1 /* 2 * Copyright 2008 Jerome Glisse. 3 * All Rights Reserved. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice (including the next 13 * paragraph) shall be included in all copies or substantial portions of the 14 * Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 22 * DEALINGS IN THE SOFTWARE. 23 * 24 * Authors: 25 * Jerome Glisse <glisse@freedesktop.org> 26 */ 27 28 #include <linux/file.h> 29 #include <linux/pagemap.h> 30 #include <linux/sync_file.h> 31 #include <linux/dma-buf.h> 32 33 #include <drm/amdgpu_drm.h> 34 #include <drm/drm_syncobj.h> 35 #include <drm/ttm/ttm_tt.h> 36 37 #include "amdgpu_cs.h" 38 #include "amdgpu.h" 39 #include "amdgpu_trace.h" 40 #include "amdgpu_gmc.h" 41 #include "amdgpu_gem.h" 42 #include "amdgpu_ras.h" 43 44 static int amdgpu_cs_parser_init(struct amdgpu_cs_parser *p, 45 struct amdgpu_device *adev, 46 struct drm_file *filp, 47 union drm_amdgpu_cs *cs) 48 { 49 struct amdgpu_fpriv *fpriv = filp->driver_priv; 50 51 if (cs->in.num_chunks == 0) 52 return -EINVAL; 53 54 memset(p, 0, sizeof(*p)); 55 p->adev = adev; 56 p->filp = filp; 57 58 p->ctx = amdgpu_ctx_get(fpriv, cs->in.ctx_id); 59 if (!p->ctx) 60 return -EINVAL; 61 62 if (atomic_read(&p->ctx->guilty)) { 63 amdgpu_ctx_put(p->ctx); 64 return -ECANCELED; 65 } 66 67 amdgpu_sync_create(&p->sync); 68 drm_exec_init(&p->exec, DRM_EXEC_INTERRUPTIBLE_WAIT | 69 DRM_EXEC_IGNORE_DUPLICATES, 0); 70 return 0; 71 } 72 73 static int amdgpu_cs_job_idx(struct amdgpu_cs_parser *p, 74 struct drm_amdgpu_cs_chunk_ib *chunk_ib) 75 { 76 struct drm_sched_entity *entity; 77 unsigned int i; 78 int r; 79 80 r = amdgpu_ctx_get_entity(p->ctx, chunk_ib->ip_type, 81 chunk_ib->ip_instance, 82 chunk_ib->ring, &entity); 83 if (r) 84 return r; 85 86 /* 87 * Abort if there is no run queue associated with this entity. 88 * Possibly because of disabled HW IP. 89 */ 90 if (entity->rq == NULL) 91 return -EINVAL; 92 93 /* Check if we can add this IB to some existing job */ 94 for (i = 0; i < p->gang_size; ++i) 95 if (p->entities[i] == entity) 96 return i; 97 98 /* If not increase the gang size if possible */ 99 if (i == AMDGPU_CS_GANG_SIZE) 100 return -EINVAL; 101 102 p->entities[i] = entity; 103 p->gang_size = i + 1; 104 return i; 105 } 106 107 static int amdgpu_cs_p1_ib(struct amdgpu_cs_parser *p, 108 struct drm_amdgpu_cs_chunk_ib *chunk_ib, 109 unsigned int *num_ibs) 110 { 111 int r; 112 113 r = amdgpu_cs_job_idx(p, chunk_ib); 114 if (r < 0) 115 return r; 116 117 if (num_ibs[r] >= amdgpu_ring_max_ibs(chunk_ib->ip_type)) 118 return -EINVAL; 119 120 ++(num_ibs[r]); 121 p->gang_leader_idx = r; 122 return 0; 123 } 124 125 static int amdgpu_cs_p1_user_fence(struct amdgpu_cs_parser *p, 126 struct drm_amdgpu_cs_chunk_fence *data, 127 uint32_t *offset) 128 { 129 struct drm_gem_object *gobj; 130 unsigned long size; 131 132 gobj = drm_gem_object_lookup(p->filp, data->handle); 133 if (gobj == NULL) 134 return -EINVAL; 135 136 p->uf_bo = amdgpu_bo_ref(gem_to_amdgpu_bo(gobj)); 137 drm_gem_object_put(gobj); 138 139 size = amdgpu_bo_size(p->uf_bo); 140 if (size != PAGE_SIZE || data->offset > (size - 8)) 141 return -EINVAL; 142 143 if (amdgpu_ttm_tt_get_usermm(p->uf_bo->tbo.ttm)) 144 return -EINVAL; 145 146 *offset = data->offset; 147 return 0; 148 } 149 150 static int amdgpu_cs_p1_bo_handles(struct amdgpu_cs_parser *p, 151 struct drm_amdgpu_bo_list_in *data) 152 { 153 struct drm_amdgpu_bo_list_entry *info; 154 int r; 155 156 r = amdgpu_bo_create_list_entry_array(data, &info); 157 if (r) 158 return r; 159 160 r = amdgpu_bo_list_create(p->adev, p->filp, info, data->bo_number, 161 &p->bo_list); 162 if (r) 163 goto error_free; 164 165 kvfree(info); 166 return 0; 167 168 error_free: 169 kvfree(info); 170 171 return r; 172 } 173 174 /* Copy the data from userspace and go over it the first time */ 175 static int amdgpu_cs_pass1(struct amdgpu_cs_parser *p, 176 union drm_amdgpu_cs *cs) 177 { 178 struct amdgpu_fpriv *fpriv = p->filp->driver_priv; 179 unsigned int num_ibs[AMDGPU_CS_GANG_SIZE] = { }; 180 struct amdgpu_vm *vm = &fpriv->vm; 181 uint64_t *chunk_array_user; 182 uint64_t *chunk_array; 183 uint32_t uf_offset = 0; 184 size_t size; 185 int ret; 186 int i; 187 188 chunk_array = kvmalloc_array(cs->in.num_chunks, sizeof(uint64_t), 189 GFP_KERNEL); 190 if (!chunk_array) 191 return -ENOMEM; 192 193 /* get chunks */ 194 chunk_array_user = u64_to_user_ptr(cs->in.chunks); 195 if (copy_from_user(chunk_array, chunk_array_user, 196 sizeof(uint64_t)*cs->in.num_chunks)) { 197 ret = -EFAULT; 198 goto free_chunk; 199 } 200 201 p->nchunks = cs->in.num_chunks; 202 p->chunks = kvmalloc_array(p->nchunks, sizeof(struct amdgpu_cs_chunk), 203 GFP_KERNEL); 204 if (!p->chunks) { 205 ret = -ENOMEM; 206 goto free_chunk; 207 } 208 209 for (i = 0; i < p->nchunks; i++) { 210 struct drm_amdgpu_cs_chunk __user *chunk_ptr = NULL; 211 struct drm_amdgpu_cs_chunk user_chunk; 212 uint32_t __user *cdata; 213 214 chunk_ptr = u64_to_user_ptr(chunk_array[i]); 215 if (copy_from_user(&user_chunk, chunk_ptr, 216 sizeof(struct drm_amdgpu_cs_chunk))) { 217 ret = -EFAULT; 218 i--; 219 goto free_partial_kdata; 220 } 221 p->chunks[i].chunk_id = user_chunk.chunk_id; 222 p->chunks[i].length_dw = user_chunk.length_dw; 223 224 size = p->chunks[i].length_dw; 225 cdata = u64_to_user_ptr(user_chunk.chunk_data); 226 227 p->chunks[i].kdata = kvmalloc_array(size, sizeof(uint32_t), 228 GFP_KERNEL); 229 if (p->chunks[i].kdata == NULL) { 230 ret = -ENOMEM; 231 i--; 232 goto free_partial_kdata; 233 } 234 size *= sizeof(uint32_t); 235 if (copy_from_user(p->chunks[i].kdata, cdata, size)) { 236 ret = -EFAULT; 237 goto free_partial_kdata; 238 } 239 240 /* Assume the worst on the following checks */ 241 ret = -EINVAL; 242 switch (p->chunks[i].chunk_id) { 243 case AMDGPU_CHUNK_ID_IB: 244 if (size < sizeof(struct drm_amdgpu_cs_chunk_ib)) 245 goto free_partial_kdata; 246 247 ret = amdgpu_cs_p1_ib(p, p->chunks[i].kdata, num_ibs); 248 if (ret) 249 goto free_partial_kdata; 250 break; 251 252 case AMDGPU_CHUNK_ID_FENCE: 253 if (size < sizeof(struct drm_amdgpu_cs_chunk_fence)) 254 goto free_partial_kdata; 255 256 ret = amdgpu_cs_p1_user_fence(p, p->chunks[i].kdata, 257 &uf_offset); 258 if (ret) 259 goto free_partial_kdata; 260 break; 261 262 case AMDGPU_CHUNK_ID_BO_HANDLES: 263 if (size < sizeof(struct drm_amdgpu_bo_list_in)) 264 goto free_partial_kdata; 265 266 /* Only a single BO list is allowed to simplify handling. */ 267 if (p->bo_list) 268 goto free_partial_kdata; 269 270 ret = amdgpu_cs_p1_bo_handles(p, p->chunks[i].kdata); 271 if (ret) 272 goto free_partial_kdata; 273 break; 274 275 case AMDGPU_CHUNK_ID_DEPENDENCIES: 276 case AMDGPU_CHUNK_ID_SYNCOBJ_IN: 277 case AMDGPU_CHUNK_ID_SYNCOBJ_OUT: 278 case AMDGPU_CHUNK_ID_SCHEDULED_DEPENDENCIES: 279 case AMDGPU_CHUNK_ID_SYNCOBJ_TIMELINE_WAIT: 280 case AMDGPU_CHUNK_ID_SYNCOBJ_TIMELINE_SIGNAL: 281 case AMDGPU_CHUNK_ID_CP_GFX_SHADOW: 282 break; 283 284 default: 285 goto free_partial_kdata; 286 } 287 } 288 289 if (!p->gang_size) { 290 ret = -EINVAL; 291 goto free_all_kdata; 292 } 293 294 for (i = 0; i < p->gang_size; ++i) { 295 ret = amdgpu_job_alloc(p->adev, vm, p->entities[i], vm, 296 num_ibs[i], &p->jobs[i]); 297 if (ret) 298 goto free_all_kdata; 299 switch (p->adev->enforce_isolation[fpriv->xcp_id]) { 300 case AMDGPU_ENFORCE_ISOLATION_DISABLE: 301 default: 302 p->jobs[i]->enforce_isolation = false; 303 p->jobs[i]->run_cleaner_shader = false; 304 break; 305 case AMDGPU_ENFORCE_ISOLATION_ENABLE: 306 p->jobs[i]->enforce_isolation = true; 307 p->jobs[i]->run_cleaner_shader = true; 308 break; 309 case AMDGPU_ENFORCE_ISOLATION_ENABLE_LEGACY: 310 p->jobs[i]->enforce_isolation = true; 311 p->jobs[i]->run_cleaner_shader = false; 312 break; 313 case AMDGPU_ENFORCE_ISOLATION_NO_CLEANER_SHADER: 314 p->jobs[i]->enforce_isolation = true; 315 p->jobs[i]->run_cleaner_shader = false; 316 break; 317 } 318 } 319 p->gang_leader = p->jobs[p->gang_leader_idx]; 320 321 if (p->ctx->generation != p->gang_leader->generation) { 322 ret = -ECANCELED; 323 goto free_all_kdata; 324 } 325 326 if (p->uf_bo) 327 p->gang_leader->uf_addr = uf_offset; 328 kvfree(chunk_array); 329 330 /* Use this opportunity to fill in task info for the vm */ 331 amdgpu_vm_set_task_info(vm); 332 333 return 0; 334 335 free_all_kdata: 336 i = p->nchunks - 1; 337 free_partial_kdata: 338 for (; i >= 0; i--) 339 kvfree(p->chunks[i].kdata); 340 kvfree(p->chunks); 341 p->chunks = NULL; 342 p->nchunks = 0; 343 free_chunk: 344 kvfree(chunk_array); 345 346 return ret; 347 } 348 349 static int amdgpu_cs_p2_ib(struct amdgpu_cs_parser *p, 350 struct amdgpu_cs_chunk *chunk, 351 unsigned int *ce_preempt, 352 unsigned int *de_preempt) 353 { 354 struct drm_amdgpu_cs_chunk_ib *chunk_ib = chunk->kdata; 355 struct amdgpu_fpriv *fpriv = p->filp->driver_priv; 356 struct amdgpu_vm *vm = &fpriv->vm; 357 struct amdgpu_ring *ring; 358 struct amdgpu_job *job; 359 struct amdgpu_ib *ib; 360 int r; 361 362 r = amdgpu_cs_job_idx(p, chunk_ib); 363 if (r < 0) 364 return r; 365 366 job = p->jobs[r]; 367 ring = amdgpu_job_ring(job); 368 ib = &job->ibs[job->num_ibs++]; 369 370 /* submissions to kernel queues are disabled */ 371 if (ring->no_user_submission) 372 return -EINVAL; 373 374 /* MM engine doesn't support user fences */ 375 if (p->uf_bo && ring->funcs->no_user_fence) 376 return -EINVAL; 377 378 if (chunk_ib->ip_type == AMDGPU_HW_IP_GFX && 379 chunk_ib->flags & AMDGPU_IB_FLAG_PREEMPT) { 380 if (chunk_ib->flags & AMDGPU_IB_FLAG_CE) 381 (*ce_preempt)++; 382 else 383 (*de_preempt)++; 384 385 /* Each GFX command submit allows only 1 IB max 386 * preemptible for CE & DE */ 387 if (*ce_preempt > 1 || *de_preempt > 1) 388 return -EINVAL; 389 } 390 391 if (chunk_ib->flags & AMDGPU_IB_FLAG_PREAMBLE) 392 job->preamble_status |= AMDGPU_PREAMBLE_IB_PRESENT; 393 394 r = amdgpu_ib_get(p->adev, vm, ring->funcs->parse_cs ? 395 chunk_ib->ib_bytes : 0, 396 AMDGPU_IB_POOL_DELAYED, ib); 397 if (r) { 398 DRM_ERROR("Failed to get ib !\n"); 399 return r; 400 } 401 402 ib->gpu_addr = chunk_ib->va_start; 403 ib->length_dw = chunk_ib->ib_bytes / 4; 404 ib->flags = chunk_ib->flags; 405 return 0; 406 } 407 408 static int amdgpu_cs_p2_dependencies(struct amdgpu_cs_parser *p, 409 struct amdgpu_cs_chunk *chunk) 410 { 411 struct drm_amdgpu_cs_chunk_dep *deps = chunk->kdata; 412 struct amdgpu_fpriv *fpriv = p->filp->driver_priv; 413 unsigned int num_deps; 414 int i, r; 415 416 num_deps = chunk->length_dw * 4 / 417 sizeof(struct drm_amdgpu_cs_chunk_dep); 418 419 for (i = 0; i < num_deps; ++i) { 420 struct amdgpu_ctx *ctx; 421 struct drm_sched_entity *entity; 422 struct dma_fence *fence; 423 424 ctx = amdgpu_ctx_get(fpriv, deps[i].ctx_id); 425 if (ctx == NULL) 426 return -EINVAL; 427 428 r = amdgpu_ctx_get_entity(ctx, deps[i].ip_type, 429 deps[i].ip_instance, 430 deps[i].ring, &entity); 431 if (r) { 432 amdgpu_ctx_put(ctx); 433 return r; 434 } 435 436 fence = amdgpu_ctx_get_fence(ctx, entity, deps[i].handle); 437 amdgpu_ctx_put(ctx); 438 439 if (IS_ERR(fence)) 440 return PTR_ERR(fence); 441 else if (!fence) 442 continue; 443 444 if (chunk->chunk_id == AMDGPU_CHUNK_ID_SCHEDULED_DEPENDENCIES) { 445 struct drm_sched_fence *s_fence; 446 struct dma_fence *old = fence; 447 448 s_fence = to_drm_sched_fence(fence); 449 fence = dma_fence_get(&s_fence->scheduled); 450 dma_fence_put(old); 451 } 452 453 r = amdgpu_sync_fence(&p->sync, fence, GFP_KERNEL); 454 dma_fence_put(fence); 455 if (r) 456 return r; 457 } 458 return 0; 459 } 460 461 static int amdgpu_syncobj_lookup_and_add(struct amdgpu_cs_parser *p, 462 uint32_t handle, u64 point, 463 u64 flags) 464 { 465 struct dma_fence *fence; 466 int r; 467 468 r = drm_syncobj_find_fence(p->filp, handle, point, flags, &fence); 469 if (r) { 470 DRM_ERROR("syncobj %u failed to find fence @ %llu (%d)!\n", 471 handle, point, r); 472 return r; 473 } 474 475 r = amdgpu_sync_fence(&p->sync, fence, GFP_KERNEL); 476 dma_fence_put(fence); 477 return r; 478 } 479 480 static int amdgpu_cs_p2_syncobj_in(struct amdgpu_cs_parser *p, 481 struct amdgpu_cs_chunk *chunk) 482 { 483 struct drm_amdgpu_cs_chunk_sem *deps = chunk->kdata; 484 unsigned int num_deps; 485 int i, r; 486 487 num_deps = chunk->length_dw * 4 / 488 sizeof(struct drm_amdgpu_cs_chunk_sem); 489 for (i = 0; i < num_deps; ++i) { 490 r = amdgpu_syncobj_lookup_and_add(p, deps[i].handle, 0, 0); 491 if (r) 492 return r; 493 } 494 495 return 0; 496 } 497 498 static int amdgpu_cs_p2_syncobj_timeline_wait(struct amdgpu_cs_parser *p, 499 struct amdgpu_cs_chunk *chunk) 500 { 501 struct drm_amdgpu_cs_chunk_syncobj *syncobj_deps = chunk->kdata; 502 unsigned int num_deps; 503 int i, r; 504 505 num_deps = chunk->length_dw * 4 / 506 sizeof(struct drm_amdgpu_cs_chunk_syncobj); 507 for (i = 0; i < num_deps; ++i) { 508 r = amdgpu_syncobj_lookup_and_add(p, syncobj_deps[i].handle, 509 syncobj_deps[i].point, 510 syncobj_deps[i].flags); 511 if (r) 512 return r; 513 } 514 515 return 0; 516 } 517 518 static int amdgpu_cs_p2_syncobj_out(struct amdgpu_cs_parser *p, 519 struct amdgpu_cs_chunk *chunk) 520 { 521 struct drm_amdgpu_cs_chunk_sem *deps = chunk->kdata; 522 unsigned int num_deps; 523 int i; 524 525 num_deps = chunk->length_dw * 4 / 526 sizeof(struct drm_amdgpu_cs_chunk_sem); 527 528 if (p->post_deps) 529 return -EINVAL; 530 531 p->post_deps = kmalloc_array(num_deps, sizeof(*p->post_deps), 532 GFP_KERNEL); 533 p->num_post_deps = 0; 534 535 if (!p->post_deps) 536 return -ENOMEM; 537 538 539 for (i = 0; i < num_deps; ++i) { 540 p->post_deps[i].syncobj = 541 drm_syncobj_find(p->filp, deps[i].handle); 542 if (!p->post_deps[i].syncobj) 543 return -EINVAL; 544 p->post_deps[i].chain = NULL; 545 p->post_deps[i].point = 0; 546 p->num_post_deps++; 547 } 548 549 return 0; 550 } 551 552 static int amdgpu_cs_p2_syncobj_timeline_signal(struct amdgpu_cs_parser *p, 553 struct amdgpu_cs_chunk *chunk) 554 { 555 struct drm_amdgpu_cs_chunk_syncobj *syncobj_deps = chunk->kdata; 556 unsigned int num_deps; 557 int i; 558 559 num_deps = chunk->length_dw * 4 / 560 sizeof(struct drm_amdgpu_cs_chunk_syncobj); 561 562 if (p->post_deps) 563 return -EINVAL; 564 565 p->post_deps = kmalloc_array(num_deps, sizeof(*p->post_deps), 566 GFP_KERNEL); 567 p->num_post_deps = 0; 568 569 if (!p->post_deps) 570 return -ENOMEM; 571 572 for (i = 0; i < num_deps; ++i) { 573 struct amdgpu_cs_post_dep *dep = &p->post_deps[i]; 574 575 dep->chain = NULL; 576 if (syncobj_deps[i].point) { 577 dep->chain = dma_fence_chain_alloc(); 578 if (!dep->chain) 579 return -ENOMEM; 580 } 581 582 dep->syncobj = drm_syncobj_find(p->filp, 583 syncobj_deps[i].handle); 584 if (!dep->syncobj) { 585 dma_fence_chain_free(dep->chain); 586 return -EINVAL; 587 } 588 dep->point = syncobj_deps[i].point; 589 p->num_post_deps++; 590 } 591 592 return 0; 593 } 594 595 static int amdgpu_cs_p2_shadow(struct amdgpu_cs_parser *p, 596 struct amdgpu_cs_chunk *chunk) 597 { 598 struct drm_amdgpu_cs_chunk_cp_gfx_shadow *shadow = chunk->kdata; 599 int i; 600 601 if (shadow->flags & ~AMDGPU_CS_CHUNK_CP_GFX_SHADOW_FLAGS_INIT_SHADOW) 602 return -EINVAL; 603 604 for (i = 0; i < p->gang_size; ++i) { 605 p->jobs[i]->shadow_va = shadow->shadow_va; 606 p->jobs[i]->csa_va = shadow->csa_va; 607 p->jobs[i]->gds_va = shadow->gds_va; 608 p->jobs[i]->init_shadow = 609 shadow->flags & AMDGPU_CS_CHUNK_CP_GFX_SHADOW_FLAGS_INIT_SHADOW; 610 } 611 612 return 0; 613 } 614 615 static int amdgpu_cs_pass2(struct amdgpu_cs_parser *p) 616 { 617 unsigned int ce_preempt = 0, de_preempt = 0; 618 int i, r; 619 620 for (i = 0; i < p->nchunks; ++i) { 621 struct amdgpu_cs_chunk *chunk; 622 623 chunk = &p->chunks[i]; 624 625 switch (chunk->chunk_id) { 626 case AMDGPU_CHUNK_ID_IB: 627 r = amdgpu_cs_p2_ib(p, chunk, &ce_preempt, &de_preempt); 628 if (r) 629 return r; 630 break; 631 case AMDGPU_CHUNK_ID_DEPENDENCIES: 632 case AMDGPU_CHUNK_ID_SCHEDULED_DEPENDENCIES: 633 r = amdgpu_cs_p2_dependencies(p, chunk); 634 if (r) 635 return r; 636 break; 637 case AMDGPU_CHUNK_ID_SYNCOBJ_IN: 638 r = amdgpu_cs_p2_syncobj_in(p, chunk); 639 if (r) 640 return r; 641 break; 642 case AMDGPU_CHUNK_ID_SYNCOBJ_OUT: 643 r = amdgpu_cs_p2_syncobj_out(p, chunk); 644 if (r) 645 return r; 646 break; 647 case AMDGPU_CHUNK_ID_SYNCOBJ_TIMELINE_WAIT: 648 r = amdgpu_cs_p2_syncobj_timeline_wait(p, chunk); 649 if (r) 650 return r; 651 break; 652 case AMDGPU_CHUNK_ID_SYNCOBJ_TIMELINE_SIGNAL: 653 r = amdgpu_cs_p2_syncobj_timeline_signal(p, chunk); 654 if (r) 655 return r; 656 break; 657 case AMDGPU_CHUNK_ID_CP_GFX_SHADOW: 658 r = amdgpu_cs_p2_shadow(p, chunk); 659 if (r) 660 return r; 661 break; 662 } 663 } 664 665 return 0; 666 } 667 668 /* Convert microseconds to bytes. */ 669 static u64 us_to_bytes(struct amdgpu_device *adev, s64 us) 670 { 671 if (us <= 0 || !adev->mm_stats.log2_max_MBps) 672 return 0; 673 674 /* Since accum_us is incremented by a million per second, just 675 * multiply it by the number of MB/s to get the number of bytes. 676 */ 677 return us << adev->mm_stats.log2_max_MBps; 678 } 679 680 static s64 bytes_to_us(struct amdgpu_device *adev, u64 bytes) 681 { 682 if (!adev->mm_stats.log2_max_MBps) 683 return 0; 684 685 return bytes >> adev->mm_stats.log2_max_MBps; 686 } 687 688 /* Returns how many bytes TTM can move right now. If no bytes can be moved, 689 * it returns 0. If it returns non-zero, it's OK to move at least one buffer, 690 * which means it can go over the threshold once. If that happens, the driver 691 * will be in debt and no other buffer migrations can be done until that debt 692 * is repaid. 693 * 694 * This approach allows moving a buffer of any size (it's important to allow 695 * that). 696 * 697 * The currency is simply time in microseconds and it increases as the clock 698 * ticks. The accumulated microseconds (us) are converted to bytes and 699 * returned. 700 */ 701 static void amdgpu_cs_get_threshold_for_moves(struct amdgpu_device *adev, 702 u64 *max_bytes, 703 u64 *max_vis_bytes) 704 { 705 s64 time_us, increment_us; 706 u64 free_vram, total_vram, used_vram; 707 /* Allow a maximum of 200 accumulated ms. This is basically per-IB 708 * throttling. 709 * 710 * It means that in order to get full max MBps, at least 5 IBs per 711 * second must be submitted and not more than 200ms apart from each 712 * other. 713 */ 714 const s64 us_upper_bound = 200000; 715 716 if (!adev->mm_stats.log2_max_MBps) { 717 *max_bytes = 0; 718 *max_vis_bytes = 0; 719 return; 720 } 721 722 total_vram = adev->gmc.real_vram_size - atomic64_read(&adev->vram_pin_size); 723 used_vram = ttm_resource_manager_usage(&adev->mman.vram_mgr.manager); 724 free_vram = used_vram >= total_vram ? 0 : total_vram - used_vram; 725 726 spin_lock(&adev->mm_stats.lock); 727 728 /* Increase the amount of accumulated us. */ 729 time_us = ktime_to_us(ktime_get()); 730 increment_us = time_us - adev->mm_stats.last_update_us; 731 adev->mm_stats.last_update_us = time_us; 732 adev->mm_stats.accum_us = min(adev->mm_stats.accum_us + increment_us, 733 us_upper_bound); 734 735 /* This prevents the short period of low performance when the VRAM 736 * usage is low and the driver is in debt or doesn't have enough 737 * accumulated us to fill VRAM quickly. 738 * 739 * The situation can occur in these cases: 740 * - a lot of VRAM is freed by userspace 741 * - the presence of a big buffer causes a lot of evictions 742 * (solution: split buffers into smaller ones) 743 * 744 * If 128 MB or 1/8th of VRAM is free, start filling it now by setting 745 * accum_us to a positive number. 746 */ 747 if (free_vram >= 128 * 1024 * 1024 || free_vram >= total_vram / 8) { 748 s64 min_us; 749 750 /* Be more aggressive on dGPUs. Try to fill a portion of free 751 * VRAM now. 752 */ 753 if (!(adev->flags & AMD_IS_APU)) 754 min_us = bytes_to_us(adev, free_vram / 4); 755 else 756 min_us = 0; /* Reset accum_us on APUs. */ 757 758 adev->mm_stats.accum_us = max(min_us, adev->mm_stats.accum_us); 759 } 760 761 /* This is set to 0 if the driver is in debt to disallow (optional) 762 * buffer moves. 763 */ 764 *max_bytes = us_to_bytes(adev, adev->mm_stats.accum_us); 765 766 /* Do the same for visible VRAM if half of it is free */ 767 if (!amdgpu_gmc_vram_full_visible(&adev->gmc)) { 768 u64 total_vis_vram = adev->gmc.visible_vram_size; 769 u64 used_vis_vram = 770 amdgpu_vram_mgr_vis_usage(&adev->mman.vram_mgr); 771 772 if (used_vis_vram < total_vis_vram) { 773 u64 free_vis_vram = total_vis_vram - used_vis_vram; 774 775 adev->mm_stats.accum_us_vis = min(adev->mm_stats.accum_us_vis + 776 increment_us, us_upper_bound); 777 778 if (free_vis_vram >= total_vis_vram / 2) 779 adev->mm_stats.accum_us_vis = 780 max(bytes_to_us(adev, free_vis_vram / 2), 781 adev->mm_stats.accum_us_vis); 782 } 783 784 *max_vis_bytes = us_to_bytes(adev, adev->mm_stats.accum_us_vis); 785 } else { 786 *max_vis_bytes = 0; 787 } 788 789 spin_unlock(&adev->mm_stats.lock); 790 } 791 792 /* Report how many bytes have really been moved for the last command 793 * submission. This can result in a debt that can stop buffer migrations 794 * temporarily. 795 */ 796 void amdgpu_cs_report_moved_bytes(struct amdgpu_device *adev, u64 num_bytes, 797 u64 num_vis_bytes) 798 { 799 spin_lock(&adev->mm_stats.lock); 800 adev->mm_stats.accum_us -= bytes_to_us(adev, num_bytes); 801 adev->mm_stats.accum_us_vis -= bytes_to_us(adev, num_vis_bytes); 802 spin_unlock(&adev->mm_stats.lock); 803 } 804 805 static int amdgpu_cs_bo_validate(void *param, struct amdgpu_bo *bo) 806 { 807 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 808 struct amdgpu_cs_parser *p = param; 809 struct ttm_operation_ctx ctx = { 810 .interruptible = true, 811 .no_wait_gpu = false, 812 .resv = bo->tbo.base.resv 813 }; 814 uint32_t domain; 815 int r; 816 817 if (bo->tbo.pin_count) 818 return 0; 819 820 /* Don't move this buffer if we have depleted our allowance 821 * to move it. Don't move anything if the threshold is zero. 822 */ 823 if (p->bytes_moved < p->bytes_moved_threshold && 824 (!bo->tbo.base.dma_buf || 825 list_empty(&bo->tbo.base.dma_buf->attachments))) { 826 if (!amdgpu_gmc_vram_full_visible(&adev->gmc) && 827 (bo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED)) { 828 /* And don't move a CPU_ACCESS_REQUIRED BO to limited 829 * visible VRAM if we've depleted our allowance to do 830 * that. 831 */ 832 if (p->bytes_moved_vis < p->bytes_moved_vis_threshold) 833 domain = bo->preferred_domains; 834 else 835 domain = bo->allowed_domains; 836 } else { 837 domain = bo->preferred_domains; 838 } 839 } else { 840 domain = bo->allowed_domains; 841 } 842 843 retry: 844 amdgpu_bo_placement_from_domain(bo, domain); 845 r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 846 847 p->bytes_moved += ctx.bytes_moved; 848 if (!amdgpu_gmc_vram_full_visible(&adev->gmc) && 849 amdgpu_res_cpu_visible(adev, bo->tbo.resource)) 850 p->bytes_moved_vis += ctx.bytes_moved; 851 852 if (unlikely(r == -ENOMEM) && domain != bo->allowed_domains) { 853 domain = bo->allowed_domains; 854 goto retry; 855 } 856 857 return r; 858 } 859 860 static int amdgpu_cs_parser_bos(struct amdgpu_cs_parser *p, 861 union drm_amdgpu_cs *cs) 862 { 863 struct amdgpu_fpriv *fpriv = p->filp->driver_priv; 864 struct ttm_operation_ctx ctx = { true, false }; 865 struct amdgpu_vm *vm = &fpriv->vm; 866 struct amdgpu_bo_list_entry *e; 867 struct drm_gem_object *obj; 868 unsigned long index; 869 unsigned int i; 870 int r; 871 872 /* p->bo_list could already be assigned if AMDGPU_CHUNK_ID_BO_HANDLES is present */ 873 if (cs->in.bo_list_handle) { 874 if (p->bo_list) 875 return -EINVAL; 876 877 r = amdgpu_bo_list_get(fpriv, cs->in.bo_list_handle, 878 &p->bo_list); 879 if (r) 880 return r; 881 } else if (!p->bo_list) { 882 /* Create a empty bo_list when no handle is provided */ 883 r = amdgpu_bo_list_create(p->adev, p->filp, NULL, 0, 884 &p->bo_list); 885 if (r) 886 return r; 887 } 888 889 mutex_lock(&p->bo_list->bo_list_mutex); 890 891 /* Get userptr backing pages. If pages are updated after registered 892 * in amdgpu_gem_userptr_ioctl(), amdgpu_cs_list_validate() will do 893 * amdgpu_ttm_backend_bind() to flush and invalidate new pages 894 */ 895 amdgpu_bo_list_for_each_userptr_entry(e, p->bo_list) { 896 bool userpage_invalidated = false; 897 struct amdgpu_bo *bo = e->bo; 898 int i; 899 900 e->user_pages = kvcalloc(bo->tbo.ttm->num_pages, 901 sizeof(struct page *), 902 GFP_KERNEL); 903 if (!e->user_pages) { 904 DRM_ERROR("kvmalloc_array failure\n"); 905 r = -ENOMEM; 906 goto out_free_user_pages; 907 } 908 909 r = amdgpu_ttm_tt_get_user_pages(bo, e->user_pages, &e->range); 910 if (r) { 911 kvfree(e->user_pages); 912 e->user_pages = NULL; 913 goto out_free_user_pages; 914 } 915 916 for (i = 0; i < bo->tbo.ttm->num_pages; i++) { 917 if (bo->tbo.ttm->pages[i] != e->user_pages[i]) { 918 userpage_invalidated = true; 919 break; 920 } 921 } 922 e->user_invalidated = userpage_invalidated; 923 } 924 925 drm_exec_until_all_locked(&p->exec) { 926 r = amdgpu_vm_lock_pd(&fpriv->vm, &p->exec, 1 + p->gang_size); 927 drm_exec_retry_on_contention(&p->exec); 928 if (unlikely(r)) 929 goto out_free_user_pages; 930 931 amdgpu_bo_list_for_each_entry(e, p->bo_list) { 932 /* One fence for TTM and one for each CS job */ 933 r = drm_exec_prepare_obj(&p->exec, &e->bo->tbo.base, 934 1 + p->gang_size); 935 drm_exec_retry_on_contention(&p->exec); 936 if (unlikely(r)) 937 goto out_free_user_pages; 938 939 e->bo_va = amdgpu_vm_bo_find(vm, e->bo); 940 } 941 942 if (p->uf_bo) { 943 r = drm_exec_prepare_obj(&p->exec, &p->uf_bo->tbo.base, 944 1 + p->gang_size); 945 drm_exec_retry_on_contention(&p->exec); 946 if (unlikely(r)) 947 goto out_free_user_pages; 948 } 949 } 950 951 amdgpu_bo_list_for_each_userptr_entry(e, p->bo_list) { 952 struct mm_struct *usermm; 953 954 usermm = amdgpu_ttm_tt_get_usermm(e->bo->tbo.ttm); 955 if (usermm && usermm != current->mm) { 956 r = -EPERM; 957 goto out_free_user_pages; 958 } 959 960 if (amdgpu_ttm_tt_is_userptr(e->bo->tbo.ttm) && 961 e->user_invalidated && e->user_pages) { 962 amdgpu_bo_placement_from_domain(e->bo, 963 AMDGPU_GEM_DOMAIN_CPU); 964 r = ttm_bo_validate(&e->bo->tbo, &e->bo->placement, 965 &ctx); 966 if (r) 967 goto out_free_user_pages; 968 969 amdgpu_ttm_tt_set_user_pages(e->bo->tbo.ttm, 970 e->user_pages); 971 } 972 973 kvfree(e->user_pages); 974 e->user_pages = NULL; 975 } 976 977 amdgpu_cs_get_threshold_for_moves(p->adev, &p->bytes_moved_threshold, 978 &p->bytes_moved_vis_threshold); 979 p->bytes_moved = 0; 980 p->bytes_moved_vis = 0; 981 982 r = amdgpu_vm_validate(p->adev, &fpriv->vm, NULL, 983 amdgpu_cs_bo_validate, p); 984 if (r) { 985 DRM_ERROR("amdgpu_vm_validate() failed.\n"); 986 goto out_free_user_pages; 987 } 988 989 drm_exec_for_each_locked_object(&p->exec, index, obj) { 990 r = amdgpu_cs_bo_validate(p, gem_to_amdgpu_bo(obj)); 991 if (unlikely(r)) 992 goto out_free_user_pages; 993 } 994 995 if (p->uf_bo) { 996 r = amdgpu_ttm_alloc_gart(&p->uf_bo->tbo); 997 if (unlikely(r)) 998 goto out_free_user_pages; 999 1000 p->gang_leader->uf_addr += amdgpu_bo_gpu_offset(p->uf_bo); 1001 } 1002 1003 amdgpu_cs_report_moved_bytes(p->adev, p->bytes_moved, 1004 p->bytes_moved_vis); 1005 1006 for (i = 0; i < p->gang_size; ++i) 1007 amdgpu_job_set_resources(p->jobs[i], p->bo_list->gds_obj, 1008 p->bo_list->gws_obj, 1009 p->bo_list->oa_obj); 1010 return 0; 1011 1012 out_free_user_pages: 1013 amdgpu_bo_list_for_each_userptr_entry(e, p->bo_list) { 1014 struct amdgpu_bo *bo = e->bo; 1015 1016 if (!e->user_pages) 1017 continue; 1018 amdgpu_ttm_tt_get_user_pages_done(bo->tbo.ttm, e->range); 1019 kvfree(e->user_pages); 1020 e->user_pages = NULL; 1021 e->range = NULL; 1022 } 1023 mutex_unlock(&p->bo_list->bo_list_mutex); 1024 return r; 1025 } 1026 1027 static void trace_amdgpu_cs_ibs(struct amdgpu_cs_parser *p) 1028 { 1029 int i, j; 1030 1031 if (!trace_amdgpu_cs_enabled()) 1032 return; 1033 1034 for (i = 0; i < p->gang_size; ++i) { 1035 struct amdgpu_job *job = p->jobs[i]; 1036 1037 for (j = 0; j < job->num_ibs; ++j) 1038 trace_amdgpu_cs(p, job, &job->ibs[j]); 1039 } 1040 } 1041 1042 static int amdgpu_cs_patch_ibs(struct amdgpu_cs_parser *p, 1043 struct amdgpu_job *job) 1044 { 1045 struct amdgpu_ring *ring = amdgpu_job_ring(job); 1046 unsigned int i; 1047 int r; 1048 1049 /* Only for UVD/VCE VM emulation */ 1050 if (!ring->funcs->parse_cs && !ring->funcs->patch_cs_in_place) 1051 return 0; 1052 1053 for (i = 0; i < job->num_ibs; ++i) { 1054 struct amdgpu_ib *ib = &job->ibs[i]; 1055 struct amdgpu_bo_va_mapping *m; 1056 struct amdgpu_bo *aobj; 1057 uint64_t va_start; 1058 uint8_t *kptr; 1059 1060 va_start = ib->gpu_addr & AMDGPU_GMC_HOLE_MASK; 1061 r = amdgpu_cs_find_mapping(p, va_start, &aobj, &m); 1062 if (r) { 1063 DRM_ERROR("IB va_start is invalid\n"); 1064 return r; 1065 } 1066 1067 if ((va_start + ib->length_dw * 4) > 1068 (m->last + 1) * AMDGPU_GPU_PAGE_SIZE) { 1069 DRM_ERROR("IB va_start+ib_bytes is invalid\n"); 1070 return -EINVAL; 1071 } 1072 1073 /* the IB should be reserved at this point */ 1074 r = amdgpu_bo_kmap(aobj, (void **)&kptr); 1075 if (r) 1076 return r; 1077 1078 kptr += va_start - (m->start * AMDGPU_GPU_PAGE_SIZE); 1079 1080 if (ring->funcs->parse_cs) { 1081 memcpy(ib->ptr, kptr, ib->length_dw * 4); 1082 amdgpu_bo_kunmap(aobj); 1083 1084 r = amdgpu_ring_parse_cs(ring, p, job, ib); 1085 if (r) 1086 return r; 1087 1088 if (ib->sa_bo) 1089 ib->gpu_addr = amdgpu_sa_bo_gpu_addr(ib->sa_bo); 1090 } else { 1091 ib->ptr = (uint32_t *)kptr; 1092 r = amdgpu_ring_patch_cs_in_place(ring, p, job, ib); 1093 amdgpu_bo_kunmap(aobj); 1094 if (r) 1095 return r; 1096 } 1097 } 1098 1099 return 0; 1100 } 1101 1102 static int amdgpu_cs_patch_jobs(struct amdgpu_cs_parser *p) 1103 { 1104 unsigned int i; 1105 int r; 1106 1107 for (i = 0; i < p->gang_size; ++i) { 1108 r = amdgpu_cs_patch_ibs(p, p->jobs[i]); 1109 if (r) 1110 return r; 1111 } 1112 return 0; 1113 } 1114 1115 static int amdgpu_cs_vm_handling(struct amdgpu_cs_parser *p) 1116 { 1117 struct amdgpu_fpriv *fpriv = p->filp->driver_priv; 1118 struct amdgpu_job *job = p->gang_leader; 1119 struct amdgpu_device *adev = p->adev; 1120 struct amdgpu_vm *vm = &fpriv->vm; 1121 struct amdgpu_bo_list_entry *e; 1122 struct amdgpu_bo_va *bo_va; 1123 unsigned int i; 1124 int r; 1125 1126 /* 1127 * We can't use gang submit on with reserved VMIDs when the VM changes 1128 * can't be invalidated by more than one engine at the same time. 1129 */ 1130 if (p->gang_size > 1 && !adev->vm_manager.concurrent_flush) { 1131 for (i = 0; i < p->gang_size; ++i) { 1132 struct drm_sched_entity *entity = p->entities[i]; 1133 struct drm_gpu_scheduler *sched = entity->rq->sched; 1134 struct amdgpu_ring *ring = to_amdgpu_ring(sched); 1135 1136 if (amdgpu_vmid_uses_reserved(vm, ring->vm_hub)) 1137 return -EINVAL; 1138 } 1139 } 1140 1141 r = amdgpu_vm_clear_freed(adev, vm, NULL); 1142 if (r) 1143 return r; 1144 1145 r = amdgpu_vm_bo_update(adev, fpriv->prt_va, false); 1146 if (r) 1147 return r; 1148 1149 r = amdgpu_sync_fence(&p->sync, fpriv->prt_va->last_pt_update, 1150 GFP_KERNEL); 1151 if (r) 1152 return r; 1153 1154 if (fpriv->csa_va) { 1155 bo_va = fpriv->csa_va; 1156 BUG_ON(!bo_va); 1157 r = amdgpu_vm_bo_update(adev, bo_va, false); 1158 if (r) 1159 return r; 1160 1161 r = amdgpu_sync_fence(&p->sync, bo_va->last_pt_update, 1162 GFP_KERNEL); 1163 if (r) 1164 return r; 1165 } 1166 1167 /* FIXME: In theory this loop shouldn't be needed any more when 1168 * amdgpu_vm_handle_moved handles all moved BOs that are reserved 1169 * with p->ticket. But removing it caused test regressions, so I'm 1170 * leaving it here for now. 1171 */ 1172 amdgpu_bo_list_for_each_entry(e, p->bo_list) { 1173 bo_va = e->bo_va; 1174 if (bo_va == NULL) 1175 continue; 1176 1177 r = amdgpu_vm_bo_update(adev, bo_va, false); 1178 if (r) 1179 return r; 1180 1181 r = amdgpu_sync_fence(&p->sync, bo_va->last_pt_update, 1182 GFP_KERNEL); 1183 if (r) 1184 return r; 1185 } 1186 1187 r = amdgpu_vm_handle_moved(adev, vm, &p->exec.ticket); 1188 if (r) 1189 return r; 1190 1191 r = amdgpu_vm_update_pdes(adev, vm, false); 1192 if (r) 1193 return r; 1194 1195 r = amdgpu_sync_fence(&p->sync, vm->last_update, GFP_KERNEL); 1196 if (r) 1197 return r; 1198 1199 for (i = 0; i < p->gang_size; ++i) { 1200 job = p->jobs[i]; 1201 1202 if (!job->vm) 1203 continue; 1204 1205 job->vm_pd_addr = amdgpu_gmc_pd_addr(vm->root.bo); 1206 } 1207 1208 if (adev->debug_vm) { 1209 /* Invalidate all BOs to test for userspace bugs */ 1210 amdgpu_bo_list_for_each_entry(e, p->bo_list) { 1211 struct amdgpu_bo *bo = e->bo; 1212 1213 /* ignore duplicates */ 1214 if (!bo) 1215 continue; 1216 1217 amdgpu_vm_bo_invalidate(bo, false); 1218 } 1219 } 1220 1221 return 0; 1222 } 1223 1224 static int amdgpu_cs_sync_rings(struct amdgpu_cs_parser *p) 1225 { 1226 struct amdgpu_fpriv *fpriv = p->filp->driver_priv; 1227 struct drm_gpu_scheduler *sched; 1228 struct drm_gem_object *obj; 1229 struct dma_fence *fence; 1230 unsigned long index; 1231 unsigned int i; 1232 int r; 1233 1234 r = amdgpu_ctx_wait_prev_fence(p->ctx, p->entities[p->gang_leader_idx]); 1235 if (r) { 1236 if (r != -ERESTARTSYS) 1237 DRM_ERROR("amdgpu_ctx_wait_prev_fence failed.\n"); 1238 return r; 1239 } 1240 1241 drm_exec_for_each_locked_object(&p->exec, index, obj) { 1242 struct amdgpu_bo *bo = gem_to_amdgpu_bo(obj); 1243 1244 struct dma_resv *resv = bo->tbo.base.resv; 1245 enum amdgpu_sync_mode sync_mode; 1246 1247 sync_mode = amdgpu_bo_explicit_sync(bo) ? 1248 AMDGPU_SYNC_EXPLICIT : AMDGPU_SYNC_NE_OWNER; 1249 r = amdgpu_sync_resv(p->adev, &p->sync, resv, sync_mode, 1250 &fpriv->vm); 1251 if (r) 1252 return r; 1253 } 1254 1255 for (i = 0; i < p->gang_size; ++i) { 1256 r = amdgpu_sync_push_to_job(&p->sync, p->jobs[i]); 1257 if (r) 1258 return r; 1259 } 1260 1261 sched = p->gang_leader->base.entity->rq->sched; 1262 while ((fence = amdgpu_sync_get_fence(&p->sync))) { 1263 struct drm_sched_fence *s_fence = to_drm_sched_fence(fence); 1264 1265 /* 1266 * When we have an dependency it might be necessary to insert a 1267 * pipeline sync to make sure that all caches etc are flushed and the 1268 * next job actually sees the results from the previous one 1269 * before we start executing on the same scheduler ring. 1270 */ 1271 if (!s_fence || s_fence->sched != sched) { 1272 dma_fence_put(fence); 1273 continue; 1274 } 1275 1276 r = amdgpu_sync_fence(&p->gang_leader->explicit_sync, fence, 1277 GFP_KERNEL); 1278 dma_fence_put(fence); 1279 if (r) 1280 return r; 1281 } 1282 return 0; 1283 } 1284 1285 static void amdgpu_cs_post_dependencies(struct amdgpu_cs_parser *p) 1286 { 1287 int i; 1288 1289 for (i = 0; i < p->num_post_deps; ++i) { 1290 if (p->post_deps[i].chain && p->post_deps[i].point) { 1291 drm_syncobj_add_point(p->post_deps[i].syncobj, 1292 p->post_deps[i].chain, 1293 p->fence, p->post_deps[i].point); 1294 p->post_deps[i].chain = NULL; 1295 } else { 1296 drm_syncobj_replace_fence(p->post_deps[i].syncobj, 1297 p->fence); 1298 } 1299 } 1300 } 1301 1302 static int amdgpu_cs_submit(struct amdgpu_cs_parser *p, 1303 union drm_amdgpu_cs *cs) 1304 { 1305 struct amdgpu_fpriv *fpriv = p->filp->driver_priv; 1306 struct amdgpu_job *leader = p->gang_leader; 1307 struct amdgpu_bo_list_entry *e; 1308 struct drm_gem_object *gobj; 1309 unsigned long index; 1310 unsigned int i; 1311 uint64_t seq; 1312 int r; 1313 1314 for (i = 0; i < p->gang_size; ++i) 1315 drm_sched_job_arm(&p->jobs[i]->base); 1316 1317 for (i = 0; i < p->gang_size; ++i) { 1318 struct dma_fence *fence; 1319 1320 if (p->jobs[i] == leader) 1321 continue; 1322 1323 fence = &p->jobs[i]->base.s_fence->scheduled; 1324 dma_fence_get(fence); 1325 r = drm_sched_job_add_dependency(&leader->base, fence); 1326 if (r) { 1327 dma_fence_put(fence); 1328 return r; 1329 } 1330 } 1331 1332 if (p->gang_size > 1) { 1333 for (i = 0; i < p->gang_size; ++i) 1334 amdgpu_job_set_gang_leader(p->jobs[i], leader); 1335 } 1336 1337 /* No memory allocation is allowed while holding the notifier lock. 1338 * The lock is held until amdgpu_cs_submit is finished and fence is 1339 * added to BOs. 1340 */ 1341 mutex_lock(&p->adev->notifier_lock); 1342 1343 /* If userptr are invalidated after amdgpu_cs_parser_bos(), return 1344 * -EAGAIN, drmIoctl in libdrm will restart the amdgpu_cs_ioctl. 1345 */ 1346 r = 0; 1347 amdgpu_bo_list_for_each_userptr_entry(e, p->bo_list) { 1348 r |= !amdgpu_ttm_tt_get_user_pages_done(e->bo->tbo.ttm, 1349 e->range); 1350 e->range = NULL; 1351 } 1352 if (r) { 1353 r = -EAGAIN; 1354 mutex_unlock(&p->adev->notifier_lock); 1355 return r; 1356 } 1357 1358 p->fence = dma_fence_get(&leader->base.s_fence->finished); 1359 drm_exec_for_each_locked_object(&p->exec, index, gobj) { 1360 1361 ttm_bo_move_to_lru_tail_unlocked(&gem_to_amdgpu_bo(gobj)->tbo); 1362 1363 /* Everybody except for the gang leader uses READ */ 1364 for (i = 0; i < p->gang_size; ++i) { 1365 if (p->jobs[i] == leader) 1366 continue; 1367 1368 dma_resv_add_fence(gobj->resv, 1369 &p->jobs[i]->base.s_fence->finished, 1370 DMA_RESV_USAGE_READ); 1371 } 1372 1373 /* The gang leader as remembered as writer */ 1374 dma_resv_add_fence(gobj->resv, p->fence, DMA_RESV_USAGE_WRITE); 1375 } 1376 1377 seq = amdgpu_ctx_add_fence(p->ctx, p->entities[p->gang_leader_idx], 1378 p->fence); 1379 amdgpu_cs_post_dependencies(p); 1380 1381 if ((leader->preamble_status & AMDGPU_PREAMBLE_IB_PRESENT) && 1382 !p->ctx->preamble_presented) { 1383 leader->preamble_status |= AMDGPU_PREAMBLE_IB_PRESENT_FIRST; 1384 p->ctx->preamble_presented = true; 1385 } 1386 1387 cs->out.handle = seq; 1388 leader->uf_sequence = seq; 1389 1390 amdgpu_vm_bo_trace_cs(&fpriv->vm, &p->exec.ticket); 1391 for (i = 0; i < p->gang_size; ++i) { 1392 amdgpu_job_free_resources(p->jobs[i]); 1393 trace_amdgpu_cs_ioctl(p->jobs[i]); 1394 drm_sched_entity_push_job(&p->jobs[i]->base); 1395 p->jobs[i] = NULL; 1396 } 1397 1398 amdgpu_vm_move_to_lru_tail(p->adev, &fpriv->vm); 1399 1400 mutex_unlock(&p->adev->notifier_lock); 1401 mutex_unlock(&p->bo_list->bo_list_mutex); 1402 return 0; 1403 } 1404 1405 /* Cleanup the parser structure */ 1406 static void amdgpu_cs_parser_fini(struct amdgpu_cs_parser *parser) 1407 { 1408 unsigned int i; 1409 1410 amdgpu_sync_free(&parser->sync); 1411 drm_exec_fini(&parser->exec); 1412 1413 for (i = 0; i < parser->num_post_deps; i++) { 1414 drm_syncobj_put(parser->post_deps[i].syncobj); 1415 kfree(parser->post_deps[i].chain); 1416 } 1417 kfree(parser->post_deps); 1418 1419 dma_fence_put(parser->fence); 1420 1421 if (parser->ctx) 1422 amdgpu_ctx_put(parser->ctx); 1423 if (parser->bo_list) 1424 amdgpu_bo_list_put(parser->bo_list); 1425 1426 for (i = 0; i < parser->nchunks; i++) 1427 kvfree(parser->chunks[i].kdata); 1428 kvfree(parser->chunks); 1429 for (i = 0; i < parser->gang_size; ++i) { 1430 if (parser->jobs[i]) 1431 amdgpu_job_free(parser->jobs[i]); 1432 } 1433 amdgpu_bo_unref(&parser->uf_bo); 1434 } 1435 1436 int amdgpu_cs_ioctl(struct drm_device *dev, void *data, struct drm_file *filp) 1437 { 1438 struct amdgpu_device *adev = drm_to_adev(dev); 1439 struct amdgpu_cs_parser parser; 1440 int r; 1441 1442 if (amdgpu_ras_intr_triggered()) 1443 return -EHWPOISON; 1444 1445 if (!adev->accel_working) 1446 return -EBUSY; 1447 1448 r = amdgpu_cs_parser_init(&parser, adev, filp, data); 1449 if (r) { 1450 DRM_ERROR_RATELIMITED("Failed to initialize parser %d!\n", r); 1451 return r; 1452 } 1453 1454 r = amdgpu_cs_pass1(&parser, data); 1455 if (r) 1456 goto error_fini; 1457 1458 r = amdgpu_cs_pass2(&parser); 1459 if (r) 1460 goto error_fini; 1461 1462 r = amdgpu_cs_parser_bos(&parser, data); 1463 if (r) { 1464 if (r == -ENOMEM) 1465 DRM_ERROR("Not enough memory for command submission!\n"); 1466 else if (r != -ERESTARTSYS && r != -EAGAIN) 1467 DRM_DEBUG("Failed to process the buffer list %d!\n", r); 1468 goto error_fini; 1469 } 1470 1471 r = amdgpu_cs_patch_jobs(&parser); 1472 if (r) 1473 goto error_backoff; 1474 1475 r = amdgpu_cs_vm_handling(&parser); 1476 if (r) 1477 goto error_backoff; 1478 1479 r = amdgpu_cs_sync_rings(&parser); 1480 if (r) 1481 goto error_backoff; 1482 1483 trace_amdgpu_cs_ibs(&parser); 1484 1485 r = amdgpu_cs_submit(&parser, data); 1486 if (r) 1487 goto error_backoff; 1488 1489 amdgpu_cs_parser_fini(&parser); 1490 return 0; 1491 1492 error_backoff: 1493 mutex_unlock(&parser.bo_list->bo_list_mutex); 1494 1495 error_fini: 1496 amdgpu_cs_parser_fini(&parser); 1497 return r; 1498 } 1499 1500 /** 1501 * amdgpu_cs_wait_ioctl - wait for a command submission to finish 1502 * 1503 * @dev: drm device 1504 * @data: data from userspace 1505 * @filp: file private 1506 * 1507 * Wait for the command submission identified by handle to finish. 1508 */ 1509 int amdgpu_cs_wait_ioctl(struct drm_device *dev, void *data, 1510 struct drm_file *filp) 1511 { 1512 union drm_amdgpu_wait_cs *wait = data; 1513 unsigned long timeout = amdgpu_gem_timeout(wait->in.timeout); 1514 struct drm_sched_entity *entity; 1515 struct amdgpu_ctx *ctx; 1516 struct dma_fence *fence; 1517 long r; 1518 1519 ctx = amdgpu_ctx_get(filp->driver_priv, wait->in.ctx_id); 1520 if (ctx == NULL) 1521 return -EINVAL; 1522 1523 r = amdgpu_ctx_get_entity(ctx, wait->in.ip_type, wait->in.ip_instance, 1524 wait->in.ring, &entity); 1525 if (r) { 1526 amdgpu_ctx_put(ctx); 1527 return r; 1528 } 1529 1530 fence = amdgpu_ctx_get_fence(ctx, entity, wait->in.handle); 1531 if (IS_ERR(fence)) 1532 r = PTR_ERR(fence); 1533 else if (fence) { 1534 r = dma_fence_wait_timeout(fence, true, timeout); 1535 if (r > 0 && fence->error) 1536 r = fence->error; 1537 dma_fence_put(fence); 1538 } else 1539 r = 1; 1540 1541 amdgpu_ctx_put(ctx); 1542 if (r < 0) 1543 return r; 1544 1545 memset(wait, 0, sizeof(*wait)); 1546 wait->out.status = (r == 0); 1547 1548 return 0; 1549 } 1550 1551 /** 1552 * amdgpu_cs_get_fence - helper to get fence from drm_amdgpu_fence 1553 * 1554 * @adev: amdgpu device 1555 * @filp: file private 1556 * @user: drm_amdgpu_fence copied from user space 1557 */ 1558 static struct dma_fence *amdgpu_cs_get_fence(struct amdgpu_device *adev, 1559 struct drm_file *filp, 1560 struct drm_amdgpu_fence *user) 1561 { 1562 struct drm_sched_entity *entity; 1563 struct amdgpu_ctx *ctx; 1564 struct dma_fence *fence; 1565 int r; 1566 1567 ctx = amdgpu_ctx_get(filp->driver_priv, user->ctx_id); 1568 if (ctx == NULL) 1569 return ERR_PTR(-EINVAL); 1570 1571 r = amdgpu_ctx_get_entity(ctx, user->ip_type, user->ip_instance, 1572 user->ring, &entity); 1573 if (r) { 1574 amdgpu_ctx_put(ctx); 1575 return ERR_PTR(r); 1576 } 1577 1578 fence = amdgpu_ctx_get_fence(ctx, entity, user->seq_no); 1579 amdgpu_ctx_put(ctx); 1580 1581 return fence; 1582 } 1583 1584 int amdgpu_cs_fence_to_handle_ioctl(struct drm_device *dev, void *data, 1585 struct drm_file *filp) 1586 { 1587 struct amdgpu_device *adev = drm_to_adev(dev); 1588 union drm_amdgpu_fence_to_handle *info = data; 1589 struct dma_fence *fence; 1590 struct drm_syncobj *syncobj; 1591 struct sync_file *sync_file; 1592 int fd, r; 1593 1594 fence = amdgpu_cs_get_fence(adev, filp, &info->in.fence); 1595 if (IS_ERR(fence)) 1596 return PTR_ERR(fence); 1597 1598 if (!fence) 1599 fence = dma_fence_get_stub(); 1600 1601 switch (info->in.what) { 1602 case AMDGPU_FENCE_TO_HANDLE_GET_SYNCOBJ: 1603 r = drm_syncobj_create(&syncobj, 0, fence); 1604 dma_fence_put(fence); 1605 if (r) 1606 return r; 1607 r = drm_syncobj_get_handle(filp, syncobj, &info->out.handle); 1608 drm_syncobj_put(syncobj); 1609 return r; 1610 1611 case AMDGPU_FENCE_TO_HANDLE_GET_SYNCOBJ_FD: 1612 r = drm_syncobj_create(&syncobj, 0, fence); 1613 dma_fence_put(fence); 1614 if (r) 1615 return r; 1616 r = drm_syncobj_get_fd(syncobj, (int *)&info->out.handle); 1617 drm_syncobj_put(syncobj); 1618 return r; 1619 1620 case AMDGPU_FENCE_TO_HANDLE_GET_SYNC_FILE_FD: 1621 fd = get_unused_fd_flags(O_CLOEXEC); 1622 if (fd < 0) { 1623 dma_fence_put(fence); 1624 return fd; 1625 } 1626 1627 sync_file = sync_file_create(fence); 1628 dma_fence_put(fence); 1629 if (!sync_file) { 1630 put_unused_fd(fd); 1631 return -ENOMEM; 1632 } 1633 1634 fd_install(fd, sync_file->file); 1635 info->out.handle = fd; 1636 return 0; 1637 1638 default: 1639 dma_fence_put(fence); 1640 return -EINVAL; 1641 } 1642 } 1643 1644 /** 1645 * amdgpu_cs_wait_all_fences - wait on all fences to signal 1646 * 1647 * @adev: amdgpu device 1648 * @filp: file private 1649 * @wait: wait parameters 1650 * @fences: array of drm_amdgpu_fence 1651 */ 1652 static int amdgpu_cs_wait_all_fences(struct amdgpu_device *adev, 1653 struct drm_file *filp, 1654 union drm_amdgpu_wait_fences *wait, 1655 struct drm_amdgpu_fence *fences) 1656 { 1657 uint32_t fence_count = wait->in.fence_count; 1658 unsigned int i; 1659 long r = 1; 1660 1661 for (i = 0; i < fence_count; i++) { 1662 struct dma_fence *fence; 1663 unsigned long timeout = amdgpu_gem_timeout(wait->in.timeout_ns); 1664 1665 fence = amdgpu_cs_get_fence(adev, filp, &fences[i]); 1666 if (IS_ERR(fence)) 1667 return PTR_ERR(fence); 1668 else if (!fence) 1669 continue; 1670 1671 r = dma_fence_wait_timeout(fence, true, timeout); 1672 if (r > 0 && fence->error) 1673 r = fence->error; 1674 1675 dma_fence_put(fence); 1676 if (r < 0) 1677 return r; 1678 1679 if (r == 0) 1680 break; 1681 } 1682 1683 memset(wait, 0, sizeof(*wait)); 1684 wait->out.status = (r > 0); 1685 1686 return 0; 1687 } 1688 1689 /** 1690 * amdgpu_cs_wait_any_fence - wait on any fence to signal 1691 * 1692 * @adev: amdgpu device 1693 * @filp: file private 1694 * @wait: wait parameters 1695 * @fences: array of drm_amdgpu_fence 1696 */ 1697 static int amdgpu_cs_wait_any_fence(struct amdgpu_device *adev, 1698 struct drm_file *filp, 1699 union drm_amdgpu_wait_fences *wait, 1700 struct drm_amdgpu_fence *fences) 1701 { 1702 unsigned long timeout = amdgpu_gem_timeout(wait->in.timeout_ns); 1703 uint32_t fence_count = wait->in.fence_count; 1704 uint32_t first = ~0; 1705 struct dma_fence **array; 1706 unsigned int i; 1707 long r; 1708 1709 /* Prepare the fence array */ 1710 array = kcalloc(fence_count, sizeof(struct dma_fence *), GFP_KERNEL); 1711 1712 if (array == NULL) 1713 return -ENOMEM; 1714 1715 for (i = 0; i < fence_count; i++) { 1716 struct dma_fence *fence; 1717 1718 fence = amdgpu_cs_get_fence(adev, filp, &fences[i]); 1719 if (IS_ERR(fence)) { 1720 r = PTR_ERR(fence); 1721 goto err_free_fence_array; 1722 } else if (fence) { 1723 array[i] = fence; 1724 } else { /* NULL, the fence has been already signaled */ 1725 r = 1; 1726 first = i; 1727 goto out; 1728 } 1729 } 1730 1731 r = dma_fence_wait_any_timeout(array, fence_count, true, timeout, 1732 &first); 1733 if (r < 0) 1734 goto err_free_fence_array; 1735 1736 out: 1737 memset(wait, 0, sizeof(*wait)); 1738 wait->out.status = (r > 0); 1739 wait->out.first_signaled = first; 1740 1741 if (first < fence_count && array[first]) 1742 r = array[first]->error; 1743 else 1744 r = 0; 1745 1746 err_free_fence_array: 1747 for (i = 0; i < fence_count; i++) 1748 dma_fence_put(array[i]); 1749 kfree(array); 1750 1751 return r; 1752 } 1753 1754 /** 1755 * amdgpu_cs_wait_fences_ioctl - wait for multiple command submissions to finish 1756 * 1757 * @dev: drm device 1758 * @data: data from userspace 1759 * @filp: file private 1760 */ 1761 int amdgpu_cs_wait_fences_ioctl(struct drm_device *dev, void *data, 1762 struct drm_file *filp) 1763 { 1764 struct amdgpu_device *adev = drm_to_adev(dev); 1765 union drm_amdgpu_wait_fences *wait = data; 1766 uint32_t fence_count = wait->in.fence_count; 1767 struct drm_amdgpu_fence *fences_user; 1768 struct drm_amdgpu_fence *fences; 1769 int r; 1770 1771 /* Get the fences from userspace */ 1772 fences = kmalloc_array(fence_count, sizeof(struct drm_amdgpu_fence), 1773 GFP_KERNEL); 1774 if (fences == NULL) 1775 return -ENOMEM; 1776 1777 fences_user = u64_to_user_ptr(wait->in.fences); 1778 if (copy_from_user(fences, fences_user, 1779 sizeof(struct drm_amdgpu_fence) * fence_count)) { 1780 r = -EFAULT; 1781 goto err_free_fences; 1782 } 1783 1784 if (wait->in.wait_all) 1785 r = amdgpu_cs_wait_all_fences(adev, filp, wait, fences); 1786 else 1787 r = amdgpu_cs_wait_any_fence(adev, filp, wait, fences); 1788 1789 err_free_fences: 1790 kfree(fences); 1791 1792 return r; 1793 } 1794 1795 /** 1796 * amdgpu_cs_find_mapping - find bo_va for VM address 1797 * 1798 * @parser: command submission parser context 1799 * @addr: VM address 1800 * @bo: resulting BO of the mapping found 1801 * @map: Placeholder to return found BO mapping 1802 * 1803 * Search the buffer objects in the command submission context for a certain 1804 * virtual memory address. Returns allocation structure when found, NULL 1805 * otherwise. 1806 */ 1807 int amdgpu_cs_find_mapping(struct amdgpu_cs_parser *parser, 1808 uint64_t addr, struct amdgpu_bo **bo, 1809 struct amdgpu_bo_va_mapping **map) 1810 { 1811 struct amdgpu_fpriv *fpriv = parser->filp->driver_priv; 1812 struct ttm_operation_ctx ctx = { false, false }; 1813 struct amdgpu_vm *vm = &fpriv->vm; 1814 struct amdgpu_bo_va_mapping *mapping; 1815 int i, r; 1816 1817 addr /= AMDGPU_GPU_PAGE_SIZE; 1818 1819 mapping = amdgpu_vm_bo_lookup_mapping(vm, addr); 1820 if (!mapping || !mapping->bo_va || !mapping->bo_va->base.bo) 1821 return -EINVAL; 1822 1823 *bo = mapping->bo_va->base.bo; 1824 *map = mapping; 1825 1826 /* Double check that the BO is reserved by this CS */ 1827 if (dma_resv_locking_ctx((*bo)->tbo.base.resv) != &parser->exec.ticket) 1828 return -EINVAL; 1829 1830 /* Make sure VRAM is allocated contigiously */ 1831 (*bo)->flags |= AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS; 1832 if ((*bo)->tbo.resource->mem_type == TTM_PL_VRAM && 1833 !((*bo)->tbo.resource->placement & TTM_PL_FLAG_CONTIGUOUS)) { 1834 1835 amdgpu_bo_placement_from_domain(*bo, (*bo)->allowed_domains); 1836 for (i = 0; i < (*bo)->placement.num_placement; i++) 1837 (*bo)->placements[i].flags |= TTM_PL_FLAG_CONTIGUOUS; 1838 r = ttm_bo_validate(&(*bo)->tbo, &(*bo)->placement, &ctx); 1839 if (r) 1840 return r; 1841 } 1842 1843 return amdgpu_ttm_alloc_gart(&(*bo)->tbo); 1844 } 1845