1 /* 2 * Copyright 2014 Advanced Micro Devices, Inc. 3 * Copyright 2008 Red Hat Inc. 4 * Copyright 2009 Jerome Glisse. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 * 24 */ 25 26 #include <linux/firmware.h> 27 #include "amdgpu.h" 28 #include "amdgpu_gfx.h" 29 #include "amdgpu_rlc.h" 30 #include "amdgpu_ras.h" 31 32 /* delay 0.1 second to enable gfx off feature */ 33 #define GFX_OFF_DELAY_ENABLE msecs_to_jiffies(100) 34 35 #define GFX_OFF_NO_DELAY 0 36 37 /* 38 * GPU GFX IP block helpers function. 39 */ 40 41 int amdgpu_gfx_mec_queue_to_bit(struct amdgpu_device *adev, int mec, 42 int pipe, int queue) 43 { 44 int bit = 0; 45 46 bit += mec * adev->gfx.mec.num_pipe_per_mec 47 * adev->gfx.mec.num_queue_per_pipe; 48 bit += pipe * adev->gfx.mec.num_queue_per_pipe; 49 bit += queue; 50 51 return bit; 52 } 53 54 void amdgpu_queue_mask_bit_to_mec_queue(struct amdgpu_device *adev, int bit, 55 int *mec, int *pipe, int *queue) 56 { 57 *queue = bit % adev->gfx.mec.num_queue_per_pipe; 58 *pipe = (bit / adev->gfx.mec.num_queue_per_pipe) 59 % adev->gfx.mec.num_pipe_per_mec; 60 *mec = (bit / adev->gfx.mec.num_queue_per_pipe) 61 / adev->gfx.mec.num_pipe_per_mec; 62 63 } 64 65 bool amdgpu_gfx_is_mec_queue_enabled(struct amdgpu_device *adev, 66 int xcc_id, int mec, int pipe, int queue) 67 { 68 return test_bit(amdgpu_gfx_mec_queue_to_bit(adev, mec, pipe, queue), 69 adev->gfx.mec_bitmap[xcc_id].queue_bitmap); 70 } 71 72 int amdgpu_gfx_me_queue_to_bit(struct amdgpu_device *adev, 73 int me, int pipe, int queue) 74 { 75 int bit = 0; 76 77 bit += me * adev->gfx.me.num_pipe_per_me 78 * adev->gfx.me.num_queue_per_pipe; 79 bit += pipe * adev->gfx.me.num_queue_per_pipe; 80 bit += queue; 81 82 return bit; 83 } 84 85 void amdgpu_gfx_bit_to_me_queue(struct amdgpu_device *adev, int bit, 86 int *me, int *pipe, int *queue) 87 { 88 *queue = bit % adev->gfx.me.num_queue_per_pipe; 89 *pipe = (bit / adev->gfx.me.num_queue_per_pipe) 90 % adev->gfx.me.num_pipe_per_me; 91 *me = (bit / adev->gfx.me.num_queue_per_pipe) 92 / adev->gfx.me.num_pipe_per_me; 93 } 94 95 bool amdgpu_gfx_is_me_queue_enabled(struct amdgpu_device *adev, 96 int me, int pipe, int queue) 97 { 98 return test_bit(amdgpu_gfx_me_queue_to_bit(adev, me, pipe, queue), 99 adev->gfx.me.queue_bitmap); 100 } 101 102 /** 103 * amdgpu_gfx_parse_disable_cu - Parse the disable_cu module parameter 104 * 105 * @mask: array in which the per-shader array disable masks will be stored 106 * @max_se: number of SEs 107 * @max_sh: number of SHs 108 * 109 * The bitmask of CUs to be disabled in the shader array determined by se and 110 * sh is stored in mask[se * max_sh + sh]. 111 */ 112 void amdgpu_gfx_parse_disable_cu(unsigned *mask, unsigned max_se, unsigned max_sh) 113 { 114 unsigned se, sh, cu; 115 const char *p; 116 117 memset(mask, 0, sizeof(*mask) * max_se * max_sh); 118 119 if (!amdgpu_disable_cu || !*amdgpu_disable_cu) 120 return; 121 122 p = amdgpu_disable_cu; 123 for (;;) { 124 char *next; 125 int ret = sscanf(p, "%u.%u.%u", &se, &sh, &cu); 126 if (ret < 3) { 127 DRM_ERROR("amdgpu: could not parse disable_cu\n"); 128 return; 129 } 130 131 if (se < max_se && sh < max_sh && cu < 16) { 132 DRM_INFO("amdgpu: disabling CU %u.%u.%u\n", se, sh, cu); 133 mask[se * max_sh + sh] |= 1u << cu; 134 } else { 135 DRM_ERROR("amdgpu: disable_cu %u.%u.%u is out of range\n", 136 se, sh, cu); 137 } 138 139 next = strchr(p, ','); 140 if (!next) 141 break; 142 p = next + 1; 143 } 144 } 145 146 static bool amdgpu_gfx_is_graphics_multipipe_capable(struct amdgpu_device *adev) 147 { 148 return amdgpu_async_gfx_ring && adev->gfx.me.num_pipe_per_me > 1; 149 } 150 151 static bool amdgpu_gfx_is_compute_multipipe_capable(struct amdgpu_device *adev) 152 { 153 if (amdgpu_compute_multipipe != -1) { 154 DRM_INFO("amdgpu: forcing compute pipe policy %d\n", 155 amdgpu_compute_multipipe); 156 return amdgpu_compute_multipipe == 1; 157 } 158 159 if (adev->ip_versions[GC_HWIP][0] > IP_VERSION(9, 0, 0)) 160 return true; 161 162 /* FIXME: spreading the queues across pipes causes perf regressions 163 * on POLARIS11 compute workloads */ 164 if (adev->asic_type == CHIP_POLARIS11) 165 return false; 166 167 return adev->gfx.mec.num_mec > 1; 168 } 169 170 bool amdgpu_gfx_is_high_priority_graphics_queue(struct amdgpu_device *adev, 171 struct amdgpu_ring *ring) 172 { 173 int queue = ring->queue; 174 int pipe = ring->pipe; 175 176 /* Policy: use pipe1 queue0 as high priority graphics queue if we 177 * have more than one gfx pipe. 178 */ 179 if (amdgpu_gfx_is_graphics_multipipe_capable(adev) && 180 adev->gfx.num_gfx_rings > 1 && pipe == 1 && queue == 0) { 181 int me = ring->me; 182 int bit; 183 184 bit = amdgpu_gfx_me_queue_to_bit(adev, me, pipe, queue); 185 if (ring == &adev->gfx.gfx_ring[bit]) 186 return true; 187 } 188 189 return false; 190 } 191 192 bool amdgpu_gfx_is_high_priority_compute_queue(struct amdgpu_device *adev, 193 struct amdgpu_ring *ring) 194 { 195 /* Policy: use 1st queue as high priority compute queue if we 196 * have more than one compute queue. 197 */ 198 if (adev->gfx.num_compute_rings > 1 && 199 ring == &adev->gfx.compute_ring[0]) 200 return true; 201 202 return false; 203 } 204 205 void amdgpu_gfx_compute_queue_acquire(struct amdgpu_device *adev) 206 { 207 int i, j, queue, pipe; 208 bool multipipe_policy = amdgpu_gfx_is_compute_multipipe_capable(adev); 209 int max_queues_per_mec = min(adev->gfx.mec.num_pipe_per_mec * 210 adev->gfx.mec.num_queue_per_pipe, 211 adev->gfx.num_compute_rings); 212 int num_xcd = (adev->gfx.num_xcd > 1) ? adev->gfx.num_xcd : 1; 213 214 if (multipipe_policy) { 215 /* policy: make queues evenly cross all pipes on MEC1 only 216 * for multiple xcc, just use the original policy for simplicity */ 217 for (j = 0; j < num_xcd; j++) { 218 for (i = 0; i < max_queues_per_mec; i++) { 219 pipe = i % adev->gfx.mec.num_pipe_per_mec; 220 queue = (i / adev->gfx.mec.num_pipe_per_mec) % 221 adev->gfx.mec.num_queue_per_pipe; 222 223 set_bit(pipe * adev->gfx.mec.num_queue_per_pipe + queue, 224 adev->gfx.mec_bitmap[j].queue_bitmap); 225 } 226 } 227 } else { 228 /* policy: amdgpu owns all queues in the given pipe */ 229 for (j = 0; j < num_xcd; j++) { 230 for (i = 0; i < max_queues_per_mec; ++i) 231 set_bit(i, adev->gfx.mec_bitmap[j].queue_bitmap); 232 } 233 } 234 235 for (j = 0; j < num_xcd; j++) { 236 dev_dbg(adev->dev, "mec queue bitmap weight=%d\n", 237 bitmap_weight(adev->gfx.mec_bitmap[j].queue_bitmap, AMDGPU_MAX_COMPUTE_QUEUES)); 238 } 239 } 240 241 void amdgpu_gfx_graphics_queue_acquire(struct amdgpu_device *adev) 242 { 243 int i, queue, pipe; 244 bool multipipe_policy = amdgpu_gfx_is_graphics_multipipe_capable(adev); 245 int max_queues_per_me = adev->gfx.me.num_pipe_per_me * 246 adev->gfx.me.num_queue_per_pipe; 247 248 if (multipipe_policy) { 249 /* policy: amdgpu owns the first queue per pipe at this stage 250 * will extend to mulitple queues per pipe later */ 251 for (i = 0; i < max_queues_per_me; i++) { 252 pipe = i % adev->gfx.me.num_pipe_per_me; 253 queue = (i / adev->gfx.me.num_pipe_per_me) % 254 adev->gfx.me.num_queue_per_pipe; 255 256 set_bit(pipe * adev->gfx.me.num_queue_per_pipe + queue, 257 adev->gfx.me.queue_bitmap); 258 } 259 } else { 260 for (i = 0; i < max_queues_per_me; ++i) 261 set_bit(i, adev->gfx.me.queue_bitmap); 262 } 263 264 /* update the number of active graphics rings */ 265 adev->gfx.num_gfx_rings = 266 bitmap_weight(adev->gfx.me.queue_bitmap, AMDGPU_MAX_GFX_QUEUES); 267 } 268 269 static int amdgpu_gfx_kiq_acquire(struct amdgpu_device *adev, 270 struct amdgpu_ring *ring, int xcc_id) 271 { 272 int queue_bit; 273 int mec, pipe, queue; 274 275 queue_bit = adev->gfx.mec.num_mec 276 * adev->gfx.mec.num_pipe_per_mec 277 * adev->gfx.mec.num_queue_per_pipe; 278 279 while (--queue_bit >= 0) { 280 if (test_bit(queue_bit, adev->gfx.mec_bitmap[xcc_id].queue_bitmap)) 281 continue; 282 283 amdgpu_queue_mask_bit_to_mec_queue(adev, queue_bit, &mec, &pipe, &queue); 284 285 /* 286 * 1. Using pipes 2/3 from MEC 2 seems cause problems. 287 * 2. It must use queue id 0, because CGPG_IDLE/SAVE/LOAD/RUN 288 * only can be issued on queue 0. 289 */ 290 if ((mec == 1 && pipe > 1) || queue != 0) 291 continue; 292 293 ring->me = mec + 1; 294 ring->pipe = pipe; 295 ring->queue = queue; 296 297 return 0; 298 } 299 300 dev_err(adev->dev, "Failed to find a queue for KIQ\n"); 301 return -EINVAL; 302 } 303 304 int amdgpu_gfx_kiq_init_ring(struct amdgpu_device *adev, 305 struct amdgpu_ring *ring, 306 struct amdgpu_irq_src *irq, int xcc_id) 307 { 308 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 309 int r = 0; 310 311 spin_lock_init(&kiq->ring_lock); 312 313 ring->adev = NULL; 314 ring->ring_obj = NULL; 315 ring->use_doorbell = true; 316 ring->doorbell_index = adev->doorbell_index.kiq; 317 ring->xcc_id = xcc_id; 318 ring->vm_hub = AMDGPU_GFXHUB_0; 319 if (xcc_id >= 1) 320 ring->doorbell_index = adev->doorbell_index.xcc1_kiq_start + 321 xcc_id - 1; 322 else 323 ring->doorbell_index = adev->doorbell_index.kiq; 324 325 r = amdgpu_gfx_kiq_acquire(adev, ring, xcc_id); 326 if (r) 327 return r; 328 329 ring->eop_gpu_addr = kiq->eop_gpu_addr; 330 ring->no_scheduler = true; 331 sprintf(ring->name, "kiq_%d.%d.%d.%d", xcc_id, ring->me, ring->pipe, ring->queue); 332 r = amdgpu_ring_init(adev, ring, 1024, irq, AMDGPU_CP_KIQ_IRQ_DRIVER0, 333 AMDGPU_RING_PRIO_DEFAULT, NULL); 334 if (r) 335 dev_warn(adev->dev, "(%d) failed to init kiq ring\n", r); 336 337 return r; 338 } 339 340 void amdgpu_gfx_kiq_free_ring(struct amdgpu_ring *ring) 341 { 342 amdgpu_ring_fini(ring); 343 } 344 345 void amdgpu_gfx_kiq_fini(struct amdgpu_device *adev, int xcc_id) 346 { 347 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 348 349 amdgpu_bo_free_kernel(&kiq->eop_obj, &kiq->eop_gpu_addr, NULL); 350 } 351 352 int amdgpu_gfx_kiq_init(struct amdgpu_device *adev, 353 unsigned hpd_size, int xcc_id) 354 { 355 int r; 356 u32 *hpd; 357 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 358 359 r = amdgpu_bo_create_kernel(adev, hpd_size, PAGE_SIZE, 360 AMDGPU_GEM_DOMAIN_GTT, &kiq->eop_obj, 361 &kiq->eop_gpu_addr, (void **)&hpd); 362 if (r) { 363 dev_warn(adev->dev, "failed to create KIQ bo (%d).\n", r); 364 return r; 365 } 366 367 memset(hpd, 0, hpd_size); 368 369 r = amdgpu_bo_reserve(kiq->eop_obj, true); 370 if (unlikely(r != 0)) 371 dev_warn(adev->dev, "(%d) reserve kiq eop bo failed\n", r); 372 amdgpu_bo_kunmap(kiq->eop_obj); 373 amdgpu_bo_unreserve(kiq->eop_obj); 374 375 return 0; 376 } 377 378 /* create MQD for each compute/gfx queue */ 379 int amdgpu_gfx_mqd_sw_init(struct amdgpu_device *adev, 380 unsigned mqd_size, int xcc_id) 381 { 382 int r, i; 383 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 384 struct amdgpu_ring *ring = &kiq->ring; 385 386 /* create MQD for KIQ */ 387 if (!adev->enable_mes_kiq && !ring->mqd_obj) { 388 /* originaly the KIQ MQD is put in GTT domain, but for SRIOV VRAM domain is a must 389 * otherwise hypervisor trigger SAVE_VF fail after driver unloaded which mean MQD 390 * deallocated and gart_unbind, to strict diverage we decide to use VRAM domain for 391 * KIQ MQD no matter SRIOV or Bare-metal 392 */ 393 r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE, 394 AMDGPU_GEM_DOMAIN_VRAM | 395 AMDGPU_GEM_DOMAIN_GTT, 396 &ring->mqd_obj, 397 &ring->mqd_gpu_addr, 398 &ring->mqd_ptr); 399 if (r) { 400 dev_warn(adev->dev, "failed to create ring mqd ob (%d)", r); 401 return r; 402 } 403 404 /* prepare MQD backup */ 405 kiq->mqd_backup = kmalloc(mqd_size, GFP_KERNEL); 406 if (!kiq->mqd_backup) 407 dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name); 408 } 409 410 if (adev->asic_type >= CHIP_NAVI10 && amdgpu_async_gfx_ring) { 411 /* create MQD for each KGQ */ 412 for (i = 0; i < adev->gfx.num_gfx_rings; i++) { 413 ring = &adev->gfx.gfx_ring[i]; 414 if (!ring->mqd_obj) { 415 r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE, 416 AMDGPU_GEM_DOMAIN_GTT, &ring->mqd_obj, 417 &ring->mqd_gpu_addr, &ring->mqd_ptr); 418 if (r) { 419 dev_warn(adev->dev, "failed to create ring mqd bo (%d)", r); 420 return r; 421 } 422 423 /* prepare MQD backup */ 424 adev->gfx.me.mqd_backup[i] = kmalloc(mqd_size, GFP_KERNEL); 425 if (!adev->gfx.me.mqd_backup[i]) 426 dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name); 427 } 428 } 429 } 430 431 /* create MQD for each KCQ */ 432 for (i = 0; i < adev->gfx.num_compute_rings; i++) { 433 ring = &adev->gfx.compute_ring[i + xcc_id * adev->gfx.num_compute_rings]; 434 if (!ring->mqd_obj) { 435 r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE, 436 AMDGPU_GEM_DOMAIN_GTT, &ring->mqd_obj, 437 &ring->mqd_gpu_addr, &ring->mqd_ptr); 438 if (r) { 439 dev_warn(adev->dev, "failed to create ring mqd bo (%d)", r); 440 return r; 441 } 442 443 /* prepare MQD backup */ 444 adev->gfx.mec.mqd_backup[i + xcc_id * adev->gfx.num_compute_rings] = kmalloc(mqd_size, GFP_KERNEL); 445 if (!adev->gfx.mec.mqd_backup[i]) 446 dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name); 447 } 448 } 449 450 return 0; 451 } 452 453 void amdgpu_gfx_mqd_sw_fini(struct amdgpu_device *adev, int xcc_id) 454 { 455 struct amdgpu_ring *ring = NULL; 456 int i, j; 457 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 458 459 if (adev->asic_type >= CHIP_NAVI10 && amdgpu_async_gfx_ring) { 460 for (i = 0; i < adev->gfx.num_gfx_rings; i++) { 461 ring = &adev->gfx.gfx_ring[i]; 462 kfree(adev->gfx.me.mqd_backup[i]); 463 amdgpu_bo_free_kernel(&ring->mqd_obj, 464 &ring->mqd_gpu_addr, 465 &ring->mqd_ptr); 466 } 467 } 468 469 for (i = 0; i < adev->gfx.num_compute_rings; i++) { 470 j = i + xcc_id * adev->gfx.num_compute_rings; 471 ring = &adev->gfx.compute_ring[i]; 472 kfree(adev->gfx.mec.mqd_backup[i]); 473 amdgpu_bo_free_kernel(&ring->mqd_obj, 474 &ring->mqd_gpu_addr, 475 &ring->mqd_ptr); 476 } 477 478 ring = &kiq->ring; 479 kfree(kiq->mqd_backup); 480 kfree(adev->gfx.mec.mqd_backup[AMDGPU_MAX_COMPUTE_RINGS]); 481 amdgpu_bo_free_kernel(&ring->mqd_obj, 482 &ring->mqd_gpu_addr, 483 &ring->mqd_ptr); 484 } 485 486 int amdgpu_gfx_disable_kcq(struct amdgpu_device *adev, int xcc_id) 487 { 488 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 489 struct amdgpu_ring *kiq_ring = &kiq->ring; 490 int i, r = 0; 491 int j; 492 493 if (!kiq->pmf || !kiq->pmf->kiq_unmap_queues) 494 return -EINVAL; 495 496 spin_lock(&kiq->ring_lock); 497 if (amdgpu_gfx_is_master_xcc(adev, xcc_id)) { 498 if (amdgpu_ring_alloc(kiq_ring, kiq->pmf->unmap_queues_size * 499 adev->gfx.num_compute_rings)) { 500 spin_unlock(&kiq->ring_lock); 501 return -ENOMEM; 502 } 503 504 for (i = 0; i < adev->gfx.num_compute_rings; i++) { 505 j = i + xcc_id * adev->gfx.num_compute_rings; 506 kiq->pmf->kiq_unmap_queues(kiq_ring, 507 &adev->gfx.compute_ring[i], 508 RESET_QUEUES, 0, 0); 509 } 510 } 511 512 if (adev->gfx.kiq[0].ring.sched.ready && !adev->job_hang) 513 r = amdgpu_ring_test_helper(kiq_ring); 514 spin_unlock(&kiq->ring_lock); 515 516 return r; 517 } 518 519 int amdgpu_queue_mask_bit_to_set_resource_bit(struct amdgpu_device *adev, 520 int queue_bit) 521 { 522 int mec, pipe, queue; 523 int set_resource_bit = 0; 524 525 amdgpu_queue_mask_bit_to_mec_queue(adev, queue_bit, &mec, &pipe, &queue); 526 527 set_resource_bit = mec * 4 * 8 + pipe * 8 + queue; 528 529 return set_resource_bit; 530 } 531 532 int amdgpu_gfx_enable_kcq(struct amdgpu_device *adev, int xcc_id) 533 { 534 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; 535 struct amdgpu_ring *kiq_ring = &kiq->ring; 536 uint64_t queue_mask = 0; 537 int r, i, j; 538 539 if (!kiq->pmf || !kiq->pmf->kiq_map_queues || !kiq->pmf->kiq_set_resources) 540 return -EINVAL; 541 542 for (i = 0; i < AMDGPU_MAX_COMPUTE_QUEUES; ++i) { 543 if (!test_bit(i, adev->gfx.mec_bitmap[xcc_id].queue_bitmap)) 544 continue; 545 546 /* This situation may be hit in the future if a new HW 547 * generation exposes more than 64 queues. If so, the 548 * definition of queue_mask needs updating */ 549 if (WARN_ON(i > (sizeof(queue_mask)*8))) { 550 DRM_ERROR("Invalid KCQ enabled: %d\n", i); 551 break; 552 } 553 554 queue_mask |= (1ull << amdgpu_queue_mask_bit_to_set_resource_bit(adev, i)); 555 } 556 557 DRM_INFO("kiq ring mec %d pipe %d q %d\n", kiq_ring->me, kiq_ring->pipe, 558 kiq_ring->queue); 559 spin_lock(&kiq->ring_lock); 560 /* No need to map kcq on the slave */ 561 if (amdgpu_gfx_is_master_xcc(adev, xcc_id)) { 562 r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->map_queues_size * 563 adev->gfx.num_compute_rings + 564 kiq->pmf->set_resources_size); 565 if (r) { 566 DRM_ERROR("Failed to lock KIQ (%d).\n", r); 567 spin_unlock(&adev->gfx.kiq[0].ring_lock); 568 return r; 569 } 570 571 if (adev->enable_mes) 572 queue_mask = ~0ULL; 573 574 kiq->pmf->kiq_set_resources(kiq_ring, queue_mask); 575 for (i = 0; i < adev->gfx.num_compute_rings; i++) { 576 j = i + xcc_id * adev->gfx.num_compute_rings; 577 kiq->pmf->kiq_map_queues(kiq_ring, 578 &adev->gfx.compute_ring[i]); 579 } 580 } 581 582 r = amdgpu_ring_test_helper(kiq_ring); 583 spin_unlock(&kiq->ring_lock); 584 if (r) 585 DRM_ERROR("KCQ enable failed\n"); 586 587 return r; 588 } 589 590 /* amdgpu_gfx_off_ctrl - Handle gfx off feature enable/disable 591 * 592 * @adev: amdgpu_device pointer 593 * @bool enable true: enable gfx off feature, false: disable gfx off feature 594 * 595 * 1. gfx off feature will be enabled by gfx ip after gfx cg gp enabled. 596 * 2. other client can send request to disable gfx off feature, the request should be honored. 597 * 3. other client can cancel their request of disable gfx off feature 598 * 4. other client should not send request to enable gfx off feature before disable gfx off feature. 599 */ 600 601 void amdgpu_gfx_off_ctrl(struct amdgpu_device *adev, bool enable) 602 { 603 unsigned long delay = GFX_OFF_DELAY_ENABLE; 604 605 if (!(adev->pm.pp_feature & PP_GFXOFF_MASK)) 606 return; 607 608 mutex_lock(&adev->gfx.gfx_off_mutex); 609 610 if (enable) { 611 /* If the count is already 0, it means there's an imbalance bug somewhere. 612 * Note that the bug may be in a different caller than the one which triggers the 613 * WARN_ON_ONCE. 614 */ 615 if (WARN_ON_ONCE(adev->gfx.gfx_off_req_count == 0)) 616 goto unlock; 617 618 adev->gfx.gfx_off_req_count--; 619 620 if (adev->gfx.gfx_off_req_count == 0 && 621 !adev->gfx.gfx_off_state) { 622 /* If going to s2idle, no need to wait */ 623 if (adev->in_s0ix) { 624 if (!amdgpu_dpm_set_powergating_by_smu(adev, 625 AMD_IP_BLOCK_TYPE_GFX, true)) 626 adev->gfx.gfx_off_state = true; 627 } else { 628 schedule_delayed_work(&adev->gfx.gfx_off_delay_work, 629 delay); 630 } 631 } 632 } else { 633 if (adev->gfx.gfx_off_req_count == 0) { 634 cancel_delayed_work_sync(&adev->gfx.gfx_off_delay_work); 635 636 if (adev->gfx.gfx_off_state && 637 !amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_GFX, false)) { 638 adev->gfx.gfx_off_state = false; 639 640 if (adev->gfx.funcs->init_spm_golden) { 641 dev_dbg(adev->dev, 642 "GFXOFF is disabled, re-init SPM golden settings\n"); 643 amdgpu_gfx_init_spm_golden(adev); 644 } 645 } 646 } 647 648 adev->gfx.gfx_off_req_count++; 649 } 650 651 unlock: 652 mutex_unlock(&adev->gfx.gfx_off_mutex); 653 } 654 655 int amdgpu_set_gfx_off_residency(struct amdgpu_device *adev, bool value) 656 { 657 int r = 0; 658 659 mutex_lock(&adev->gfx.gfx_off_mutex); 660 661 r = amdgpu_dpm_set_residency_gfxoff(adev, value); 662 663 mutex_unlock(&adev->gfx.gfx_off_mutex); 664 665 return r; 666 } 667 668 int amdgpu_get_gfx_off_residency(struct amdgpu_device *adev, u32 *value) 669 { 670 int r = 0; 671 672 mutex_lock(&adev->gfx.gfx_off_mutex); 673 674 r = amdgpu_dpm_get_residency_gfxoff(adev, value); 675 676 mutex_unlock(&adev->gfx.gfx_off_mutex); 677 678 return r; 679 } 680 681 int amdgpu_get_gfx_off_entrycount(struct amdgpu_device *adev, u64 *value) 682 { 683 int r = 0; 684 685 mutex_lock(&adev->gfx.gfx_off_mutex); 686 687 r = amdgpu_dpm_get_entrycount_gfxoff(adev, value); 688 689 mutex_unlock(&adev->gfx.gfx_off_mutex); 690 691 return r; 692 } 693 694 int amdgpu_get_gfx_off_status(struct amdgpu_device *adev, uint32_t *value) 695 { 696 697 int r = 0; 698 699 mutex_lock(&adev->gfx.gfx_off_mutex); 700 701 r = amdgpu_dpm_get_status_gfxoff(adev, value); 702 703 mutex_unlock(&adev->gfx.gfx_off_mutex); 704 705 return r; 706 } 707 708 int amdgpu_gfx_ras_late_init(struct amdgpu_device *adev, struct ras_common_if *ras_block) 709 { 710 int r; 711 712 if (amdgpu_ras_is_supported(adev, ras_block->block)) { 713 if (!amdgpu_persistent_edc_harvesting_supported(adev)) 714 amdgpu_ras_reset_error_status(adev, AMDGPU_RAS_BLOCK__GFX); 715 716 r = amdgpu_ras_block_late_init(adev, ras_block); 717 if (r) 718 return r; 719 720 r = amdgpu_irq_get(adev, &adev->gfx.cp_ecc_error_irq, 0); 721 if (r) 722 goto late_fini; 723 } else { 724 amdgpu_ras_feature_enable_on_boot(adev, ras_block, 0); 725 } 726 727 return 0; 728 late_fini: 729 amdgpu_ras_block_late_fini(adev, ras_block); 730 return r; 731 } 732 733 int amdgpu_gfx_ras_sw_init(struct amdgpu_device *adev) 734 { 735 int err = 0; 736 struct amdgpu_gfx_ras *ras = NULL; 737 738 /* adev->gfx.ras is NULL, which means gfx does not 739 * support ras function, then do nothing here. 740 */ 741 if (!adev->gfx.ras) 742 return 0; 743 744 ras = adev->gfx.ras; 745 746 err = amdgpu_ras_register_ras_block(adev, &ras->ras_block); 747 if (err) { 748 dev_err(adev->dev, "Failed to register gfx ras block!\n"); 749 return err; 750 } 751 752 strcpy(ras->ras_block.ras_comm.name, "gfx"); 753 ras->ras_block.ras_comm.block = AMDGPU_RAS_BLOCK__GFX; 754 ras->ras_block.ras_comm.type = AMDGPU_RAS_ERROR__MULTI_UNCORRECTABLE; 755 adev->gfx.ras_if = &ras->ras_block.ras_comm; 756 757 /* If not define special ras_late_init function, use gfx default ras_late_init */ 758 if (!ras->ras_block.ras_late_init) 759 ras->ras_block.ras_late_init = amdgpu_gfx_ras_late_init; 760 761 /* If not defined special ras_cb function, use default ras_cb */ 762 if (!ras->ras_block.ras_cb) 763 ras->ras_block.ras_cb = amdgpu_gfx_process_ras_data_cb; 764 765 return 0; 766 } 767 768 int amdgpu_gfx_poison_consumption_handler(struct amdgpu_device *adev, 769 struct amdgpu_iv_entry *entry) 770 { 771 if (adev->gfx.ras && adev->gfx.ras->poison_consumption_handler) 772 return adev->gfx.ras->poison_consumption_handler(adev, entry); 773 774 return 0; 775 } 776 777 int amdgpu_gfx_process_ras_data_cb(struct amdgpu_device *adev, 778 void *err_data, 779 struct amdgpu_iv_entry *entry) 780 { 781 /* TODO ue will trigger an interrupt. 782 * 783 * When “Full RAS” is enabled, the per-IP interrupt sources should 784 * be disabled and the driver should only look for the aggregated 785 * interrupt via sync flood 786 */ 787 if (!amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__GFX)) { 788 kgd2kfd_set_sram_ecc_flag(adev->kfd.dev); 789 if (adev->gfx.ras && adev->gfx.ras->ras_block.hw_ops && 790 adev->gfx.ras->ras_block.hw_ops->query_ras_error_count) 791 adev->gfx.ras->ras_block.hw_ops->query_ras_error_count(adev, err_data); 792 amdgpu_ras_reset_gpu(adev); 793 } 794 return AMDGPU_RAS_SUCCESS; 795 } 796 797 int amdgpu_gfx_cp_ecc_error_irq(struct amdgpu_device *adev, 798 struct amdgpu_irq_src *source, 799 struct amdgpu_iv_entry *entry) 800 { 801 struct ras_common_if *ras_if = adev->gfx.ras_if; 802 struct ras_dispatch_if ih_data = { 803 .entry = entry, 804 }; 805 806 if (!ras_if) 807 return 0; 808 809 ih_data.head = *ras_if; 810 811 DRM_ERROR("CP ECC ERROR IRQ\n"); 812 amdgpu_ras_interrupt_dispatch(adev, &ih_data); 813 return 0; 814 } 815 816 uint32_t amdgpu_kiq_rreg(struct amdgpu_device *adev, uint32_t reg) 817 { 818 signed long r, cnt = 0; 819 unsigned long flags; 820 uint32_t seq, reg_val_offs = 0, value = 0; 821 struct amdgpu_kiq *kiq = &adev->gfx.kiq[0]; 822 struct amdgpu_ring *ring = &kiq->ring; 823 824 if (amdgpu_device_skip_hw_access(adev)) 825 return 0; 826 827 if (adev->mes.ring.sched.ready) 828 return amdgpu_mes_rreg(adev, reg); 829 830 BUG_ON(!ring->funcs->emit_rreg); 831 832 spin_lock_irqsave(&kiq->ring_lock, flags); 833 if (amdgpu_device_wb_get(adev, ®_val_offs)) { 834 pr_err("critical bug! too many kiq readers\n"); 835 goto failed_unlock; 836 } 837 amdgpu_ring_alloc(ring, 32); 838 amdgpu_ring_emit_rreg(ring, reg, reg_val_offs); 839 r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT); 840 if (r) 841 goto failed_undo; 842 843 amdgpu_ring_commit(ring); 844 spin_unlock_irqrestore(&kiq->ring_lock, flags); 845 846 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); 847 848 /* don't wait anymore for gpu reset case because this way may 849 * block gpu_recover() routine forever, e.g. this virt_kiq_rreg 850 * is triggered in TTM and ttm_bo_lock_delayed_workqueue() will 851 * never return if we keep waiting in virt_kiq_rreg, which cause 852 * gpu_recover() hang there. 853 * 854 * also don't wait anymore for IRQ context 855 * */ 856 if (r < 1 && (amdgpu_in_reset(adev) || in_interrupt())) 857 goto failed_kiq_read; 858 859 might_sleep(); 860 while (r < 1 && cnt++ < MAX_KIQ_REG_TRY) { 861 msleep(MAX_KIQ_REG_BAILOUT_INTERVAL); 862 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); 863 } 864 865 if (cnt > MAX_KIQ_REG_TRY) 866 goto failed_kiq_read; 867 868 mb(); 869 value = adev->wb.wb[reg_val_offs]; 870 amdgpu_device_wb_free(adev, reg_val_offs); 871 return value; 872 873 failed_undo: 874 amdgpu_ring_undo(ring); 875 failed_unlock: 876 spin_unlock_irqrestore(&kiq->ring_lock, flags); 877 failed_kiq_read: 878 if (reg_val_offs) 879 amdgpu_device_wb_free(adev, reg_val_offs); 880 dev_err(adev->dev, "failed to read reg:%x\n", reg); 881 return ~0; 882 } 883 884 void amdgpu_kiq_wreg(struct amdgpu_device *adev, uint32_t reg, uint32_t v) 885 { 886 signed long r, cnt = 0; 887 unsigned long flags; 888 uint32_t seq; 889 struct amdgpu_kiq *kiq = &adev->gfx.kiq[0]; 890 struct amdgpu_ring *ring = &kiq->ring; 891 892 BUG_ON(!ring->funcs->emit_wreg); 893 894 if (amdgpu_device_skip_hw_access(adev)) 895 return; 896 897 if (adev->mes.ring.sched.ready) { 898 amdgpu_mes_wreg(adev, reg, v); 899 return; 900 } 901 902 spin_lock_irqsave(&kiq->ring_lock, flags); 903 amdgpu_ring_alloc(ring, 32); 904 amdgpu_ring_emit_wreg(ring, reg, v); 905 r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT); 906 if (r) 907 goto failed_undo; 908 909 amdgpu_ring_commit(ring); 910 spin_unlock_irqrestore(&kiq->ring_lock, flags); 911 912 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); 913 914 /* don't wait anymore for gpu reset case because this way may 915 * block gpu_recover() routine forever, e.g. this virt_kiq_rreg 916 * is triggered in TTM and ttm_bo_lock_delayed_workqueue() will 917 * never return if we keep waiting in virt_kiq_rreg, which cause 918 * gpu_recover() hang there. 919 * 920 * also don't wait anymore for IRQ context 921 * */ 922 if (r < 1 && (amdgpu_in_reset(adev) || in_interrupt())) 923 goto failed_kiq_write; 924 925 might_sleep(); 926 while (r < 1 && cnt++ < MAX_KIQ_REG_TRY) { 927 928 msleep(MAX_KIQ_REG_BAILOUT_INTERVAL); 929 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); 930 } 931 932 if (cnt > MAX_KIQ_REG_TRY) 933 goto failed_kiq_write; 934 935 return; 936 937 failed_undo: 938 amdgpu_ring_undo(ring); 939 spin_unlock_irqrestore(&kiq->ring_lock, flags); 940 failed_kiq_write: 941 dev_err(adev->dev, "failed to write reg:%x\n", reg); 942 } 943 944 int amdgpu_gfx_get_num_kcq(struct amdgpu_device *adev) 945 { 946 if (amdgpu_num_kcq == -1) { 947 return 8; 948 } else if (amdgpu_num_kcq > 8 || amdgpu_num_kcq < 0) { 949 dev_warn(adev->dev, "set kernel compute queue number to 8 due to invalid parameter provided by user\n"); 950 return 8; 951 } 952 return amdgpu_num_kcq; 953 } 954 955 void amdgpu_gfx_cp_init_microcode(struct amdgpu_device *adev, 956 uint32_t ucode_id) 957 { 958 const struct gfx_firmware_header_v1_0 *cp_hdr; 959 const struct gfx_firmware_header_v2_0 *cp_hdr_v2_0; 960 struct amdgpu_firmware_info *info = NULL; 961 const struct firmware *ucode_fw; 962 unsigned int fw_size; 963 964 switch (ucode_id) { 965 case AMDGPU_UCODE_ID_CP_PFP: 966 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 967 adev->gfx.pfp_fw->data; 968 adev->gfx.pfp_fw_version = 969 le32_to_cpu(cp_hdr->header.ucode_version); 970 adev->gfx.pfp_feature_version = 971 le32_to_cpu(cp_hdr->ucode_feature_version); 972 ucode_fw = adev->gfx.pfp_fw; 973 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes); 974 break; 975 case AMDGPU_UCODE_ID_CP_RS64_PFP: 976 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) 977 adev->gfx.pfp_fw->data; 978 adev->gfx.pfp_fw_version = 979 le32_to_cpu(cp_hdr_v2_0->header.ucode_version); 980 adev->gfx.pfp_feature_version = 981 le32_to_cpu(cp_hdr_v2_0->ucode_feature_version); 982 ucode_fw = adev->gfx.pfp_fw; 983 fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes); 984 break; 985 case AMDGPU_UCODE_ID_CP_RS64_PFP_P0_STACK: 986 case AMDGPU_UCODE_ID_CP_RS64_PFP_P1_STACK: 987 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) 988 adev->gfx.pfp_fw->data; 989 ucode_fw = adev->gfx.pfp_fw; 990 fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes); 991 break; 992 case AMDGPU_UCODE_ID_CP_ME: 993 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 994 adev->gfx.me_fw->data; 995 adev->gfx.me_fw_version = 996 le32_to_cpu(cp_hdr->header.ucode_version); 997 adev->gfx.me_feature_version = 998 le32_to_cpu(cp_hdr->ucode_feature_version); 999 ucode_fw = adev->gfx.me_fw; 1000 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes); 1001 break; 1002 case AMDGPU_UCODE_ID_CP_RS64_ME: 1003 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) 1004 adev->gfx.me_fw->data; 1005 adev->gfx.me_fw_version = 1006 le32_to_cpu(cp_hdr_v2_0->header.ucode_version); 1007 adev->gfx.me_feature_version = 1008 le32_to_cpu(cp_hdr_v2_0->ucode_feature_version); 1009 ucode_fw = adev->gfx.me_fw; 1010 fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes); 1011 break; 1012 case AMDGPU_UCODE_ID_CP_RS64_ME_P0_STACK: 1013 case AMDGPU_UCODE_ID_CP_RS64_ME_P1_STACK: 1014 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) 1015 adev->gfx.me_fw->data; 1016 ucode_fw = adev->gfx.me_fw; 1017 fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes); 1018 break; 1019 case AMDGPU_UCODE_ID_CP_CE: 1020 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1021 adev->gfx.ce_fw->data; 1022 adev->gfx.ce_fw_version = 1023 le32_to_cpu(cp_hdr->header.ucode_version); 1024 adev->gfx.ce_feature_version = 1025 le32_to_cpu(cp_hdr->ucode_feature_version); 1026 ucode_fw = adev->gfx.ce_fw; 1027 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes); 1028 break; 1029 case AMDGPU_UCODE_ID_CP_MEC1: 1030 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1031 adev->gfx.mec_fw->data; 1032 adev->gfx.mec_fw_version = 1033 le32_to_cpu(cp_hdr->header.ucode_version); 1034 adev->gfx.mec_feature_version = 1035 le32_to_cpu(cp_hdr->ucode_feature_version); 1036 ucode_fw = adev->gfx.mec_fw; 1037 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes) - 1038 le32_to_cpu(cp_hdr->jt_size) * 4; 1039 break; 1040 case AMDGPU_UCODE_ID_CP_MEC1_JT: 1041 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1042 adev->gfx.mec_fw->data; 1043 ucode_fw = adev->gfx.mec_fw; 1044 fw_size = le32_to_cpu(cp_hdr->jt_size) * 4; 1045 break; 1046 case AMDGPU_UCODE_ID_CP_MEC2: 1047 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1048 adev->gfx.mec2_fw->data; 1049 adev->gfx.mec2_fw_version = 1050 le32_to_cpu(cp_hdr->header.ucode_version); 1051 adev->gfx.mec2_feature_version = 1052 le32_to_cpu(cp_hdr->ucode_feature_version); 1053 ucode_fw = adev->gfx.mec2_fw; 1054 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes) - 1055 le32_to_cpu(cp_hdr->jt_size) * 4; 1056 break; 1057 case AMDGPU_UCODE_ID_CP_MEC2_JT: 1058 cp_hdr = (const struct gfx_firmware_header_v1_0 *) 1059 adev->gfx.mec2_fw->data; 1060 ucode_fw = adev->gfx.mec2_fw; 1061 fw_size = le32_to_cpu(cp_hdr->jt_size) * 4; 1062 break; 1063 case AMDGPU_UCODE_ID_CP_RS64_MEC: 1064 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) 1065 adev->gfx.mec_fw->data; 1066 adev->gfx.mec_fw_version = 1067 le32_to_cpu(cp_hdr_v2_0->header.ucode_version); 1068 adev->gfx.mec_feature_version = 1069 le32_to_cpu(cp_hdr_v2_0->ucode_feature_version); 1070 ucode_fw = adev->gfx.mec_fw; 1071 fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes); 1072 break; 1073 case AMDGPU_UCODE_ID_CP_RS64_MEC_P0_STACK: 1074 case AMDGPU_UCODE_ID_CP_RS64_MEC_P1_STACK: 1075 case AMDGPU_UCODE_ID_CP_RS64_MEC_P2_STACK: 1076 case AMDGPU_UCODE_ID_CP_RS64_MEC_P3_STACK: 1077 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) 1078 adev->gfx.mec_fw->data; 1079 ucode_fw = adev->gfx.mec_fw; 1080 fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes); 1081 break; 1082 default: 1083 break; 1084 } 1085 1086 if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) { 1087 info = &adev->firmware.ucode[ucode_id]; 1088 info->ucode_id = ucode_id; 1089 info->fw = ucode_fw; 1090 adev->firmware.fw_size += ALIGN(fw_size, PAGE_SIZE); 1091 } 1092 } 1093 1094 bool amdgpu_gfx_is_master_xcc(struct amdgpu_device *adev, int xcc_id) 1095 { 1096 return !(xcc_id % (adev->gfx.num_xcc_per_xcp ? 1097 adev->gfx.num_xcc_per_xcp : 1)); 1098 } 1099