xref: /linux/drivers/gpu/drm/amd/amdgpu/amdgpu_cs.c (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 /*
2  * Copyright 2008 Jerome Glisse.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22  * DEALINGS IN THE SOFTWARE.
23  *
24  * Authors:
25  *    Jerome Glisse <glisse@freedesktop.org>
26  */
27 #include <linux/list_sort.h>
28 #include <drm/drmP.h>
29 #include <drm/amdgpu_drm.h>
30 #include "amdgpu.h"
31 #include "amdgpu_trace.h"
32 
33 #define AMDGPU_CS_MAX_PRIORITY		32u
34 #define AMDGPU_CS_NUM_BUCKETS		(AMDGPU_CS_MAX_PRIORITY + 1)
35 
36 /* This is based on the bucket sort with O(n) time complexity.
37  * An item with priority "i" is added to bucket[i]. The lists are then
38  * concatenated in descending order.
39  */
40 struct amdgpu_cs_buckets {
41 	struct list_head bucket[AMDGPU_CS_NUM_BUCKETS];
42 };
43 
44 static void amdgpu_cs_buckets_init(struct amdgpu_cs_buckets *b)
45 {
46 	unsigned i;
47 
48 	for (i = 0; i < AMDGPU_CS_NUM_BUCKETS; i++)
49 		INIT_LIST_HEAD(&b->bucket[i]);
50 }
51 
52 static void amdgpu_cs_buckets_add(struct amdgpu_cs_buckets *b,
53 				  struct list_head *item, unsigned priority)
54 {
55 	/* Since buffers which appear sooner in the relocation list are
56 	 * likely to be used more often than buffers which appear later
57 	 * in the list, the sort mustn't change the ordering of buffers
58 	 * with the same priority, i.e. it must be stable.
59 	 */
60 	list_add_tail(item, &b->bucket[min(priority, AMDGPU_CS_MAX_PRIORITY)]);
61 }
62 
63 static void amdgpu_cs_buckets_get_list(struct amdgpu_cs_buckets *b,
64 				       struct list_head *out_list)
65 {
66 	unsigned i;
67 
68 	/* Connect the sorted buckets in the output list. */
69 	for (i = 0; i < AMDGPU_CS_NUM_BUCKETS; i++) {
70 		list_splice(&b->bucket[i], out_list);
71 	}
72 }
73 
74 int amdgpu_cs_get_ring(struct amdgpu_device *adev, u32 ip_type,
75 		       u32 ip_instance, u32 ring,
76 		       struct amdgpu_ring **out_ring)
77 {
78 	/* Right now all IPs have only one instance - multiple rings. */
79 	if (ip_instance != 0) {
80 		DRM_ERROR("invalid ip instance: %d\n", ip_instance);
81 		return -EINVAL;
82 	}
83 
84 	switch (ip_type) {
85 	default:
86 		DRM_ERROR("unknown ip type: %d\n", ip_type);
87 		return -EINVAL;
88 	case AMDGPU_HW_IP_GFX:
89 		if (ring < adev->gfx.num_gfx_rings) {
90 			*out_ring = &adev->gfx.gfx_ring[ring];
91 		} else {
92 			DRM_ERROR("only %d gfx rings are supported now\n",
93 				  adev->gfx.num_gfx_rings);
94 			return -EINVAL;
95 		}
96 		break;
97 	case AMDGPU_HW_IP_COMPUTE:
98 		if (ring < adev->gfx.num_compute_rings) {
99 			*out_ring = &adev->gfx.compute_ring[ring];
100 		} else {
101 			DRM_ERROR("only %d compute rings are supported now\n",
102 				  adev->gfx.num_compute_rings);
103 			return -EINVAL;
104 		}
105 		break;
106 	case AMDGPU_HW_IP_DMA:
107 		if (ring < 2) {
108 			*out_ring = &adev->sdma[ring].ring;
109 		} else {
110 			DRM_ERROR("only two SDMA rings are supported\n");
111 			return -EINVAL;
112 		}
113 		break;
114 	case AMDGPU_HW_IP_UVD:
115 		*out_ring = &adev->uvd.ring;
116 		break;
117 	case AMDGPU_HW_IP_VCE:
118 		if (ring < 2){
119 			*out_ring = &adev->vce.ring[ring];
120 		} else {
121 			DRM_ERROR("only two VCE rings are supported\n");
122 			return -EINVAL;
123 		}
124 		break;
125 	}
126 	return 0;
127 }
128 
129 struct amdgpu_cs_parser *amdgpu_cs_parser_create(struct amdgpu_device *adev,
130                                                struct drm_file *filp,
131                                                struct amdgpu_ctx *ctx,
132                                                struct amdgpu_ib *ibs,
133                                                uint32_t num_ibs)
134 {
135 	struct amdgpu_cs_parser *parser;
136 	int i;
137 
138 	parser = kzalloc(sizeof(struct amdgpu_cs_parser), GFP_KERNEL);
139 	if (!parser)
140 		return NULL;
141 
142 	parser->adev = adev;
143 	parser->filp = filp;
144 	parser->ctx = ctx;
145 	parser->ibs = ibs;
146 	parser->num_ibs = num_ibs;
147 	for (i = 0; i < num_ibs; i++)
148 		ibs[i].ctx = ctx;
149 
150 	return parser;
151 }
152 
153 int amdgpu_cs_parser_init(struct amdgpu_cs_parser *p, void *data)
154 {
155 	union drm_amdgpu_cs *cs = data;
156 	uint64_t *chunk_array_user;
157 	uint64_t *chunk_array;
158 	struct amdgpu_fpriv *fpriv = p->filp->driver_priv;
159 	unsigned size;
160 	int i;
161 	int ret;
162 
163 	if (cs->in.num_chunks == 0)
164 		return 0;
165 
166 	chunk_array = kmalloc_array(cs->in.num_chunks, sizeof(uint64_t), GFP_KERNEL);
167 	if (!chunk_array)
168 		return -ENOMEM;
169 
170 	p->ctx = amdgpu_ctx_get(fpriv, cs->in.ctx_id);
171 	if (!p->ctx) {
172 		ret = -EINVAL;
173 		goto free_chunk;
174 	}
175 
176 	p->bo_list = amdgpu_bo_list_get(fpriv, cs->in.bo_list_handle);
177 
178 	/* get chunks */
179 	INIT_LIST_HEAD(&p->validated);
180 	chunk_array_user = (uint64_t __user *)(unsigned long)(cs->in.chunks);
181 	if (copy_from_user(chunk_array, chunk_array_user,
182 			   sizeof(uint64_t)*cs->in.num_chunks)) {
183 		ret = -EFAULT;
184 		goto put_bo_list;
185 	}
186 
187 	p->nchunks = cs->in.num_chunks;
188 	p->chunks = kmalloc_array(p->nchunks, sizeof(struct amdgpu_cs_chunk),
189 			    GFP_KERNEL);
190 	if (!p->chunks) {
191 		ret = -ENOMEM;
192 		goto put_bo_list;
193 	}
194 
195 	for (i = 0; i < p->nchunks; i++) {
196 		struct drm_amdgpu_cs_chunk __user **chunk_ptr = NULL;
197 		struct drm_amdgpu_cs_chunk user_chunk;
198 		uint32_t __user *cdata;
199 
200 		chunk_ptr = (void __user *)(unsigned long)chunk_array[i];
201 		if (copy_from_user(&user_chunk, chunk_ptr,
202 				       sizeof(struct drm_amdgpu_cs_chunk))) {
203 			ret = -EFAULT;
204 			i--;
205 			goto free_partial_kdata;
206 		}
207 		p->chunks[i].chunk_id = user_chunk.chunk_id;
208 		p->chunks[i].length_dw = user_chunk.length_dw;
209 
210 		size = p->chunks[i].length_dw;
211 		cdata = (void __user *)(unsigned long)user_chunk.chunk_data;
212 		p->chunks[i].user_ptr = cdata;
213 
214 		p->chunks[i].kdata = drm_malloc_ab(size, sizeof(uint32_t));
215 		if (p->chunks[i].kdata == NULL) {
216 			ret = -ENOMEM;
217 			i--;
218 			goto free_partial_kdata;
219 		}
220 		size *= sizeof(uint32_t);
221 		if (copy_from_user(p->chunks[i].kdata, cdata, size)) {
222 			ret = -EFAULT;
223 			goto free_partial_kdata;
224 		}
225 
226 		switch (p->chunks[i].chunk_id) {
227 		case AMDGPU_CHUNK_ID_IB:
228 			p->num_ibs++;
229 			break;
230 
231 		case AMDGPU_CHUNK_ID_FENCE:
232 			size = sizeof(struct drm_amdgpu_cs_chunk_fence);
233 			if (p->chunks[i].length_dw * sizeof(uint32_t) >= size) {
234 				uint32_t handle;
235 				struct drm_gem_object *gobj;
236 				struct drm_amdgpu_cs_chunk_fence *fence_data;
237 
238 				fence_data = (void *)p->chunks[i].kdata;
239 				handle = fence_data->handle;
240 				gobj = drm_gem_object_lookup(p->adev->ddev,
241 							     p->filp, handle);
242 				if (gobj == NULL) {
243 					ret = -EINVAL;
244 					goto free_partial_kdata;
245 				}
246 
247 				p->uf.bo = gem_to_amdgpu_bo(gobj);
248 				p->uf.offset = fence_data->offset;
249 			} else {
250 				ret = -EINVAL;
251 				goto free_partial_kdata;
252 			}
253 			break;
254 
255 		case AMDGPU_CHUNK_ID_DEPENDENCIES:
256 			break;
257 
258 		default:
259 			ret = -EINVAL;
260 			goto free_partial_kdata;
261 		}
262 	}
263 
264 
265 	p->ibs = kcalloc(p->num_ibs, sizeof(struct amdgpu_ib), GFP_KERNEL);
266 	if (!p->ibs) {
267 		ret = -ENOMEM;
268 		goto free_all_kdata;
269 	}
270 
271 	kfree(chunk_array);
272 	return 0;
273 
274 free_all_kdata:
275 	i = p->nchunks - 1;
276 free_partial_kdata:
277 	for (; i >= 0; i--)
278 		drm_free_large(p->chunks[i].kdata);
279 	kfree(p->chunks);
280 put_bo_list:
281 	if (p->bo_list)
282 		amdgpu_bo_list_put(p->bo_list);
283 	amdgpu_ctx_put(p->ctx);
284 free_chunk:
285 	kfree(chunk_array);
286 
287 	return ret;
288 }
289 
290 /* Returns how many bytes TTM can move per IB.
291  */
292 static u64 amdgpu_cs_get_threshold_for_moves(struct amdgpu_device *adev)
293 {
294 	u64 real_vram_size = adev->mc.real_vram_size;
295 	u64 vram_usage = atomic64_read(&adev->vram_usage);
296 
297 	/* This function is based on the current VRAM usage.
298 	 *
299 	 * - If all of VRAM is free, allow relocating the number of bytes that
300 	 *   is equal to 1/4 of the size of VRAM for this IB.
301 
302 	 * - If more than one half of VRAM is occupied, only allow relocating
303 	 *   1 MB of data for this IB.
304 	 *
305 	 * - From 0 to one half of used VRAM, the threshold decreases
306 	 *   linearly.
307 	 *         __________________
308 	 * 1/4 of -|\               |
309 	 * VRAM    | \              |
310 	 *         |  \             |
311 	 *         |   \            |
312 	 *         |    \           |
313 	 *         |     \          |
314 	 *         |      \         |
315 	 *         |       \________|1 MB
316 	 *         |----------------|
317 	 *    VRAM 0 %             100 %
318 	 *         used            used
319 	 *
320 	 * Note: It's a threshold, not a limit. The threshold must be crossed
321 	 * for buffer relocations to stop, so any buffer of an arbitrary size
322 	 * can be moved as long as the threshold isn't crossed before
323 	 * the relocation takes place. We don't want to disable buffer
324 	 * relocations completely.
325 	 *
326 	 * The idea is that buffers should be placed in VRAM at creation time
327 	 * and TTM should only do a minimum number of relocations during
328 	 * command submission. In practice, you need to submit at least
329 	 * a dozen IBs to move all buffers to VRAM if they are in GTT.
330 	 *
331 	 * Also, things can get pretty crazy under memory pressure and actual
332 	 * VRAM usage can change a lot, so playing safe even at 50% does
333 	 * consistently increase performance.
334 	 */
335 
336 	u64 half_vram = real_vram_size >> 1;
337 	u64 half_free_vram = vram_usage >= half_vram ? 0 : half_vram - vram_usage;
338 	u64 bytes_moved_threshold = half_free_vram >> 1;
339 	return max(bytes_moved_threshold, 1024*1024ull);
340 }
341 
342 int amdgpu_cs_list_validate(struct amdgpu_device *adev,
343 			    struct amdgpu_vm *vm,
344 			    struct list_head *validated)
345 {
346 	struct amdgpu_bo_list_entry *lobj;
347 	struct amdgpu_bo *bo;
348 	u64 bytes_moved = 0, initial_bytes_moved;
349 	u64 bytes_moved_threshold = amdgpu_cs_get_threshold_for_moves(adev);
350 	int r;
351 
352 	list_for_each_entry(lobj, validated, tv.head) {
353 		bo = lobj->robj;
354 		if (!bo->pin_count) {
355 			u32 domain = lobj->prefered_domains;
356 			u32 current_domain =
357 				amdgpu_mem_type_to_domain(bo->tbo.mem.mem_type);
358 
359 			/* Check if this buffer will be moved and don't move it
360 			 * if we have moved too many buffers for this IB already.
361 			 *
362 			 * Note that this allows moving at least one buffer of
363 			 * any size, because it doesn't take the current "bo"
364 			 * into account. We don't want to disallow buffer moves
365 			 * completely.
366 			 */
367 			if ((lobj->allowed_domains & current_domain) != 0 &&
368 			    (domain & current_domain) == 0 && /* will be moved */
369 			    bytes_moved > bytes_moved_threshold) {
370 				/* don't move it */
371 				domain = current_domain;
372 			}
373 
374 		retry:
375 			amdgpu_ttm_placement_from_domain(bo, domain);
376 			initial_bytes_moved = atomic64_read(&adev->num_bytes_moved);
377 			r = ttm_bo_validate(&bo->tbo, &bo->placement, true, false);
378 			bytes_moved += atomic64_read(&adev->num_bytes_moved) -
379 				       initial_bytes_moved;
380 
381 			if (unlikely(r)) {
382 				if (r != -ERESTARTSYS && domain != lobj->allowed_domains) {
383 					domain = lobj->allowed_domains;
384 					goto retry;
385 				}
386 				return r;
387 			}
388 		}
389 		lobj->bo_va = amdgpu_vm_bo_find(vm, bo);
390 	}
391 	return 0;
392 }
393 
394 static int amdgpu_cs_parser_relocs(struct amdgpu_cs_parser *p)
395 {
396 	struct amdgpu_fpriv *fpriv = p->filp->driver_priv;
397 	struct amdgpu_cs_buckets buckets;
398 	struct list_head duplicates;
399 	bool need_mmap_lock = false;
400 	int i, r;
401 
402 	if (p->bo_list) {
403 		need_mmap_lock = p->bo_list->has_userptr;
404 		amdgpu_cs_buckets_init(&buckets);
405 		for (i = 0; i < p->bo_list->num_entries; i++)
406 			amdgpu_cs_buckets_add(&buckets, &p->bo_list->array[i].tv.head,
407 								  p->bo_list->array[i].priority);
408 
409 		amdgpu_cs_buckets_get_list(&buckets, &p->validated);
410 	}
411 
412 	p->vm_bos = amdgpu_vm_get_bos(p->adev, &fpriv->vm,
413 				      &p->validated);
414 
415 	if (need_mmap_lock)
416 		down_read(&current->mm->mmap_sem);
417 
418 	INIT_LIST_HEAD(&duplicates);
419 	r = ttm_eu_reserve_buffers(&p->ticket, &p->validated, true, &duplicates);
420 	if (unlikely(r != 0))
421 		goto error_reserve;
422 
423 	r = amdgpu_cs_list_validate(p->adev, &fpriv->vm, &p->validated);
424 	if (r)
425 		goto error_validate;
426 
427 	r = amdgpu_cs_list_validate(p->adev, &fpriv->vm, &duplicates);
428 
429 error_validate:
430 	if (r)
431 		ttm_eu_backoff_reservation(&p->ticket, &p->validated);
432 
433 error_reserve:
434 	if (need_mmap_lock)
435 		up_read(&current->mm->mmap_sem);
436 
437 	return r;
438 }
439 
440 static int amdgpu_cs_sync_rings(struct amdgpu_cs_parser *p)
441 {
442 	struct amdgpu_bo_list_entry *e;
443 	int r;
444 
445 	list_for_each_entry(e, &p->validated, tv.head) {
446 		struct reservation_object *resv = e->robj->tbo.resv;
447 		r = amdgpu_sync_resv(p->adev, &p->ibs[0].sync, resv, p->filp);
448 
449 		if (r)
450 			return r;
451 	}
452 	return 0;
453 }
454 
455 static int cmp_size_smaller_first(void *priv, struct list_head *a,
456 				  struct list_head *b)
457 {
458 	struct amdgpu_bo_list_entry *la = list_entry(a, struct amdgpu_bo_list_entry, tv.head);
459 	struct amdgpu_bo_list_entry *lb = list_entry(b, struct amdgpu_bo_list_entry, tv.head);
460 
461 	/* Sort A before B if A is smaller. */
462 	return (int)la->robj->tbo.num_pages - (int)lb->robj->tbo.num_pages;
463 }
464 
465 static void amdgpu_cs_parser_fini_early(struct amdgpu_cs_parser *parser, int error, bool backoff)
466 {
467 	if (!error) {
468 		/* Sort the buffer list from the smallest to largest buffer,
469 		 * which affects the order of buffers in the LRU list.
470 		 * This assures that the smallest buffers are added first
471 		 * to the LRU list, so they are likely to be later evicted
472 		 * first, instead of large buffers whose eviction is more
473 		 * expensive.
474 		 *
475 		 * This slightly lowers the number of bytes moved by TTM
476 		 * per frame under memory pressure.
477 		 */
478 		list_sort(NULL, &parser->validated, cmp_size_smaller_first);
479 
480 		ttm_eu_fence_buffer_objects(&parser->ticket,
481 				&parser->validated,
482 				&parser->ibs[parser->num_ibs-1].fence->base);
483 	} else if (backoff) {
484 		ttm_eu_backoff_reservation(&parser->ticket,
485 					   &parser->validated);
486 	}
487 }
488 
489 static void amdgpu_cs_parser_fini_late(struct amdgpu_cs_parser *parser)
490 {
491 	unsigned i;
492 	if (parser->ctx)
493 		amdgpu_ctx_put(parser->ctx);
494 	if (parser->bo_list)
495 		amdgpu_bo_list_put(parser->bo_list);
496 
497 	drm_free_large(parser->vm_bos);
498 	for (i = 0; i < parser->nchunks; i++)
499 		drm_free_large(parser->chunks[i].kdata);
500 	kfree(parser->chunks);
501 	if (!amdgpu_enable_scheduler)
502 	{
503 		if (parser->ibs)
504 			for (i = 0; i < parser->num_ibs; i++)
505 				amdgpu_ib_free(parser->adev, &parser->ibs[i]);
506 		kfree(parser->ibs);
507 		if (parser->uf.bo)
508 			drm_gem_object_unreference_unlocked(&parser->uf.bo->gem_base);
509 	}
510 
511 	kfree(parser);
512 }
513 
514 /**
515  * cs_parser_fini() - clean parser states
516  * @parser:	parser structure holding parsing context.
517  * @error:	error number
518  *
519  * If error is set than unvalidate buffer, otherwise just free memory
520  * used by parsing context.
521  **/
522 static void amdgpu_cs_parser_fini(struct amdgpu_cs_parser *parser, int error, bool backoff)
523 {
524        amdgpu_cs_parser_fini_early(parser, error, backoff);
525        amdgpu_cs_parser_fini_late(parser);
526 }
527 
528 static int amdgpu_bo_vm_update_pte(struct amdgpu_cs_parser *p,
529 				   struct amdgpu_vm *vm)
530 {
531 	struct amdgpu_device *adev = p->adev;
532 	struct amdgpu_bo_va *bo_va;
533 	struct amdgpu_bo *bo;
534 	int i, r;
535 
536 	r = amdgpu_vm_update_page_directory(adev, vm);
537 	if (r)
538 		return r;
539 
540 	r = amdgpu_sync_fence(adev, &p->ibs[0].sync, vm->page_directory_fence);
541 	if (r)
542 		return r;
543 
544 	r = amdgpu_vm_clear_freed(adev, vm);
545 	if (r)
546 		return r;
547 
548 	if (p->bo_list) {
549 		for (i = 0; i < p->bo_list->num_entries; i++) {
550 			struct fence *f;
551 
552 			/* ignore duplicates */
553 			bo = p->bo_list->array[i].robj;
554 			if (!bo)
555 				continue;
556 
557 			bo_va = p->bo_list->array[i].bo_va;
558 			if (bo_va == NULL)
559 				continue;
560 
561 			r = amdgpu_vm_bo_update(adev, bo_va, &bo->tbo.mem);
562 			if (r)
563 				return r;
564 
565 			f = bo_va->last_pt_update;
566 			r = amdgpu_sync_fence(adev, &p->ibs[0].sync, f);
567 			if (r)
568 				return r;
569 		}
570 	}
571 
572 	return amdgpu_vm_clear_invalids(adev, vm, &p->ibs[0].sync);
573 }
574 
575 static int amdgpu_cs_ib_vm_chunk(struct amdgpu_device *adev,
576 				 struct amdgpu_cs_parser *parser)
577 {
578 	struct amdgpu_fpriv *fpriv = parser->filp->driver_priv;
579 	struct amdgpu_vm *vm = &fpriv->vm;
580 	struct amdgpu_ring *ring;
581 	int i, r;
582 
583 	if (parser->num_ibs == 0)
584 		return 0;
585 
586 	/* Only for UVD/VCE VM emulation */
587 	for (i = 0; i < parser->num_ibs; i++) {
588 		ring = parser->ibs[i].ring;
589 		if (ring->funcs->parse_cs) {
590 			r = amdgpu_ring_parse_cs(ring, parser, i);
591 			if (r)
592 				return r;
593 		}
594 	}
595 
596 	mutex_lock(&vm->mutex);
597 	r = amdgpu_bo_vm_update_pte(parser, vm);
598 	if (r) {
599 		goto out;
600 	}
601 	amdgpu_cs_sync_rings(parser);
602 	if (!amdgpu_enable_scheduler)
603 		r = amdgpu_ib_schedule(adev, parser->num_ibs, parser->ibs,
604 				       parser->filp);
605 
606 out:
607 	mutex_unlock(&vm->mutex);
608 	return r;
609 }
610 
611 static int amdgpu_cs_handle_lockup(struct amdgpu_device *adev, int r)
612 {
613 	if (r == -EDEADLK) {
614 		r = amdgpu_gpu_reset(adev);
615 		if (!r)
616 			r = -EAGAIN;
617 	}
618 	return r;
619 }
620 
621 static int amdgpu_cs_ib_fill(struct amdgpu_device *adev,
622 			     struct amdgpu_cs_parser *parser)
623 {
624 	struct amdgpu_fpriv *fpriv = parser->filp->driver_priv;
625 	struct amdgpu_vm *vm = &fpriv->vm;
626 	int i, j;
627 	int r;
628 
629 	for (i = 0, j = 0; i < parser->nchunks && j < parser->num_ibs; i++) {
630 		struct amdgpu_cs_chunk *chunk;
631 		struct amdgpu_ib *ib;
632 		struct drm_amdgpu_cs_chunk_ib *chunk_ib;
633 		struct amdgpu_ring *ring;
634 
635 		chunk = &parser->chunks[i];
636 		ib = &parser->ibs[j];
637 		chunk_ib = (struct drm_amdgpu_cs_chunk_ib *)chunk->kdata;
638 
639 		if (chunk->chunk_id != AMDGPU_CHUNK_ID_IB)
640 			continue;
641 
642 		r = amdgpu_cs_get_ring(adev, chunk_ib->ip_type,
643 				       chunk_ib->ip_instance, chunk_ib->ring,
644 				       &ring);
645 		if (r)
646 			return r;
647 
648 		if (ring->funcs->parse_cs) {
649 			struct amdgpu_bo_va_mapping *m;
650 			struct amdgpu_bo *aobj = NULL;
651 			uint64_t offset;
652 			uint8_t *kptr;
653 
654 			m = amdgpu_cs_find_mapping(parser, chunk_ib->va_start,
655 						   &aobj);
656 			if (!aobj) {
657 				DRM_ERROR("IB va_start is invalid\n");
658 				return -EINVAL;
659 			}
660 
661 			if ((chunk_ib->va_start + chunk_ib->ib_bytes) >
662 			    (m->it.last + 1) * AMDGPU_GPU_PAGE_SIZE) {
663 				DRM_ERROR("IB va_start+ib_bytes is invalid\n");
664 				return -EINVAL;
665 			}
666 
667 			/* the IB should be reserved at this point */
668 			r = amdgpu_bo_kmap(aobj, (void **)&kptr);
669 			if (r) {
670 				return r;
671 			}
672 
673 			offset = ((uint64_t)m->it.start) * AMDGPU_GPU_PAGE_SIZE;
674 			kptr += chunk_ib->va_start - offset;
675 
676 			r =  amdgpu_ib_get(ring, NULL, chunk_ib->ib_bytes, ib);
677 			if (r) {
678 				DRM_ERROR("Failed to get ib !\n");
679 				return r;
680 			}
681 
682 			memcpy(ib->ptr, kptr, chunk_ib->ib_bytes);
683 			amdgpu_bo_kunmap(aobj);
684 		} else {
685 			r =  amdgpu_ib_get(ring, vm, 0, ib);
686 			if (r) {
687 				DRM_ERROR("Failed to get ib !\n");
688 				return r;
689 			}
690 
691 			ib->gpu_addr = chunk_ib->va_start;
692 		}
693 
694 		ib->length_dw = chunk_ib->ib_bytes / 4;
695 		ib->flags = chunk_ib->flags;
696 		ib->ctx = parser->ctx;
697 		j++;
698 	}
699 
700 	if (!parser->num_ibs)
701 		return 0;
702 
703 	/* add GDS resources to first IB */
704 	if (parser->bo_list) {
705 		struct amdgpu_bo *gds = parser->bo_list->gds_obj;
706 		struct amdgpu_bo *gws = parser->bo_list->gws_obj;
707 		struct amdgpu_bo *oa = parser->bo_list->oa_obj;
708 		struct amdgpu_ib *ib = &parser->ibs[0];
709 
710 		if (gds) {
711 			ib->gds_base = amdgpu_bo_gpu_offset(gds);
712 			ib->gds_size = amdgpu_bo_size(gds);
713 		}
714 		if (gws) {
715 			ib->gws_base = amdgpu_bo_gpu_offset(gws);
716 			ib->gws_size = amdgpu_bo_size(gws);
717 		}
718 		if (oa) {
719 			ib->oa_base = amdgpu_bo_gpu_offset(oa);
720 			ib->oa_size = amdgpu_bo_size(oa);
721 		}
722 	}
723 	/* wrap the last IB with user fence */
724 	if (parser->uf.bo) {
725 		struct amdgpu_ib *ib = &parser->ibs[parser->num_ibs - 1];
726 
727 		/* UVD & VCE fw doesn't support user fences */
728 		if (ib->ring->type == AMDGPU_RING_TYPE_UVD ||
729 		    ib->ring->type == AMDGPU_RING_TYPE_VCE)
730 			return -EINVAL;
731 
732 		ib->user = &parser->uf;
733 	}
734 
735 	return 0;
736 }
737 
738 static int amdgpu_cs_dependencies(struct amdgpu_device *adev,
739 				  struct amdgpu_cs_parser *p)
740 {
741 	struct amdgpu_fpriv *fpriv = p->filp->driver_priv;
742 	struct amdgpu_ib *ib;
743 	int i, j, r;
744 
745 	if (!p->num_ibs)
746 		return 0;
747 
748 	/* Add dependencies to first IB */
749 	ib = &p->ibs[0];
750 	for (i = 0; i < p->nchunks; ++i) {
751 		struct drm_amdgpu_cs_chunk_dep *deps;
752 		struct amdgpu_cs_chunk *chunk;
753 		unsigned num_deps;
754 
755 		chunk = &p->chunks[i];
756 
757 		if (chunk->chunk_id != AMDGPU_CHUNK_ID_DEPENDENCIES)
758 			continue;
759 
760 		deps = (struct drm_amdgpu_cs_chunk_dep *)chunk->kdata;
761 		num_deps = chunk->length_dw * 4 /
762 			sizeof(struct drm_amdgpu_cs_chunk_dep);
763 
764 		for (j = 0; j < num_deps; ++j) {
765 			struct amdgpu_ring *ring;
766 			struct amdgpu_ctx *ctx;
767 			struct fence *fence;
768 
769 			r = amdgpu_cs_get_ring(adev, deps[j].ip_type,
770 					       deps[j].ip_instance,
771 					       deps[j].ring, &ring);
772 			if (r)
773 				return r;
774 
775 			ctx = amdgpu_ctx_get(fpriv, deps[j].ctx_id);
776 			if (ctx == NULL)
777 				return -EINVAL;
778 
779 			fence = amdgpu_ctx_get_fence(ctx, ring,
780 						     deps[j].handle);
781 			if (IS_ERR(fence)) {
782 				r = PTR_ERR(fence);
783 				amdgpu_ctx_put(ctx);
784 				return r;
785 
786 			} else if (fence) {
787 				r = amdgpu_sync_fence(adev, &ib->sync, fence);
788 				fence_put(fence);
789 				amdgpu_ctx_put(ctx);
790 				if (r)
791 					return r;
792 			}
793 		}
794 	}
795 
796 	return 0;
797 }
798 
799 static int amdgpu_cs_free_job(struct amdgpu_job *job)
800 {
801 	int i;
802 	if (job->ibs)
803 		for (i = 0; i < job->num_ibs; i++)
804 			amdgpu_ib_free(job->adev, &job->ibs[i]);
805 	kfree(job->ibs);
806 	if (job->uf.bo)
807 		drm_gem_object_unreference_unlocked(&job->uf.bo->gem_base);
808 	return 0;
809 }
810 
811 int amdgpu_cs_ioctl(struct drm_device *dev, void *data, struct drm_file *filp)
812 {
813 	struct amdgpu_device *adev = dev->dev_private;
814 	union drm_amdgpu_cs *cs = data;
815 	struct amdgpu_cs_parser *parser;
816 	bool reserved_buffers = false;
817 	int i, r;
818 
819 	down_read(&adev->exclusive_lock);
820 	if (!adev->accel_working) {
821 		up_read(&adev->exclusive_lock);
822 		return -EBUSY;
823 	}
824 
825 	parser = amdgpu_cs_parser_create(adev, filp, NULL, NULL, 0);
826 	if (!parser)
827 		return -ENOMEM;
828 	r = amdgpu_cs_parser_init(parser, data);
829 	if (r) {
830 		DRM_ERROR("Failed to initialize parser !\n");
831 		kfree(parser);
832 		up_read(&adev->exclusive_lock);
833 		r = amdgpu_cs_handle_lockup(adev, r);
834 		return r;
835 	}
836 
837 	r = amdgpu_cs_parser_relocs(parser);
838 	if (r == -ENOMEM)
839 		DRM_ERROR("Not enough memory for command submission!\n");
840 	else if (r && r != -ERESTARTSYS)
841 		DRM_ERROR("Failed to process the buffer list %d!\n", r);
842 	else if (!r) {
843 		reserved_buffers = true;
844 		r = amdgpu_cs_ib_fill(adev, parser);
845 	}
846 
847 	if (!r) {
848 		r = amdgpu_cs_dependencies(adev, parser);
849 		if (r)
850 			DRM_ERROR("Failed in the dependencies handling %d!\n", r);
851 	}
852 
853 	if (r)
854 		goto out;
855 
856 	for (i = 0; i < parser->num_ibs; i++)
857 		trace_amdgpu_cs(parser, i);
858 
859 	r = amdgpu_cs_ib_vm_chunk(adev, parser);
860 	if (r)
861 		goto out;
862 
863 	if (amdgpu_enable_scheduler && parser->num_ibs) {
864 		struct amdgpu_job *job;
865 		struct amdgpu_ring * ring =  parser->ibs->ring;
866 		job = kzalloc(sizeof(struct amdgpu_job), GFP_KERNEL);
867 		if (!job)
868 			return -ENOMEM;
869 		job->base.sched = &ring->sched;
870 		job->base.s_entity = &parser->ctx->rings[ring->idx].entity;
871 		job->adev = parser->adev;
872 		job->ibs = parser->ibs;
873 		job->num_ibs = parser->num_ibs;
874 		job->base.owner = parser->filp;
875 		mutex_init(&job->job_lock);
876 		if (job->ibs[job->num_ibs - 1].user) {
877 			memcpy(&job->uf,  &parser->uf,
878 			       sizeof(struct amdgpu_user_fence));
879 			job->ibs[job->num_ibs - 1].user = &job->uf;
880 		}
881 
882 		job->free_job = amdgpu_cs_free_job;
883 		mutex_lock(&job->job_lock);
884 		r = amd_sched_entity_push_job(&job->base);
885 		if (r) {
886 			mutex_unlock(&job->job_lock);
887 			amdgpu_cs_free_job(job);
888 			kfree(job);
889 			goto out;
890 		}
891 		cs->out.handle =
892 			amdgpu_ctx_add_fence(parser->ctx, ring,
893 					     &job->base.s_fence->base);
894 		parser->ibs[parser->num_ibs - 1].sequence = cs->out.handle;
895 
896 		list_sort(NULL, &parser->validated, cmp_size_smaller_first);
897 		ttm_eu_fence_buffer_objects(&parser->ticket,
898 				&parser->validated,
899 				&job->base.s_fence->base);
900 
901 		mutex_unlock(&job->job_lock);
902 		amdgpu_cs_parser_fini_late(parser);
903 		up_read(&adev->exclusive_lock);
904 		return 0;
905 	}
906 
907 	cs->out.handle = parser->ibs[parser->num_ibs - 1].sequence;
908 out:
909 	amdgpu_cs_parser_fini(parser, r, reserved_buffers);
910 	up_read(&adev->exclusive_lock);
911 	r = amdgpu_cs_handle_lockup(adev, r);
912 	return r;
913 }
914 
915 /**
916  * amdgpu_cs_wait_ioctl - wait for a command submission to finish
917  *
918  * @dev: drm device
919  * @data: data from userspace
920  * @filp: file private
921  *
922  * Wait for the command submission identified by handle to finish.
923  */
924 int amdgpu_cs_wait_ioctl(struct drm_device *dev, void *data,
925 			 struct drm_file *filp)
926 {
927 	union drm_amdgpu_wait_cs *wait = data;
928 	struct amdgpu_device *adev = dev->dev_private;
929 	unsigned long timeout = amdgpu_gem_timeout(wait->in.timeout);
930 	struct amdgpu_ring *ring = NULL;
931 	struct amdgpu_ctx *ctx;
932 	struct fence *fence;
933 	long r;
934 
935 	r = amdgpu_cs_get_ring(adev, wait->in.ip_type, wait->in.ip_instance,
936 			       wait->in.ring, &ring);
937 	if (r)
938 		return r;
939 
940 	ctx = amdgpu_ctx_get(filp->driver_priv, wait->in.ctx_id);
941 	if (ctx == NULL)
942 		return -EINVAL;
943 
944 	fence = amdgpu_ctx_get_fence(ctx, ring, wait->in.handle);
945 	if (IS_ERR(fence))
946 		r = PTR_ERR(fence);
947 	else if (fence) {
948 		r = fence_wait_timeout(fence, true, timeout);
949 		fence_put(fence);
950 	} else
951 		r = 1;
952 
953 	amdgpu_ctx_put(ctx);
954 	if (r < 0)
955 		return r;
956 
957 	memset(wait, 0, sizeof(*wait));
958 	wait->out.status = (r == 0);
959 
960 	return 0;
961 }
962 
963 /**
964  * amdgpu_cs_find_bo_va - find bo_va for VM address
965  *
966  * @parser: command submission parser context
967  * @addr: VM address
968  * @bo: resulting BO of the mapping found
969  *
970  * Search the buffer objects in the command submission context for a certain
971  * virtual memory address. Returns allocation structure when found, NULL
972  * otherwise.
973  */
974 struct amdgpu_bo_va_mapping *
975 amdgpu_cs_find_mapping(struct amdgpu_cs_parser *parser,
976 		       uint64_t addr, struct amdgpu_bo **bo)
977 {
978 	struct amdgpu_bo_list_entry *reloc;
979 	struct amdgpu_bo_va_mapping *mapping;
980 
981 	addr /= AMDGPU_GPU_PAGE_SIZE;
982 
983 	list_for_each_entry(reloc, &parser->validated, tv.head) {
984 		if (!reloc->bo_va)
985 			continue;
986 
987 		list_for_each_entry(mapping, &reloc->bo_va->valids, list) {
988 			if (mapping->it.start > addr ||
989 			    addr > mapping->it.last)
990 				continue;
991 
992 			*bo = reloc->bo_va->bo;
993 			return mapping;
994 		}
995 
996 		list_for_each_entry(mapping, &reloc->bo_va->invalids, list) {
997 			if (mapping->it.start > addr ||
998 			    addr > mapping->it.last)
999 				continue;
1000 
1001 			*bo = reloc->bo_va->bo;
1002 			return mapping;
1003 		}
1004 	}
1005 
1006 	return NULL;
1007 }
1008