1 /* 2 * Copyright 2008 Jerome Glisse. 3 * All Rights Reserved. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice (including the next 13 * paragraph) shall be included in all copies or substantial portions of the 14 * Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 22 * DEALINGS IN THE SOFTWARE. 23 * 24 * Authors: 25 * Jerome Glisse <glisse@freedesktop.org> 26 */ 27 28 #include <linux/file.h> 29 #include <linux/pagemap.h> 30 #include <linux/sync_file.h> 31 #include <linux/dma-buf.h> 32 33 #include <drm/amdgpu_drm.h> 34 #include <drm/drm_syncobj.h> 35 #include <drm/ttm/ttm_tt.h> 36 37 #include "amdgpu_cs.h" 38 #include "amdgpu.h" 39 #include "amdgpu_trace.h" 40 #include "amdgpu_gmc.h" 41 #include "amdgpu_gem.h" 42 #include "amdgpu_ras.h" 43 44 static int amdgpu_cs_parser_init(struct amdgpu_cs_parser *p, 45 struct amdgpu_device *adev, 46 struct drm_file *filp, 47 union drm_amdgpu_cs *cs) 48 { 49 struct amdgpu_fpriv *fpriv = filp->driver_priv; 50 51 if (cs->in.num_chunks == 0) 52 return -EINVAL; 53 54 memset(p, 0, sizeof(*p)); 55 p->adev = adev; 56 p->filp = filp; 57 58 p->ctx = amdgpu_ctx_get(fpriv, cs->in.ctx_id); 59 if (!p->ctx) 60 return -EINVAL; 61 62 if (atomic_read(&p->ctx->guilty)) { 63 amdgpu_ctx_put(p->ctx); 64 return -ECANCELED; 65 } 66 67 amdgpu_sync_create(&p->sync); 68 drm_exec_init(&p->exec, DRM_EXEC_INTERRUPTIBLE_WAIT | 69 DRM_EXEC_IGNORE_DUPLICATES, 0); 70 return 0; 71 } 72 73 static int amdgpu_cs_job_idx(struct amdgpu_cs_parser *p, 74 struct drm_amdgpu_cs_chunk_ib *chunk_ib) 75 { 76 struct drm_sched_entity *entity; 77 unsigned int i; 78 int r; 79 80 r = amdgpu_ctx_get_entity(p->ctx, chunk_ib->ip_type, 81 chunk_ib->ip_instance, 82 chunk_ib->ring, &entity); 83 if (r) 84 return r; 85 86 /* 87 * Abort if there is no run queue associated with this entity. 88 * Possibly because of disabled HW IP. 89 */ 90 if (entity->rq == NULL) 91 return -EINVAL; 92 93 /* Check if we can add this IB to some existing job */ 94 for (i = 0; i < p->gang_size; ++i) 95 if (p->entities[i] == entity) 96 return i; 97 98 /* If not increase the gang size if possible */ 99 if (i == AMDGPU_CS_GANG_SIZE) 100 return -EINVAL; 101 102 p->entities[i] = entity; 103 p->gang_size = i + 1; 104 return i; 105 } 106 107 static int amdgpu_cs_p1_ib(struct amdgpu_cs_parser *p, 108 struct drm_amdgpu_cs_chunk_ib *chunk_ib, 109 unsigned int *num_ibs) 110 { 111 int r; 112 113 r = amdgpu_cs_job_idx(p, chunk_ib); 114 if (r < 0) 115 return r; 116 117 if (num_ibs[r] >= amdgpu_ring_max_ibs(chunk_ib->ip_type)) 118 return -EINVAL; 119 120 ++(num_ibs[r]); 121 p->gang_leader_idx = r; 122 return 0; 123 } 124 125 static int amdgpu_cs_p1_user_fence(struct amdgpu_cs_parser *p, 126 struct drm_amdgpu_cs_chunk_fence *data, 127 uint32_t *offset) 128 { 129 struct drm_gem_object *gobj; 130 unsigned long size; 131 132 gobj = drm_gem_object_lookup(p->filp, data->handle); 133 if (gobj == NULL) 134 return -EINVAL; 135 136 p->uf_bo = amdgpu_bo_ref(gem_to_amdgpu_bo(gobj)); 137 drm_gem_object_put(gobj); 138 139 size = amdgpu_bo_size(p->uf_bo); 140 if (size != PAGE_SIZE || data->offset > (size - 8)) 141 return -EINVAL; 142 143 if (amdgpu_ttm_tt_get_usermm(p->uf_bo->tbo.ttm)) 144 return -EINVAL; 145 146 *offset = data->offset; 147 return 0; 148 } 149 150 static int amdgpu_cs_p1_bo_handles(struct amdgpu_cs_parser *p, 151 struct drm_amdgpu_bo_list_in *data) 152 { 153 struct drm_amdgpu_bo_list_entry *info; 154 int r; 155 156 r = amdgpu_bo_create_list_entry_array(data, &info); 157 if (r) 158 return r; 159 160 r = amdgpu_bo_list_create(p->adev, p->filp, info, data->bo_number, 161 &p->bo_list); 162 if (r) 163 goto error_free; 164 165 kvfree(info); 166 return 0; 167 168 error_free: 169 kvfree(info); 170 171 return r; 172 } 173 174 /* Copy the data from userspace and go over it the first time */ 175 static int amdgpu_cs_pass1(struct amdgpu_cs_parser *p, 176 union drm_amdgpu_cs *cs) 177 { 178 struct amdgpu_fpriv *fpriv = p->filp->driver_priv; 179 unsigned int num_ibs[AMDGPU_CS_GANG_SIZE] = { }; 180 struct amdgpu_vm *vm = &fpriv->vm; 181 uint64_t *chunk_array_user; 182 uint64_t *chunk_array; 183 uint32_t uf_offset = 0; 184 size_t size; 185 int ret; 186 int i; 187 188 chunk_array = kvmalloc_array(cs->in.num_chunks, sizeof(uint64_t), 189 GFP_KERNEL); 190 if (!chunk_array) 191 return -ENOMEM; 192 193 /* get chunks */ 194 chunk_array_user = u64_to_user_ptr(cs->in.chunks); 195 if (copy_from_user(chunk_array, chunk_array_user, 196 sizeof(uint64_t)*cs->in.num_chunks)) { 197 ret = -EFAULT; 198 goto free_chunk; 199 } 200 201 p->nchunks = cs->in.num_chunks; 202 p->chunks = kvmalloc_array(p->nchunks, sizeof(struct amdgpu_cs_chunk), 203 GFP_KERNEL); 204 if (!p->chunks) { 205 ret = -ENOMEM; 206 goto free_chunk; 207 } 208 209 for (i = 0; i < p->nchunks; i++) { 210 struct drm_amdgpu_cs_chunk __user *chunk_ptr = NULL; 211 struct drm_amdgpu_cs_chunk user_chunk; 212 uint32_t __user *cdata; 213 214 chunk_ptr = u64_to_user_ptr(chunk_array[i]); 215 if (copy_from_user(&user_chunk, chunk_ptr, 216 sizeof(struct drm_amdgpu_cs_chunk))) { 217 ret = -EFAULT; 218 i--; 219 goto free_partial_kdata; 220 } 221 p->chunks[i].chunk_id = user_chunk.chunk_id; 222 p->chunks[i].length_dw = user_chunk.length_dw; 223 224 size = p->chunks[i].length_dw; 225 cdata = u64_to_user_ptr(user_chunk.chunk_data); 226 227 p->chunks[i].kdata = kvmalloc_array(size, sizeof(uint32_t), 228 GFP_KERNEL); 229 if (p->chunks[i].kdata == NULL) { 230 ret = -ENOMEM; 231 i--; 232 goto free_partial_kdata; 233 } 234 size *= sizeof(uint32_t); 235 if (copy_from_user(p->chunks[i].kdata, cdata, size)) { 236 ret = -EFAULT; 237 goto free_partial_kdata; 238 } 239 240 /* Assume the worst on the following checks */ 241 ret = -EINVAL; 242 switch (p->chunks[i].chunk_id) { 243 case AMDGPU_CHUNK_ID_IB: 244 if (size < sizeof(struct drm_amdgpu_cs_chunk_ib)) 245 goto free_partial_kdata; 246 247 ret = amdgpu_cs_p1_ib(p, p->chunks[i].kdata, num_ibs); 248 if (ret) 249 goto free_partial_kdata; 250 break; 251 252 case AMDGPU_CHUNK_ID_FENCE: 253 if (size < sizeof(struct drm_amdgpu_cs_chunk_fence)) 254 goto free_partial_kdata; 255 256 ret = amdgpu_cs_p1_user_fence(p, p->chunks[i].kdata, 257 &uf_offset); 258 if (ret) 259 goto free_partial_kdata; 260 break; 261 262 case AMDGPU_CHUNK_ID_BO_HANDLES: 263 if (size < sizeof(struct drm_amdgpu_bo_list_in)) 264 goto free_partial_kdata; 265 266 /* Only a single BO list is allowed to simplify handling. */ 267 if (p->bo_list) 268 goto free_partial_kdata; 269 270 ret = amdgpu_cs_p1_bo_handles(p, p->chunks[i].kdata); 271 if (ret) 272 goto free_partial_kdata; 273 break; 274 275 case AMDGPU_CHUNK_ID_DEPENDENCIES: 276 case AMDGPU_CHUNK_ID_SYNCOBJ_IN: 277 case AMDGPU_CHUNK_ID_SYNCOBJ_OUT: 278 case AMDGPU_CHUNK_ID_SCHEDULED_DEPENDENCIES: 279 case AMDGPU_CHUNK_ID_SYNCOBJ_TIMELINE_WAIT: 280 case AMDGPU_CHUNK_ID_SYNCOBJ_TIMELINE_SIGNAL: 281 case AMDGPU_CHUNK_ID_CP_GFX_SHADOW: 282 break; 283 284 default: 285 goto free_partial_kdata; 286 } 287 } 288 289 if (!p->gang_size) { 290 ret = -EINVAL; 291 goto free_all_kdata; 292 } 293 294 for (i = 0; i < p->gang_size; ++i) { 295 ret = amdgpu_job_alloc(p->adev, vm, p->entities[i], vm, 296 num_ibs[i], &p->jobs[i]); 297 if (ret) 298 goto free_all_kdata; 299 switch (p->adev->enforce_isolation[fpriv->xcp_id]) { 300 case AMDGPU_ENFORCE_ISOLATION_DISABLE: 301 default: 302 p->jobs[i]->enforce_isolation = false; 303 p->jobs[i]->run_cleaner_shader = false; 304 break; 305 case AMDGPU_ENFORCE_ISOLATION_ENABLE: 306 p->jobs[i]->enforce_isolation = true; 307 p->jobs[i]->run_cleaner_shader = true; 308 break; 309 case AMDGPU_ENFORCE_ISOLATION_ENABLE_LEGACY: 310 p->jobs[i]->enforce_isolation = true; 311 p->jobs[i]->run_cleaner_shader = false; 312 break; 313 } 314 } 315 p->gang_leader = p->jobs[p->gang_leader_idx]; 316 317 if (p->ctx->generation != p->gang_leader->generation) { 318 ret = -ECANCELED; 319 goto free_all_kdata; 320 } 321 322 if (p->uf_bo) 323 p->gang_leader->uf_addr = uf_offset; 324 kvfree(chunk_array); 325 326 /* Use this opportunity to fill in task info for the vm */ 327 amdgpu_vm_set_task_info(vm); 328 329 return 0; 330 331 free_all_kdata: 332 i = p->nchunks - 1; 333 free_partial_kdata: 334 for (; i >= 0; i--) 335 kvfree(p->chunks[i].kdata); 336 kvfree(p->chunks); 337 p->chunks = NULL; 338 p->nchunks = 0; 339 free_chunk: 340 kvfree(chunk_array); 341 342 return ret; 343 } 344 345 static int amdgpu_cs_p2_ib(struct amdgpu_cs_parser *p, 346 struct amdgpu_cs_chunk *chunk, 347 unsigned int *ce_preempt, 348 unsigned int *de_preempt) 349 { 350 struct drm_amdgpu_cs_chunk_ib *chunk_ib = chunk->kdata; 351 struct amdgpu_fpriv *fpriv = p->filp->driver_priv; 352 struct amdgpu_vm *vm = &fpriv->vm; 353 struct amdgpu_ring *ring; 354 struct amdgpu_job *job; 355 struct amdgpu_ib *ib; 356 int r; 357 358 r = amdgpu_cs_job_idx(p, chunk_ib); 359 if (r < 0) 360 return r; 361 362 job = p->jobs[r]; 363 ring = amdgpu_job_ring(job); 364 ib = &job->ibs[job->num_ibs++]; 365 366 /* submissions to kernel queues are disabled */ 367 if (ring->no_user_submission) 368 return -EINVAL; 369 370 /* MM engine doesn't support user fences */ 371 if (p->uf_bo && ring->funcs->no_user_fence) 372 return -EINVAL; 373 374 if (chunk_ib->ip_type == AMDGPU_HW_IP_GFX && 375 chunk_ib->flags & AMDGPU_IB_FLAG_PREEMPT) { 376 if (chunk_ib->flags & AMDGPU_IB_FLAG_CE) 377 (*ce_preempt)++; 378 else 379 (*de_preempt)++; 380 381 /* Each GFX command submit allows only 1 IB max 382 * preemptible for CE & DE */ 383 if (*ce_preempt > 1 || *de_preempt > 1) 384 return -EINVAL; 385 } 386 387 if (chunk_ib->flags & AMDGPU_IB_FLAG_PREAMBLE) 388 job->preamble_status |= AMDGPU_PREAMBLE_IB_PRESENT; 389 390 r = amdgpu_ib_get(p->adev, vm, ring->funcs->parse_cs ? 391 chunk_ib->ib_bytes : 0, 392 AMDGPU_IB_POOL_DELAYED, ib); 393 if (r) { 394 DRM_ERROR("Failed to get ib !\n"); 395 return r; 396 } 397 398 ib->gpu_addr = chunk_ib->va_start; 399 ib->length_dw = chunk_ib->ib_bytes / 4; 400 ib->flags = chunk_ib->flags; 401 return 0; 402 } 403 404 static int amdgpu_cs_p2_dependencies(struct amdgpu_cs_parser *p, 405 struct amdgpu_cs_chunk *chunk) 406 { 407 struct drm_amdgpu_cs_chunk_dep *deps = chunk->kdata; 408 struct amdgpu_fpriv *fpriv = p->filp->driver_priv; 409 unsigned int num_deps; 410 int i, r; 411 412 num_deps = chunk->length_dw * 4 / 413 sizeof(struct drm_amdgpu_cs_chunk_dep); 414 415 for (i = 0; i < num_deps; ++i) { 416 struct amdgpu_ctx *ctx; 417 struct drm_sched_entity *entity; 418 struct dma_fence *fence; 419 420 ctx = amdgpu_ctx_get(fpriv, deps[i].ctx_id); 421 if (ctx == NULL) 422 return -EINVAL; 423 424 r = amdgpu_ctx_get_entity(ctx, deps[i].ip_type, 425 deps[i].ip_instance, 426 deps[i].ring, &entity); 427 if (r) { 428 amdgpu_ctx_put(ctx); 429 return r; 430 } 431 432 fence = amdgpu_ctx_get_fence(ctx, entity, deps[i].handle); 433 amdgpu_ctx_put(ctx); 434 435 if (IS_ERR(fence)) 436 return PTR_ERR(fence); 437 else if (!fence) 438 continue; 439 440 if (chunk->chunk_id == AMDGPU_CHUNK_ID_SCHEDULED_DEPENDENCIES) { 441 struct drm_sched_fence *s_fence; 442 struct dma_fence *old = fence; 443 444 s_fence = to_drm_sched_fence(fence); 445 fence = dma_fence_get(&s_fence->scheduled); 446 dma_fence_put(old); 447 } 448 449 r = amdgpu_sync_fence(&p->sync, fence, GFP_KERNEL); 450 dma_fence_put(fence); 451 if (r) 452 return r; 453 } 454 return 0; 455 } 456 457 static int amdgpu_syncobj_lookup_and_add(struct amdgpu_cs_parser *p, 458 uint32_t handle, u64 point, 459 u64 flags) 460 { 461 struct dma_fence *fence; 462 int r; 463 464 r = drm_syncobj_find_fence(p->filp, handle, point, flags, &fence); 465 if (r) { 466 DRM_ERROR("syncobj %u failed to find fence @ %llu (%d)!\n", 467 handle, point, r); 468 return r; 469 } 470 471 r = amdgpu_sync_fence(&p->sync, fence, GFP_KERNEL); 472 dma_fence_put(fence); 473 return r; 474 } 475 476 static int amdgpu_cs_p2_syncobj_in(struct amdgpu_cs_parser *p, 477 struct amdgpu_cs_chunk *chunk) 478 { 479 struct drm_amdgpu_cs_chunk_sem *deps = chunk->kdata; 480 unsigned int num_deps; 481 int i, r; 482 483 num_deps = chunk->length_dw * 4 / 484 sizeof(struct drm_amdgpu_cs_chunk_sem); 485 for (i = 0; i < num_deps; ++i) { 486 r = amdgpu_syncobj_lookup_and_add(p, deps[i].handle, 0, 0); 487 if (r) 488 return r; 489 } 490 491 return 0; 492 } 493 494 static int amdgpu_cs_p2_syncobj_timeline_wait(struct amdgpu_cs_parser *p, 495 struct amdgpu_cs_chunk *chunk) 496 { 497 struct drm_amdgpu_cs_chunk_syncobj *syncobj_deps = chunk->kdata; 498 unsigned int num_deps; 499 int i, r; 500 501 num_deps = chunk->length_dw * 4 / 502 sizeof(struct drm_amdgpu_cs_chunk_syncobj); 503 for (i = 0; i < num_deps; ++i) { 504 r = amdgpu_syncobj_lookup_and_add(p, syncobj_deps[i].handle, 505 syncobj_deps[i].point, 506 syncobj_deps[i].flags); 507 if (r) 508 return r; 509 } 510 511 return 0; 512 } 513 514 static int amdgpu_cs_p2_syncobj_out(struct amdgpu_cs_parser *p, 515 struct amdgpu_cs_chunk *chunk) 516 { 517 struct drm_amdgpu_cs_chunk_sem *deps = chunk->kdata; 518 unsigned int num_deps; 519 int i; 520 521 num_deps = chunk->length_dw * 4 / 522 sizeof(struct drm_amdgpu_cs_chunk_sem); 523 524 if (p->post_deps) 525 return -EINVAL; 526 527 p->post_deps = kmalloc_array(num_deps, sizeof(*p->post_deps), 528 GFP_KERNEL); 529 p->num_post_deps = 0; 530 531 if (!p->post_deps) 532 return -ENOMEM; 533 534 535 for (i = 0; i < num_deps; ++i) { 536 p->post_deps[i].syncobj = 537 drm_syncobj_find(p->filp, deps[i].handle); 538 if (!p->post_deps[i].syncobj) 539 return -EINVAL; 540 p->post_deps[i].chain = NULL; 541 p->post_deps[i].point = 0; 542 p->num_post_deps++; 543 } 544 545 return 0; 546 } 547 548 static int amdgpu_cs_p2_syncobj_timeline_signal(struct amdgpu_cs_parser *p, 549 struct amdgpu_cs_chunk *chunk) 550 { 551 struct drm_amdgpu_cs_chunk_syncobj *syncobj_deps = chunk->kdata; 552 unsigned int num_deps; 553 int i; 554 555 num_deps = chunk->length_dw * 4 / 556 sizeof(struct drm_amdgpu_cs_chunk_syncobj); 557 558 if (p->post_deps) 559 return -EINVAL; 560 561 p->post_deps = kmalloc_array(num_deps, sizeof(*p->post_deps), 562 GFP_KERNEL); 563 p->num_post_deps = 0; 564 565 if (!p->post_deps) 566 return -ENOMEM; 567 568 for (i = 0; i < num_deps; ++i) { 569 struct amdgpu_cs_post_dep *dep = &p->post_deps[i]; 570 571 dep->chain = NULL; 572 if (syncobj_deps[i].point) { 573 dep->chain = dma_fence_chain_alloc(); 574 if (!dep->chain) 575 return -ENOMEM; 576 } 577 578 dep->syncobj = drm_syncobj_find(p->filp, 579 syncobj_deps[i].handle); 580 if (!dep->syncobj) { 581 dma_fence_chain_free(dep->chain); 582 return -EINVAL; 583 } 584 dep->point = syncobj_deps[i].point; 585 p->num_post_deps++; 586 } 587 588 return 0; 589 } 590 591 static int amdgpu_cs_p2_shadow(struct amdgpu_cs_parser *p, 592 struct amdgpu_cs_chunk *chunk) 593 { 594 struct drm_amdgpu_cs_chunk_cp_gfx_shadow *shadow = chunk->kdata; 595 int i; 596 597 if (shadow->flags & ~AMDGPU_CS_CHUNK_CP_GFX_SHADOW_FLAGS_INIT_SHADOW) 598 return -EINVAL; 599 600 for (i = 0; i < p->gang_size; ++i) { 601 p->jobs[i]->shadow_va = shadow->shadow_va; 602 p->jobs[i]->csa_va = shadow->csa_va; 603 p->jobs[i]->gds_va = shadow->gds_va; 604 p->jobs[i]->init_shadow = 605 shadow->flags & AMDGPU_CS_CHUNK_CP_GFX_SHADOW_FLAGS_INIT_SHADOW; 606 } 607 608 return 0; 609 } 610 611 static int amdgpu_cs_pass2(struct amdgpu_cs_parser *p) 612 { 613 unsigned int ce_preempt = 0, de_preempt = 0; 614 int i, r; 615 616 for (i = 0; i < p->nchunks; ++i) { 617 struct amdgpu_cs_chunk *chunk; 618 619 chunk = &p->chunks[i]; 620 621 switch (chunk->chunk_id) { 622 case AMDGPU_CHUNK_ID_IB: 623 r = amdgpu_cs_p2_ib(p, chunk, &ce_preempt, &de_preempt); 624 if (r) 625 return r; 626 break; 627 case AMDGPU_CHUNK_ID_DEPENDENCIES: 628 case AMDGPU_CHUNK_ID_SCHEDULED_DEPENDENCIES: 629 r = amdgpu_cs_p2_dependencies(p, chunk); 630 if (r) 631 return r; 632 break; 633 case AMDGPU_CHUNK_ID_SYNCOBJ_IN: 634 r = amdgpu_cs_p2_syncobj_in(p, chunk); 635 if (r) 636 return r; 637 break; 638 case AMDGPU_CHUNK_ID_SYNCOBJ_OUT: 639 r = amdgpu_cs_p2_syncobj_out(p, chunk); 640 if (r) 641 return r; 642 break; 643 case AMDGPU_CHUNK_ID_SYNCOBJ_TIMELINE_WAIT: 644 r = amdgpu_cs_p2_syncobj_timeline_wait(p, chunk); 645 if (r) 646 return r; 647 break; 648 case AMDGPU_CHUNK_ID_SYNCOBJ_TIMELINE_SIGNAL: 649 r = amdgpu_cs_p2_syncobj_timeline_signal(p, chunk); 650 if (r) 651 return r; 652 break; 653 case AMDGPU_CHUNK_ID_CP_GFX_SHADOW: 654 r = amdgpu_cs_p2_shadow(p, chunk); 655 if (r) 656 return r; 657 break; 658 } 659 } 660 661 return 0; 662 } 663 664 /* Convert microseconds to bytes. */ 665 static u64 us_to_bytes(struct amdgpu_device *adev, s64 us) 666 { 667 if (us <= 0 || !adev->mm_stats.log2_max_MBps) 668 return 0; 669 670 /* Since accum_us is incremented by a million per second, just 671 * multiply it by the number of MB/s to get the number of bytes. 672 */ 673 return us << adev->mm_stats.log2_max_MBps; 674 } 675 676 static s64 bytes_to_us(struct amdgpu_device *adev, u64 bytes) 677 { 678 if (!adev->mm_stats.log2_max_MBps) 679 return 0; 680 681 return bytes >> adev->mm_stats.log2_max_MBps; 682 } 683 684 /* Returns how many bytes TTM can move right now. If no bytes can be moved, 685 * it returns 0. If it returns non-zero, it's OK to move at least one buffer, 686 * which means it can go over the threshold once. If that happens, the driver 687 * will be in debt and no other buffer migrations can be done until that debt 688 * is repaid. 689 * 690 * This approach allows moving a buffer of any size (it's important to allow 691 * that). 692 * 693 * The currency is simply time in microseconds and it increases as the clock 694 * ticks. The accumulated microseconds (us) are converted to bytes and 695 * returned. 696 */ 697 static void amdgpu_cs_get_threshold_for_moves(struct amdgpu_device *adev, 698 u64 *max_bytes, 699 u64 *max_vis_bytes) 700 { 701 s64 time_us, increment_us; 702 u64 free_vram, total_vram, used_vram; 703 /* Allow a maximum of 200 accumulated ms. This is basically per-IB 704 * throttling. 705 * 706 * It means that in order to get full max MBps, at least 5 IBs per 707 * second must be submitted and not more than 200ms apart from each 708 * other. 709 */ 710 const s64 us_upper_bound = 200000; 711 712 if (!adev->mm_stats.log2_max_MBps) { 713 *max_bytes = 0; 714 *max_vis_bytes = 0; 715 return; 716 } 717 718 total_vram = adev->gmc.real_vram_size - atomic64_read(&adev->vram_pin_size); 719 used_vram = ttm_resource_manager_usage(&adev->mman.vram_mgr.manager); 720 free_vram = used_vram >= total_vram ? 0 : total_vram - used_vram; 721 722 spin_lock(&adev->mm_stats.lock); 723 724 /* Increase the amount of accumulated us. */ 725 time_us = ktime_to_us(ktime_get()); 726 increment_us = time_us - adev->mm_stats.last_update_us; 727 adev->mm_stats.last_update_us = time_us; 728 adev->mm_stats.accum_us = min(adev->mm_stats.accum_us + increment_us, 729 us_upper_bound); 730 731 /* This prevents the short period of low performance when the VRAM 732 * usage is low and the driver is in debt or doesn't have enough 733 * accumulated us to fill VRAM quickly. 734 * 735 * The situation can occur in these cases: 736 * - a lot of VRAM is freed by userspace 737 * - the presence of a big buffer causes a lot of evictions 738 * (solution: split buffers into smaller ones) 739 * 740 * If 128 MB or 1/8th of VRAM is free, start filling it now by setting 741 * accum_us to a positive number. 742 */ 743 if (free_vram >= 128 * 1024 * 1024 || free_vram >= total_vram / 8) { 744 s64 min_us; 745 746 /* Be more aggressive on dGPUs. Try to fill a portion of free 747 * VRAM now. 748 */ 749 if (!(adev->flags & AMD_IS_APU)) 750 min_us = bytes_to_us(adev, free_vram / 4); 751 else 752 min_us = 0; /* Reset accum_us on APUs. */ 753 754 adev->mm_stats.accum_us = max(min_us, adev->mm_stats.accum_us); 755 } 756 757 /* This is set to 0 if the driver is in debt to disallow (optional) 758 * buffer moves. 759 */ 760 *max_bytes = us_to_bytes(adev, adev->mm_stats.accum_us); 761 762 /* Do the same for visible VRAM if half of it is free */ 763 if (!amdgpu_gmc_vram_full_visible(&adev->gmc)) { 764 u64 total_vis_vram = adev->gmc.visible_vram_size; 765 u64 used_vis_vram = 766 amdgpu_vram_mgr_vis_usage(&adev->mman.vram_mgr); 767 768 if (used_vis_vram < total_vis_vram) { 769 u64 free_vis_vram = total_vis_vram - used_vis_vram; 770 771 adev->mm_stats.accum_us_vis = min(adev->mm_stats.accum_us_vis + 772 increment_us, us_upper_bound); 773 774 if (free_vis_vram >= total_vis_vram / 2) 775 adev->mm_stats.accum_us_vis = 776 max(bytes_to_us(adev, free_vis_vram / 2), 777 adev->mm_stats.accum_us_vis); 778 } 779 780 *max_vis_bytes = us_to_bytes(adev, adev->mm_stats.accum_us_vis); 781 } else { 782 *max_vis_bytes = 0; 783 } 784 785 spin_unlock(&adev->mm_stats.lock); 786 } 787 788 /* Report how many bytes have really been moved for the last command 789 * submission. This can result in a debt that can stop buffer migrations 790 * temporarily. 791 */ 792 void amdgpu_cs_report_moved_bytes(struct amdgpu_device *adev, u64 num_bytes, 793 u64 num_vis_bytes) 794 { 795 spin_lock(&adev->mm_stats.lock); 796 adev->mm_stats.accum_us -= bytes_to_us(adev, num_bytes); 797 adev->mm_stats.accum_us_vis -= bytes_to_us(adev, num_vis_bytes); 798 spin_unlock(&adev->mm_stats.lock); 799 } 800 801 static int amdgpu_cs_bo_validate(void *param, struct amdgpu_bo *bo) 802 { 803 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 804 struct amdgpu_cs_parser *p = param; 805 struct ttm_operation_ctx ctx = { 806 .interruptible = true, 807 .no_wait_gpu = false, 808 .resv = bo->tbo.base.resv 809 }; 810 uint32_t domain; 811 int r; 812 813 if (bo->tbo.pin_count) 814 return 0; 815 816 /* Don't move this buffer if we have depleted our allowance 817 * to move it. Don't move anything if the threshold is zero. 818 */ 819 if (p->bytes_moved < p->bytes_moved_threshold && 820 (!bo->tbo.base.dma_buf || 821 list_empty(&bo->tbo.base.dma_buf->attachments))) { 822 if (!amdgpu_gmc_vram_full_visible(&adev->gmc) && 823 (bo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED)) { 824 /* And don't move a CPU_ACCESS_REQUIRED BO to limited 825 * visible VRAM if we've depleted our allowance to do 826 * that. 827 */ 828 if (p->bytes_moved_vis < p->bytes_moved_vis_threshold) 829 domain = bo->preferred_domains; 830 else 831 domain = bo->allowed_domains; 832 } else { 833 domain = bo->preferred_domains; 834 } 835 } else { 836 domain = bo->allowed_domains; 837 } 838 839 retry: 840 amdgpu_bo_placement_from_domain(bo, domain); 841 r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 842 843 p->bytes_moved += ctx.bytes_moved; 844 if (!amdgpu_gmc_vram_full_visible(&adev->gmc) && 845 amdgpu_res_cpu_visible(adev, bo->tbo.resource)) 846 p->bytes_moved_vis += ctx.bytes_moved; 847 848 if (unlikely(r == -ENOMEM) && domain != bo->allowed_domains) { 849 domain = bo->allowed_domains; 850 goto retry; 851 } 852 853 return r; 854 } 855 856 static int amdgpu_cs_parser_bos(struct amdgpu_cs_parser *p, 857 union drm_amdgpu_cs *cs) 858 { 859 struct amdgpu_fpriv *fpriv = p->filp->driver_priv; 860 struct ttm_operation_ctx ctx = { true, false }; 861 struct amdgpu_vm *vm = &fpriv->vm; 862 struct amdgpu_bo_list_entry *e; 863 struct drm_gem_object *obj; 864 unsigned long index; 865 unsigned int i; 866 int r; 867 868 /* p->bo_list could already be assigned if AMDGPU_CHUNK_ID_BO_HANDLES is present */ 869 if (cs->in.bo_list_handle) { 870 if (p->bo_list) 871 return -EINVAL; 872 873 r = amdgpu_bo_list_get(fpriv, cs->in.bo_list_handle, 874 &p->bo_list); 875 if (r) 876 return r; 877 } else if (!p->bo_list) { 878 /* Create a empty bo_list when no handle is provided */ 879 r = amdgpu_bo_list_create(p->adev, p->filp, NULL, 0, 880 &p->bo_list); 881 if (r) 882 return r; 883 } 884 885 mutex_lock(&p->bo_list->bo_list_mutex); 886 887 /* Get userptr backing pages. If pages are updated after registered 888 * in amdgpu_gem_userptr_ioctl(), amdgpu_cs_list_validate() will do 889 * amdgpu_ttm_backend_bind() to flush and invalidate new pages 890 */ 891 amdgpu_bo_list_for_each_userptr_entry(e, p->bo_list) { 892 bool userpage_invalidated = false; 893 struct amdgpu_bo *bo = e->bo; 894 int i; 895 896 e->user_pages = kvcalloc(bo->tbo.ttm->num_pages, 897 sizeof(struct page *), 898 GFP_KERNEL); 899 if (!e->user_pages) { 900 DRM_ERROR("kvmalloc_array failure\n"); 901 r = -ENOMEM; 902 goto out_free_user_pages; 903 } 904 905 r = amdgpu_ttm_tt_get_user_pages(bo, e->user_pages, &e->range); 906 if (r) { 907 kvfree(e->user_pages); 908 e->user_pages = NULL; 909 goto out_free_user_pages; 910 } 911 912 for (i = 0; i < bo->tbo.ttm->num_pages; i++) { 913 if (bo->tbo.ttm->pages[i] != e->user_pages[i]) { 914 userpage_invalidated = true; 915 break; 916 } 917 } 918 e->user_invalidated = userpage_invalidated; 919 } 920 921 drm_exec_until_all_locked(&p->exec) { 922 r = amdgpu_vm_lock_pd(&fpriv->vm, &p->exec, 1 + p->gang_size); 923 drm_exec_retry_on_contention(&p->exec); 924 if (unlikely(r)) 925 goto out_free_user_pages; 926 927 amdgpu_bo_list_for_each_entry(e, p->bo_list) { 928 /* One fence for TTM and one for each CS job */ 929 r = drm_exec_prepare_obj(&p->exec, &e->bo->tbo.base, 930 1 + p->gang_size); 931 drm_exec_retry_on_contention(&p->exec); 932 if (unlikely(r)) 933 goto out_free_user_pages; 934 935 e->bo_va = amdgpu_vm_bo_find(vm, e->bo); 936 } 937 938 if (p->uf_bo) { 939 r = drm_exec_prepare_obj(&p->exec, &p->uf_bo->tbo.base, 940 1 + p->gang_size); 941 drm_exec_retry_on_contention(&p->exec); 942 if (unlikely(r)) 943 goto out_free_user_pages; 944 } 945 } 946 947 amdgpu_bo_list_for_each_userptr_entry(e, p->bo_list) { 948 struct mm_struct *usermm; 949 950 usermm = amdgpu_ttm_tt_get_usermm(e->bo->tbo.ttm); 951 if (usermm && usermm != current->mm) { 952 r = -EPERM; 953 goto out_free_user_pages; 954 } 955 956 if (amdgpu_ttm_tt_is_userptr(e->bo->tbo.ttm) && 957 e->user_invalidated && e->user_pages) { 958 amdgpu_bo_placement_from_domain(e->bo, 959 AMDGPU_GEM_DOMAIN_CPU); 960 r = ttm_bo_validate(&e->bo->tbo, &e->bo->placement, 961 &ctx); 962 if (r) 963 goto out_free_user_pages; 964 965 amdgpu_ttm_tt_set_user_pages(e->bo->tbo.ttm, 966 e->user_pages); 967 } 968 969 kvfree(e->user_pages); 970 e->user_pages = NULL; 971 } 972 973 amdgpu_cs_get_threshold_for_moves(p->adev, &p->bytes_moved_threshold, 974 &p->bytes_moved_vis_threshold); 975 p->bytes_moved = 0; 976 p->bytes_moved_vis = 0; 977 978 r = amdgpu_vm_validate(p->adev, &fpriv->vm, NULL, 979 amdgpu_cs_bo_validate, p); 980 if (r) { 981 DRM_ERROR("amdgpu_vm_validate() failed.\n"); 982 goto out_free_user_pages; 983 } 984 985 drm_exec_for_each_locked_object(&p->exec, index, obj) { 986 r = amdgpu_cs_bo_validate(p, gem_to_amdgpu_bo(obj)); 987 if (unlikely(r)) 988 goto out_free_user_pages; 989 } 990 991 if (p->uf_bo) { 992 r = amdgpu_ttm_alloc_gart(&p->uf_bo->tbo); 993 if (unlikely(r)) 994 goto out_free_user_pages; 995 996 p->gang_leader->uf_addr += amdgpu_bo_gpu_offset(p->uf_bo); 997 } 998 999 amdgpu_cs_report_moved_bytes(p->adev, p->bytes_moved, 1000 p->bytes_moved_vis); 1001 1002 for (i = 0; i < p->gang_size; ++i) 1003 amdgpu_job_set_resources(p->jobs[i], p->bo_list->gds_obj, 1004 p->bo_list->gws_obj, 1005 p->bo_list->oa_obj); 1006 return 0; 1007 1008 out_free_user_pages: 1009 amdgpu_bo_list_for_each_userptr_entry(e, p->bo_list) { 1010 struct amdgpu_bo *bo = e->bo; 1011 1012 if (!e->user_pages) 1013 continue; 1014 amdgpu_ttm_tt_get_user_pages_done(bo->tbo.ttm, e->range); 1015 kvfree(e->user_pages); 1016 e->user_pages = NULL; 1017 e->range = NULL; 1018 } 1019 mutex_unlock(&p->bo_list->bo_list_mutex); 1020 return r; 1021 } 1022 1023 static void trace_amdgpu_cs_ibs(struct amdgpu_cs_parser *p) 1024 { 1025 int i, j; 1026 1027 if (!trace_amdgpu_cs_enabled()) 1028 return; 1029 1030 for (i = 0; i < p->gang_size; ++i) { 1031 struct amdgpu_job *job = p->jobs[i]; 1032 1033 for (j = 0; j < job->num_ibs; ++j) 1034 trace_amdgpu_cs(p, job, &job->ibs[j]); 1035 } 1036 } 1037 1038 static int amdgpu_cs_patch_ibs(struct amdgpu_cs_parser *p, 1039 struct amdgpu_job *job) 1040 { 1041 struct amdgpu_ring *ring = amdgpu_job_ring(job); 1042 unsigned int i; 1043 int r; 1044 1045 /* Only for UVD/VCE VM emulation */ 1046 if (!ring->funcs->parse_cs && !ring->funcs->patch_cs_in_place) 1047 return 0; 1048 1049 for (i = 0; i < job->num_ibs; ++i) { 1050 struct amdgpu_ib *ib = &job->ibs[i]; 1051 struct amdgpu_bo_va_mapping *m; 1052 struct amdgpu_bo *aobj; 1053 uint64_t va_start; 1054 uint8_t *kptr; 1055 1056 va_start = ib->gpu_addr & AMDGPU_GMC_HOLE_MASK; 1057 r = amdgpu_cs_find_mapping(p, va_start, &aobj, &m); 1058 if (r) { 1059 DRM_ERROR("IB va_start is invalid\n"); 1060 return r; 1061 } 1062 1063 if ((va_start + ib->length_dw * 4) > 1064 (m->last + 1) * AMDGPU_GPU_PAGE_SIZE) { 1065 DRM_ERROR("IB va_start+ib_bytes is invalid\n"); 1066 return -EINVAL; 1067 } 1068 1069 /* the IB should be reserved at this point */ 1070 r = amdgpu_bo_kmap(aobj, (void **)&kptr); 1071 if (r) 1072 return r; 1073 1074 kptr += va_start - (m->start * AMDGPU_GPU_PAGE_SIZE); 1075 1076 if (ring->funcs->parse_cs) { 1077 memcpy(ib->ptr, kptr, ib->length_dw * 4); 1078 amdgpu_bo_kunmap(aobj); 1079 1080 r = amdgpu_ring_parse_cs(ring, p, job, ib); 1081 if (r) 1082 return r; 1083 1084 if (ib->sa_bo) 1085 ib->gpu_addr = amdgpu_sa_bo_gpu_addr(ib->sa_bo); 1086 } else { 1087 ib->ptr = (uint32_t *)kptr; 1088 r = amdgpu_ring_patch_cs_in_place(ring, p, job, ib); 1089 amdgpu_bo_kunmap(aobj); 1090 if (r) 1091 return r; 1092 } 1093 } 1094 1095 return 0; 1096 } 1097 1098 static int amdgpu_cs_patch_jobs(struct amdgpu_cs_parser *p) 1099 { 1100 unsigned int i; 1101 int r; 1102 1103 for (i = 0; i < p->gang_size; ++i) { 1104 r = amdgpu_cs_patch_ibs(p, p->jobs[i]); 1105 if (r) 1106 return r; 1107 } 1108 return 0; 1109 } 1110 1111 static int amdgpu_cs_vm_handling(struct amdgpu_cs_parser *p) 1112 { 1113 struct amdgpu_fpriv *fpriv = p->filp->driver_priv; 1114 struct amdgpu_job *job = p->gang_leader; 1115 struct amdgpu_device *adev = p->adev; 1116 struct amdgpu_vm *vm = &fpriv->vm; 1117 struct amdgpu_bo_list_entry *e; 1118 struct amdgpu_bo_va *bo_va; 1119 unsigned int i; 1120 int r; 1121 1122 /* 1123 * We can't use gang submit on with reserved VMIDs when the VM changes 1124 * can't be invalidated by more than one engine at the same time. 1125 */ 1126 if (p->gang_size > 1 && !adev->vm_manager.concurrent_flush) { 1127 for (i = 0; i < p->gang_size; ++i) { 1128 struct drm_sched_entity *entity = p->entities[i]; 1129 struct drm_gpu_scheduler *sched = entity->rq->sched; 1130 struct amdgpu_ring *ring = to_amdgpu_ring(sched); 1131 1132 if (amdgpu_vmid_uses_reserved(vm, ring->vm_hub)) 1133 return -EINVAL; 1134 } 1135 } 1136 1137 r = amdgpu_vm_clear_freed(adev, vm, NULL); 1138 if (r) 1139 return r; 1140 1141 r = amdgpu_vm_bo_update(adev, fpriv->prt_va, false); 1142 if (r) 1143 return r; 1144 1145 r = amdgpu_sync_fence(&p->sync, fpriv->prt_va->last_pt_update, 1146 GFP_KERNEL); 1147 if (r) 1148 return r; 1149 1150 if (fpriv->csa_va) { 1151 bo_va = fpriv->csa_va; 1152 BUG_ON(!bo_va); 1153 r = amdgpu_vm_bo_update(adev, bo_va, false); 1154 if (r) 1155 return r; 1156 1157 r = amdgpu_sync_fence(&p->sync, bo_va->last_pt_update, 1158 GFP_KERNEL); 1159 if (r) 1160 return r; 1161 } 1162 1163 /* FIXME: In theory this loop shouldn't be needed any more when 1164 * amdgpu_vm_handle_moved handles all moved BOs that are reserved 1165 * with p->ticket. But removing it caused test regressions, so I'm 1166 * leaving it here for now. 1167 */ 1168 amdgpu_bo_list_for_each_entry(e, p->bo_list) { 1169 bo_va = e->bo_va; 1170 if (bo_va == NULL) 1171 continue; 1172 1173 r = amdgpu_vm_bo_update(adev, bo_va, false); 1174 if (r) 1175 return r; 1176 1177 r = amdgpu_sync_fence(&p->sync, bo_va->last_pt_update, 1178 GFP_KERNEL); 1179 if (r) 1180 return r; 1181 } 1182 1183 r = amdgpu_vm_handle_moved(adev, vm, &p->exec.ticket); 1184 if (r) 1185 return r; 1186 1187 r = amdgpu_vm_update_pdes(adev, vm, false); 1188 if (r) 1189 return r; 1190 1191 r = amdgpu_sync_fence(&p->sync, vm->last_update, GFP_KERNEL); 1192 if (r) 1193 return r; 1194 1195 for (i = 0; i < p->gang_size; ++i) { 1196 job = p->jobs[i]; 1197 1198 if (!job->vm) 1199 continue; 1200 1201 job->vm_pd_addr = amdgpu_gmc_pd_addr(vm->root.bo); 1202 } 1203 1204 if (adev->debug_vm) { 1205 /* Invalidate all BOs to test for userspace bugs */ 1206 amdgpu_bo_list_for_each_entry(e, p->bo_list) { 1207 struct amdgpu_bo *bo = e->bo; 1208 1209 /* ignore duplicates */ 1210 if (!bo) 1211 continue; 1212 1213 amdgpu_vm_bo_invalidate(bo, false); 1214 } 1215 } 1216 1217 return 0; 1218 } 1219 1220 static int amdgpu_cs_sync_rings(struct amdgpu_cs_parser *p) 1221 { 1222 struct amdgpu_fpriv *fpriv = p->filp->driver_priv; 1223 struct drm_gpu_scheduler *sched; 1224 struct drm_gem_object *obj; 1225 struct dma_fence *fence; 1226 unsigned long index; 1227 unsigned int i; 1228 int r; 1229 1230 r = amdgpu_ctx_wait_prev_fence(p->ctx, p->entities[p->gang_leader_idx]); 1231 if (r) { 1232 if (r != -ERESTARTSYS) 1233 DRM_ERROR("amdgpu_ctx_wait_prev_fence failed.\n"); 1234 return r; 1235 } 1236 1237 drm_exec_for_each_locked_object(&p->exec, index, obj) { 1238 struct amdgpu_bo *bo = gem_to_amdgpu_bo(obj); 1239 1240 struct dma_resv *resv = bo->tbo.base.resv; 1241 enum amdgpu_sync_mode sync_mode; 1242 1243 sync_mode = amdgpu_bo_explicit_sync(bo) ? 1244 AMDGPU_SYNC_EXPLICIT : AMDGPU_SYNC_NE_OWNER; 1245 r = amdgpu_sync_resv(p->adev, &p->sync, resv, sync_mode, 1246 &fpriv->vm); 1247 if (r) 1248 return r; 1249 } 1250 1251 for (i = 0; i < p->gang_size; ++i) { 1252 r = amdgpu_sync_push_to_job(&p->sync, p->jobs[i]); 1253 if (r) 1254 return r; 1255 } 1256 1257 sched = p->gang_leader->base.entity->rq->sched; 1258 while ((fence = amdgpu_sync_get_fence(&p->sync))) { 1259 struct drm_sched_fence *s_fence = to_drm_sched_fence(fence); 1260 1261 /* 1262 * When we have an dependency it might be necessary to insert a 1263 * pipeline sync to make sure that all caches etc are flushed and the 1264 * next job actually sees the results from the previous one 1265 * before we start executing on the same scheduler ring. 1266 */ 1267 if (!s_fence || s_fence->sched != sched) { 1268 dma_fence_put(fence); 1269 continue; 1270 } 1271 1272 r = amdgpu_sync_fence(&p->gang_leader->explicit_sync, fence, 1273 GFP_KERNEL); 1274 dma_fence_put(fence); 1275 if (r) 1276 return r; 1277 } 1278 return 0; 1279 } 1280 1281 static void amdgpu_cs_post_dependencies(struct amdgpu_cs_parser *p) 1282 { 1283 int i; 1284 1285 for (i = 0; i < p->num_post_deps; ++i) { 1286 if (p->post_deps[i].chain && p->post_deps[i].point) { 1287 drm_syncobj_add_point(p->post_deps[i].syncobj, 1288 p->post_deps[i].chain, 1289 p->fence, p->post_deps[i].point); 1290 p->post_deps[i].chain = NULL; 1291 } else { 1292 drm_syncobj_replace_fence(p->post_deps[i].syncobj, 1293 p->fence); 1294 } 1295 } 1296 } 1297 1298 static int amdgpu_cs_submit(struct amdgpu_cs_parser *p, 1299 union drm_amdgpu_cs *cs) 1300 { 1301 struct amdgpu_fpriv *fpriv = p->filp->driver_priv; 1302 struct amdgpu_job *leader = p->gang_leader; 1303 struct amdgpu_bo_list_entry *e; 1304 struct drm_gem_object *gobj; 1305 unsigned long index; 1306 unsigned int i; 1307 uint64_t seq; 1308 int r; 1309 1310 for (i = 0; i < p->gang_size; ++i) 1311 drm_sched_job_arm(&p->jobs[i]->base); 1312 1313 for (i = 0; i < p->gang_size; ++i) { 1314 struct dma_fence *fence; 1315 1316 if (p->jobs[i] == leader) 1317 continue; 1318 1319 fence = &p->jobs[i]->base.s_fence->scheduled; 1320 dma_fence_get(fence); 1321 r = drm_sched_job_add_dependency(&leader->base, fence); 1322 if (r) { 1323 dma_fence_put(fence); 1324 return r; 1325 } 1326 } 1327 1328 if (p->gang_size > 1) { 1329 for (i = 0; i < p->gang_size; ++i) 1330 amdgpu_job_set_gang_leader(p->jobs[i], leader); 1331 } 1332 1333 /* No memory allocation is allowed while holding the notifier lock. 1334 * The lock is held until amdgpu_cs_submit is finished and fence is 1335 * added to BOs. 1336 */ 1337 mutex_lock(&p->adev->notifier_lock); 1338 1339 /* If userptr are invalidated after amdgpu_cs_parser_bos(), return 1340 * -EAGAIN, drmIoctl in libdrm will restart the amdgpu_cs_ioctl. 1341 */ 1342 r = 0; 1343 amdgpu_bo_list_for_each_userptr_entry(e, p->bo_list) { 1344 r |= !amdgpu_ttm_tt_get_user_pages_done(e->bo->tbo.ttm, 1345 e->range); 1346 e->range = NULL; 1347 } 1348 if (r) { 1349 r = -EAGAIN; 1350 mutex_unlock(&p->adev->notifier_lock); 1351 return r; 1352 } 1353 1354 p->fence = dma_fence_get(&leader->base.s_fence->finished); 1355 drm_exec_for_each_locked_object(&p->exec, index, gobj) { 1356 1357 ttm_bo_move_to_lru_tail_unlocked(&gem_to_amdgpu_bo(gobj)->tbo); 1358 1359 /* Everybody except for the gang leader uses READ */ 1360 for (i = 0; i < p->gang_size; ++i) { 1361 if (p->jobs[i] == leader) 1362 continue; 1363 1364 dma_resv_add_fence(gobj->resv, 1365 &p->jobs[i]->base.s_fence->finished, 1366 DMA_RESV_USAGE_READ); 1367 } 1368 1369 /* The gang leader as remembered as writer */ 1370 dma_resv_add_fence(gobj->resv, p->fence, DMA_RESV_USAGE_WRITE); 1371 } 1372 1373 seq = amdgpu_ctx_add_fence(p->ctx, p->entities[p->gang_leader_idx], 1374 p->fence); 1375 amdgpu_cs_post_dependencies(p); 1376 1377 if ((leader->preamble_status & AMDGPU_PREAMBLE_IB_PRESENT) && 1378 !p->ctx->preamble_presented) { 1379 leader->preamble_status |= AMDGPU_PREAMBLE_IB_PRESENT_FIRST; 1380 p->ctx->preamble_presented = true; 1381 } 1382 1383 cs->out.handle = seq; 1384 leader->uf_sequence = seq; 1385 1386 amdgpu_vm_bo_trace_cs(&fpriv->vm, &p->exec.ticket); 1387 for (i = 0; i < p->gang_size; ++i) { 1388 amdgpu_job_free_resources(p->jobs[i]); 1389 trace_amdgpu_cs_ioctl(p->jobs[i]); 1390 drm_sched_entity_push_job(&p->jobs[i]->base); 1391 p->jobs[i] = NULL; 1392 } 1393 1394 amdgpu_vm_move_to_lru_tail(p->adev, &fpriv->vm); 1395 1396 mutex_unlock(&p->adev->notifier_lock); 1397 mutex_unlock(&p->bo_list->bo_list_mutex); 1398 return 0; 1399 } 1400 1401 /* Cleanup the parser structure */ 1402 static void amdgpu_cs_parser_fini(struct amdgpu_cs_parser *parser) 1403 { 1404 unsigned int i; 1405 1406 amdgpu_sync_free(&parser->sync); 1407 drm_exec_fini(&parser->exec); 1408 1409 for (i = 0; i < parser->num_post_deps; i++) { 1410 drm_syncobj_put(parser->post_deps[i].syncobj); 1411 kfree(parser->post_deps[i].chain); 1412 } 1413 kfree(parser->post_deps); 1414 1415 dma_fence_put(parser->fence); 1416 1417 if (parser->ctx) 1418 amdgpu_ctx_put(parser->ctx); 1419 if (parser->bo_list) 1420 amdgpu_bo_list_put(parser->bo_list); 1421 1422 for (i = 0; i < parser->nchunks; i++) 1423 kvfree(parser->chunks[i].kdata); 1424 kvfree(parser->chunks); 1425 for (i = 0; i < parser->gang_size; ++i) { 1426 if (parser->jobs[i]) 1427 amdgpu_job_free(parser->jobs[i]); 1428 } 1429 amdgpu_bo_unref(&parser->uf_bo); 1430 } 1431 1432 int amdgpu_cs_ioctl(struct drm_device *dev, void *data, struct drm_file *filp) 1433 { 1434 struct amdgpu_device *adev = drm_to_adev(dev); 1435 struct amdgpu_cs_parser parser; 1436 int r; 1437 1438 if (amdgpu_ras_intr_triggered()) 1439 return -EHWPOISON; 1440 1441 if (!adev->accel_working) 1442 return -EBUSY; 1443 1444 r = amdgpu_cs_parser_init(&parser, adev, filp, data); 1445 if (r) { 1446 DRM_ERROR_RATELIMITED("Failed to initialize parser %d!\n", r); 1447 return r; 1448 } 1449 1450 r = amdgpu_cs_pass1(&parser, data); 1451 if (r) 1452 goto error_fini; 1453 1454 r = amdgpu_cs_pass2(&parser); 1455 if (r) 1456 goto error_fini; 1457 1458 r = amdgpu_cs_parser_bos(&parser, data); 1459 if (r) { 1460 if (r == -ENOMEM) 1461 DRM_ERROR("Not enough memory for command submission!\n"); 1462 else if (r != -ERESTARTSYS && r != -EAGAIN) 1463 DRM_DEBUG("Failed to process the buffer list %d!\n", r); 1464 goto error_fini; 1465 } 1466 1467 r = amdgpu_cs_patch_jobs(&parser); 1468 if (r) 1469 goto error_backoff; 1470 1471 r = amdgpu_cs_vm_handling(&parser); 1472 if (r) 1473 goto error_backoff; 1474 1475 r = amdgpu_cs_sync_rings(&parser); 1476 if (r) 1477 goto error_backoff; 1478 1479 trace_amdgpu_cs_ibs(&parser); 1480 1481 r = amdgpu_cs_submit(&parser, data); 1482 if (r) 1483 goto error_backoff; 1484 1485 amdgpu_cs_parser_fini(&parser); 1486 return 0; 1487 1488 error_backoff: 1489 mutex_unlock(&parser.bo_list->bo_list_mutex); 1490 1491 error_fini: 1492 amdgpu_cs_parser_fini(&parser); 1493 return r; 1494 } 1495 1496 /** 1497 * amdgpu_cs_wait_ioctl - wait for a command submission to finish 1498 * 1499 * @dev: drm device 1500 * @data: data from userspace 1501 * @filp: file private 1502 * 1503 * Wait for the command submission identified by handle to finish. 1504 */ 1505 int amdgpu_cs_wait_ioctl(struct drm_device *dev, void *data, 1506 struct drm_file *filp) 1507 { 1508 union drm_amdgpu_wait_cs *wait = data; 1509 unsigned long timeout = amdgpu_gem_timeout(wait->in.timeout); 1510 struct drm_sched_entity *entity; 1511 struct amdgpu_ctx *ctx; 1512 struct dma_fence *fence; 1513 long r; 1514 1515 ctx = amdgpu_ctx_get(filp->driver_priv, wait->in.ctx_id); 1516 if (ctx == NULL) 1517 return -EINVAL; 1518 1519 r = amdgpu_ctx_get_entity(ctx, wait->in.ip_type, wait->in.ip_instance, 1520 wait->in.ring, &entity); 1521 if (r) { 1522 amdgpu_ctx_put(ctx); 1523 return r; 1524 } 1525 1526 fence = amdgpu_ctx_get_fence(ctx, entity, wait->in.handle); 1527 if (IS_ERR(fence)) 1528 r = PTR_ERR(fence); 1529 else if (fence) { 1530 r = dma_fence_wait_timeout(fence, true, timeout); 1531 if (r > 0 && fence->error) 1532 r = fence->error; 1533 dma_fence_put(fence); 1534 } else 1535 r = 1; 1536 1537 amdgpu_ctx_put(ctx); 1538 if (r < 0) 1539 return r; 1540 1541 memset(wait, 0, sizeof(*wait)); 1542 wait->out.status = (r == 0); 1543 1544 return 0; 1545 } 1546 1547 /** 1548 * amdgpu_cs_get_fence - helper to get fence from drm_amdgpu_fence 1549 * 1550 * @adev: amdgpu device 1551 * @filp: file private 1552 * @user: drm_amdgpu_fence copied from user space 1553 */ 1554 static struct dma_fence *amdgpu_cs_get_fence(struct amdgpu_device *adev, 1555 struct drm_file *filp, 1556 struct drm_amdgpu_fence *user) 1557 { 1558 struct drm_sched_entity *entity; 1559 struct amdgpu_ctx *ctx; 1560 struct dma_fence *fence; 1561 int r; 1562 1563 ctx = amdgpu_ctx_get(filp->driver_priv, user->ctx_id); 1564 if (ctx == NULL) 1565 return ERR_PTR(-EINVAL); 1566 1567 r = amdgpu_ctx_get_entity(ctx, user->ip_type, user->ip_instance, 1568 user->ring, &entity); 1569 if (r) { 1570 amdgpu_ctx_put(ctx); 1571 return ERR_PTR(r); 1572 } 1573 1574 fence = amdgpu_ctx_get_fence(ctx, entity, user->seq_no); 1575 amdgpu_ctx_put(ctx); 1576 1577 return fence; 1578 } 1579 1580 int amdgpu_cs_fence_to_handle_ioctl(struct drm_device *dev, void *data, 1581 struct drm_file *filp) 1582 { 1583 struct amdgpu_device *adev = drm_to_adev(dev); 1584 union drm_amdgpu_fence_to_handle *info = data; 1585 struct dma_fence *fence; 1586 struct drm_syncobj *syncobj; 1587 struct sync_file *sync_file; 1588 int fd, r; 1589 1590 fence = amdgpu_cs_get_fence(adev, filp, &info->in.fence); 1591 if (IS_ERR(fence)) 1592 return PTR_ERR(fence); 1593 1594 if (!fence) 1595 fence = dma_fence_get_stub(); 1596 1597 switch (info->in.what) { 1598 case AMDGPU_FENCE_TO_HANDLE_GET_SYNCOBJ: 1599 r = drm_syncobj_create(&syncobj, 0, fence); 1600 dma_fence_put(fence); 1601 if (r) 1602 return r; 1603 r = drm_syncobj_get_handle(filp, syncobj, &info->out.handle); 1604 drm_syncobj_put(syncobj); 1605 return r; 1606 1607 case AMDGPU_FENCE_TO_HANDLE_GET_SYNCOBJ_FD: 1608 r = drm_syncobj_create(&syncobj, 0, fence); 1609 dma_fence_put(fence); 1610 if (r) 1611 return r; 1612 r = drm_syncobj_get_fd(syncobj, (int *)&info->out.handle); 1613 drm_syncobj_put(syncobj); 1614 return r; 1615 1616 case AMDGPU_FENCE_TO_HANDLE_GET_SYNC_FILE_FD: 1617 fd = get_unused_fd_flags(O_CLOEXEC); 1618 if (fd < 0) { 1619 dma_fence_put(fence); 1620 return fd; 1621 } 1622 1623 sync_file = sync_file_create(fence); 1624 dma_fence_put(fence); 1625 if (!sync_file) { 1626 put_unused_fd(fd); 1627 return -ENOMEM; 1628 } 1629 1630 fd_install(fd, sync_file->file); 1631 info->out.handle = fd; 1632 return 0; 1633 1634 default: 1635 dma_fence_put(fence); 1636 return -EINVAL; 1637 } 1638 } 1639 1640 /** 1641 * amdgpu_cs_wait_all_fences - wait on all fences to signal 1642 * 1643 * @adev: amdgpu device 1644 * @filp: file private 1645 * @wait: wait parameters 1646 * @fences: array of drm_amdgpu_fence 1647 */ 1648 static int amdgpu_cs_wait_all_fences(struct amdgpu_device *adev, 1649 struct drm_file *filp, 1650 union drm_amdgpu_wait_fences *wait, 1651 struct drm_amdgpu_fence *fences) 1652 { 1653 uint32_t fence_count = wait->in.fence_count; 1654 unsigned int i; 1655 long r = 1; 1656 1657 for (i = 0; i < fence_count; i++) { 1658 struct dma_fence *fence; 1659 unsigned long timeout = amdgpu_gem_timeout(wait->in.timeout_ns); 1660 1661 fence = amdgpu_cs_get_fence(adev, filp, &fences[i]); 1662 if (IS_ERR(fence)) 1663 return PTR_ERR(fence); 1664 else if (!fence) 1665 continue; 1666 1667 r = dma_fence_wait_timeout(fence, true, timeout); 1668 if (r > 0 && fence->error) 1669 r = fence->error; 1670 1671 dma_fence_put(fence); 1672 if (r < 0) 1673 return r; 1674 1675 if (r == 0) 1676 break; 1677 } 1678 1679 memset(wait, 0, sizeof(*wait)); 1680 wait->out.status = (r > 0); 1681 1682 return 0; 1683 } 1684 1685 /** 1686 * amdgpu_cs_wait_any_fence - wait on any fence to signal 1687 * 1688 * @adev: amdgpu device 1689 * @filp: file private 1690 * @wait: wait parameters 1691 * @fences: array of drm_amdgpu_fence 1692 */ 1693 static int amdgpu_cs_wait_any_fence(struct amdgpu_device *adev, 1694 struct drm_file *filp, 1695 union drm_amdgpu_wait_fences *wait, 1696 struct drm_amdgpu_fence *fences) 1697 { 1698 unsigned long timeout = amdgpu_gem_timeout(wait->in.timeout_ns); 1699 uint32_t fence_count = wait->in.fence_count; 1700 uint32_t first = ~0; 1701 struct dma_fence **array; 1702 unsigned int i; 1703 long r; 1704 1705 /* Prepare the fence array */ 1706 array = kcalloc(fence_count, sizeof(struct dma_fence *), GFP_KERNEL); 1707 1708 if (array == NULL) 1709 return -ENOMEM; 1710 1711 for (i = 0; i < fence_count; i++) { 1712 struct dma_fence *fence; 1713 1714 fence = amdgpu_cs_get_fence(adev, filp, &fences[i]); 1715 if (IS_ERR(fence)) { 1716 r = PTR_ERR(fence); 1717 goto err_free_fence_array; 1718 } else if (fence) { 1719 array[i] = fence; 1720 } else { /* NULL, the fence has been already signaled */ 1721 r = 1; 1722 first = i; 1723 goto out; 1724 } 1725 } 1726 1727 r = dma_fence_wait_any_timeout(array, fence_count, true, timeout, 1728 &first); 1729 if (r < 0) 1730 goto err_free_fence_array; 1731 1732 out: 1733 memset(wait, 0, sizeof(*wait)); 1734 wait->out.status = (r > 0); 1735 wait->out.first_signaled = first; 1736 1737 if (first < fence_count && array[first]) 1738 r = array[first]->error; 1739 else 1740 r = 0; 1741 1742 err_free_fence_array: 1743 for (i = 0; i < fence_count; i++) 1744 dma_fence_put(array[i]); 1745 kfree(array); 1746 1747 return r; 1748 } 1749 1750 /** 1751 * amdgpu_cs_wait_fences_ioctl - wait for multiple command submissions to finish 1752 * 1753 * @dev: drm device 1754 * @data: data from userspace 1755 * @filp: file private 1756 */ 1757 int amdgpu_cs_wait_fences_ioctl(struct drm_device *dev, void *data, 1758 struct drm_file *filp) 1759 { 1760 struct amdgpu_device *adev = drm_to_adev(dev); 1761 union drm_amdgpu_wait_fences *wait = data; 1762 uint32_t fence_count = wait->in.fence_count; 1763 struct drm_amdgpu_fence *fences_user; 1764 struct drm_amdgpu_fence *fences; 1765 int r; 1766 1767 /* Get the fences from userspace */ 1768 fences = kmalloc_array(fence_count, sizeof(struct drm_amdgpu_fence), 1769 GFP_KERNEL); 1770 if (fences == NULL) 1771 return -ENOMEM; 1772 1773 fences_user = u64_to_user_ptr(wait->in.fences); 1774 if (copy_from_user(fences, fences_user, 1775 sizeof(struct drm_amdgpu_fence) * fence_count)) { 1776 r = -EFAULT; 1777 goto err_free_fences; 1778 } 1779 1780 if (wait->in.wait_all) 1781 r = amdgpu_cs_wait_all_fences(adev, filp, wait, fences); 1782 else 1783 r = amdgpu_cs_wait_any_fence(adev, filp, wait, fences); 1784 1785 err_free_fences: 1786 kfree(fences); 1787 1788 return r; 1789 } 1790 1791 /** 1792 * amdgpu_cs_find_mapping - find bo_va for VM address 1793 * 1794 * @parser: command submission parser context 1795 * @addr: VM address 1796 * @bo: resulting BO of the mapping found 1797 * @map: Placeholder to return found BO mapping 1798 * 1799 * Search the buffer objects in the command submission context for a certain 1800 * virtual memory address. Returns allocation structure when found, NULL 1801 * otherwise. 1802 */ 1803 int amdgpu_cs_find_mapping(struct amdgpu_cs_parser *parser, 1804 uint64_t addr, struct amdgpu_bo **bo, 1805 struct amdgpu_bo_va_mapping **map) 1806 { 1807 struct amdgpu_fpriv *fpriv = parser->filp->driver_priv; 1808 struct ttm_operation_ctx ctx = { false, false }; 1809 struct amdgpu_vm *vm = &fpriv->vm; 1810 struct amdgpu_bo_va_mapping *mapping; 1811 int i, r; 1812 1813 addr /= AMDGPU_GPU_PAGE_SIZE; 1814 1815 mapping = amdgpu_vm_bo_lookup_mapping(vm, addr); 1816 if (!mapping || !mapping->bo_va || !mapping->bo_va->base.bo) 1817 return -EINVAL; 1818 1819 *bo = mapping->bo_va->base.bo; 1820 *map = mapping; 1821 1822 /* Double check that the BO is reserved by this CS */ 1823 if (dma_resv_locking_ctx((*bo)->tbo.base.resv) != &parser->exec.ticket) 1824 return -EINVAL; 1825 1826 /* Make sure VRAM is allocated contigiously */ 1827 (*bo)->flags |= AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS; 1828 if ((*bo)->tbo.resource->mem_type == TTM_PL_VRAM && 1829 !((*bo)->tbo.resource->placement & TTM_PL_FLAG_CONTIGUOUS)) { 1830 1831 amdgpu_bo_placement_from_domain(*bo, (*bo)->allowed_domains); 1832 for (i = 0; i < (*bo)->placement.num_placement; i++) 1833 (*bo)->placements[i].flags |= TTM_PL_FLAG_CONTIGUOUS; 1834 r = ttm_bo_validate(&(*bo)->tbo, &(*bo)->placement, &ctx); 1835 if (r) 1836 return r; 1837 } 1838 1839 return amdgpu_ttm_alloc_gart(&(*bo)->tbo); 1840 } 1841