xref: /linux/drivers/gpu/drm/amd/amdgpu/amdgpu_ctx.c (revision 2dcb8e8782d8e4c38903bf37b1a24d3ffd193da7)
1 /*
2  * Copyright 2015 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: monk liu <monk.liu@amd.com>
23  */
24 
25 #include <drm/drm_auth.h>
26 #include <drm/drm_drv.h>
27 #include "amdgpu.h"
28 #include "amdgpu_sched.h"
29 #include "amdgpu_ras.h"
30 #include <linux/nospec.h>
31 
32 #define to_amdgpu_ctx_entity(e)	\
33 	container_of((e), struct amdgpu_ctx_entity, entity)
34 
35 const unsigned int amdgpu_ctx_num_entities[AMDGPU_HW_IP_NUM] = {
36 	[AMDGPU_HW_IP_GFX]	=	1,
37 	[AMDGPU_HW_IP_COMPUTE]	=	4,
38 	[AMDGPU_HW_IP_DMA]	=	2,
39 	[AMDGPU_HW_IP_UVD]	=	1,
40 	[AMDGPU_HW_IP_VCE]	=	1,
41 	[AMDGPU_HW_IP_UVD_ENC]	=	1,
42 	[AMDGPU_HW_IP_VCN_DEC]	=	1,
43 	[AMDGPU_HW_IP_VCN_ENC]	=	1,
44 	[AMDGPU_HW_IP_VCN_JPEG]	=	1,
45 };
46 
47 bool amdgpu_ctx_priority_is_valid(int32_t ctx_prio)
48 {
49 	switch (ctx_prio) {
50 	case AMDGPU_CTX_PRIORITY_UNSET:
51 	case AMDGPU_CTX_PRIORITY_VERY_LOW:
52 	case AMDGPU_CTX_PRIORITY_LOW:
53 	case AMDGPU_CTX_PRIORITY_NORMAL:
54 	case AMDGPU_CTX_PRIORITY_HIGH:
55 	case AMDGPU_CTX_PRIORITY_VERY_HIGH:
56 		return true;
57 	default:
58 		return false;
59 	}
60 }
61 
62 static enum drm_sched_priority
63 amdgpu_ctx_to_drm_sched_prio(int32_t ctx_prio)
64 {
65 	switch (ctx_prio) {
66 	case AMDGPU_CTX_PRIORITY_UNSET:
67 		return DRM_SCHED_PRIORITY_UNSET;
68 
69 	case AMDGPU_CTX_PRIORITY_VERY_LOW:
70 		return DRM_SCHED_PRIORITY_MIN;
71 
72 	case AMDGPU_CTX_PRIORITY_LOW:
73 		return DRM_SCHED_PRIORITY_MIN;
74 
75 	case AMDGPU_CTX_PRIORITY_NORMAL:
76 		return DRM_SCHED_PRIORITY_NORMAL;
77 
78 	case AMDGPU_CTX_PRIORITY_HIGH:
79 		return DRM_SCHED_PRIORITY_HIGH;
80 
81 	case AMDGPU_CTX_PRIORITY_VERY_HIGH:
82 		return DRM_SCHED_PRIORITY_HIGH;
83 
84 	/* This should not happen as we sanitized userspace provided priority
85 	 * already, WARN if this happens.
86 	 */
87 	default:
88 		WARN(1, "Invalid context priority %d\n", ctx_prio);
89 		return DRM_SCHED_PRIORITY_NORMAL;
90 	}
91 
92 }
93 
94 static int amdgpu_ctx_priority_permit(struct drm_file *filp,
95 				      int32_t priority)
96 {
97 	if (!amdgpu_ctx_priority_is_valid(priority))
98 		return -EINVAL;
99 
100 	/* NORMAL and below are accessible by everyone */
101 	if (priority <= AMDGPU_CTX_PRIORITY_NORMAL)
102 		return 0;
103 
104 	if (capable(CAP_SYS_NICE))
105 		return 0;
106 
107 	if (drm_is_current_master(filp))
108 		return 0;
109 
110 	return -EACCES;
111 }
112 
113 static enum amdgpu_gfx_pipe_priority amdgpu_ctx_prio_to_compute_prio(int32_t prio)
114 {
115 	switch (prio) {
116 	case AMDGPU_CTX_PRIORITY_HIGH:
117 	case AMDGPU_CTX_PRIORITY_VERY_HIGH:
118 		return AMDGPU_GFX_PIPE_PRIO_HIGH;
119 	default:
120 		return AMDGPU_GFX_PIPE_PRIO_NORMAL;
121 	}
122 }
123 
124 static enum amdgpu_ring_priority_level amdgpu_ctx_sched_prio_to_ring_prio(int32_t prio)
125 {
126 	switch (prio) {
127 	case AMDGPU_CTX_PRIORITY_HIGH:
128 		return AMDGPU_RING_PRIO_1;
129 	case AMDGPU_CTX_PRIORITY_VERY_HIGH:
130 		return AMDGPU_RING_PRIO_2;
131 	default:
132 		return AMDGPU_RING_PRIO_0;
133 	}
134 }
135 
136 static unsigned int amdgpu_ctx_get_hw_prio(struct amdgpu_ctx *ctx, u32 hw_ip)
137 {
138 	struct amdgpu_device *adev = ctx->adev;
139 	int32_t ctx_prio;
140 	unsigned int hw_prio;
141 
142 	ctx_prio = (ctx->override_priority == AMDGPU_CTX_PRIORITY_UNSET) ?
143 			ctx->init_priority : ctx->override_priority;
144 
145 	switch (hw_ip) {
146 	case AMDGPU_HW_IP_COMPUTE:
147 		hw_prio = amdgpu_ctx_prio_to_compute_prio(ctx_prio);
148 		break;
149 	case AMDGPU_HW_IP_VCE:
150 	case AMDGPU_HW_IP_VCN_ENC:
151 		hw_prio = amdgpu_ctx_sched_prio_to_ring_prio(ctx_prio);
152 		break;
153 	default:
154 		hw_prio = AMDGPU_RING_PRIO_DEFAULT;
155 		break;
156 	}
157 
158 	hw_ip = array_index_nospec(hw_ip, AMDGPU_HW_IP_NUM);
159 	if (adev->gpu_sched[hw_ip][hw_prio].num_scheds == 0)
160 		hw_prio = AMDGPU_RING_PRIO_DEFAULT;
161 
162 	return hw_prio;
163 }
164 
165 
166 static int amdgpu_ctx_init_entity(struct amdgpu_ctx *ctx, u32 hw_ip,
167 				  const u32 ring)
168 {
169 	struct amdgpu_device *adev = ctx->adev;
170 	struct amdgpu_ctx_entity *entity;
171 	struct drm_gpu_scheduler **scheds = NULL, *sched = NULL;
172 	unsigned num_scheds = 0;
173 	int32_t ctx_prio;
174 	unsigned int hw_prio;
175 	enum drm_sched_priority drm_prio;
176 	int r;
177 
178 	entity = kzalloc(struct_size(entity, fences, amdgpu_sched_jobs),
179 			 GFP_KERNEL);
180 	if (!entity)
181 		return  -ENOMEM;
182 
183 	ctx_prio = (ctx->override_priority == AMDGPU_CTX_PRIORITY_UNSET) ?
184 			ctx->init_priority : ctx->override_priority;
185 	entity->sequence = 1;
186 	hw_prio = amdgpu_ctx_get_hw_prio(ctx, hw_ip);
187 	drm_prio = amdgpu_ctx_to_drm_sched_prio(ctx_prio);
188 
189 	hw_ip = array_index_nospec(hw_ip, AMDGPU_HW_IP_NUM);
190 	scheds = adev->gpu_sched[hw_ip][hw_prio].sched;
191 	num_scheds = adev->gpu_sched[hw_ip][hw_prio].num_scheds;
192 
193 	/* disable load balance if the hw engine retains context among dependent jobs */
194 	if (hw_ip == AMDGPU_HW_IP_VCN_ENC ||
195 	    hw_ip == AMDGPU_HW_IP_VCN_DEC ||
196 	    hw_ip == AMDGPU_HW_IP_UVD_ENC ||
197 	    hw_ip == AMDGPU_HW_IP_UVD) {
198 		sched = drm_sched_pick_best(scheds, num_scheds);
199 		scheds = &sched;
200 		num_scheds = 1;
201 	}
202 
203 	r = drm_sched_entity_init(&entity->entity, drm_prio, scheds, num_scheds,
204 				  &ctx->guilty);
205 	if (r)
206 		goto error_free_entity;
207 
208 	/* It's not an error if we fail to install the new entity */
209 	if (cmpxchg(&ctx->entities[hw_ip][ring], NULL, entity))
210 		goto cleanup_entity;
211 
212 	return 0;
213 
214 cleanup_entity:
215 	drm_sched_entity_fini(&entity->entity);
216 
217 error_free_entity:
218 	kfree(entity);
219 
220 	return r;
221 }
222 
223 static int amdgpu_ctx_init(struct amdgpu_device *adev,
224 			   int32_t priority,
225 			   struct drm_file *filp,
226 			   struct amdgpu_ctx *ctx)
227 {
228 	int r;
229 
230 	r = amdgpu_ctx_priority_permit(filp, priority);
231 	if (r)
232 		return r;
233 
234 	memset(ctx, 0, sizeof(*ctx));
235 
236 	ctx->adev = adev;
237 
238 	kref_init(&ctx->refcount);
239 	spin_lock_init(&ctx->ring_lock);
240 
241 	ctx->reset_counter = atomic_read(&adev->gpu_reset_counter);
242 	ctx->reset_counter_query = ctx->reset_counter;
243 	ctx->vram_lost_counter = atomic_read(&adev->vram_lost_counter);
244 	ctx->init_priority = priority;
245 	ctx->override_priority = AMDGPU_CTX_PRIORITY_UNSET;
246 	ctx->stable_pstate = AMDGPU_CTX_STABLE_PSTATE_NONE;
247 
248 	return 0;
249 }
250 
251 static void amdgpu_ctx_fini_entity(struct amdgpu_ctx_entity *entity)
252 {
253 
254 	int i;
255 
256 	if (!entity)
257 		return;
258 
259 	for (i = 0; i < amdgpu_sched_jobs; ++i)
260 		dma_fence_put(entity->fences[i]);
261 
262 	kfree(entity);
263 }
264 
265 static int amdgpu_ctx_get_stable_pstate(struct amdgpu_ctx *ctx,
266 					u32 *stable_pstate)
267 {
268 	struct amdgpu_device *adev = ctx->adev;
269 	enum amd_dpm_forced_level current_level;
270 
271 	current_level = amdgpu_dpm_get_performance_level(adev);
272 
273 	switch (current_level) {
274 	case AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD:
275 		*stable_pstate = AMDGPU_CTX_STABLE_PSTATE_STANDARD;
276 		break;
277 	case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK:
278 		*stable_pstate = AMDGPU_CTX_STABLE_PSTATE_MIN_SCLK;
279 		break;
280 	case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK:
281 		*stable_pstate = AMDGPU_CTX_STABLE_PSTATE_MIN_MCLK;
282 		break;
283 	case AMD_DPM_FORCED_LEVEL_PROFILE_PEAK:
284 		*stable_pstate = AMDGPU_CTX_STABLE_PSTATE_PEAK;
285 		break;
286 	default:
287 		*stable_pstate = AMDGPU_CTX_STABLE_PSTATE_NONE;
288 		break;
289 	}
290 	return 0;
291 }
292 
293 static int amdgpu_ctx_set_stable_pstate(struct amdgpu_ctx *ctx,
294 					u32 stable_pstate)
295 {
296 	struct amdgpu_device *adev = ctx->adev;
297 	enum amd_dpm_forced_level level;
298 	int r;
299 
300 	mutex_lock(&adev->pm.stable_pstate_ctx_lock);
301 	if (adev->pm.stable_pstate_ctx && adev->pm.stable_pstate_ctx != ctx) {
302 		r = -EBUSY;
303 		goto done;
304 	}
305 
306 	switch (stable_pstate) {
307 	case AMDGPU_CTX_STABLE_PSTATE_NONE:
308 		level = AMD_DPM_FORCED_LEVEL_AUTO;
309 		break;
310 	case AMDGPU_CTX_STABLE_PSTATE_STANDARD:
311 		level = AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD;
312 		break;
313 	case AMDGPU_CTX_STABLE_PSTATE_MIN_SCLK:
314 		level = AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK;
315 		break;
316 	case AMDGPU_CTX_STABLE_PSTATE_MIN_MCLK:
317 		level = AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK;
318 		break;
319 	case AMDGPU_CTX_STABLE_PSTATE_PEAK:
320 		level = AMD_DPM_FORCED_LEVEL_PROFILE_PEAK;
321 		break;
322 	default:
323 		r = -EINVAL;
324 		goto done;
325 	}
326 
327 	r = amdgpu_dpm_force_performance_level(adev, level);
328 
329 	if (level == AMD_DPM_FORCED_LEVEL_AUTO)
330 		adev->pm.stable_pstate_ctx = NULL;
331 	else
332 		adev->pm.stable_pstate_ctx = ctx;
333 done:
334 	mutex_unlock(&adev->pm.stable_pstate_ctx_lock);
335 
336 	return r;
337 }
338 
339 static void amdgpu_ctx_fini(struct kref *ref)
340 {
341 	struct amdgpu_ctx *ctx = container_of(ref, struct amdgpu_ctx, refcount);
342 	struct amdgpu_device *adev = ctx->adev;
343 	unsigned i, j, idx;
344 
345 	if (!adev)
346 		return;
347 
348 	for (i = 0; i < AMDGPU_HW_IP_NUM; ++i) {
349 		for (j = 0; j < AMDGPU_MAX_ENTITY_NUM; ++j) {
350 			amdgpu_ctx_fini_entity(ctx->entities[i][j]);
351 			ctx->entities[i][j] = NULL;
352 		}
353 	}
354 
355 	if (drm_dev_enter(&adev->ddev, &idx)) {
356 		amdgpu_ctx_set_stable_pstate(ctx, AMDGPU_CTX_STABLE_PSTATE_NONE);
357 		drm_dev_exit(idx);
358 	}
359 
360 	kfree(ctx);
361 }
362 
363 int amdgpu_ctx_get_entity(struct amdgpu_ctx *ctx, u32 hw_ip, u32 instance,
364 			  u32 ring, struct drm_sched_entity **entity)
365 {
366 	int r;
367 
368 	if (hw_ip >= AMDGPU_HW_IP_NUM) {
369 		DRM_ERROR("unknown HW IP type: %d\n", hw_ip);
370 		return -EINVAL;
371 	}
372 
373 	/* Right now all IPs have only one instance - multiple rings. */
374 	if (instance != 0) {
375 		DRM_DEBUG("invalid ip instance: %d\n", instance);
376 		return -EINVAL;
377 	}
378 
379 	if (ring >= amdgpu_ctx_num_entities[hw_ip]) {
380 		DRM_DEBUG("invalid ring: %d %d\n", hw_ip, ring);
381 		return -EINVAL;
382 	}
383 
384 	if (ctx->entities[hw_ip][ring] == NULL) {
385 		r = amdgpu_ctx_init_entity(ctx, hw_ip, ring);
386 		if (r)
387 			return r;
388 	}
389 
390 	*entity = &ctx->entities[hw_ip][ring]->entity;
391 	return 0;
392 }
393 
394 static int amdgpu_ctx_alloc(struct amdgpu_device *adev,
395 			    struct amdgpu_fpriv *fpriv,
396 			    struct drm_file *filp,
397 			    int32_t priority,
398 			    uint32_t *id)
399 {
400 	struct amdgpu_ctx_mgr *mgr = &fpriv->ctx_mgr;
401 	struct amdgpu_ctx *ctx;
402 	int r;
403 
404 	ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
405 	if (!ctx)
406 		return -ENOMEM;
407 
408 	mutex_lock(&mgr->lock);
409 	r = idr_alloc(&mgr->ctx_handles, ctx, 1, AMDGPU_VM_MAX_NUM_CTX, GFP_KERNEL);
410 	if (r < 0) {
411 		mutex_unlock(&mgr->lock);
412 		kfree(ctx);
413 		return r;
414 	}
415 
416 	*id = (uint32_t)r;
417 	r = amdgpu_ctx_init(adev, priority, filp, ctx);
418 	if (r) {
419 		idr_remove(&mgr->ctx_handles, *id);
420 		*id = 0;
421 		kfree(ctx);
422 	}
423 	mutex_unlock(&mgr->lock);
424 	return r;
425 }
426 
427 static void amdgpu_ctx_do_release(struct kref *ref)
428 {
429 	struct amdgpu_ctx *ctx;
430 	u32 i, j;
431 
432 	ctx = container_of(ref, struct amdgpu_ctx, refcount);
433 	for (i = 0; i < AMDGPU_HW_IP_NUM; ++i) {
434 		for (j = 0; j < amdgpu_ctx_num_entities[i]; ++j) {
435 			if (!ctx->entities[i][j])
436 				continue;
437 
438 			drm_sched_entity_destroy(&ctx->entities[i][j]->entity);
439 		}
440 	}
441 
442 	amdgpu_ctx_fini(ref);
443 }
444 
445 static int amdgpu_ctx_free(struct amdgpu_fpriv *fpriv, uint32_t id)
446 {
447 	struct amdgpu_ctx_mgr *mgr = &fpriv->ctx_mgr;
448 	struct amdgpu_ctx *ctx;
449 
450 	mutex_lock(&mgr->lock);
451 	ctx = idr_remove(&mgr->ctx_handles, id);
452 	if (ctx)
453 		kref_put(&ctx->refcount, amdgpu_ctx_do_release);
454 	mutex_unlock(&mgr->lock);
455 	return ctx ? 0 : -EINVAL;
456 }
457 
458 static int amdgpu_ctx_query(struct amdgpu_device *adev,
459 			    struct amdgpu_fpriv *fpriv, uint32_t id,
460 			    union drm_amdgpu_ctx_out *out)
461 {
462 	struct amdgpu_ctx *ctx;
463 	struct amdgpu_ctx_mgr *mgr;
464 	unsigned reset_counter;
465 
466 	if (!fpriv)
467 		return -EINVAL;
468 
469 	mgr = &fpriv->ctx_mgr;
470 	mutex_lock(&mgr->lock);
471 	ctx = idr_find(&mgr->ctx_handles, id);
472 	if (!ctx) {
473 		mutex_unlock(&mgr->lock);
474 		return -EINVAL;
475 	}
476 
477 	/* TODO: these two are always zero */
478 	out->state.flags = 0x0;
479 	out->state.hangs = 0x0;
480 
481 	/* determine if a GPU reset has occured since the last call */
482 	reset_counter = atomic_read(&adev->gpu_reset_counter);
483 	/* TODO: this should ideally return NO, GUILTY, or INNOCENT. */
484 	if (ctx->reset_counter_query == reset_counter)
485 		out->state.reset_status = AMDGPU_CTX_NO_RESET;
486 	else
487 		out->state.reset_status = AMDGPU_CTX_UNKNOWN_RESET;
488 	ctx->reset_counter_query = reset_counter;
489 
490 	mutex_unlock(&mgr->lock);
491 	return 0;
492 }
493 
494 #define AMDGPU_RAS_COUNTE_DELAY_MS 3000
495 
496 static int amdgpu_ctx_query2(struct amdgpu_device *adev,
497 			     struct amdgpu_fpriv *fpriv, uint32_t id,
498 			     union drm_amdgpu_ctx_out *out)
499 {
500 	struct amdgpu_ras *con = amdgpu_ras_get_context(adev);
501 	struct amdgpu_ctx *ctx;
502 	struct amdgpu_ctx_mgr *mgr;
503 
504 	if (!fpriv)
505 		return -EINVAL;
506 
507 	mgr = &fpriv->ctx_mgr;
508 	mutex_lock(&mgr->lock);
509 	ctx = idr_find(&mgr->ctx_handles, id);
510 	if (!ctx) {
511 		mutex_unlock(&mgr->lock);
512 		return -EINVAL;
513 	}
514 
515 	out->state.flags = 0x0;
516 	out->state.hangs = 0x0;
517 
518 	if (ctx->reset_counter != atomic_read(&adev->gpu_reset_counter))
519 		out->state.flags |= AMDGPU_CTX_QUERY2_FLAGS_RESET;
520 
521 	if (ctx->vram_lost_counter != atomic_read(&adev->vram_lost_counter))
522 		out->state.flags |= AMDGPU_CTX_QUERY2_FLAGS_VRAMLOST;
523 
524 	if (atomic_read(&ctx->guilty))
525 		out->state.flags |= AMDGPU_CTX_QUERY2_FLAGS_GUILTY;
526 
527 	if (adev->ras_enabled && con) {
528 		/* Return the cached values in O(1),
529 		 * and schedule delayed work to cache
530 		 * new vaues.
531 		 */
532 		int ce_count, ue_count;
533 
534 		ce_count = atomic_read(&con->ras_ce_count);
535 		ue_count = atomic_read(&con->ras_ue_count);
536 
537 		if (ce_count != ctx->ras_counter_ce) {
538 			ctx->ras_counter_ce = ce_count;
539 			out->state.flags |= AMDGPU_CTX_QUERY2_FLAGS_RAS_CE;
540 		}
541 
542 		if (ue_count != ctx->ras_counter_ue) {
543 			ctx->ras_counter_ue = ue_count;
544 			out->state.flags |= AMDGPU_CTX_QUERY2_FLAGS_RAS_UE;
545 		}
546 
547 		schedule_delayed_work(&con->ras_counte_delay_work,
548 				      msecs_to_jiffies(AMDGPU_RAS_COUNTE_DELAY_MS));
549 	}
550 
551 	mutex_unlock(&mgr->lock);
552 	return 0;
553 }
554 
555 
556 
557 static int amdgpu_ctx_stable_pstate(struct amdgpu_device *adev,
558 				    struct amdgpu_fpriv *fpriv, uint32_t id,
559 				    bool set, u32 *stable_pstate)
560 {
561 	struct amdgpu_ctx *ctx;
562 	struct amdgpu_ctx_mgr *mgr;
563 	int r;
564 
565 	if (!fpriv)
566 		return -EINVAL;
567 
568 	mgr = &fpriv->ctx_mgr;
569 	mutex_lock(&mgr->lock);
570 	ctx = idr_find(&mgr->ctx_handles, id);
571 	if (!ctx) {
572 		mutex_unlock(&mgr->lock);
573 		return -EINVAL;
574 	}
575 
576 	if (set)
577 		r = amdgpu_ctx_set_stable_pstate(ctx, *stable_pstate);
578 	else
579 		r = amdgpu_ctx_get_stable_pstate(ctx, stable_pstate);
580 
581 	mutex_unlock(&mgr->lock);
582 	return r;
583 }
584 
585 int amdgpu_ctx_ioctl(struct drm_device *dev, void *data,
586 		     struct drm_file *filp)
587 {
588 	int r;
589 	uint32_t id, stable_pstate;
590 	int32_t priority;
591 
592 	union drm_amdgpu_ctx *args = data;
593 	struct amdgpu_device *adev = drm_to_adev(dev);
594 	struct amdgpu_fpriv *fpriv = filp->driver_priv;
595 
596 	id = args->in.ctx_id;
597 	priority = args->in.priority;
598 
599 	/* For backwards compatibility reasons, we need to accept
600 	 * ioctls with garbage in the priority field */
601 	if (!amdgpu_ctx_priority_is_valid(priority))
602 		priority = AMDGPU_CTX_PRIORITY_NORMAL;
603 
604 	switch (args->in.op) {
605 	case AMDGPU_CTX_OP_ALLOC_CTX:
606 		r = amdgpu_ctx_alloc(adev, fpriv, filp, priority, &id);
607 		args->out.alloc.ctx_id = id;
608 		break;
609 	case AMDGPU_CTX_OP_FREE_CTX:
610 		r = amdgpu_ctx_free(fpriv, id);
611 		break;
612 	case AMDGPU_CTX_OP_QUERY_STATE:
613 		r = amdgpu_ctx_query(adev, fpriv, id, &args->out);
614 		break;
615 	case AMDGPU_CTX_OP_QUERY_STATE2:
616 		r = amdgpu_ctx_query2(adev, fpriv, id, &args->out);
617 		break;
618 	case AMDGPU_CTX_OP_GET_STABLE_PSTATE:
619 		if (args->in.flags)
620 			return -EINVAL;
621 		r = amdgpu_ctx_stable_pstate(adev, fpriv, id, false, &stable_pstate);
622 		if (!r)
623 			args->out.pstate.flags = stable_pstate;
624 		break;
625 	case AMDGPU_CTX_OP_SET_STABLE_PSTATE:
626 		if (args->in.flags & ~AMDGPU_CTX_STABLE_PSTATE_FLAGS_MASK)
627 			return -EINVAL;
628 		stable_pstate = args->in.flags & AMDGPU_CTX_STABLE_PSTATE_FLAGS_MASK;
629 		if (stable_pstate > AMDGPU_CTX_STABLE_PSTATE_PEAK)
630 			return -EINVAL;
631 		r = amdgpu_ctx_stable_pstate(adev, fpriv, id, true, &stable_pstate);
632 		break;
633 	default:
634 		return -EINVAL;
635 	}
636 
637 	return r;
638 }
639 
640 struct amdgpu_ctx *amdgpu_ctx_get(struct amdgpu_fpriv *fpriv, uint32_t id)
641 {
642 	struct amdgpu_ctx *ctx;
643 	struct amdgpu_ctx_mgr *mgr;
644 
645 	if (!fpriv)
646 		return NULL;
647 
648 	mgr = &fpriv->ctx_mgr;
649 
650 	mutex_lock(&mgr->lock);
651 	ctx = idr_find(&mgr->ctx_handles, id);
652 	if (ctx)
653 		kref_get(&ctx->refcount);
654 	mutex_unlock(&mgr->lock);
655 	return ctx;
656 }
657 
658 int amdgpu_ctx_put(struct amdgpu_ctx *ctx)
659 {
660 	if (ctx == NULL)
661 		return -EINVAL;
662 
663 	kref_put(&ctx->refcount, amdgpu_ctx_do_release);
664 	return 0;
665 }
666 
667 void amdgpu_ctx_add_fence(struct amdgpu_ctx *ctx,
668 			  struct drm_sched_entity *entity,
669 			  struct dma_fence *fence, uint64_t *handle)
670 {
671 	struct amdgpu_ctx_entity *centity = to_amdgpu_ctx_entity(entity);
672 	uint64_t seq = centity->sequence;
673 	struct dma_fence *other = NULL;
674 	unsigned idx = 0;
675 
676 	idx = seq & (amdgpu_sched_jobs - 1);
677 	other = centity->fences[idx];
678 	if (other)
679 		BUG_ON(!dma_fence_is_signaled(other));
680 
681 	dma_fence_get(fence);
682 
683 	spin_lock(&ctx->ring_lock);
684 	centity->fences[idx] = fence;
685 	centity->sequence++;
686 	spin_unlock(&ctx->ring_lock);
687 
688 	dma_fence_put(other);
689 	if (handle)
690 		*handle = seq;
691 }
692 
693 struct dma_fence *amdgpu_ctx_get_fence(struct amdgpu_ctx *ctx,
694 				       struct drm_sched_entity *entity,
695 				       uint64_t seq)
696 {
697 	struct amdgpu_ctx_entity *centity = to_amdgpu_ctx_entity(entity);
698 	struct dma_fence *fence;
699 
700 	spin_lock(&ctx->ring_lock);
701 
702 	if (seq == ~0ull)
703 		seq = centity->sequence - 1;
704 
705 	if (seq >= centity->sequence) {
706 		spin_unlock(&ctx->ring_lock);
707 		return ERR_PTR(-EINVAL);
708 	}
709 
710 
711 	if (seq + amdgpu_sched_jobs < centity->sequence) {
712 		spin_unlock(&ctx->ring_lock);
713 		return NULL;
714 	}
715 
716 	fence = dma_fence_get(centity->fences[seq & (amdgpu_sched_jobs - 1)]);
717 	spin_unlock(&ctx->ring_lock);
718 
719 	return fence;
720 }
721 
722 static void amdgpu_ctx_set_entity_priority(struct amdgpu_ctx *ctx,
723 					   struct amdgpu_ctx_entity *aentity,
724 					   int hw_ip,
725 					   int32_t priority)
726 {
727 	struct amdgpu_device *adev = ctx->adev;
728 	unsigned int hw_prio;
729 	struct drm_gpu_scheduler **scheds = NULL;
730 	unsigned num_scheds;
731 
732 	/* set sw priority */
733 	drm_sched_entity_set_priority(&aentity->entity,
734 				      amdgpu_ctx_to_drm_sched_prio(priority));
735 
736 	/* set hw priority */
737 	if (hw_ip == AMDGPU_HW_IP_COMPUTE) {
738 		hw_prio = amdgpu_ctx_get_hw_prio(ctx, hw_ip);
739 		hw_prio = array_index_nospec(hw_prio, AMDGPU_RING_PRIO_MAX);
740 		scheds = adev->gpu_sched[hw_ip][hw_prio].sched;
741 		num_scheds = adev->gpu_sched[hw_ip][hw_prio].num_scheds;
742 		drm_sched_entity_modify_sched(&aentity->entity, scheds,
743 					      num_scheds);
744 	}
745 }
746 
747 void amdgpu_ctx_priority_override(struct amdgpu_ctx *ctx,
748 				  int32_t priority)
749 {
750 	int32_t ctx_prio;
751 	unsigned i, j;
752 
753 	ctx->override_priority = priority;
754 
755 	ctx_prio = (ctx->override_priority == AMDGPU_CTX_PRIORITY_UNSET) ?
756 			ctx->init_priority : ctx->override_priority;
757 	for (i = 0; i < AMDGPU_HW_IP_NUM; ++i) {
758 		for (j = 0; j < amdgpu_ctx_num_entities[i]; ++j) {
759 			if (!ctx->entities[i][j])
760 				continue;
761 
762 			amdgpu_ctx_set_entity_priority(ctx, ctx->entities[i][j],
763 						       i, ctx_prio);
764 		}
765 	}
766 }
767 
768 int amdgpu_ctx_wait_prev_fence(struct amdgpu_ctx *ctx,
769 			       struct drm_sched_entity *entity)
770 {
771 	struct amdgpu_ctx_entity *centity = to_amdgpu_ctx_entity(entity);
772 	struct dma_fence *other;
773 	unsigned idx;
774 	long r;
775 
776 	spin_lock(&ctx->ring_lock);
777 	idx = centity->sequence & (amdgpu_sched_jobs - 1);
778 	other = dma_fence_get(centity->fences[idx]);
779 	spin_unlock(&ctx->ring_lock);
780 
781 	if (!other)
782 		return 0;
783 
784 	r = dma_fence_wait(other, true);
785 	if (r < 0 && r != -ERESTARTSYS)
786 		DRM_ERROR("Error (%ld) waiting for fence!\n", r);
787 
788 	dma_fence_put(other);
789 	return r;
790 }
791 
792 void amdgpu_ctx_mgr_init(struct amdgpu_ctx_mgr *mgr)
793 {
794 	mutex_init(&mgr->lock);
795 	idr_init(&mgr->ctx_handles);
796 }
797 
798 long amdgpu_ctx_mgr_entity_flush(struct amdgpu_ctx_mgr *mgr, long timeout)
799 {
800 	struct amdgpu_ctx *ctx;
801 	struct idr *idp;
802 	uint32_t id, i, j;
803 
804 	idp = &mgr->ctx_handles;
805 
806 	mutex_lock(&mgr->lock);
807 	idr_for_each_entry(idp, ctx, id) {
808 		for (i = 0; i < AMDGPU_HW_IP_NUM; ++i) {
809 			for (j = 0; j < amdgpu_ctx_num_entities[i]; ++j) {
810 				struct drm_sched_entity *entity;
811 
812 				if (!ctx->entities[i][j])
813 					continue;
814 
815 				entity = &ctx->entities[i][j]->entity;
816 				timeout = drm_sched_entity_flush(entity, timeout);
817 			}
818 		}
819 	}
820 	mutex_unlock(&mgr->lock);
821 	return timeout;
822 }
823 
824 void amdgpu_ctx_mgr_entity_fini(struct amdgpu_ctx_mgr *mgr)
825 {
826 	struct amdgpu_ctx *ctx;
827 	struct idr *idp;
828 	uint32_t id, i, j;
829 
830 	idp = &mgr->ctx_handles;
831 
832 	idr_for_each_entry(idp, ctx, id) {
833 		if (kref_read(&ctx->refcount) != 1) {
834 			DRM_ERROR("ctx %p is still alive\n", ctx);
835 			continue;
836 		}
837 
838 		for (i = 0; i < AMDGPU_HW_IP_NUM; ++i) {
839 			for (j = 0; j < amdgpu_ctx_num_entities[i]; ++j) {
840 				struct drm_sched_entity *entity;
841 
842 				if (!ctx->entities[i][j])
843 					continue;
844 
845 				entity = &ctx->entities[i][j]->entity;
846 				drm_sched_entity_fini(entity);
847 			}
848 		}
849 	}
850 }
851 
852 void amdgpu_ctx_mgr_fini(struct amdgpu_ctx_mgr *mgr)
853 {
854 	struct amdgpu_ctx *ctx;
855 	struct idr *idp;
856 	uint32_t id;
857 
858 	amdgpu_ctx_mgr_entity_fini(mgr);
859 
860 	idp = &mgr->ctx_handles;
861 
862 	idr_for_each_entry(idp, ctx, id) {
863 		if (kref_put(&ctx->refcount, amdgpu_ctx_fini) != 1)
864 			DRM_ERROR("ctx %p is still alive\n", ctx);
865 	}
866 
867 	idr_destroy(&mgr->ctx_handles);
868 	mutex_destroy(&mgr->lock);
869 }
870 
871 static void amdgpu_ctx_fence_time(struct amdgpu_ctx *ctx,
872 		struct amdgpu_ctx_entity *centity, ktime_t *total, ktime_t *max)
873 {
874 	ktime_t now, t1;
875 	uint32_t i;
876 
877 	*total = *max = 0;
878 
879 	now = ktime_get();
880 	for (i = 0; i < amdgpu_sched_jobs; i++) {
881 		struct dma_fence *fence;
882 		struct drm_sched_fence *s_fence;
883 
884 		spin_lock(&ctx->ring_lock);
885 		fence = dma_fence_get(centity->fences[i]);
886 		spin_unlock(&ctx->ring_lock);
887 		if (!fence)
888 			continue;
889 		s_fence = to_drm_sched_fence(fence);
890 		if (!dma_fence_is_signaled(&s_fence->scheduled)) {
891 			dma_fence_put(fence);
892 			continue;
893 		}
894 		t1 = s_fence->scheduled.timestamp;
895 		if (!ktime_before(t1, now)) {
896 			dma_fence_put(fence);
897 			continue;
898 		}
899 		if (dma_fence_is_signaled(&s_fence->finished) &&
900 			s_fence->finished.timestamp < now)
901 			*total += ktime_sub(s_fence->finished.timestamp, t1);
902 		else
903 			*total += ktime_sub(now, t1);
904 		t1 = ktime_sub(now, t1);
905 		dma_fence_put(fence);
906 		*max = max(t1, *max);
907 	}
908 }
909 
910 ktime_t amdgpu_ctx_mgr_fence_usage(struct amdgpu_ctx_mgr *mgr, uint32_t hwip,
911 		uint32_t idx, uint64_t *elapsed)
912 {
913 	struct idr *idp;
914 	struct amdgpu_ctx *ctx;
915 	uint32_t id;
916 	struct amdgpu_ctx_entity *centity;
917 	ktime_t total = 0, max = 0;
918 
919 	if (idx >= AMDGPU_MAX_ENTITY_NUM)
920 		return 0;
921 	idp = &mgr->ctx_handles;
922 	mutex_lock(&mgr->lock);
923 	idr_for_each_entry(idp, ctx, id) {
924 		ktime_t ttotal, tmax;
925 
926 		if (!ctx->entities[hwip][idx])
927 			continue;
928 
929 		centity = ctx->entities[hwip][idx];
930 		amdgpu_ctx_fence_time(ctx, centity, &ttotal, &tmax);
931 
932 		/* Harmonic mean approximation diverges for very small
933 		 * values. If ratio < 0.01% ignore
934 		 */
935 		if (AMDGPU_CTX_FENCE_USAGE_MIN_RATIO(tmax, ttotal))
936 			continue;
937 
938 		total = ktime_add(total, ttotal);
939 		max = ktime_after(tmax, max) ? tmax : max;
940 	}
941 
942 	mutex_unlock(&mgr->lock);
943 	if (elapsed)
944 		*elapsed = max;
945 
946 	return total;
947 }
948