1 /* 2 * Copyright 2014 Advanced Micro Devices, Inc. 3 * Copyright 2008 Red Hat Inc. 4 * Copyright 2009 Jerome Glisse. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 * 24 */ 25 26 #include <linux/firmware.h> 27 #include "amdgpu.h" 28 #include "amdgpu_gfx.h" 29 #include "amdgpu_rlc.h" 30 #include "amdgpu_ras.h" 31 #include "amdgpu_xcp.h" 32 #include "amdgpu_xgmi.h" 33 34 /* delay 0.1 second to enable gfx off feature */ 35 #define GFX_OFF_DELAY_ENABLE msecs_to_jiffies(100) 36 37 #define GFX_OFF_NO_DELAY 0 38 39 /* 40 * GPU GFX IP block helpers function. 41 */ 42 43 int amdgpu_gfx_mec_queue_to_bit(struct amdgpu_device *adev, int mec, 44 int pipe, int queue) 45 { 46 int bit = 0; 47 48 bit += mec * adev->gfx.mec.num_pipe_per_mec 49 * adev->gfx.mec.num_queue_per_pipe; 50 bit += pipe * adev->gfx.mec.num_queue_per_pipe; 51 bit += queue; 52 53 return bit; 54 } 55 56 void amdgpu_queue_mask_bit_to_mec_queue(struct amdgpu_device *adev, int bit, 57 int *mec, int *pipe, int *queue) 58 { 59 *queue = bit % adev->gfx.mec.num_queue_per_pipe; 60 *pipe = (bit / adev->gfx.mec.num_queue_per_pipe) 61 % adev->gfx.mec.num_pipe_per_mec; 62 *mec = (bit / adev->gfx.mec.num_queue_per_pipe) 63 / adev->gfx.mec.num_pipe_per_mec; 64 65 } 66 67 bool amdgpu_gfx_is_mec_queue_enabled(struct amdgpu_device *adev, 68 int xcc_id, int mec, int pipe, int queue) 69 { 70 return test_bit(amdgpu_gfx_mec_queue_to_bit(adev, mec, pipe, queue), 71 adev->gfx.mec_bitmap[xcc_id].queue_bitmap); 72 } 73 74 int amdgpu_gfx_me_queue_to_bit(struct amdgpu_device *adev, 75 int me, int pipe, int queue) 76 { 77 int bit = 0; 78 79 bit += me * adev->gfx.me.num_pipe_per_me 80 * adev->gfx.me.num_queue_per_pipe; 81 bit += pipe * adev->gfx.me.num_queue_per_pipe; 82 bit += queue; 83 84 return bit; 85 } 86 87 void amdgpu_gfx_bit_to_me_queue(struct amdgpu_device *adev, int bit, 88 int *me, int *pipe, int *queue) 89 { 90 *queue = bit % adev->gfx.me.num_queue_per_pipe; 91 *pipe = (bit / adev->gfx.me.num_queue_per_pipe) 92 % adev->gfx.me.num_pipe_per_me; 93 *me = (bit / adev->gfx.me.num_queue_per_pipe) 94 / adev->gfx.me.num_pipe_per_me; 95 } 96 97 bool amdgpu_gfx_is_me_queue_enabled(struct amdgpu_device *adev, 98 int me, int pipe, int queue) 99 { 100 return test_bit(amdgpu_gfx_me_queue_to_bit(adev, me, pipe, queue), 101 adev->gfx.me.queue_bitmap); 102 } 103 104 /** 105 * amdgpu_gfx_parse_disable_cu - Parse the disable_cu module parameter 106 * 107 * @mask: array in which the per-shader array disable masks will be stored 108 * @max_se: number of SEs 109 * @max_sh: number of SHs 110 * 111 * The bitmask of CUs to be disabled in the shader array determined by se and 112 * sh is stored in mask[se * max_sh + sh]. 113 */ 114 void amdgpu_gfx_parse_disable_cu(unsigned int *mask, unsigned int max_se, unsigned int max_sh) 115 { 116 unsigned int se, sh, cu; 117 const char *p; 118 119 memset(mask, 0, sizeof(*mask) * max_se * max_sh); 120 121 if (!amdgpu_disable_cu || !*amdgpu_disable_cu) 122 return; 123 124 p = amdgpu_disable_cu; 125 for (;;) { 126 char *next; 127 int ret = sscanf(p, "%u.%u.%u", &se, &sh, &cu); 128 129 if (ret < 3) { 130 DRM_ERROR("amdgpu: could not parse disable_cu\n"); 131 return; 132 } 133 134 if (se < max_se && sh < max_sh && cu < 16) { 135 DRM_INFO("amdgpu: disabling CU %u.%u.%u\n", se, sh, cu); 136 mask[se * max_sh + sh] |= 1u << cu; 137 } else { 138 DRM_ERROR("amdgpu: disable_cu %u.%u.%u is out of range\n", 139 se, sh, cu); 140 } 141 142 next = strchr(p, ','); 143 if (!next) 144 break; 145 p = next + 1; 146 } 147 } 148 149 static bool amdgpu_gfx_is_graphics_multipipe_capable(struct amdgpu_device *adev) 150 { 151 return amdgpu_async_gfx_ring && adev->gfx.me.num_pipe_per_me > 1; 152 } 153 154 static bool amdgpu_gfx_is_compute_multipipe_capable(struct amdgpu_device *adev) 155 { 156 if (amdgpu_compute_multipipe != -1) { 157 DRM_INFO("amdgpu: forcing compute pipe policy %d\n", 158 amdgpu_compute_multipipe); 159 return amdgpu_compute_multipipe == 1; 160 } 161 162 if (amdgpu_ip_version(adev, GC_HWIP, 0) > IP_VERSION(9, 0, 0)) 163 return true; 164 165 /* FIXME: spreading the queues across pipes causes perf regressions 166 * on POLARIS11 compute workloads */ 167 if (adev->asic_type == CHIP_POLARIS11) 168 return false; 169 170 return adev->gfx.mec.num_mec > 1; 171 } 172 173 bool amdgpu_gfx_is_high_priority_graphics_queue(struct amdgpu_device *adev, 174 struct amdgpu_ring *ring) 175 { 176 int queue = ring->queue; 177 int pipe = ring->pipe; 178 179 /* Policy: use pipe1 queue0 as high priority graphics queue if we 180 * have more than one gfx pipe. 181 */ 182 if (amdgpu_gfx_is_graphics_multipipe_capable(adev) && 183 adev->gfx.num_gfx_rings > 1 && pipe == 1 && queue == 0) { 184 int me = ring->me; 185 int bit; 186 187 bit = amdgpu_gfx_me_queue_to_bit(adev, me, pipe, queue); 188 if (ring == &adev->gfx.gfx_ring[bit]) 189 return true; 190 } 191 192 return false; 193 } 194 195 bool amdgpu_gfx_is_high_priority_compute_queue(struct amdgpu_device *adev, 196 struct amdgpu_ring *ring) 197 { 198 /* Policy: use 1st queue as high priority compute queue if we 199 * have more than one compute queue. 200 */ 201 if (adev->gfx.num_compute_rings > 1 && 202 ring == &adev->gfx.compute_ring[0]) 203 return true; 204 205 return false; 206 } 207 208 void amdgpu_gfx_compute_queue_acquire(struct amdgpu_device *adev) 209 { 210 int i, j, queue, pipe; 211 bool multipipe_policy = amdgpu_gfx_is_compute_multipipe_capable(adev); 212 int max_queues_per_mec = min(adev->gfx.mec.num_pipe_per_mec * 213 adev->gfx.mec.num_queue_per_pipe, 214 adev->gfx.num_compute_rings); 215 int num_xcc = adev->gfx.xcc_mask ? NUM_XCC(adev->gfx.xcc_mask) : 1; 216 217 if (multipipe_policy) { 218 /* policy: make queues evenly cross all pipes on MEC1 only 219 * for multiple xcc, just use the original policy for simplicity */ 220 for (j = 0; j < num_xcc; j++) { 221 for (i = 0; i < max_queues_per_mec; i++) { 222 pipe = i % adev->gfx.mec.num_pipe_per_mec; 223 queue = (i / adev->gfx.mec.num_pipe_per_mec) % 224 adev->gfx.mec.num_queue_per_pipe; 225 226 set_bit(pipe * adev->gfx.mec.num_queue_per_pipe + queue, 227 adev->gfx.mec_bitmap[j].queue_bitmap); 228 } 229 } 230 } else { 231 /* policy: amdgpu owns all queues in the given pipe */ 232 for (j = 0; j < num_xcc; j++) { 233 for (i = 0; i < max_queues_per_mec; ++i) 234 set_bit(i, adev->gfx.mec_bitmap[j].queue_bitmap); 235 } 236 } 237 238 for (j = 0; j < num_xcc; j++) { 239 dev_dbg(adev->dev, "mec queue bitmap weight=%d\n", 240 bitmap_weight(adev->gfx.mec_bitmap[j].queue_bitmap, AMDGPU_MAX_COMPUTE_QUEUES)); 241 } 242 } 243 244 void amdgpu_gfx_graphics_queue_acquire(struct amdgpu_device *adev) 245 { 246 int i, queue, pipe; 247 bool multipipe_policy = amdgpu_gfx_is_graphics_multipipe_capable(adev); 248 int max_queues_per_me = adev->gfx.me.num_pipe_per_me * 249 adev->gfx.me.num_queue_per_pipe; 250 251 if (multipipe_policy) { 252 /* policy: amdgpu owns the first queue per pipe at this stage 253 * will extend to mulitple queues per pipe later */ 254 for (i = 0; i < max_queues_per_me; i++) { 255 pipe = i % adev->gfx.me.num_pipe_per_me; 256 queue = (i / adev->gfx.me.num_pipe_per_me) % 257 adev->gfx.me.num_queue_per_pipe; 258 259 set_bit(pipe * adev->gfx.me.num_queue_per_pipe + queue, 260 adev->gfx.me.queue_bitmap); 261 } 262 } else { 263 for (i = 0; i < max_queues_per_me; ++i) 264 set_bit(i, adev->gfx.me.queue_bitmap); 265 } 266 267 /* update the number of active graphics rings */ 268 adev->gfx.num_gfx_rings = 269 bitmap_weight(adev->gfx.me.queue_bitmap, AMDGPU_MAX_GFX_QUEUES); 270 } 271 272 static int amdgpu_gfx_kiq_acquire(struct amdgpu_device *adev, 273 struct amdgpu_ring *ring, int xcc_id) 274 { 275 int queue_bit; 276 int mec, pipe, queue; 277 278 queue_bit = adev->gfx.mec.num_mec 279 * adev->gfx.mec.num_pipe_per_mec 280 * adev->gfx.mec.num_queue_per_pipe; 281 282 while (--queue_bit >= 0) { 283 if (test_bit(queue_bit, adev->gfx.mec_bitmap[xcc_id].queue_bitmap)) 284 continue; 285 286 amdgpu_queue_mask_bit_to_mec_queue(adev, queue_bit, &mec, &pipe, &queue); 287 288 /* 289 * 1. Using pipes 2/3 from MEC 2 seems cause problems. 290 * 2. It must use queue id 0, because CGPG_IDLE/SAVE/LOAD/RUN 291 * only can be issued on queue 0. 292 */ 293 if ((mec == 1 && pipe > 1) || queue != 0) 294 continue; 295 296 ring->me = mec + 1; 297 ring->pipe = pipe; 298 ring->queue = queue; 299 300 return 0; 301 } 302 303 dev_err(adev->dev, "Failed to find a queue for KIQ\n"); 304 return -EINVAL; 305 } 306 307 int amdgpu_gfx_kiq_init_ring(struct amdgpu_device *adev, int xcc_id) 308 { 309 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 310 struct amdgpu_irq_src *irq = &kiq->irq; 311 struct amdgpu_ring *ring = &kiq->ring; 312 int r = 0; 313 314 spin_lock_init(&kiq->ring_lock); 315 316 ring->adev = NULL; 317 ring->ring_obj = NULL; 318 ring->use_doorbell = true; 319 ring->xcc_id = xcc_id; 320 ring->vm_hub = AMDGPU_GFXHUB(xcc_id); 321 ring->doorbell_index = 322 (adev->doorbell_index.kiq + 323 xcc_id * adev->doorbell_index.xcc_doorbell_range) 324 << 1; 325 326 r = amdgpu_gfx_kiq_acquire(adev, ring, xcc_id); 327 if (r) 328 return r; 329 330 ring->eop_gpu_addr = kiq->eop_gpu_addr; 331 ring->no_scheduler = true; 332 snprintf(ring->name, sizeof(ring->name), "kiq_%d.%d.%d.%d", 333 xcc_id, ring->me, ring->pipe, ring->queue); 334 r = amdgpu_ring_init(adev, ring, 1024, irq, AMDGPU_CP_KIQ_IRQ_DRIVER0, 335 AMDGPU_RING_PRIO_DEFAULT, NULL); 336 if (r) 337 dev_warn(adev->dev, "(%d) failed to init kiq ring\n", r); 338 339 return r; 340 } 341 342 void amdgpu_gfx_kiq_free_ring(struct amdgpu_ring *ring) 343 { 344 amdgpu_ring_fini(ring); 345 } 346 347 void amdgpu_gfx_kiq_fini(struct amdgpu_device *adev, int xcc_id) 348 { 349 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 350 351 amdgpu_bo_free_kernel(&kiq->eop_obj, &kiq->eop_gpu_addr, NULL); 352 } 353 354 int amdgpu_gfx_kiq_init(struct amdgpu_device *adev, 355 unsigned int hpd_size, int xcc_id) 356 { 357 int r; 358 u32 *hpd; 359 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 360 361 r = amdgpu_bo_create_kernel(adev, hpd_size, PAGE_SIZE, 362 AMDGPU_GEM_DOMAIN_GTT, &kiq->eop_obj, 363 &kiq->eop_gpu_addr, (void **)&hpd); 364 if (r) { 365 dev_warn(adev->dev, "failed to create KIQ bo (%d).\n", r); 366 return r; 367 } 368 369 memset(hpd, 0, hpd_size); 370 371 r = amdgpu_bo_reserve(kiq->eop_obj, true); 372 if (unlikely(r != 0)) 373 dev_warn(adev->dev, "(%d) reserve kiq eop bo failed\n", r); 374 amdgpu_bo_kunmap(kiq->eop_obj); 375 amdgpu_bo_unreserve(kiq->eop_obj); 376 377 return 0; 378 } 379 380 /* create MQD for each compute/gfx queue */ 381 int amdgpu_gfx_mqd_sw_init(struct amdgpu_device *adev, 382 unsigned int mqd_size, int xcc_id) 383 { 384 int r, i, j; 385 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 386 struct amdgpu_ring *ring = &kiq->ring; 387 u32 domain = AMDGPU_GEM_DOMAIN_GTT; 388 389 #if !defined(CONFIG_ARM) && !defined(CONFIG_ARM64) 390 /* Only enable on gfx10 and 11 for now to avoid changing behavior on older chips */ 391 if (amdgpu_ip_version(adev, GC_HWIP, 0) >= IP_VERSION(10, 0, 0)) 392 domain |= AMDGPU_GEM_DOMAIN_VRAM; 393 #endif 394 395 /* create MQD for KIQ */ 396 if (!adev->enable_mes_kiq && !ring->mqd_obj) { 397 /* originaly the KIQ MQD is put in GTT domain, but for SRIOV VRAM domain is a must 398 * otherwise hypervisor trigger SAVE_VF fail after driver unloaded which mean MQD 399 * deallocated and gart_unbind, to strict diverage we decide to use VRAM domain for 400 * KIQ MQD no matter SRIOV or Bare-metal 401 */ 402 r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE, 403 AMDGPU_GEM_DOMAIN_VRAM | 404 AMDGPU_GEM_DOMAIN_GTT, 405 &ring->mqd_obj, 406 &ring->mqd_gpu_addr, 407 &ring->mqd_ptr); 408 if (r) { 409 dev_warn(adev->dev, "failed to create ring mqd ob (%d)", r); 410 return r; 411 } 412 413 /* prepare MQD backup */ 414 kiq->mqd_backup = kmalloc(mqd_size, GFP_KERNEL); 415 if (!kiq->mqd_backup) { 416 dev_warn(adev->dev, 417 "no memory to create MQD backup for ring %s\n", ring->name); 418 return -ENOMEM; 419 } 420 } 421 422 if (adev->asic_type >= CHIP_NAVI10 && amdgpu_async_gfx_ring) { 423 /* create MQD for each KGQ */ 424 for (i = 0; i < adev->gfx.num_gfx_rings; i++) { 425 ring = &adev->gfx.gfx_ring[i]; 426 if (!ring->mqd_obj) { 427 r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE, 428 domain, &ring->mqd_obj, 429 &ring->mqd_gpu_addr, &ring->mqd_ptr); 430 if (r) { 431 dev_warn(adev->dev, "failed to create ring mqd bo (%d)", r); 432 return r; 433 } 434 435 ring->mqd_size = mqd_size; 436 /* prepare MQD backup */ 437 adev->gfx.me.mqd_backup[i] = kmalloc(mqd_size, GFP_KERNEL); 438 if (!adev->gfx.me.mqd_backup[i]) { 439 dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name); 440 return -ENOMEM; 441 } 442 } 443 } 444 } 445 446 /* create MQD for each KCQ */ 447 for (i = 0; i < adev->gfx.num_compute_rings; i++) { 448 j = i + xcc_id * adev->gfx.num_compute_rings; 449 ring = &adev->gfx.compute_ring[j]; 450 if (!ring->mqd_obj) { 451 r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE, 452 domain, &ring->mqd_obj, 453 &ring->mqd_gpu_addr, &ring->mqd_ptr); 454 if (r) { 455 dev_warn(adev->dev, "failed to create ring mqd bo (%d)", r); 456 return r; 457 } 458 459 ring->mqd_size = mqd_size; 460 /* prepare MQD backup */ 461 adev->gfx.mec.mqd_backup[j] = kmalloc(mqd_size, GFP_KERNEL); 462 if (!adev->gfx.mec.mqd_backup[j]) { 463 dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name); 464 return -ENOMEM; 465 } 466 } 467 } 468 469 return 0; 470 } 471 472 void amdgpu_gfx_mqd_sw_fini(struct amdgpu_device *adev, int xcc_id) 473 { 474 struct amdgpu_ring *ring = NULL; 475 int i, j; 476 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 477 478 if (adev->asic_type >= CHIP_NAVI10 && amdgpu_async_gfx_ring) { 479 for (i = 0; i < adev->gfx.num_gfx_rings; i++) { 480 ring = &adev->gfx.gfx_ring[i]; 481 kfree(adev->gfx.me.mqd_backup[i]); 482 amdgpu_bo_free_kernel(&ring->mqd_obj, 483 &ring->mqd_gpu_addr, 484 &ring->mqd_ptr); 485 } 486 } 487 488 for (i = 0; i < adev->gfx.num_compute_rings; i++) { 489 j = i + xcc_id * adev->gfx.num_compute_rings; 490 ring = &adev->gfx.compute_ring[j]; 491 kfree(adev->gfx.mec.mqd_backup[j]); 492 amdgpu_bo_free_kernel(&ring->mqd_obj, 493 &ring->mqd_gpu_addr, 494 &ring->mqd_ptr); 495 } 496 497 ring = &kiq->ring; 498 kfree(kiq->mqd_backup); 499 amdgpu_bo_free_kernel(&ring->mqd_obj, 500 &ring->mqd_gpu_addr, 501 &ring->mqd_ptr); 502 } 503 504 int amdgpu_gfx_disable_kcq(struct amdgpu_device *adev, int xcc_id) 505 { 506 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 507 struct amdgpu_ring *kiq_ring = &kiq->ring; 508 struct amdgpu_hive_info *hive; 509 struct amdgpu_ras *ras; 510 int hive_ras_recovery = 0; 511 int i, r = 0; 512 int j; 513 514 if (!kiq->pmf || !kiq->pmf->kiq_unmap_queues) 515 return -EINVAL; 516 517 spin_lock(&kiq->ring_lock); 518 if (amdgpu_ring_alloc(kiq_ring, kiq->pmf->unmap_queues_size * 519 adev->gfx.num_compute_rings)) { 520 spin_unlock(&kiq->ring_lock); 521 return -ENOMEM; 522 } 523 524 for (i = 0; i < adev->gfx.num_compute_rings; i++) { 525 j = i + xcc_id * adev->gfx.num_compute_rings; 526 kiq->pmf->kiq_unmap_queues(kiq_ring, 527 &adev->gfx.compute_ring[j], 528 RESET_QUEUES, 0, 0); 529 } 530 531 /** 532 * This is workaround: only skip kiq_ring test 533 * during ras recovery in suspend stage for gfx9.4.3 534 */ 535 hive = amdgpu_get_xgmi_hive(adev); 536 if (hive) { 537 hive_ras_recovery = atomic_read(&hive->ras_recovery); 538 amdgpu_put_xgmi_hive(hive); 539 } 540 541 ras = amdgpu_ras_get_context(adev); 542 if ((amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 3) || 543 amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 4)) && 544 ras && (atomic_read(&ras->in_recovery) || hive_ras_recovery)) { 545 spin_unlock(&kiq->ring_lock); 546 return 0; 547 } 548 549 if (kiq_ring->sched.ready && !adev->job_hang) 550 r = amdgpu_ring_test_helper(kiq_ring); 551 spin_unlock(&kiq->ring_lock); 552 553 return r; 554 } 555 556 int amdgpu_gfx_disable_kgq(struct amdgpu_device *adev, int xcc_id) 557 { 558 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 559 struct amdgpu_ring *kiq_ring = &kiq->ring; 560 int i, r = 0; 561 int j; 562 563 if (!kiq->pmf || !kiq->pmf->kiq_unmap_queues) 564 return -EINVAL; 565 566 spin_lock(&kiq->ring_lock); 567 if (amdgpu_gfx_is_master_xcc(adev, xcc_id)) { 568 if (amdgpu_ring_alloc(kiq_ring, kiq->pmf->unmap_queues_size * 569 adev->gfx.num_gfx_rings)) { 570 spin_unlock(&kiq->ring_lock); 571 return -ENOMEM; 572 } 573 574 for (i = 0; i < adev->gfx.num_gfx_rings; i++) { 575 j = i + xcc_id * adev->gfx.num_gfx_rings; 576 kiq->pmf->kiq_unmap_queues(kiq_ring, 577 &adev->gfx.gfx_ring[j], 578 PREEMPT_QUEUES, 0, 0); 579 } 580 } 581 582 if (adev->gfx.kiq[0].ring.sched.ready && !adev->job_hang) 583 r = amdgpu_ring_test_helper(kiq_ring); 584 spin_unlock(&kiq->ring_lock); 585 586 return r; 587 } 588 589 int amdgpu_queue_mask_bit_to_set_resource_bit(struct amdgpu_device *adev, 590 int queue_bit) 591 { 592 int mec, pipe, queue; 593 int set_resource_bit = 0; 594 595 amdgpu_queue_mask_bit_to_mec_queue(adev, queue_bit, &mec, &pipe, &queue); 596 597 set_resource_bit = mec * 4 * 8 + pipe * 8 + queue; 598 599 return set_resource_bit; 600 } 601 602 int amdgpu_gfx_enable_kcq(struct amdgpu_device *adev, int xcc_id) 603 { 604 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 605 struct amdgpu_ring *kiq_ring = &kiq->ring; 606 uint64_t queue_mask = 0; 607 int r, i, j; 608 609 if (!kiq->pmf || !kiq->pmf->kiq_map_queues || !kiq->pmf->kiq_set_resources) 610 return -EINVAL; 611 612 for (i = 0; i < AMDGPU_MAX_COMPUTE_QUEUES; ++i) { 613 if (!test_bit(i, adev->gfx.mec_bitmap[xcc_id].queue_bitmap)) 614 continue; 615 616 /* This situation may be hit in the future if a new HW 617 * generation exposes more than 64 queues. If so, the 618 * definition of queue_mask needs updating */ 619 if (WARN_ON(i > (sizeof(queue_mask)*8))) { 620 DRM_ERROR("Invalid KCQ enabled: %d\n", i); 621 break; 622 } 623 624 queue_mask |= (1ull << amdgpu_queue_mask_bit_to_set_resource_bit(adev, i)); 625 } 626 627 amdgpu_device_flush_hdp(adev, NULL); 628 629 if (adev->enable_mes) 630 queue_mask = ~0ULL; 631 632 DRM_INFO("kiq ring mec %d pipe %d q %d\n", kiq_ring->me, kiq_ring->pipe, 633 kiq_ring->queue); 634 635 spin_lock(&kiq->ring_lock); 636 r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->map_queues_size * 637 adev->gfx.num_compute_rings + 638 kiq->pmf->set_resources_size); 639 if (r) { 640 DRM_ERROR("Failed to lock KIQ (%d).\n", r); 641 spin_unlock(&kiq->ring_lock); 642 return r; 643 } 644 645 kiq->pmf->kiq_set_resources(kiq_ring, queue_mask); 646 647 if (!adev->enable_mes) { 648 for (i = 0; i < adev->gfx.num_compute_rings; i++) { 649 j = i + xcc_id * adev->gfx.num_compute_rings; 650 kiq->pmf->kiq_map_queues(kiq_ring, 651 &adev->gfx.compute_ring[j]); 652 } 653 } 654 655 r = amdgpu_ring_test_helper(kiq_ring); 656 spin_unlock(&kiq->ring_lock); 657 if (r) 658 DRM_ERROR("KCQ enable failed\n"); 659 660 if (adev->enable_mes || adev->enable_uni_mes) { 661 for (i = 0; i < adev->gfx.num_compute_rings; i++) { 662 j = i + xcc_id * adev->gfx.num_compute_rings; 663 r = amdgpu_mes_map_legacy_queue(adev, 664 &adev->gfx.compute_ring[j]); 665 if (r) { 666 DRM_ERROR("failed to map compute queue\n"); 667 return r; 668 } 669 } 670 671 return 0; 672 } 673 674 return r; 675 } 676 677 int amdgpu_gfx_enable_kgq(struct amdgpu_device *adev, int xcc_id) 678 { 679 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 680 struct amdgpu_ring *kiq_ring = &kiq->ring; 681 int r, i, j; 682 683 if (!kiq->pmf || !kiq->pmf->kiq_map_queues) 684 return -EINVAL; 685 686 amdgpu_device_flush_hdp(adev, NULL); 687 688 if (adev->enable_mes || adev->enable_uni_mes) { 689 for (i = 0; i < adev->gfx.num_gfx_rings; i++) { 690 j = i + xcc_id * adev->gfx.num_gfx_rings; 691 r = amdgpu_mes_map_legacy_queue(adev, 692 &adev->gfx.gfx_ring[j]); 693 if (r) { 694 DRM_ERROR("failed to map gfx queue\n"); 695 return r; 696 } 697 } 698 699 return 0; 700 } 701 702 spin_lock(&kiq->ring_lock); 703 /* No need to map kcq on the slave */ 704 if (amdgpu_gfx_is_master_xcc(adev, xcc_id)) { 705 r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->map_queues_size * 706 adev->gfx.num_gfx_rings); 707 if (r) { 708 DRM_ERROR("Failed to lock KIQ (%d).\n", r); 709 spin_unlock(&kiq->ring_lock); 710 return r; 711 } 712 713 for (i = 0; i < adev->gfx.num_gfx_rings; i++) { 714 j = i + xcc_id * adev->gfx.num_gfx_rings; 715 kiq->pmf->kiq_map_queues(kiq_ring, 716 &adev->gfx.gfx_ring[j]); 717 } 718 } 719 720 r = amdgpu_ring_test_helper(kiq_ring); 721 spin_unlock(&kiq->ring_lock); 722 if (r) 723 DRM_ERROR("KGQ enable failed\n"); 724 725 return r; 726 } 727 728 /* amdgpu_gfx_off_ctrl - Handle gfx off feature enable/disable 729 * 730 * @adev: amdgpu_device pointer 731 * @bool enable true: enable gfx off feature, false: disable gfx off feature 732 * 733 * 1. gfx off feature will be enabled by gfx ip after gfx cg gp enabled. 734 * 2. other client can send request to disable gfx off feature, the request should be honored. 735 * 3. other client can cancel their request of disable gfx off feature 736 * 4. other client should not send request to enable gfx off feature before disable gfx off feature. 737 */ 738 739 void amdgpu_gfx_off_ctrl(struct amdgpu_device *adev, bool enable) 740 { 741 unsigned long delay = GFX_OFF_DELAY_ENABLE; 742 743 if (!(adev->pm.pp_feature & PP_GFXOFF_MASK)) 744 return; 745 746 mutex_lock(&adev->gfx.gfx_off_mutex); 747 748 if (enable) { 749 /* If the count is already 0, it means there's an imbalance bug somewhere. 750 * Note that the bug may be in a different caller than the one which triggers the 751 * WARN_ON_ONCE. 752 */ 753 if (WARN_ON_ONCE(adev->gfx.gfx_off_req_count == 0)) 754 goto unlock; 755 756 adev->gfx.gfx_off_req_count--; 757 758 if (adev->gfx.gfx_off_req_count == 0 && 759 !adev->gfx.gfx_off_state) { 760 /* If going to s2idle, no need to wait */ 761 if (adev->in_s0ix) { 762 if (!amdgpu_dpm_set_powergating_by_smu(adev, 763 AMD_IP_BLOCK_TYPE_GFX, true)) 764 adev->gfx.gfx_off_state = true; 765 } else { 766 schedule_delayed_work(&adev->gfx.gfx_off_delay_work, 767 delay); 768 } 769 } 770 } else { 771 if (adev->gfx.gfx_off_req_count == 0) { 772 cancel_delayed_work_sync(&adev->gfx.gfx_off_delay_work); 773 774 if (adev->gfx.gfx_off_state && 775 !amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_GFX, false)) { 776 adev->gfx.gfx_off_state = false; 777 778 if (adev->gfx.funcs->init_spm_golden) { 779 dev_dbg(adev->dev, 780 "GFXOFF is disabled, re-init SPM golden settings\n"); 781 amdgpu_gfx_init_spm_golden(adev); 782 } 783 } 784 } 785 786 adev->gfx.gfx_off_req_count++; 787 } 788 789 unlock: 790 mutex_unlock(&adev->gfx.gfx_off_mutex); 791 } 792 793 int amdgpu_set_gfx_off_residency(struct amdgpu_device *adev, bool value) 794 { 795 int r = 0; 796 797 mutex_lock(&adev->gfx.gfx_off_mutex); 798 799 r = amdgpu_dpm_set_residency_gfxoff(adev, value); 800 801 mutex_unlock(&adev->gfx.gfx_off_mutex); 802 803 return r; 804 } 805 806 int amdgpu_get_gfx_off_residency(struct amdgpu_device *adev, u32 *value) 807 { 808 int r = 0; 809 810 mutex_lock(&adev->gfx.gfx_off_mutex); 811 812 r = amdgpu_dpm_get_residency_gfxoff(adev, value); 813 814 mutex_unlock(&adev->gfx.gfx_off_mutex); 815 816 return r; 817 } 818 819 int amdgpu_get_gfx_off_entrycount(struct amdgpu_device *adev, u64 *value) 820 { 821 int r = 0; 822 823 mutex_lock(&adev->gfx.gfx_off_mutex); 824 825 r = amdgpu_dpm_get_entrycount_gfxoff(adev, value); 826 827 mutex_unlock(&adev->gfx.gfx_off_mutex); 828 829 return r; 830 } 831 832 int amdgpu_get_gfx_off_status(struct amdgpu_device *adev, uint32_t *value) 833 { 834 835 int r = 0; 836 837 mutex_lock(&adev->gfx.gfx_off_mutex); 838 839 r = amdgpu_dpm_get_status_gfxoff(adev, value); 840 841 mutex_unlock(&adev->gfx.gfx_off_mutex); 842 843 return r; 844 } 845 846 int amdgpu_gfx_ras_late_init(struct amdgpu_device *adev, struct ras_common_if *ras_block) 847 { 848 int r; 849 850 if (amdgpu_ras_is_supported(adev, ras_block->block)) { 851 if (!amdgpu_persistent_edc_harvesting_supported(adev)) 852 amdgpu_ras_reset_error_status(adev, AMDGPU_RAS_BLOCK__GFX); 853 854 r = amdgpu_ras_block_late_init(adev, ras_block); 855 if (r) 856 return r; 857 858 if (adev->gfx.cp_ecc_error_irq.funcs) { 859 r = amdgpu_irq_get(adev, &adev->gfx.cp_ecc_error_irq, 0); 860 if (r) 861 goto late_fini; 862 } 863 } else { 864 amdgpu_ras_feature_enable_on_boot(adev, ras_block, 0); 865 } 866 867 return 0; 868 late_fini: 869 amdgpu_ras_block_late_fini(adev, ras_block); 870 return r; 871 } 872 873 int amdgpu_gfx_ras_sw_init(struct amdgpu_device *adev) 874 { 875 int err = 0; 876 struct amdgpu_gfx_ras *ras = NULL; 877 878 /* adev->gfx.ras is NULL, which means gfx does not 879 * support ras function, then do nothing here. 880 */ 881 if (!adev->gfx.ras) 882 return 0; 883 884 ras = adev->gfx.ras; 885 886 err = amdgpu_ras_register_ras_block(adev, &ras->ras_block); 887 if (err) { 888 dev_err(adev->dev, "Failed to register gfx ras block!\n"); 889 return err; 890 } 891 892 strcpy(ras->ras_block.ras_comm.name, "gfx"); 893 ras->ras_block.ras_comm.block = AMDGPU_RAS_BLOCK__GFX; 894 ras->ras_block.ras_comm.type = AMDGPU_RAS_ERROR__MULTI_UNCORRECTABLE; 895 adev->gfx.ras_if = &ras->ras_block.ras_comm; 896 897 /* If not define special ras_late_init function, use gfx default ras_late_init */ 898 if (!ras->ras_block.ras_late_init) 899 ras->ras_block.ras_late_init = amdgpu_gfx_ras_late_init; 900 901 /* If not defined special ras_cb function, use default ras_cb */ 902 if (!ras->ras_block.ras_cb) 903 ras->ras_block.ras_cb = amdgpu_gfx_process_ras_data_cb; 904 905 return 0; 906 } 907 908 int amdgpu_gfx_poison_consumption_handler(struct amdgpu_device *adev, 909 struct amdgpu_iv_entry *entry) 910 { 911 if (adev->gfx.ras && adev->gfx.ras->poison_consumption_handler) 912 return adev->gfx.ras->poison_consumption_handler(adev, entry); 913 914 return 0; 915 } 916 917 int amdgpu_gfx_process_ras_data_cb(struct amdgpu_device *adev, 918 void *err_data, 919 struct amdgpu_iv_entry *entry) 920 { 921 /* TODO ue will trigger an interrupt. 922 * 923 * When “Full RAS” is enabled, the per-IP interrupt sources should 924 * be disabled and the driver should only look for the aggregated 925 * interrupt via sync flood 926 */ 927 if (!amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__GFX)) { 928 kgd2kfd_set_sram_ecc_flag(adev->kfd.dev); 929 if (adev->gfx.ras && adev->gfx.ras->ras_block.hw_ops && 930 adev->gfx.ras->ras_block.hw_ops->query_ras_error_count) 931 adev->gfx.ras->ras_block.hw_ops->query_ras_error_count(adev, err_data); 932 amdgpu_ras_reset_gpu(adev); 933 } 934 return AMDGPU_RAS_SUCCESS; 935 } 936 937 int amdgpu_gfx_cp_ecc_error_irq(struct amdgpu_device *adev, 938 struct amdgpu_irq_src *source, 939 struct amdgpu_iv_entry *entry) 940 { 941 struct ras_common_if *ras_if = adev->gfx.ras_if; 942 struct ras_dispatch_if ih_data = { 943 .entry = entry, 944 }; 945 946 if (!ras_if) 947 return 0; 948 949 ih_data.head = *ras_if; 950 951 DRM_ERROR("CP ECC ERROR IRQ\n"); 952 amdgpu_ras_interrupt_dispatch(adev, &ih_data); 953 return 0; 954 } 955 956 void amdgpu_gfx_ras_error_func(struct amdgpu_device *adev, 957 void *ras_error_status, 958 void (*func)(struct amdgpu_device *adev, void *ras_error_status, 959 int xcc_id)) 960 { 961 int i; 962 int num_xcc = adev->gfx.xcc_mask ? NUM_XCC(adev->gfx.xcc_mask) : 1; 963 uint32_t xcc_mask = GENMASK(num_xcc - 1, 0); 964 struct ras_err_data *err_data = (struct ras_err_data *)ras_error_status; 965 966 if (err_data) { 967 err_data->ue_count = 0; 968 err_data->ce_count = 0; 969 } 970 971 for_each_inst(i, xcc_mask) 972 func(adev, ras_error_status, i); 973 } 974 975 uint32_t amdgpu_kiq_rreg(struct amdgpu_device *adev, uint32_t reg, uint32_t xcc_id) 976 { 977 signed long r, cnt = 0; 978 unsigned long flags; 979 uint32_t seq, reg_val_offs = 0, value = 0; 980 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 981 struct amdgpu_ring *ring = &kiq->ring; 982 983 if (amdgpu_device_skip_hw_access(adev)) 984 return 0; 985 986 if (adev->mes.ring.sched.ready) 987 return amdgpu_mes_rreg(adev, reg); 988 989 BUG_ON(!ring->funcs->emit_rreg); 990 991 spin_lock_irqsave(&kiq->ring_lock, flags); 992 if (amdgpu_device_wb_get(adev, ®_val_offs)) { 993 pr_err("critical bug! too many kiq readers\n"); 994 goto failed_unlock; 995 } 996 amdgpu_ring_alloc(ring, 32); 997 amdgpu_ring_emit_rreg(ring, reg, reg_val_offs); 998 r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT); 999 if (r) 1000 goto failed_undo; 1001 1002 amdgpu_ring_commit(ring); 1003 spin_unlock_irqrestore(&kiq->ring_lock, flags); 1004 1005 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); 1006 1007 /* don't wait anymore for gpu reset case because this way may 1008 * block gpu_recover() routine forever, e.g. this virt_kiq_rreg 1009 * is triggered in TTM and ttm_bo_lock_delayed_workqueue() will 1010 * never return if we keep waiting in virt_kiq_rreg, which cause 1011 * gpu_recover() hang there. 1012 * 1013 * also don't wait anymore for IRQ context 1014 * */ 1015 if (r < 1 && (amdgpu_in_reset(adev) || in_interrupt())) 1016 goto failed_kiq_read; 1017 1018 might_sleep(); 1019 while (r < 1 && cnt++ < MAX_KIQ_REG_TRY) { 1020 msleep(MAX_KIQ_REG_BAILOUT_INTERVAL); 1021 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); 1022 } 1023 1024 if (cnt > MAX_KIQ_REG_TRY) 1025 goto failed_kiq_read; 1026 1027 mb(); 1028 value = adev->wb.wb[reg_val_offs]; 1029 amdgpu_device_wb_free(adev, reg_val_offs); 1030 return value; 1031 1032 failed_undo: 1033 amdgpu_ring_undo(ring); 1034 failed_unlock: 1035 spin_unlock_irqrestore(&kiq->ring_lock, flags); 1036 failed_kiq_read: 1037 if (reg_val_offs) 1038 amdgpu_device_wb_free(adev, reg_val_offs); 1039 dev_err(adev->dev, "failed to read reg:%x\n", reg); 1040 return ~0; 1041 } 1042 1043 void amdgpu_kiq_wreg(struct amdgpu_device *adev, uint32_t reg, uint32_t v, uint32_t xcc_id) 1044 { 1045 signed long r, cnt = 0; 1046 unsigned long flags; 1047 uint32_t seq; 1048 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 1049 struct amdgpu_ring *ring = &kiq->ring; 1050 1051 BUG_ON(!ring->funcs->emit_wreg); 1052 1053 if (amdgpu_device_skip_hw_access(adev)) 1054 return; 1055 1056 if (adev->mes.ring.sched.ready) { 1057 amdgpu_mes_wreg(adev, reg, v); 1058 return; 1059 } 1060 1061 spin_lock_irqsave(&kiq->ring_lock, flags); 1062 amdgpu_ring_alloc(ring, 32); 1063 amdgpu_ring_emit_wreg(ring, reg, v); 1064 r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT); 1065 if (r) 1066 goto failed_undo; 1067 1068 amdgpu_ring_commit(ring); 1069 spin_unlock_irqrestore(&kiq->ring_lock, flags); 1070 1071 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); 1072 1073 /* don't wait anymore for gpu reset case because this way may 1074 * block gpu_recover() routine forever, e.g. this virt_kiq_rreg 1075 * is triggered in TTM and ttm_bo_lock_delayed_workqueue() will 1076 * never return if we keep waiting in virt_kiq_rreg, which cause 1077 * gpu_recover() hang there. 1078 * 1079 * also don't wait anymore for IRQ context 1080 * */ 1081 if (r < 1 && (amdgpu_in_reset(adev) || in_interrupt())) 1082 goto failed_kiq_write; 1083 1084 might_sleep(); 1085 while (r < 1 && cnt++ < MAX_KIQ_REG_TRY) { 1086 1087 msleep(MAX_KIQ_REG_BAILOUT_INTERVAL); 1088 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); 1089 } 1090 1091 if (cnt > MAX_KIQ_REG_TRY) 1092 goto failed_kiq_write; 1093 1094 return; 1095 1096 failed_undo: 1097 amdgpu_ring_undo(ring); 1098 spin_unlock_irqrestore(&kiq->ring_lock, flags); 1099 failed_kiq_write: 1100 dev_err(adev->dev, "failed to write reg:%x\n", reg); 1101 } 1102 1103 int amdgpu_gfx_get_num_kcq(struct amdgpu_device *adev) 1104 { 1105 if (amdgpu_num_kcq == -1) { 1106 return 8; 1107 } else if (amdgpu_num_kcq > 8 || amdgpu_num_kcq < 0) { 1108 dev_warn(adev->dev, "set kernel compute queue number to 8 due to invalid parameter provided by user\n"); 1109 return 8; 1110 } 1111 return amdgpu_num_kcq; 1112 } 1113 1114 void amdgpu_gfx_cp_init_microcode(struct amdgpu_device *adev, 1115 uint32_t ucode_id) 1116 { 1117 const struct gfx_firmware_header_v1_0 *cp_hdr; 1118 const struct gfx_firmware_header_v2_0 *cp_hdr_v2_0; 1119 struct amdgpu_firmware_info *info = NULL; 1120 const struct firmware *ucode_fw; 1121 unsigned int fw_size; 1122 1123 switch (ucode_id) { 1124 case AMDGPU_UCODE_ID_CP_PFP: 1125 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1126 adev->gfx.pfp_fw->data; 1127 adev->gfx.pfp_fw_version = 1128 le32_to_cpu(cp_hdr->header.ucode_version); 1129 adev->gfx.pfp_feature_version = 1130 le32_to_cpu(cp_hdr->ucode_feature_version); 1131 ucode_fw = adev->gfx.pfp_fw; 1132 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes); 1133 break; 1134 case AMDGPU_UCODE_ID_CP_RS64_PFP: 1135 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) 1136 adev->gfx.pfp_fw->data; 1137 adev->gfx.pfp_fw_version = 1138 le32_to_cpu(cp_hdr_v2_0->header.ucode_version); 1139 adev->gfx.pfp_feature_version = 1140 le32_to_cpu(cp_hdr_v2_0->ucode_feature_version); 1141 ucode_fw = adev->gfx.pfp_fw; 1142 fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes); 1143 break; 1144 case AMDGPU_UCODE_ID_CP_RS64_PFP_P0_STACK: 1145 case AMDGPU_UCODE_ID_CP_RS64_PFP_P1_STACK: 1146 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) 1147 adev->gfx.pfp_fw->data; 1148 ucode_fw = adev->gfx.pfp_fw; 1149 fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes); 1150 break; 1151 case AMDGPU_UCODE_ID_CP_ME: 1152 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1153 adev->gfx.me_fw->data; 1154 adev->gfx.me_fw_version = 1155 le32_to_cpu(cp_hdr->header.ucode_version); 1156 adev->gfx.me_feature_version = 1157 le32_to_cpu(cp_hdr->ucode_feature_version); 1158 ucode_fw = adev->gfx.me_fw; 1159 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes); 1160 break; 1161 case AMDGPU_UCODE_ID_CP_RS64_ME: 1162 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) 1163 adev->gfx.me_fw->data; 1164 adev->gfx.me_fw_version = 1165 le32_to_cpu(cp_hdr_v2_0->header.ucode_version); 1166 adev->gfx.me_feature_version = 1167 le32_to_cpu(cp_hdr_v2_0->ucode_feature_version); 1168 ucode_fw = adev->gfx.me_fw; 1169 fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes); 1170 break; 1171 case AMDGPU_UCODE_ID_CP_RS64_ME_P0_STACK: 1172 case AMDGPU_UCODE_ID_CP_RS64_ME_P1_STACK: 1173 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) 1174 adev->gfx.me_fw->data; 1175 ucode_fw = adev->gfx.me_fw; 1176 fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes); 1177 break; 1178 case AMDGPU_UCODE_ID_CP_CE: 1179 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1180 adev->gfx.ce_fw->data; 1181 adev->gfx.ce_fw_version = 1182 le32_to_cpu(cp_hdr->header.ucode_version); 1183 adev->gfx.ce_feature_version = 1184 le32_to_cpu(cp_hdr->ucode_feature_version); 1185 ucode_fw = adev->gfx.ce_fw; 1186 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes); 1187 break; 1188 case AMDGPU_UCODE_ID_CP_MEC1: 1189 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1190 adev->gfx.mec_fw->data; 1191 adev->gfx.mec_fw_version = 1192 le32_to_cpu(cp_hdr->header.ucode_version); 1193 adev->gfx.mec_feature_version = 1194 le32_to_cpu(cp_hdr->ucode_feature_version); 1195 ucode_fw = adev->gfx.mec_fw; 1196 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes) - 1197 le32_to_cpu(cp_hdr->jt_size) * 4; 1198 break; 1199 case AMDGPU_UCODE_ID_CP_MEC1_JT: 1200 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1201 adev->gfx.mec_fw->data; 1202 ucode_fw = adev->gfx.mec_fw; 1203 fw_size = le32_to_cpu(cp_hdr->jt_size) * 4; 1204 break; 1205 case AMDGPU_UCODE_ID_CP_MEC2: 1206 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1207 adev->gfx.mec2_fw->data; 1208 adev->gfx.mec2_fw_version = 1209 le32_to_cpu(cp_hdr->header.ucode_version); 1210 adev->gfx.mec2_feature_version = 1211 le32_to_cpu(cp_hdr->ucode_feature_version); 1212 ucode_fw = adev->gfx.mec2_fw; 1213 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes) - 1214 le32_to_cpu(cp_hdr->jt_size) * 4; 1215 break; 1216 case AMDGPU_UCODE_ID_CP_MEC2_JT: 1217 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1218 adev->gfx.mec2_fw->data; 1219 ucode_fw = adev->gfx.mec2_fw; 1220 fw_size = le32_to_cpu(cp_hdr->jt_size) * 4; 1221 break; 1222 case AMDGPU_UCODE_ID_CP_RS64_MEC: 1223 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) 1224 adev->gfx.mec_fw->data; 1225 adev->gfx.mec_fw_version = 1226 le32_to_cpu(cp_hdr_v2_0->header.ucode_version); 1227 adev->gfx.mec_feature_version = 1228 le32_to_cpu(cp_hdr_v2_0->ucode_feature_version); 1229 ucode_fw = adev->gfx.mec_fw; 1230 fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes); 1231 break; 1232 case AMDGPU_UCODE_ID_CP_RS64_MEC_P0_STACK: 1233 case AMDGPU_UCODE_ID_CP_RS64_MEC_P1_STACK: 1234 case AMDGPU_UCODE_ID_CP_RS64_MEC_P2_STACK: 1235 case AMDGPU_UCODE_ID_CP_RS64_MEC_P3_STACK: 1236 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) 1237 adev->gfx.mec_fw->data; 1238 ucode_fw = adev->gfx.mec_fw; 1239 fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes); 1240 break; 1241 default: 1242 dev_err(adev->dev, "Invalid ucode id %u\n", ucode_id); 1243 return; 1244 } 1245 1246 if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) { 1247 info = &adev->firmware.ucode[ucode_id]; 1248 info->ucode_id = ucode_id; 1249 info->fw = ucode_fw; 1250 adev->firmware.fw_size += ALIGN(fw_size, PAGE_SIZE); 1251 } 1252 } 1253 1254 bool amdgpu_gfx_is_master_xcc(struct amdgpu_device *adev, int xcc_id) 1255 { 1256 return !(xcc_id % (adev->gfx.num_xcc_per_xcp ? 1257 adev->gfx.num_xcc_per_xcp : 1)); 1258 } 1259 1260 static ssize_t amdgpu_gfx_get_current_compute_partition(struct device *dev, 1261 struct device_attribute *addr, 1262 char *buf) 1263 { 1264 struct drm_device *ddev = dev_get_drvdata(dev); 1265 struct amdgpu_device *adev = drm_to_adev(ddev); 1266 int mode; 1267 1268 mode = amdgpu_xcp_query_partition_mode(adev->xcp_mgr, 1269 AMDGPU_XCP_FL_NONE); 1270 1271 return sysfs_emit(buf, "%s\n", amdgpu_gfx_compute_mode_desc(mode)); 1272 } 1273 1274 static ssize_t amdgpu_gfx_set_compute_partition(struct device *dev, 1275 struct device_attribute *addr, 1276 const char *buf, size_t count) 1277 { 1278 struct drm_device *ddev = dev_get_drvdata(dev); 1279 struct amdgpu_device *adev = drm_to_adev(ddev); 1280 enum amdgpu_gfx_partition mode; 1281 int ret = 0, num_xcc; 1282 1283 num_xcc = NUM_XCC(adev->gfx.xcc_mask); 1284 if (num_xcc % 2 != 0) 1285 return -EINVAL; 1286 1287 if (!strncasecmp("SPX", buf, strlen("SPX"))) { 1288 mode = AMDGPU_SPX_PARTITION_MODE; 1289 } else if (!strncasecmp("DPX", buf, strlen("DPX"))) { 1290 /* 1291 * DPX mode needs AIDs to be in multiple of 2. 1292 * Each AID connects 2 XCCs. 1293 */ 1294 if (num_xcc%4) 1295 return -EINVAL; 1296 mode = AMDGPU_DPX_PARTITION_MODE; 1297 } else if (!strncasecmp("TPX", buf, strlen("TPX"))) { 1298 if (num_xcc != 6) 1299 return -EINVAL; 1300 mode = AMDGPU_TPX_PARTITION_MODE; 1301 } else if (!strncasecmp("QPX", buf, strlen("QPX"))) { 1302 if (num_xcc != 8) 1303 return -EINVAL; 1304 mode = AMDGPU_QPX_PARTITION_MODE; 1305 } else if (!strncasecmp("CPX", buf, strlen("CPX"))) { 1306 mode = AMDGPU_CPX_PARTITION_MODE; 1307 } else { 1308 return -EINVAL; 1309 } 1310 1311 ret = amdgpu_xcp_switch_partition_mode(adev->xcp_mgr, mode); 1312 1313 if (ret) 1314 return ret; 1315 1316 return count; 1317 } 1318 1319 static ssize_t amdgpu_gfx_get_available_compute_partition(struct device *dev, 1320 struct device_attribute *addr, 1321 char *buf) 1322 { 1323 struct drm_device *ddev = dev_get_drvdata(dev); 1324 struct amdgpu_device *adev = drm_to_adev(ddev); 1325 char *supported_partition; 1326 1327 /* TBD */ 1328 switch (NUM_XCC(adev->gfx.xcc_mask)) { 1329 case 8: 1330 supported_partition = "SPX, DPX, QPX, CPX"; 1331 break; 1332 case 6: 1333 supported_partition = "SPX, TPX, CPX"; 1334 break; 1335 case 4: 1336 supported_partition = "SPX, DPX, CPX"; 1337 break; 1338 /* this seems only existing in emulation phase */ 1339 case 2: 1340 supported_partition = "SPX, CPX"; 1341 break; 1342 default: 1343 supported_partition = "Not supported"; 1344 break; 1345 } 1346 1347 return sysfs_emit(buf, "%s\n", supported_partition); 1348 } 1349 1350 static DEVICE_ATTR(current_compute_partition, 0644, 1351 amdgpu_gfx_get_current_compute_partition, 1352 amdgpu_gfx_set_compute_partition); 1353 1354 static DEVICE_ATTR(available_compute_partition, 0444, 1355 amdgpu_gfx_get_available_compute_partition, NULL); 1356 1357 int amdgpu_gfx_sysfs_init(struct amdgpu_device *adev) 1358 { 1359 int r; 1360 1361 r = device_create_file(adev->dev, &dev_attr_current_compute_partition); 1362 if (r) 1363 return r; 1364 1365 r = device_create_file(adev->dev, &dev_attr_available_compute_partition); 1366 1367 return r; 1368 } 1369 1370 void amdgpu_gfx_sysfs_fini(struct amdgpu_device *adev) 1371 { 1372 device_remove_file(adev->dev, &dev_attr_current_compute_partition); 1373 device_remove_file(adev->dev, &dev_attr_available_compute_partition); 1374 } 1375