1 /* 2 * Copyright 2014 Advanced Micro Devices, Inc. 3 * Copyright 2008 Red Hat Inc. 4 * Copyright 2009 Jerome Glisse. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 * 24 */ 25 26 #include <linux/firmware.h> 27 #include "amdgpu.h" 28 #include "amdgpu_gfx.h" 29 #include "amdgpu_rlc.h" 30 #include "amdgpu_ras.h" 31 #include "amdgpu_xcp.h" 32 #include "amdgpu_xgmi.h" 33 34 /* delay 0.1 second to enable gfx off feature */ 35 #define GFX_OFF_DELAY_ENABLE msecs_to_jiffies(100) 36 37 #define GFX_OFF_NO_DELAY 0 38 39 /* 40 * GPU GFX IP block helpers function. 41 */ 42 43 int amdgpu_gfx_mec_queue_to_bit(struct amdgpu_device *adev, int mec, 44 int pipe, int queue) 45 { 46 int bit = 0; 47 48 bit += mec * adev->gfx.mec.num_pipe_per_mec 49 * adev->gfx.mec.num_queue_per_pipe; 50 bit += pipe * adev->gfx.mec.num_queue_per_pipe; 51 bit += queue; 52 53 return bit; 54 } 55 56 void amdgpu_queue_mask_bit_to_mec_queue(struct amdgpu_device *adev, int bit, 57 int *mec, int *pipe, int *queue) 58 { 59 *queue = bit % adev->gfx.mec.num_queue_per_pipe; 60 *pipe = (bit / adev->gfx.mec.num_queue_per_pipe) 61 % adev->gfx.mec.num_pipe_per_mec; 62 *mec = (bit / adev->gfx.mec.num_queue_per_pipe) 63 / adev->gfx.mec.num_pipe_per_mec; 64 65 } 66 67 bool amdgpu_gfx_is_mec_queue_enabled(struct amdgpu_device *adev, 68 int xcc_id, int mec, int pipe, int queue) 69 { 70 return test_bit(amdgpu_gfx_mec_queue_to_bit(adev, mec, pipe, queue), 71 adev->gfx.mec_bitmap[xcc_id].queue_bitmap); 72 } 73 74 int amdgpu_gfx_me_queue_to_bit(struct amdgpu_device *adev, 75 int me, int pipe, int queue) 76 { 77 int bit = 0; 78 79 bit += me * adev->gfx.me.num_pipe_per_me 80 * adev->gfx.me.num_queue_per_pipe; 81 bit += pipe * adev->gfx.me.num_queue_per_pipe; 82 bit += queue; 83 84 return bit; 85 } 86 87 void amdgpu_gfx_bit_to_me_queue(struct amdgpu_device *adev, int bit, 88 int *me, int *pipe, int *queue) 89 { 90 *queue = bit % adev->gfx.me.num_queue_per_pipe; 91 *pipe = (bit / adev->gfx.me.num_queue_per_pipe) 92 % adev->gfx.me.num_pipe_per_me; 93 *me = (bit / adev->gfx.me.num_queue_per_pipe) 94 / adev->gfx.me.num_pipe_per_me; 95 } 96 97 bool amdgpu_gfx_is_me_queue_enabled(struct amdgpu_device *adev, 98 int me, int pipe, int queue) 99 { 100 return test_bit(amdgpu_gfx_me_queue_to_bit(adev, me, pipe, queue), 101 adev->gfx.me.queue_bitmap); 102 } 103 104 /** 105 * amdgpu_gfx_parse_disable_cu - Parse the disable_cu module parameter 106 * 107 * @mask: array in which the per-shader array disable masks will be stored 108 * @max_se: number of SEs 109 * @max_sh: number of SHs 110 * 111 * The bitmask of CUs to be disabled in the shader array determined by se and 112 * sh is stored in mask[se * max_sh + sh]. 113 */ 114 void amdgpu_gfx_parse_disable_cu(unsigned int *mask, unsigned int max_se, unsigned int max_sh) 115 { 116 unsigned int se, sh, cu; 117 const char *p; 118 119 memset(mask, 0, sizeof(*mask) * max_se * max_sh); 120 121 if (!amdgpu_disable_cu || !*amdgpu_disable_cu) 122 return; 123 124 p = amdgpu_disable_cu; 125 for (;;) { 126 char *next; 127 int ret = sscanf(p, "%u.%u.%u", &se, &sh, &cu); 128 129 if (ret < 3) { 130 DRM_ERROR("amdgpu: could not parse disable_cu\n"); 131 return; 132 } 133 134 if (se < max_se && sh < max_sh && cu < 16) { 135 DRM_INFO("amdgpu: disabling CU %u.%u.%u\n", se, sh, cu); 136 mask[se * max_sh + sh] |= 1u << cu; 137 } else { 138 DRM_ERROR("amdgpu: disable_cu %u.%u.%u is out of range\n", 139 se, sh, cu); 140 } 141 142 next = strchr(p, ','); 143 if (!next) 144 break; 145 p = next + 1; 146 } 147 } 148 149 static bool amdgpu_gfx_is_graphics_multipipe_capable(struct amdgpu_device *adev) 150 { 151 return amdgpu_async_gfx_ring && adev->gfx.me.num_pipe_per_me > 1; 152 } 153 154 static bool amdgpu_gfx_is_compute_multipipe_capable(struct amdgpu_device *adev) 155 { 156 if (amdgpu_compute_multipipe != -1) { 157 DRM_INFO("amdgpu: forcing compute pipe policy %d\n", 158 amdgpu_compute_multipipe); 159 return amdgpu_compute_multipipe == 1; 160 } 161 162 if (amdgpu_ip_version(adev, GC_HWIP, 0) > IP_VERSION(9, 0, 0)) 163 return true; 164 165 /* FIXME: spreading the queues across pipes causes perf regressions 166 * on POLARIS11 compute workloads */ 167 if (adev->asic_type == CHIP_POLARIS11) 168 return false; 169 170 return adev->gfx.mec.num_mec > 1; 171 } 172 173 bool amdgpu_gfx_is_high_priority_graphics_queue(struct amdgpu_device *adev, 174 struct amdgpu_ring *ring) 175 { 176 int queue = ring->queue; 177 int pipe = ring->pipe; 178 179 /* Policy: use pipe1 queue0 as high priority graphics queue if we 180 * have more than one gfx pipe. 181 */ 182 if (amdgpu_gfx_is_graphics_multipipe_capable(adev) && 183 adev->gfx.num_gfx_rings > 1 && pipe == 1 && queue == 0) { 184 int me = ring->me; 185 int bit; 186 187 bit = amdgpu_gfx_me_queue_to_bit(adev, me, pipe, queue); 188 if (ring == &adev->gfx.gfx_ring[bit]) 189 return true; 190 } 191 192 return false; 193 } 194 195 bool amdgpu_gfx_is_high_priority_compute_queue(struct amdgpu_device *adev, 196 struct amdgpu_ring *ring) 197 { 198 /* Policy: use 1st queue as high priority compute queue if we 199 * have more than one compute queue. 200 */ 201 if (adev->gfx.num_compute_rings > 1 && 202 ring == &adev->gfx.compute_ring[0]) 203 return true; 204 205 return false; 206 } 207 208 void amdgpu_gfx_compute_queue_acquire(struct amdgpu_device *adev) 209 { 210 int i, j, queue, pipe; 211 bool multipipe_policy = amdgpu_gfx_is_compute_multipipe_capable(adev); 212 int max_queues_per_mec = min(adev->gfx.mec.num_pipe_per_mec * 213 adev->gfx.mec.num_queue_per_pipe, 214 adev->gfx.num_compute_rings); 215 int num_xcc = adev->gfx.xcc_mask ? NUM_XCC(adev->gfx.xcc_mask) : 1; 216 217 if (multipipe_policy) { 218 /* policy: make queues evenly cross all pipes on MEC1 only 219 * for multiple xcc, just use the original policy for simplicity */ 220 for (j = 0; j < num_xcc; j++) { 221 for (i = 0; i < max_queues_per_mec; i++) { 222 pipe = i % adev->gfx.mec.num_pipe_per_mec; 223 queue = (i / adev->gfx.mec.num_pipe_per_mec) % 224 adev->gfx.mec.num_queue_per_pipe; 225 226 set_bit(pipe * adev->gfx.mec.num_queue_per_pipe + queue, 227 adev->gfx.mec_bitmap[j].queue_bitmap); 228 } 229 } 230 } else { 231 /* policy: amdgpu owns all queues in the given pipe */ 232 for (j = 0; j < num_xcc; j++) { 233 for (i = 0; i < max_queues_per_mec; ++i) 234 set_bit(i, adev->gfx.mec_bitmap[j].queue_bitmap); 235 } 236 } 237 238 for (j = 0; j < num_xcc; j++) { 239 dev_dbg(adev->dev, "mec queue bitmap weight=%d\n", 240 bitmap_weight(adev->gfx.mec_bitmap[j].queue_bitmap, AMDGPU_MAX_COMPUTE_QUEUES)); 241 } 242 } 243 244 void amdgpu_gfx_graphics_queue_acquire(struct amdgpu_device *adev) 245 { 246 int i, queue, pipe; 247 bool multipipe_policy = amdgpu_gfx_is_graphics_multipipe_capable(adev); 248 int max_queues_per_me = adev->gfx.me.num_pipe_per_me * 249 adev->gfx.me.num_queue_per_pipe; 250 251 if (multipipe_policy) { 252 /* policy: amdgpu owns the first queue per pipe at this stage 253 * will extend to mulitple queues per pipe later */ 254 for (i = 0; i < max_queues_per_me; i++) { 255 pipe = i % adev->gfx.me.num_pipe_per_me; 256 queue = (i / adev->gfx.me.num_pipe_per_me) % 257 adev->gfx.me.num_queue_per_pipe; 258 259 set_bit(pipe * adev->gfx.me.num_queue_per_pipe + queue, 260 adev->gfx.me.queue_bitmap); 261 } 262 } else { 263 for (i = 0; i < max_queues_per_me; ++i) 264 set_bit(i, adev->gfx.me.queue_bitmap); 265 } 266 267 /* update the number of active graphics rings */ 268 adev->gfx.num_gfx_rings = 269 bitmap_weight(adev->gfx.me.queue_bitmap, AMDGPU_MAX_GFX_QUEUES); 270 } 271 272 static int amdgpu_gfx_kiq_acquire(struct amdgpu_device *adev, 273 struct amdgpu_ring *ring, int xcc_id) 274 { 275 int queue_bit; 276 int mec, pipe, queue; 277 278 queue_bit = adev->gfx.mec.num_mec 279 * adev->gfx.mec.num_pipe_per_mec 280 * adev->gfx.mec.num_queue_per_pipe; 281 282 while (--queue_bit >= 0) { 283 if (test_bit(queue_bit, adev->gfx.mec_bitmap[xcc_id].queue_bitmap)) 284 continue; 285 286 amdgpu_queue_mask_bit_to_mec_queue(adev, queue_bit, &mec, &pipe, &queue); 287 288 /* 289 * 1. Using pipes 2/3 from MEC 2 seems cause problems. 290 * 2. It must use queue id 0, because CGPG_IDLE/SAVE/LOAD/RUN 291 * only can be issued on queue 0. 292 */ 293 if ((mec == 1 && pipe > 1) || queue != 0) 294 continue; 295 296 ring->me = mec + 1; 297 ring->pipe = pipe; 298 ring->queue = queue; 299 300 return 0; 301 } 302 303 dev_err(adev->dev, "Failed to find a queue for KIQ\n"); 304 return -EINVAL; 305 } 306 307 int amdgpu_gfx_kiq_init_ring(struct amdgpu_device *adev, int xcc_id) 308 { 309 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 310 struct amdgpu_irq_src *irq = &kiq->irq; 311 struct amdgpu_ring *ring = &kiq->ring; 312 int r = 0; 313 314 spin_lock_init(&kiq->ring_lock); 315 316 ring->adev = NULL; 317 ring->ring_obj = NULL; 318 ring->use_doorbell = true; 319 ring->xcc_id = xcc_id; 320 ring->vm_hub = AMDGPU_GFXHUB(xcc_id); 321 ring->doorbell_index = 322 (adev->doorbell_index.kiq + 323 xcc_id * adev->doorbell_index.xcc_doorbell_range) 324 << 1; 325 326 r = amdgpu_gfx_kiq_acquire(adev, ring, xcc_id); 327 if (r) 328 return r; 329 330 ring->eop_gpu_addr = kiq->eop_gpu_addr; 331 ring->no_scheduler = true; 332 snprintf(ring->name, sizeof(ring->name), "kiq_%hhu.%hhu.%hhu.%hhu", 333 (unsigned char)xcc_id, (unsigned char)ring->me, 334 (unsigned char)ring->pipe, (unsigned char)ring->queue); 335 r = amdgpu_ring_init(adev, ring, 1024, irq, AMDGPU_CP_KIQ_IRQ_DRIVER0, 336 AMDGPU_RING_PRIO_DEFAULT, NULL); 337 if (r) 338 dev_warn(adev->dev, "(%d) failed to init kiq ring\n", r); 339 340 return r; 341 } 342 343 void amdgpu_gfx_kiq_free_ring(struct amdgpu_ring *ring) 344 { 345 amdgpu_ring_fini(ring); 346 } 347 348 void amdgpu_gfx_kiq_fini(struct amdgpu_device *adev, int xcc_id) 349 { 350 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 351 352 amdgpu_bo_free_kernel(&kiq->eop_obj, &kiq->eop_gpu_addr, NULL); 353 } 354 355 int amdgpu_gfx_kiq_init(struct amdgpu_device *adev, 356 unsigned int hpd_size, int xcc_id) 357 { 358 int r; 359 u32 *hpd; 360 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 361 362 r = amdgpu_bo_create_kernel(adev, hpd_size, PAGE_SIZE, 363 AMDGPU_GEM_DOMAIN_GTT, &kiq->eop_obj, 364 &kiq->eop_gpu_addr, (void **)&hpd); 365 if (r) { 366 dev_warn(adev->dev, "failed to create KIQ bo (%d).\n", r); 367 return r; 368 } 369 370 memset(hpd, 0, hpd_size); 371 372 r = amdgpu_bo_reserve(kiq->eop_obj, true); 373 if (unlikely(r != 0)) 374 dev_warn(adev->dev, "(%d) reserve kiq eop bo failed\n", r); 375 amdgpu_bo_kunmap(kiq->eop_obj); 376 amdgpu_bo_unreserve(kiq->eop_obj); 377 378 return 0; 379 } 380 381 /* create MQD for each compute/gfx queue */ 382 int amdgpu_gfx_mqd_sw_init(struct amdgpu_device *adev, 383 unsigned int mqd_size, int xcc_id) 384 { 385 int r, i, j; 386 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 387 struct amdgpu_ring *ring = &kiq->ring; 388 u32 domain = AMDGPU_GEM_DOMAIN_GTT; 389 390 #if !defined(CONFIG_ARM) && !defined(CONFIG_ARM64) 391 /* Only enable on gfx10 and 11 for now to avoid changing behavior on older chips */ 392 if (amdgpu_ip_version(adev, GC_HWIP, 0) >= IP_VERSION(10, 0, 0)) 393 domain |= AMDGPU_GEM_DOMAIN_VRAM; 394 #endif 395 396 /* create MQD for KIQ */ 397 if (!adev->enable_mes_kiq && !ring->mqd_obj) { 398 /* originaly the KIQ MQD is put in GTT domain, but for SRIOV VRAM domain is a must 399 * otherwise hypervisor trigger SAVE_VF fail after driver unloaded which mean MQD 400 * deallocated and gart_unbind, to strict diverage we decide to use VRAM domain for 401 * KIQ MQD no matter SRIOV or Bare-metal 402 */ 403 r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE, 404 AMDGPU_GEM_DOMAIN_VRAM | 405 AMDGPU_GEM_DOMAIN_GTT, 406 &ring->mqd_obj, 407 &ring->mqd_gpu_addr, 408 &ring->mqd_ptr); 409 if (r) { 410 dev_warn(adev->dev, "failed to create ring mqd ob (%d)", r); 411 return r; 412 } 413 414 /* prepare MQD backup */ 415 kiq->mqd_backup = kmalloc(mqd_size, GFP_KERNEL); 416 if (!kiq->mqd_backup) { 417 dev_warn(adev->dev, 418 "no memory to create MQD backup for ring %s\n", ring->name); 419 return -ENOMEM; 420 } 421 } 422 423 if (adev->asic_type >= CHIP_NAVI10 && amdgpu_async_gfx_ring) { 424 /* create MQD for each KGQ */ 425 for (i = 0; i < adev->gfx.num_gfx_rings; i++) { 426 ring = &adev->gfx.gfx_ring[i]; 427 if (!ring->mqd_obj) { 428 r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE, 429 domain, &ring->mqd_obj, 430 &ring->mqd_gpu_addr, &ring->mqd_ptr); 431 if (r) { 432 dev_warn(adev->dev, "failed to create ring mqd bo (%d)", r); 433 return r; 434 } 435 436 ring->mqd_size = mqd_size; 437 /* prepare MQD backup */ 438 adev->gfx.me.mqd_backup[i] = kmalloc(mqd_size, GFP_KERNEL); 439 if (!adev->gfx.me.mqd_backup[i]) { 440 dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name); 441 return -ENOMEM; 442 } 443 } 444 } 445 } 446 447 /* create MQD for each KCQ */ 448 for (i = 0; i < adev->gfx.num_compute_rings; i++) { 449 j = i + xcc_id * adev->gfx.num_compute_rings; 450 ring = &adev->gfx.compute_ring[j]; 451 if (!ring->mqd_obj) { 452 r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE, 453 domain, &ring->mqd_obj, 454 &ring->mqd_gpu_addr, &ring->mqd_ptr); 455 if (r) { 456 dev_warn(adev->dev, "failed to create ring mqd bo (%d)", r); 457 return r; 458 } 459 460 ring->mqd_size = mqd_size; 461 /* prepare MQD backup */ 462 adev->gfx.mec.mqd_backup[j] = kmalloc(mqd_size, GFP_KERNEL); 463 if (!adev->gfx.mec.mqd_backup[j]) { 464 dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name); 465 return -ENOMEM; 466 } 467 } 468 } 469 470 return 0; 471 } 472 473 void amdgpu_gfx_mqd_sw_fini(struct amdgpu_device *adev, int xcc_id) 474 { 475 struct amdgpu_ring *ring = NULL; 476 int i, j; 477 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 478 479 if (adev->asic_type >= CHIP_NAVI10 && amdgpu_async_gfx_ring) { 480 for (i = 0; i < adev->gfx.num_gfx_rings; i++) { 481 ring = &adev->gfx.gfx_ring[i]; 482 kfree(adev->gfx.me.mqd_backup[i]); 483 amdgpu_bo_free_kernel(&ring->mqd_obj, 484 &ring->mqd_gpu_addr, 485 &ring->mqd_ptr); 486 } 487 } 488 489 for (i = 0; i < adev->gfx.num_compute_rings; i++) { 490 j = i + xcc_id * adev->gfx.num_compute_rings; 491 ring = &adev->gfx.compute_ring[j]; 492 kfree(adev->gfx.mec.mqd_backup[j]); 493 amdgpu_bo_free_kernel(&ring->mqd_obj, 494 &ring->mqd_gpu_addr, 495 &ring->mqd_ptr); 496 } 497 498 ring = &kiq->ring; 499 kfree(kiq->mqd_backup); 500 amdgpu_bo_free_kernel(&ring->mqd_obj, 501 &ring->mqd_gpu_addr, 502 &ring->mqd_ptr); 503 } 504 505 int amdgpu_gfx_disable_kcq(struct amdgpu_device *adev, int xcc_id) 506 { 507 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 508 struct amdgpu_ring *kiq_ring = &kiq->ring; 509 struct amdgpu_hive_info *hive; 510 struct amdgpu_ras *ras; 511 int hive_ras_recovery = 0; 512 int i, r = 0; 513 int j; 514 515 if (!kiq->pmf || !kiq->pmf->kiq_unmap_queues) 516 return -EINVAL; 517 518 spin_lock(&kiq->ring_lock); 519 if (amdgpu_ring_alloc(kiq_ring, kiq->pmf->unmap_queues_size * 520 adev->gfx.num_compute_rings)) { 521 spin_unlock(&kiq->ring_lock); 522 return -ENOMEM; 523 } 524 525 for (i = 0; i < adev->gfx.num_compute_rings; i++) { 526 j = i + xcc_id * adev->gfx.num_compute_rings; 527 kiq->pmf->kiq_unmap_queues(kiq_ring, 528 &adev->gfx.compute_ring[j], 529 RESET_QUEUES, 0, 0); 530 } 531 532 /** 533 * This is workaround: only skip kiq_ring test 534 * during ras recovery in suspend stage for gfx9.4.3 535 */ 536 hive = amdgpu_get_xgmi_hive(adev); 537 if (hive) { 538 hive_ras_recovery = atomic_read(&hive->ras_recovery); 539 amdgpu_put_xgmi_hive(hive); 540 } 541 542 ras = amdgpu_ras_get_context(adev); 543 if ((amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 3) || 544 amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 4)) && 545 ras && (atomic_read(&ras->in_recovery) || hive_ras_recovery)) { 546 spin_unlock(&kiq->ring_lock); 547 return 0; 548 } 549 550 if (kiq_ring->sched.ready && !adev->job_hang) 551 r = amdgpu_ring_test_helper(kiq_ring); 552 spin_unlock(&kiq->ring_lock); 553 554 return r; 555 } 556 557 int amdgpu_gfx_disable_kgq(struct amdgpu_device *adev, int xcc_id) 558 { 559 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 560 struct amdgpu_ring *kiq_ring = &kiq->ring; 561 int i, r = 0; 562 int j; 563 564 if (!kiq->pmf || !kiq->pmf->kiq_unmap_queues) 565 return -EINVAL; 566 567 spin_lock(&kiq->ring_lock); 568 if (amdgpu_gfx_is_master_xcc(adev, xcc_id)) { 569 if (amdgpu_ring_alloc(kiq_ring, kiq->pmf->unmap_queues_size * 570 adev->gfx.num_gfx_rings)) { 571 spin_unlock(&kiq->ring_lock); 572 return -ENOMEM; 573 } 574 575 for (i = 0; i < adev->gfx.num_gfx_rings; i++) { 576 j = i + xcc_id * adev->gfx.num_gfx_rings; 577 kiq->pmf->kiq_unmap_queues(kiq_ring, 578 &adev->gfx.gfx_ring[j], 579 PREEMPT_QUEUES, 0, 0); 580 } 581 } 582 583 if (adev->gfx.kiq[0].ring.sched.ready && !adev->job_hang) 584 r = amdgpu_ring_test_helper(kiq_ring); 585 spin_unlock(&kiq->ring_lock); 586 587 return r; 588 } 589 590 int amdgpu_queue_mask_bit_to_set_resource_bit(struct amdgpu_device *adev, 591 int queue_bit) 592 { 593 int mec, pipe, queue; 594 int set_resource_bit = 0; 595 596 amdgpu_queue_mask_bit_to_mec_queue(adev, queue_bit, &mec, &pipe, &queue); 597 598 set_resource_bit = mec * 4 * 8 + pipe * 8 + queue; 599 600 return set_resource_bit; 601 } 602 603 static int amdgpu_gfx_mes_enable_kcq(struct amdgpu_device *adev, int xcc_id) 604 { 605 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 606 struct amdgpu_ring *kiq_ring = &kiq->ring; 607 uint64_t queue_mask = ~0ULL; 608 int r, i, j; 609 610 amdgpu_device_flush_hdp(adev, NULL); 611 612 if (!adev->enable_uni_mes) { 613 spin_lock(&kiq->ring_lock); 614 r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->set_resources_size); 615 if (r) { 616 dev_err(adev->dev, "Failed to lock KIQ (%d).\n", r); 617 spin_unlock(&kiq->ring_lock); 618 return r; 619 } 620 621 kiq->pmf->kiq_set_resources(kiq_ring, queue_mask); 622 r = amdgpu_ring_test_helper(kiq_ring); 623 spin_unlock(&kiq->ring_lock); 624 if (r) 625 dev_err(adev->dev, "KIQ failed to set resources\n"); 626 } 627 628 for (i = 0; i < adev->gfx.num_compute_rings; i++) { 629 j = i + xcc_id * adev->gfx.num_compute_rings; 630 r = amdgpu_mes_map_legacy_queue(adev, 631 &adev->gfx.compute_ring[j]); 632 if (r) { 633 dev_err(adev->dev, "failed to map compute queue\n"); 634 return r; 635 } 636 } 637 638 return 0; 639 } 640 641 int amdgpu_gfx_enable_kcq(struct amdgpu_device *adev, int xcc_id) 642 { 643 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 644 struct amdgpu_ring *kiq_ring = &kiq->ring; 645 uint64_t queue_mask = 0; 646 int r, i, j; 647 648 if (adev->enable_mes) 649 return amdgpu_gfx_mes_enable_kcq(adev, xcc_id); 650 651 if (!kiq->pmf || !kiq->pmf->kiq_map_queues || !kiq->pmf->kiq_set_resources) 652 return -EINVAL; 653 654 for (i = 0; i < AMDGPU_MAX_COMPUTE_QUEUES; ++i) { 655 if (!test_bit(i, adev->gfx.mec_bitmap[xcc_id].queue_bitmap)) 656 continue; 657 658 /* This situation may be hit in the future if a new HW 659 * generation exposes more than 64 queues. If so, the 660 * definition of queue_mask needs updating */ 661 if (WARN_ON(i > (sizeof(queue_mask)*8))) { 662 DRM_ERROR("Invalid KCQ enabled: %d\n", i); 663 break; 664 } 665 666 queue_mask |= (1ull << amdgpu_queue_mask_bit_to_set_resource_bit(adev, i)); 667 } 668 669 amdgpu_device_flush_hdp(adev, NULL); 670 671 DRM_INFO("kiq ring mec %d pipe %d q %d\n", kiq_ring->me, kiq_ring->pipe, 672 kiq_ring->queue); 673 674 spin_lock(&kiq->ring_lock); 675 r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->map_queues_size * 676 adev->gfx.num_compute_rings + 677 kiq->pmf->set_resources_size); 678 if (r) { 679 DRM_ERROR("Failed to lock KIQ (%d).\n", r); 680 spin_unlock(&kiq->ring_lock); 681 return r; 682 } 683 684 kiq->pmf->kiq_set_resources(kiq_ring, queue_mask); 685 for (i = 0; i < adev->gfx.num_compute_rings; i++) { 686 j = i + xcc_id * adev->gfx.num_compute_rings; 687 kiq->pmf->kiq_map_queues(kiq_ring, 688 &adev->gfx.compute_ring[j]); 689 } 690 691 r = amdgpu_ring_test_helper(kiq_ring); 692 spin_unlock(&kiq->ring_lock); 693 if (r) 694 DRM_ERROR("KCQ enable failed\n"); 695 696 return r; 697 } 698 699 int amdgpu_gfx_enable_kgq(struct amdgpu_device *adev, int xcc_id) 700 { 701 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 702 struct amdgpu_ring *kiq_ring = &kiq->ring; 703 int r, i, j; 704 705 if (!kiq->pmf || !kiq->pmf->kiq_map_queues) 706 return -EINVAL; 707 708 amdgpu_device_flush_hdp(adev, NULL); 709 710 if (adev->enable_mes) { 711 for (i = 0; i < adev->gfx.num_gfx_rings; i++) { 712 j = i + xcc_id * adev->gfx.num_gfx_rings; 713 r = amdgpu_mes_map_legacy_queue(adev, 714 &adev->gfx.gfx_ring[j]); 715 if (r) { 716 DRM_ERROR("failed to map gfx queue\n"); 717 return r; 718 } 719 } 720 721 return 0; 722 } 723 724 spin_lock(&kiq->ring_lock); 725 /* No need to map kcq on the slave */ 726 if (amdgpu_gfx_is_master_xcc(adev, xcc_id)) { 727 r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->map_queues_size * 728 adev->gfx.num_gfx_rings); 729 if (r) { 730 DRM_ERROR("Failed to lock KIQ (%d).\n", r); 731 spin_unlock(&kiq->ring_lock); 732 return r; 733 } 734 735 for (i = 0; i < adev->gfx.num_gfx_rings; i++) { 736 j = i + xcc_id * adev->gfx.num_gfx_rings; 737 kiq->pmf->kiq_map_queues(kiq_ring, 738 &adev->gfx.gfx_ring[j]); 739 } 740 } 741 742 r = amdgpu_ring_test_helper(kiq_ring); 743 spin_unlock(&kiq->ring_lock); 744 if (r) 745 DRM_ERROR("KGQ enable failed\n"); 746 747 return r; 748 } 749 750 /* amdgpu_gfx_off_ctrl - Handle gfx off feature enable/disable 751 * 752 * @adev: amdgpu_device pointer 753 * @bool enable true: enable gfx off feature, false: disable gfx off feature 754 * 755 * 1. gfx off feature will be enabled by gfx ip after gfx cg gp enabled. 756 * 2. other client can send request to disable gfx off feature, the request should be honored. 757 * 3. other client can cancel their request of disable gfx off feature 758 * 4. other client should not send request to enable gfx off feature before disable gfx off feature. 759 */ 760 761 void amdgpu_gfx_off_ctrl(struct amdgpu_device *adev, bool enable) 762 { 763 unsigned long delay = GFX_OFF_DELAY_ENABLE; 764 765 if (!(adev->pm.pp_feature & PP_GFXOFF_MASK)) 766 return; 767 768 mutex_lock(&adev->gfx.gfx_off_mutex); 769 770 if (enable) { 771 /* If the count is already 0, it means there's an imbalance bug somewhere. 772 * Note that the bug may be in a different caller than the one which triggers the 773 * WARN_ON_ONCE. 774 */ 775 if (WARN_ON_ONCE(adev->gfx.gfx_off_req_count == 0)) 776 goto unlock; 777 778 adev->gfx.gfx_off_req_count--; 779 780 if (adev->gfx.gfx_off_req_count == 0 && 781 !adev->gfx.gfx_off_state) { 782 /* If going to s2idle, no need to wait */ 783 if (adev->in_s0ix) { 784 if (!amdgpu_dpm_set_powergating_by_smu(adev, 785 AMD_IP_BLOCK_TYPE_GFX, true)) 786 adev->gfx.gfx_off_state = true; 787 } else { 788 schedule_delayed_work(&adev->gfx.gfx_off_delay_work, 789 delay); 790 } 791 } 792 } else { 793 if (adev->gfx.gfx_off_req_count == 0) { 794 cancel_delayed_work_sync(&adev->gfx.gfx_off_delay_work); 795 796 if (adev->gfx.gfx_off_state && 797 !amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_GFX, false)) { 798 adev->gfx.gfx_off_state = false; 799 800 if (adev->gfx.funcs->init_spm_golden) { 801 dev_dbg(adev->dev, 802 "GFXOFF is disabled, re-init SPM golden settings\n"); 803 amdgpu_gfx_init_spm_golden(adev); 804 } 805 } 806 } 807 808 adev->gfx.gfx_off_req_count++; 809 } 810 811 unlock: 812 mutex_unlock(&adev->gfx.gfx_off_mutex); 813 } 814 815 int amdgpu_set_gfx_off_residency(struct amdgpu_device *adev, bool value) 816 { 817 int r = 0; 818 819 mutex_lock(&adev->gfx.gfx_off_mutex); 820 821 r = amdgpu_dpm_set_residency_gfxoff(adev, value); 822 823 mutex_unlock(&adev->gfx.gfx_off_mutex); 824 825 return r; 826 } 827 828 int amdgpu_get_gfx_off_residency(struct amdgpu_device *adev, u32 *value) 829 { 830 int r = 0; 831 832 mutex_lock(&adev->gfx.gfx_off_mutex); 833 834 r = amdgpu_dpm_get_residency_gfxoff(adev, value); 835 836 mutex_unlock(&adev->gfx.gfx_off_mutex); 837 838 return r; 839 } 840 841 int amdgpu_get_gfx_off_entrycount(struct amdgpu_device *adev, u64 *value) 842 { 843 int r = 0; 844 845 mutex_lock(&adev->gfx.gfx_off_mutex); 846 847 r = amdgpu_dpm_get_entrycount_gfxoff(adev, value); 848 849 mutex_unlock(&adev->gfx.gfx_off_mutex); 850 851 return r; 852 } 853 854 int amdgpu_get_gfx_off_status(struct amdgpu_device *adev, uint32_t *value) 855 { 856 857 int r = 0; 858 859 mutex_lock(&adev->gfx.gfx_off_mutex); 860 861 r = amdgpu_dpm_get_status_gfxoff(adev, value); 862 863 mutex_unlock(&adev->gfx.gfx_off_mutex); 864 865 return r; 866 } 867 868 int amdgpu_gfx_ras_late_init(struct amdgpu_device *adev, struct ras_common_if *ras_block) 869 { 870 int r; 871 872 if (amdgpu_ras_is_supported(adev, ras_block->block)) { 873 if (!amdgpu_persistent_edc_harvesting_supported(adev)) 874 amdgpu_ras_reset_error_status(adev, AMDGPU_RAS_BLOCK__GFX); 875 876 r = amdgpu_ras_block_late_init(adev, ras_block); 877 if (r) 878 return r; 879 880 if (adev->gfx.cp_ecc_error_irq.funcs) { 881 r = amdgpu_irq_get(adev, &adev->gfx.cp_ecc_error_irq, 0); 882 if (r) 883 goto late_fini; 884 } 885 } else { 886 amdgpu_ras_feature_enable_on_boot(adev, ras_block, 0); 887 } 888 889 return 0; 890 late_fini: 891 amdgpu_ras_block_late_fini(adev, ras_block); 892 return r; 893 } 894 895 int amdgpu_gfx_ras_sw_init(struct amdgpu_device *adev) 896 { 897 int err = 0; 898 struct amdgpu_gfx_ras *ras = NULL; 899 900 /* adev->gfx.ras is NULL, which means gfx does not 901 * support ras function, then do nothing here. 902 */ 903 if (!adev->gfx.ras) 904 return 0; 905 906 ras = adev->gfx.ras; 907 908 err = amdgpu_ras_register_ras_block(adev, &ras->ras_block); 909 if (err) { 910 dev_err(adev->dev, "Failed to register gfx ras block!\n"); 911 return err; 912 } 913 914 strcpy(ras->ras_block.ras_comm.name, "gfx"); 915 ras->ras_block.ras_comm.block = AMDGPU_RAS_BLOCK__GFX; 916 ras->ras_block.ras_comm.type = AMDGPU_RAS_ERROR__MULTI_UNCORRECTABLE; 917 adev->gfx.ras_if = &ras->ras_block.ras_comm; 918 919 /* If not define special ras_late_init function, use gfx default ras_late_init */ 920 if (!ras->ras_block.ras_late_init) 921 ras->ras_block.ras_late_init = amdgpu_gfx_ras_late_init; 922 923 /* If not defined special ras_cb function, use default ras_cb */ 924 if (!ras->ras_block.ras_cb) 925 ras->ras_block.ras_cb = amdgpu_gfx_process_ras_data_cb; 926 927 return 0; 928 } 929 930 int amdgpu_gfx_poison_consumption_handler(struct amdgpu_device *adev, 931 struct amdgpu_iv_entry *entry) 932 { 933 if (adev->gfx.ras && adev->gfx.ras->poison_consumption_handler) 934 return adev->gfx.ras->poison_consumption_handler(adev, entry); 935 936 return 0; 937 } 938 939 int amdgpu_gfx_process_ras_data_cb(struct amdgpu_device *adev, 940 void *err_data, 941 struct amdgpu_iv_entry *entry) 942 { 943 /* TODO ue will trigger an interrupt. 944 * 945 * When “Full RAS” is enabled, the per-IP interrupt sources should 946 * be disabled and the driver should only look for the aggregated 947 * interrupt via sync flood 948 */ 949 if (!amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__GFX)) { 950 kgd2kfd_set_sram_ecc_flag(adev->kfd.dev); 951 if (adev->gfx.ras && adev->gfx.ras->ras_block.hw_ops && 952 adev->gfx.ras->ras_block.hw_ops->query_ras_error_count) 953 adev->gfx.ras->ras_block.hw_ops->query_ras_error_count(adev, err_data); 954 amdgpu_ras_reset_gpu(adev); 955 } 956 return AMDGPU_RAS_SUCCESS; 957 } 958 959 int amdgpu_gfx_cp_ecc_error_irq(struct amdgpu_device *adev, 960 struct amdgpu_irq_src *source, 961 struct amdgpu_iv_entry *entry) 962 { 963 struct ras_common_if *ras_if = adev->gfx.ras_if; 964 struct ras_dispatch_if ih_data = { 965 .entry = entry, 966 }; 967 968 if (!ras_if) 969 return 0; 970 971 ih_data.head = *ras_if; 972 973 DRM_ERROR("CP ECC ERROR IRQ\n"); 974 amdgpu_ras_interrupt_dispatch(adev, &ih_data); 975 return 0; 976 } 977 978 void amdgpu_gfx_ras_error_func(struct amdgpu_device *adev, 979 void *ras_error_status, 980 void (*func)(struct amdgpu_device *adev, void *ras_error_status, 981 int xcc_id)) 982 { 983 int i; 984 int num_xcc = adev->gfx.xcc_mask ? NUM_XCC(adev->gfx.xcc_mask) : 1; 985 uint32_t xcc_mask = GENMASK(num_xcc - 1, 0); 986 struct ras_err_data *err_data = (struct ras_err_data *)ras_error_status; 987 988 if (err_data) { 989 err_data->ue_count = 0; 990 err_data->ce_count = 0; 991 } 992 993 for_each_inst(i, xcc_mask) 994 func(adev, ras_error_status, i); 995 } 996 997 uint32_t amdgpu_kiq_rreg(struct amdgpu_device *adev, uint32_t reg, uint32_t xcc_id) 998 { 999 signed long r, cnt = 0; 1000 unsigned long flags; 1001 uint32_t seq, reg_val_offs = 0, value = 0; 1002 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 1003 struct amdgpu_ring *ring = &kiq->ring; 1004 1005 if (amdgpu_device_skip_hw_access(adev)) 1006 return 0; 1007 1008 if (adev->mes.ring.sched.ready) 1009 return amdgpu_mes_rreg(adev, reg); 1010 1011 BUG_ON(!ring->funcs->emit_rreg); 1012 1013 spin_lock_irqsave(&kiq->ring_lock, flags); 1014 if (amdgpu_device_wb_get(adev, ®_val_offs)) { 1015 pr_err("critical bug! too many kiq readers\n"); 1016 goto failed_unlock; 1017 } 1018 amdgpu_ring_alloc(ring, 32); 1019 amdgpu_ring_emit_rreg(ring, reg, reg_val_offs); 1020 r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT); 1021 if (r) 1022 goto failed_undo; 1023 1024 amdgpu_ring_commit(ring); 1025 spin_unlock_irqrestore(&kiq->ring_lock, flags); 1026 1027 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); 1028 1029 /* don't wait anymore for gpu reset case because this way may 1030 * block gpu_recover() routine forever, e.g. this virt_kiq_rreg 1031 * is triggered in TTM and ttm_bo_lock_delayed_workqueue() will 1032 * never return if we keep waiting in virt_kiq_rreg, which cause 1033 * gpu_recover() hang there. 1034 * 1035 * also don't wait anymore for IRQ context 1036 * */ 1037 if (r < 1 && (amdgpu_in_reset(adev) || in_interrupt())) 1038 goto failed_kiq_read; 1039 1040 might_sleep(); 1041 while (r < 1 && cnt++ < MAX_KIQ_REG_TRY) { 1042 msleep(MAX_KIQ_REG_BAILOUT_INTERVAL); 1043 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); 1044 } 1045 1046 if (cnt > MAX_KIQ_REG_TRY) 1047 goto failed_kiq_read; 1048 1049 mb(); 1050 value = adev->wb.wb[reg_val_offs]; 1051 amdgpu_device_wb_free(adev, reg_val_offs); 1052 return value; 1053 1054 failed_undo: 1055 amdgpu_ring_undo(ring); 1056 failed_unlock: 1057 spin_unlock_irqrestore(&kiq->ring_lock, flags); 1058 failed_kiq_read: 1059 if (reg_val_offs) 1060 amdgpu_device_wb_free(adev, reg_val_offs); 1061 dev_err(adev->dev, "failed to read reg:%x\n", reg); 1062 return ~0; 1063 } 1064 1065 void amdgpu_kiq_wreg(struct amdgpu_device *adev, uint32_t reg, uint32_t v, uint32_t xcc_id) 1066 { 1067 signed long r, cnt = 0; 1068 unsigned long flags; 1069 uint32_t seq; 1070 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 1071 struct amdgpu_ring *ring = &kiq->ring; 1072 1073 BUG_ON(!ring->funcs->emit_wreg); 1074 1075 if (amdgpu_device_skip_hw_access(adev)) 1076 return; 1077 1078 if (adev->mes.ring.sched.ready) { 1079 amdgpu_mes_wreg(adev, reg, v); 1080 return; 1081 } 1082 1083 spin_lock_irqsave(&kiq->ring_lock, flags); 1084 amdgpu_ring_alloc(ring, 32); 1085 amdgpu_ring_emit_wreg(ring, reg, v); 1086 r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT); 1087 if (r) 1088 goto failed_undo; 1089 1090 amdgpu_ring_commit(ring); 1091 spin_unlock_irqrestore(&kiq->ring_lock, flags); 1092 1093 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); 1094 1095 /* don't wait anymore for gpu reset case because this way may 1096 * block gpu_recover() routine forever, e.g. this virt_kiq_rreg 1097 * is triggered in TTM and ttm_bo_lock_delayed_workqueue() will 1098 * never return if we keep waiting in virt_kiq_rreg, which cause 1099 * gpu_recover() hang there. 1100 * 1101 * also don't wait anymore for IRQ context 1102 * */ 1103 if (r < 1 && (amdgpu_in_reset(adev) || in_interrupt())) 1104 goto failed_kiq_write; 1105 1106 might_sleep(); 1107 while (r < 1 && cnt++ < MAX_KIQ_REG_TRY) { 1108 1109 msleep(MAX_KIQ_REG_BAILOUT_INTERVAL); 1110 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); 1111 } 1112 1113 if (cnt > MAX_KIQ_REG_TRY) 1114 goto failed_kiq_write; 1115 1116 return; 1117 1118 failed_undo: 1119 amdgpu_ring_undo(ring); 1120 spin_unlock_irqrestore(&kiq->ring_lock, flags); 1121 failed_kiq_write: 1122 dev_err(adev->dev, "failed to write reg:%x\n", reg); 1123 } 1124 1125 int amdgpu_gfx_get_num_kcq(struct amdgpu_device *adev) 1126 { 1127 if (amdgpu_num_kcq == -1) { 1128 return 8; 1129 } else if (amdgpu_num_kcq > 8 || amdgpu_num_kcq < 0) { 1130 dev_warn(adev->dev, "set kernel compute queue number to 8 due to invalid parameter provided by user\n"); 1131 return 8; 1132 } 1133 return amdgpu_num_kcq; 1134 } 1135 1136 void amdgpu_gfx_cp_init_microcode(struct amdgpu_device *adev, 1137 uint32_t ucode_id) 1138 { 1139 const struct gfx_firmware_header_v1_0 *cp_hdr; 1140 const struct gfx_firmware_header_v2_0 *cp_hdr_v2_0; 1141 struct amdgpu_firmware_info *info = NULL; 1142 const struct firmware *ucode_fw; 1143 unsigned int fw_size; 1144 1145 switch (ucode_id) { 1146 case AMDGPU_UCODE_ID_CP_PFP: 1147 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1148 adev->gfx.pfp_fw->data; 1149 adev->gfx.pfp_fw_version = 1150 le32_to_cpu(cp_hdr->header.ucode_version); 1151 adev->gfx.pfp_feature_version = 1152 le32_to_cpu(cp_hdr->ucode_feature_version); 1153 ucode_fw = adev->gfx.pfp_fw; 1154 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes); 1155 break; 1156 case AMDGPU_UCODE_ID_CP_RS64_PFP: 1157 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) 1158 adev->gfx.pfp_fw->data; 1159 adev->gfx.pfp_fw_version = 1160 le32_to_cpu(cp_hdr_v2_0->header.ucode_version); 1161 adev->gfx.pfp_feature_version = 1162 le32_to_cpu(cp_hdr_v2_0->ucode_feature_version); 1163 ucode_fw = adev->gfx.pfp_fw; 1164 fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes); 1165 break; 1166 case AMDGPU_UCODE_ID_CP_RS64_PFP_P0_STACK: 1167 case AMDGPU_UCODE_ID_CP_RS64_PFP_P1_STACK: 1168 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) 1169 adev->gfx.pfp_fw->data; 1170 ucode_fw = adev->gfx.pfp_fw; 1171 fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes); 1172 break; 1173 case AMDGPU_UCODE_ID_CP_ME: 1174 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1175 adev->gfx.me_fw->data; 1176 adev->gfx.me_fw_version = 1177 le32_to_cpu(cp_hdr->header.ucode_version); 1178 adev->gfx.me_feature_version = 1179 le32_to_cpu(cp_hdr->ucode_feature_version); 1180 ucode_fw = adev->gfx.me_fw; 1181 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes); 1182 break; 1183 case AMDGPU_UCODE_ID_CP_RS64_ME: 1184 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) 1185 adev->gfx.me_fw->data; 1186 adev->gfx.me_fw_version = 1187 le32_to_cpu(cp_hdr_v2_0->header.ucode_version); 1188 adev->gfx.me_feature_version = 1189 le32_to_cpu(cp_hdr_v2_0->ucode_feature_version); 1190 ucode_fw = adev->gfx.me_fw; 1191 fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes); 1192 break; 1193 case AMDGPU_UCODE_ID_CP_RS64_ME_P0_STACK: 1194 case AMDGPU_UCODE_ID_CP_RS64_ME_P1_STACK: 1195 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) 1196 adev->gfx.me_fw->data; 1197 ucode_fw = adev->gfx.me_fw; 1198 fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes); 1199 break; 1200 case AMDGPU_UCODE_ID_CP_CE: 1201 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1202 adev->gfx.ce_fw->data; 1203 adev->gfx.ce_fw_version = 1204 le32_to_cpu(cp_hdr->header.ucode_version); 1205 adev->gfx.ce_feature_version = 1206 le32_to_cpu(cp_hdr->ucode_feature_version); 1207 ucode_fw = adev->gfx.ce_fw; 1208 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes); 1209 break; 1210 case AMDGPU_UCODE_ID_CP_MEC1: 1211 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1212 adev->gfx.mec_fw->data; 1213 adev->gfx.mec_fw_version = 1214 le32_to_cpu(cp_hdr->header.ucode_version); 1215 adev->gfx.mec_feature_version = 1216 le32_to_cpu(cp_hdr->ucode_feature_version); 1217 ucode_fw = adev->gfx.mec_fw; 1218 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes) - 1219 le32_to_cpu(cp_hdr->jt_size) * 4; 1220 break; 1221 case AMDGPU_UCODE_ID_CP_MEC1_JT: 1222 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1223 adev->gfx.mec_fw->data; 1224 ucode_fw = adev->gfx.mec_fw; 1225 fw_size = le32_to_cpu(cp_hdr->jt_size) * 4; 1226 break; 1227 case AMDGPU_UCODE_ID_CP_MEC2: 1228 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1229 adev->gfx.mec2_fw->data; 1230 adev->gfx.mec2_fw_version = 1231 le32_to_cpu(cp_hdr->header.ucode_version); 1232 adev->gfx.mec2_feature_version = 1233 le32_to_cpu(cp_hdr->ucode_feature_version); 1234 ucode_fw = adev->gfx.mec2_fw; 1235 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes) - 1236 le32_to_cpu(cp_hdr->jt_size) * 4; 1237 break; 1238 case AMDGPU_UCODE_ID_CP_MEC2_JT: 1239 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1240 adev->gfx.mec2_fw->data; 1241 ucode_fw = adev->gfx.mec2_fw; 1242 fw_size = le32_to_cpu(cp_hdr->jt_size) * 4; 1243 break; 1244 case AMDGPU_UCODE_ID_CP_RS64_MEC: 1245 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) 1246 adev->gfx.mec_fw->data; 1247 adev->gfx.mec_fw_version = 1248 le32_to_cpu(cp_hdr_v2_0->header.ucode_version); 1249 adev->gfx.mec_feature_version = 1250 le32_to_cpu(cp_hdr_v2_0->ucode_feature_version); 1251 ucode_fw = adev->gfx.mec_fw; 1252 fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes); 1253 break; 1254 case AMDGPU_UCODE_ID_CP_RS64_MEC_P0_STACK: 1255 case AMDGPU_UCODE_ID_CP_RS64_MEC_P1_STACK: 1256 case AMDGPU_UCODE_ID_CP_RS64_MEC_P2_STACK: 1257 case AMDGPU_UCODE_ID_CP_RS64_MEC_P3_STACK: 1258 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) 1259 adev->gfx.mec_fw->data; 1260 ucode_fw = adev->gfx.mec_fw; 1261 fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes); 1262 break; 1263 default: 1264 dev_err(adev->dev, "Invalid ucode id %u\n", ucode_id); 1265 return; 1266 } 1267 1268 if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) { 1269 info = &adev->firmware.ucode[ucode_id]; 1270 info->ucode_id = ucode_id; 1271 info->fw = ucode_fw; 1272 adev->firmware.fw_size += ALIGN(fw_size, PAGE_SIZE); 1273 } 1274 } 1275 1276 bool amdgpu_gfx_is_master_xcc(struct amdgpu_device *adev, int xcc_id) 1277 { 1278 return !(xcc_id % (adev->gfx.num_xcc_per_xcp ? 1279 adev->gfx.num_xcc_per_xcp : 1)); 1280 } 1281 1282 static ssize_t amdgpu_gfx_get_current_compute_partition(struct device *dev, 1283 struct device_attribute *addr, 1284 char *buf) 1285 { 1286 struct drm_device *ddev = dev_get_drvdata(dev); 1287 struct amdgpu_device *adev = drm_to_adev(ddev); 1288 int mode; 1289 1290 mode = amdgpu_xcp_query_partition_mode(adev->xcp_mgr, 1291 AMDGPU_XCP_FL_NONE); 1292 1293 return sysfs_emit(buf, "%s\n", amdgpu_gfx_compute_mode_desc(mode)); 1294 } 1295 1296 static ssize_t amdgpu_gfx_set_compute_partition(struct device *dev, 1297 struct device_attribute *addr, 1298 const char *buf, size_t count) 1299 { 1300 struct drm_device *ddev = dev_get_drvdata(dev); 1301 struct amdgpu_device *adev = drm_to_adev(ddev); 1302 enum amdgpu_gfx_partition mode; 1303 int ret = 0, num_xcc; 1304 1305 num_xcc = NUM_XCC(adev->gfx.xcc_mask); 1306 if (num_xcc % 2 != 0) 1307 return -EINVAL; 1308 1309 if (!strncasecmp("SPX", buf, strlen("SPX"))) { 1310 mode = AMDGPU_SPX_PARTITION_MODE; 1311 } else if (!strncasecmp("DPX", buf, strlen("DPX"))) { 1312 /* 1313 * DPX mode needs AIDs to be in multiple of 2. 1314 * Each AID connects 2 XCCs. 1315 */ 1316 if (num_xcc%4) 1317 return -EINVAL; 1318 mode = AMDGPU_DPX_PARTITION_MODE; 1319 } else if (!strncasecmp("TPX", buf, strlen("TPX"))) { 1320 if (num_xcc != 6) 1321 return -EINVAL; 1322 mode = AMDGPU_TPX_PARTITION_MODE; 1323 } else if (!strncasecmp("QPX", buf, strlen("QPX"))) { 1324 if (num_xcc != 8) 1325 return -EINVAL; 1326 mode = AMDGPU_QPX_PARTITION_MODE; 1327 } else if (!strncasecmp("CPX", buf, strlen("CPX"))) { 1328 mode = AMDGPU_CPX_PARTITION_MODE; 1329 } else { 1330 return -EINVAL; 1331 } 1332 1333 ret = amdgpu_xcp_switch_partition_mode(adev->xcp_mgr, mode); 1334 1335 if (ret) 1336 return ret; 1337 1338 return count; 1339 } 1340 1341 static ssize_t amdgpu_gfx_get_available_compute_partition(struct device *dev, 1342 struct device_attribute *addr, 1343 char *buf) 1344 { 1345 struct drm_device *ddev = dev_get_drvdata(dev); 1346 struct amdgpu_device *adev = drm_to_adev(ddev); 1347 char *supported_partition; 1348 1349 /* TBD */ 1350 switch (NUM_XCC(adev->gfx.xcc_mask)) { 1351 case 8: 1352 supported_partition = "SPX, DPX, QPX, CPX"; 1353 break; 1354 case 6: 1355 supported_partition = "SPX, TPX, CPX"; 1356 break; 1357 case 4: 1358 supported_partition = "SPX, DPX, CPX"; 1359 break; 1360 /* this seems only existing in emulation phase */ 1361 case 2: 1362 supported_partition = "SPX, CPX"; 1363 break; 1364 default: 1365 supported_partition = "Not supported"; 1366 break; 1367 } 1368 1369 return sysfs_emit(buf, "%s\n", supported_partition); 1370 } 1371 1372 static DEVICE_ATTR(current_compute_partition, 0644, 1373 amdgpu_gfx_get_current_compute_partition, 1374 amdgpu_gfx_set_compute_partition); 1375 1376 static DEVICE_ATTR(available_compute_partition, 0444, 1377 amdgpu_gfx_get_available_compute_partition, NULL); 1378 1379 int amdgpu_gfx_sysfs_init(struct amdgpu_device *adev) 1380 { 1381 int r; 1382 1383 r = device_create_file(adev->dev, &dev_attr_current_compute_partition); 1384 if (r) 1385 return r; 1386 1387 r = device_create_file(adev->dev, &dev_attr_available_compute_partition); 1388 1389 return r; 1390 } 1391 1392 void amdgpu_gfx_sysfs_fini(struct amdgpu_device *adev) 1393 { 1394 device_remove_file(adev->dev, &dev_attr_current_compute_partition); 1395 device_remove_file(adev->dev, &dev_attr_available_compute_partition); 1396 } 1397