886 {
887 	int err = 0;
888 	struct amdgpu_gfx_ras *ras = NULL;
889 
890 	/* adev->gfx.ras is NULL, which means gfx does not
891 	 * support ras function, then do nothing here.
892 	 */
893 	if (!adev->gfx.ras)
894 		return 0;
895 
896 	ras = adev->gfx.ras;
897 
898 	err = amdgpu_ras_register_ras_block(adev, &ras->ras_block);
899 	if (err) {
900 		dev_err(adev->dev, "Failed to register gfx ras block!\n");
901 		return err;
902 	}
903 
904 	strcpy(ras->ras_block.ras_comm.name, "gfx");
905 	ras->ras_block.ras_comm.block = AMDGPU_RAS_BLOCK__GFX;
906 	ras->ras_block.ras_comm.type = AMDGPU_RAS_ERROR__MULTI_UNCORRECTABLE;
907 	adev->gfx.ras_if = &ras->ras_block.ras_comm;
908 
909 	/* If not define special ras_late_init function, use gfx default ras_late_init */
910 	if (!ras->ras_block.ras_late_init)
911 		ras->ras_block.ras_late_init = amdgpu_gfx_ras_late_init;
912 
913 	/* If not defined special ras_cb function, use default ras_cb */
914 	if (!ras->ras_block.ras_cb)
915 		ras->ras_block.ras_cb = amdgpu_gfx_process_ras_data_cb;
916 
917 	return 0;
918 }
919 
920 int amdgpu_gfx_poison_consumption_handler(struct amdgpu_device *adev,
921 						struct amdgpu_iv_entry *entry)
922 {
923 	if (adev->gfx.ras && adev->gfx.ras->poison_consumption_handler)
924 		return adev->gfx.ras->poison_consumption_handler(adev, entry);
925 
926 	return 0;
927 }
928 
929 int amdgpu_gfx_process_ras_data_cb(struct amdgpu_device *adev,
930 		void *err_data,
931 		struct amdgpu_iv_entry *entry)
932 {
933 	/* TODO ue will trigger an interrupt.
934 	 *
935 	 * When “Full RAS” is enabled, the per-IP interrupt sources should
936 	 * be disabled and the driver should only look for the aggregated
937 	 * interrupt via sync flood
938 	 */
939 	if (!amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__GFX)) {
940 		kgd2kfd_set_sram_ecc_flag(adev->kfd.dev);
941 		if (adev->gfx.ras && adev->gfx.ras->ras_block.hw_ops &&
942 		    adev->gfx.ras->ras_block.hw_ops->query_ras_error_count)
943 			adev->gfx.ras->ras_block.hw_ops->query_ras_error_count(adev, err_data);
944 		amdgpu_ras_reset_gpu(adev);
945 	}
946 	return AMDGPU_RAS_SUCCESS;
947 }
948 
949 int amdgpu_gfx_cp_ecc_error_irq(struct amdgpu_device *adev,
950 				  struct amdgpu_irq_src *source,
951 				  struct amdgpu_iv_entry *entry)
952 {
953 	struct ras_common_if *ras_if = adev->gfx.ras_if;
954 	struct ras_dispatch_if ih_data = {
955 		.entry = entry,
956 	};
957 
958 	if (!ras_if)
959 		return 0;
960 
961 	ih_data.head = *ras_if;
962 
963 	DRM_ERROR("CP ECC ERROR IRQ\n");
964 	amdgpu_ras_interrupt_dispatch(adev, &ih_data);
965 	return 0;
966 }
967 
968 void amdgpu_gfx_ras_error_func(struct amdgpu_device *adev,
969 		void *ras_error_status,
970 		void (*func)(struct amdgpu_device *adev, void *ras_error_status,
971 				int xcc_id))
972 {
973 	int i;
974 	int num_xcc = adev->gfx.xcc_mask ? NUM_XCC(adev->gfx.xcc_mask) : 1;
975 	uint32_t xcc_mask = GENMASK(num_xcc - 1, 0);
976 	struct ras_err_data *err_data = (struct ras_err_data *)ras_error_status;
977 
978 	if (err_data) {
979 		err_data->ue_count = 0;
980 		err_data->ce_count = 0;
981 	}
982 
983 	for_each_inst(i, xcc_mask)
984 		func(adev, ras_error_status, i);
985 }
986 
987 uint32_t amdgpu_kiq_rreg(struct amdgpu_device *adev, uint32_t reg, uint32_t xcc_id)
988 {
989 	signed long r, cnt = 0;
990 	unsigned long flags;
991 	uint32_t seq, reg_val_offs = 0, value = 0;
992 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
993 	struct amdgpu_ring *ring = &kiq->ring;
994 
995 	if (amdgpu_device_skip_hw_access(adev))
996 		return 0;
997 
998 	if (adev->mes.ring.sched.ready)
999 		return amdgpu_mes_rreg(adev, reg);
1000 
1001 	BUG_ON(!ring->funcs->emit_rreg);
1002 
1003 	spin_lock_irqsave(&kiq->ring_lock, flags);
1004 	if (amdgpu_device_wb_get(adev, &reg_val_offs)) {
1005 		pr_err("critical bug! too many kiq readers\n");
1006 		goto failed_unlock;
1007 	}
1008 	amdgpu_ring_alloc(ring, 32);
1009 	amdgpu_ring_emit_rreg(ring, reg, reg_val_offs);
1010 	r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT);
1011 	if (r)
1012 		goto failed_undo;
1013 
1014 	amdgpu_ring_commit(ring);
1015 	spin_unlock_irqrestore(&kiq->ring_lock, flags);
1016 
1017 	r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
1018 
1019 	/* don't wait anymore for gpu reset case because this way may
1020 	 * block gpu_recover() routine forever, e.g. this virt_kiq_rreg
1021 	 * is triggered in TTM and ttm_bo_lock_delayed_workqueue() will
1022 	 * never return if we keep waiting in virt_kiq_rreg, which cause
1023 	 * gpu_recover() hang there.
1024 	 *
1025 	 * also don't wait anymore for IRQ context
1026 	 * */
1027 	if (r < 1 && (amdgpu_in_reset(adev) || in_interrupt()))
1028 		goto failed_kiq_read;
1029 
1030 	might_sleep();
1031 	while (r < 1 && cnt++ < MAX_KIQ_REG_TRY) {
1032 		msleep(MAX_KIQ_REG_BAILOUT_INTERVAL);
1033 		r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
1034 	}
1035 
1036 	if (cnt > MAX_KIQ_REG_TRY)
1037 		goto failed_kiq_read;
1038 
1039 	mb();
1040 	value = adev->wb.wb[reg_val_offs];
1041 	amdgpu_device_wb_free(adev, reg_val_offs);
1042 	return value;
1043 
1044 failed_undo:
1045 	amdgpu_ring_undo(ring);
1046 failed_unlock:
1047 	spin_unlock_irqrestore(&kiq->ring_lock, flags);
1048 failed_kiq_read:
1049 	if (reg_val_offs)
1050 		amdgpu_device_wb_free(adev, reg_val_offs);
1051 	dev_err(adev->dev, "failed to read reg:%x\n", reg);
1052 	return ~0;
1053 }
1054 
1055 void amdgpu_kiq_wreg(struct amdgpu_device *adev, uint32_t reg, uint32_t v, uint32_t xcc_id)
1056 {
1057 	signed long r, cnt = 0;
1058 	unsigned long flags;
1059 	uint32_t seq;
1060 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
1061 	struct amdgpu_ring *ring = &kiq->ring;
1062 
1063 	BUG_ON(!ring->funcs->emit_wreg);
1064 
1065 	if (amdgpu_device_skip_hw_access(adev))
1066 		return;
1067 
1068 	if (adev->mes.ring.sched.ready) {
1069 		amdgpu_mes_wreg(adev, reg, v);
1070 		return;
1071 	}
1072 
1073 	spin_lock_irqsave(&kiq->ring_lock, flags);
1074 	amdgpu_ring_alloc(ring, 32);
1075 	amdgpu_ring_emit_wreg(ring, reg, v);
1076 	r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT);
1077 	if (r)
1078 		goto failed_undo;
1079 
1080 	amdgpu_ring_commit(ring);
1081 	spin_unlock_irqrestore(&kiq->ring_lock, flags);
1082 
1083 	r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
1084 
1085 	/* don't wait anymore for gpu reset case because this way may
1086 	 * block gpu_recover() routine forever, e.g. this virt_kiq_rreg
1087 	 * is triggered in TTM and ttm_bo_lock_delayed_workqueue() will
1088 	 * never return if we keep waiting in virt_kiq_rreg, which cause
1089 	 * gpu_recover() hang there.
1090 	 *
1091 	 * also don't wait anymore for IRQ context
1092 	 * */
1093 	if (r < 1 && (amdgpu_in_reset(adev) || in_interrupt()))
1094 		goto failed_kiq_write;
1095 
1096 	might_sleep();
1097 	while (r < 1 && cnt++ < MAX_KIQ_REG_TRY) {
1098 
1099 		msleep(MAX_KIQ_REG_BAILOUT_INTERVAL);
1100 		r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
1101 	}
1102 
1103 	if (cnt > MAX_KIQ_REG_TRY)
1104 		goto failed_kiq_write;
1105 
1106 	return;
1107 
1108 failed_undo:
1109 	amdgpu_ring_undo(ring);
1110 	spin_unlock_irqrestore(&kiq->ring_lock, flags);
1111 failed_kiq_write:
1112 	dev_err(adev->dev, "failed to write reg:%x\n", reg);
1113 }
1114 
1115 int amdgpu_gfx_get_num_kcq(struct amdgpu_device *adev)
1116 {
1117 	if (amdgpu_num_kcq == -1) {
1118 		return 8;
1119 	} else if (amdgpu_num_kcq > 8 || amdgpu_num_kcq < 0) {
1120 		dev_warn(adev->dev, "set kernel compute queue number to 8 due to invalid parameter provided by user\n");
1121 		return 8;
1122 	}
1123 	return amdgpu_num_kcq;
1124 }
1125 
1126 void amdgpu_gfx_cp_init_microcode(struct amdgpu_device *adev,
1127 				  uint32_t ucode_id)
1128 {
1129 	const struct gfx_firmware_header_v1_0 *cp_hdr;
1130 	const struct gfx_firmware_header_v2_0 *cp_hdr_v2_0;
1131 	struct amdgpu_firmware_info *info = NULL;
1132 	const struct firmware *ucode_fw;
1133 	unsigned int fw_size;
1134 
1135 	switch (ucode_id) {
1136 	case AMDGPU_UCODE_ID_CP_PFP:
1137 		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1138 			adev->gfx.pfp_fw->data;
1139 		adev->gfx.pfp_fw_version =
1140 			le32_to_cpu(cp_hdr->header.ucode_version);
1141 		adev->gfx.pfp_feature_version =
1142 			le32_to_cpu(cp_hdr->ucode_feature_version);
1143 		ucode_fw = adev->gfx.pfp_fw;
1144 		fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes);
1145 		break;
1146 	case AMDGPU_UCODE_ID_CP_RS64_PFP:
1147 		cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1148 			adev->gfx.pfp_fw->data;
1149 		adev->gfx.pfp_fw_version =
1150 			le32_to_cpu(cp_hdr_v2_0->header.ucode_version);
1151 		adev->gfx.pfp_feature_version =
1152 			le32_to_cpu(cp_hdr_v2_0->ucode_feature_version);
1153 		ucode_fw = adev->gfx.pfp_fw;
1154 		fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes);
1155 		break;
1156 	case AMDGPU_UCODE_ID_CP_RS64_PFP_P0_STACK:
1157 	case AMDGPU_UCODE_ID_CP_RS64_PFP_P1_STACK:
1158 		cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1159 			adev->gfx.pfp_fw->data;
1160 		ucode_fw = adev->gfx.pfp_fw;
1161 		fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes);
1162 		break;
1163 	case AMDGPU_UCODE_ID_CP_ME:
1164 		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1165 			adev->gfx.me_fw->data;
1166 		adev->gfx.me_fw_version =
1167 			le32_to_cpu(cp_hdr->header.ucode_version);
1168 		adev->gfx.me_feature_version =
1169 			le32_to_cpu(cp_hdr->ucode_feature_version);
1170 		ucode_fw = adev->gfx.me_fw;
1171 		fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes);
1172 		break;
1173 	case AMDGPU_UCODE_ID_CP_RS64_ME:
1174 		cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1175 			adev->gfx.me_fw->data;
1176 		adev->gfx.me_fw_version =
1177 			le32_to_cpu(cp_hdr_v2_0->header.ucode_version);
1178 		adev->gfx.me_feature_version =
1179 			le32_to_cpu(cp_hdr_v2_0->ucode_feature_version);
1180 		ucode_fw = adev->gfx.me_fw;
1181 		fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes);
1182 		break;
1183 	case AMDGPU_UCODE_ID_CP_RS64_ME_P0_STACK:
1184 	case AMDGPU_UCODE_ID_CP_RS64_ME_P1_STACK:
1185 		cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1186 			adev->gfx.me_fw->data;
1187 		ucode_fw = adev->gfx.me_fw;
1188 		fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes);
1189 		break;
1190 	case AMDGPU_UCODE_ID_CP_CE:
1191 		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1192 			adev->gfx.ce_fw->data;
1193 		adev->gfx.ce_fw_version =
1194 			le32_to_cpu(cp_hdr->header.ucode_version);
1195 		adev->gfx.ce_feature_version =
1196 			le32_to_cpu(cp_hdr->ucode_feature_version);
1197 		ucode_fw = adev->gfx.ce_fw;
1198 		fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes);
1199 		break;
1200 	case AMDGPU_UCODE_ID_CP_MEC1:
1201 		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1202 			adev->gfx.mec_fw->data;
1203 		adev->gfx.mec_fw_version =
1204 			le32_to_cpu(cp_hdr->header.ucode_version);
1205 		adev->gfx.mec_feature_version =
1206 			le32_to_cpu(cp_hdr->ucode_feature_version);
1207 		ucode_fw = adev->gfx.mec_fw;
1208 		fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes) -
1209 			  le32_to_cpu(cp_hdr->jt_size) * 4;
1210 		break;
1211 	case AMDGPU_UCODE_ID_CP_MEC1_JT:
1212 		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1213 			adev->gfx.mec_fw->data;
1214 		ucode_fw = adev->gfx.mec_fw;
1215 		fw_size = le32_to_cpu(cp_hdr->jt_size) * 4;
1216 		break;
1217 	case AMDGPU_UCODE_ID_CP_MEC2:
1218 		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1219 			adev->gfx.mec2_fw->data;
1220 		adev->gfx.mec2_fw_version =
1221 			le32_to_cpu(cp_hdr->header.ucode_version);
1222 		adev->gfx.mec2_feature_version =
1223 			le32_to_cpu(cp_hdr->ucode_feature_version);
1224 		ucode_fw = adev->gfx.mec2_fw;
1225 		fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes) -
1226 			  le32_to_cpu(cp_hdr->jt_size) * 4;
1227 		break;
1228 	case AMDGPU_UCODE_ID_CP_MEC2_JT:
1229 		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1230 			adev->gfx.mec2_fw->data;
1231 		ucode_fw = adev->gfx.mec2_fw;
1232 		fw_size = le32_to_cpu(cp_hdr->jt_size) * 4;
1233 		break;
1234 	case AMDGPU_UCODE_ID_CP_RS64_MEC:
1235 		cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1236 			adev->gfx.mec_fw->data;
1237 		adev->gfx.mec_fw_version =
1238 			le32_to_cpu(cp_hdr_v2_0->header.ucode_version);
1239 		adev->gfx.mec_feature_version =
1240 			le32_to_cpu(cp_hdr_v2_0->ucode_feature_version);
1241 		ucode_fw = adev->gfx.mec_fw;
1242 		fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes);
1243 		break;
1244 	case AMDGPU_UCODE_ID_CP_RS64_MEC_P0_STACK:
1245 	case AMDGPU_UCODE_ID_CP_RS64_MEC_P1_STACK:
1246 	case AMDGPU_UCODE_ID_CP_RS64_MEC_P2_STACK:
1247 	case AMDGPU_UCODE_ID_CP_RS64_MEC_P3_STACK:
1248 		cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1249 			adev->gfx.mec_fw->data;
1250 		ucode_fw = adev->gfx.mec_fw;
1251 		fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes);
1252 		break;
1253 	default:
1254 		dev_err(adev->dev, "Invalid ucode id %u\n", ucode_id);
1255 		return;
1256 	}
1257 
1258 	if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
1259 		info = &adev->firmware.ucode[ucode_id];
1260 		info->ucode_id = ucode_id;
1261 		info->fw = ucode_fw;
1262 		adev->firmware.fw_size += ALIGN(fw_size, PAGE_SIZE);
1263 	}
1264 }
1265 
1266 bool amdgpu_gfx_is_master_xcc(struct amdgpu_device *adev, int xcc_id)
1267 {
1268 	return !(xcc_id % (adev->gfx.num_xcc_per_xcp ?
1269 			adev->gfx.num_xcc_per_xcp : 1));
1270 }
1271 
1272 static ssize_t amdgpu_gfx_get_current_compute_partition(struct device *dev,
1273 						struct device_attribute *addr,
1274 						char *buf)
1275 {
1276 	struct drm_device *ddev = dev_get_drvdata(dev);
1277 	struct amdgpu_device *adev = drm_to_adev(ddev);
1278 	int mode;
1279 
1280 	mode = amdgpu_xcp_query_partition_mode(adev->xcp_mgr,
1281 					       AMDGPU_XCP_FL_NONE);
1282 
1283 	return sysfs_emit(buf, "%s\n", amdgpu_gfx_compute_mode_desc(mode));
1284 }
1285 
1286 static ssize_t amdgpu_gfx_set_compute_partition(struct device *dev,
1287 						struct device_attribute *addr,
1288 						const char *buf, size_t count)
1289 {
1290 	struct drm_device *ddev = dev_get_drvdata(dev);
1291 	struct amdgpu_device *adev = drm_to_adev(ddev);
1292 	enum amdgpu_gfx_partition mode;
1293 	int ret = 0, num_xcc;
1294 
1295 	num_xcc = NUM_XCC(adev->gfx.xcc_mask);
1296 	if (num_xcc % 2 != 0)
1297 		return -EINVAL;
1298 
1299 	if (!strncasecmp("SPX", buf, strlen("SPX"))) {
1300 		mode = AMDGPU_SPX_PARTITION_MODE;
1301 	} else if (!strncasecmp("DPX", buf, strlen("DPX"))) {
1302 		/*
1303 		 * DPX mode needs AIDs to be in multiple of 2.
1304 		 * Each AID connects 2 XCCs.
1305 		 */
1306 		if (num_xcc%4)
1307 			return -EINVAL;
1308 		mode = AMDGPU_DPX_PARTITION_MODE;
1309 	} else if (!strncasecmp("TPX", buf, strlen("TPX"))) {
1310 		if (num_xcc != 6)
1311 			return -EINVAL;
1312 		mode = AMDGPU_TPX_PARTITION_MODE;
1313 	} else if (!strncasecmp("QPX", buf, strlen("QPX"))) {
1314 		if (num_xcc != 8)
1315 			return -EINVAL;
1316 		mode = AMDGPU_QPX_PARTITION_MODE;
1317 	} else if (!strncasecmp("CPX", buf, strlen("CPX"))) {
1318 		mode = AMDGPU_CPX_PARTITION_MODE;
1319 	} else {
1320 		return -EINVAL;
1321 	}
1322 
1323 	ret = amdgpu_xcp_switch_partition_mode(adev->xcp_mgr, mode);
1324 
1325 	if (ret)
1326 		return ret;
1327 
1328 	return count;
1329 }
1330 
1331 static ssize_t amdgpu_gfx_get_available_compute_partition(struct device *dev,
1332 						struct device_attribute *addr,
1333 						char *buf)
1334 {
1335 	struct drm_device *ddev = dev_get_drvdata(dev);
1336 	struct amdgpu_device *adev = drm_to_adev(ddev);
1337 	char *supported_partition;
1338 
1339 	/* TBD */
1340 	switch (NUM_XCC(adev->gfx.xcc_mask)) {
1341 	case 8:
1342 		supported_partition = "SPX, DPX, QPX, CPX";
1343 		break;
1344 	case 6:
1345 		supported_partition = "SPX, TPX, CPX";
1346 		break;
1347 	case 4:
1348 		supported_partition = "SPX, DPX, CPX";
1349 		break;
1350 	/* this seems only existing in emulation phase */
1351 	case 2:
1352 		supported_partition = "SPX, CPX";
1353 		break;
1354 	default:
1355 		supported_partition = "Not supported";
1356 		break;
1357 	}
1358 
1359 	return sysfs_emit(buf, "%s\n", supported_partition);
1360 }
1361 
1362 static DEVICE_ATTR(current_compute_partition, 0644,
1363 		   amdgpu_gfx_get_current_compute_partition,
1364 		   amdgpu_gfx_set_compute_partition);
1365 
1366 static DEVICE_ATTR(available_compute_partition, 0444,
1367 		   amdgpu_gfx_get_available_compute_partition, NULL);
1368 
1369 int amdgpu_gfx_sysfs_init(struct amdgpu_device *adev)
1370 {
1371 	int r;
1372 
1373 	r = device_create_file(adev->dev, &dev_attr_current_compute_partition);
1374 	if (r)
1375 		return r;
1376 
1377 	r = device_create_file(adev->dev, &dev_attr_available_compute_partition);
1378 
1379 	return r;
1380 }
1381 
1382 void amdgpu_gfx_sysfs_fini(struct amdgpu_device *adev)
1383 {
1384 	device_remove_file(adev->dev, &dev_attr_current_compute_partition);
1385 	device_remove_file(adev->dev, &dev_attr_available_compute_partition);
1386 }
1387