1 /* 2 * Copyright 2008 Jerome Glisse. 3 * All Rights Reserved. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice (including the next 13 * paragraph) shall be included in all copies or substantial portions of the 14 * Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 22 * DEALINGS IN THE SOFTWARE. 23 * 24 * Authors: 25 * Jerome Glisse <glisse@freedesktop.org> 26 */ 27 28 #include <linux/file.h> 29 #include <linux/pagemap.h> 30 #include <linux/sync_file.h> 31 #include <linux/dma-buf.h> 32 #include <linux/hmm.h> 33 34 #include <drm/amdgpu_drm.h> 35 #include <drm/drm_syncobj.h> 36 #include <drm/ttm/ttm_tt.h> 37 38 #include "amdgpu_cs.h" 39 #include "amdgpu.h" 40 #include "amdgpu_trace.h" 41 #include "amdgpu_gmc.h" 42 #include "amdgpu_gem.h" 43 #include "amdgpu_ras.h" 44 #include "amdgpu_hmm.h" 45 46 static int amdgpu_cs_parser_init(struct amdgpu_cs_parser *p, 47 struct amdgpu_device *adev, 48 struct drm_file *filp, 49 union drm_amdgpu_cs *cs) 50 { 51 struct amdgpu_fpriv *fpriv = filp->driver_priv; 52 53 if (cs->in.num_chunks == 0) 54 return -EINVAL; 55 56 memset(p, 0, sizeof(*p)); 57 p->adev = adev; 58 p->filp = filp; 59 60 p->ctx = amdgpu_ctx_get(fpriv, cs->in.ctx_id); 61 if (!p->ctx) 62 return -EINVAL; 63 64 if (atomic_read(&p->ctx->guilty)) { 65 amdgpu_ctx_put(p->ctx); 66 return -ECANCELED; 67 } 68 69 amdgpu_sync_create(&p->sync); 70 drm_exec_init(&p->exec, DRM_EXEC_INTERRUPTIBLE_WAIT | 71 DRM_EXEC_IGNORE_DUPLICATES, 0); 72 return 0; 73 } 74 75 static int amdgpu_cs_job_idx(struct amdgpu_cs_parser *p, 76 struct drm_amdgpu_cs_chunk_ib *chunk_ib) 77 { 78 struct drm_sched_entity *entity; 79 unsigned int i; 80 int r; 81 82 r = amdgpu_ctx_get_entity(p->ctx, chunk_ib->ip_type, 83 chunk_ib->ip_instance, 84 chunk_ib->ring, &entity); 85 if (r) 86 return r; 87 88 /* 89 * Abort if there is no run queue associated with this entity. 90 * Possibly because of disabled HW IP. 91 */ 92 if (entity->rq == NULL) 93 return -EINVAL; 94 95 /* Check if we can add this IB to some existing job */ 96 for (i = 0; i < p->gang_size; ++i) 97 if (p->entities[i] == entity) 98 return i; 99 100 /* If not increase the gang size if possible */ 101 if (i == AMDGPU_CS_GANG_SIZE) 102 return -EINVAL; 103 104 p->entities[i] = entity; 105 p->gang_size = i + 1; 106 return i; 107 } 108 109 static int amdgpu_cs_p1_ib(struct amdgpu_cs_parser *p, 110 struct drm_amdgpu_cs_chunk_ib *chunk_ib, 111 unsigned int *num_ibs) 112 { 113 int r; 114 115 r = amdgpu_cs_job_idx(p, chunk_ib); 116 if (r < 0) 117 return r; 118 119 if (num_ibs[r] >= amdgpu_ring_max_ibs(chunk_ib->ip_type)) 120 return -EINVAL; 121 122 ++(num_ibs[r]); 123 p->gang_leader_idx = r; 124 return 0; 125 } 126 127 static int amdgpu_cs_p1_user_fence(struct amdgpu_cs_parser *p, 128 struct drm_amdgpu_cs_chunk_fence *data, 129 uint32_t *offset) 130 { 131 struct drm_gem_object *gobj; 132 unsigned long size; 133 134 gobj = drm_gem_object_lookup(p->filp, data->handle); 135 if (gobj == NULL) 136 return -EINVAL; 137 138 p->uf_bo = amdgpu_bo_ref(gem_to_amdgpu_bo(gobj)); 139 drm_gem_object_put(gobj); 140 141 size = amdgpu_bo_size(p->uf_bo); 142 if (size != PAGE_SIZE || data->offset > (size - 8)) 143 return -EINVAL; 144 145 if (amdgpu_ttm_tt_get_usermm(p->uf_bo->tbo.ttm)) 146 return -EINVAL; 147 148 *offset = data->offset; 149 return 0; 150 } 151 152 static int amdgpu_cs_p1_bo_handles(struct amdgpu_cs_parser *p, 153 struct drm_amdgpu_bo_list_in *data) 154 { 155 struct drm_amdgpu_bo_list_entry *info; 156 int r; 157 158 r = amdgpu_bo_create_list_entry_array(data, &info); 159 if (r) 160 return r; 161 162 r = amdgpu_bo_list_create(p->adev, p->filp, info, data->bo_number, 163 &p->bo_list); 164 if (r) 165 goto error_free; 166 167 kvfree(info); 168 return 0; 169 170 error_free: 171 kvfree(info); 172 173 return r; 174 } 175 176 /* Copy the data from userspace and go over it the first time */ 177 static int amdgpu_cs_pass1(struct amdgpu_cs_parser *p, 178 union drm_amdgpu_cs *cs) 179 { 180 struct amdgpu_fpriv *fpriv = p->filp->driver_priv; 181 unsigned int num_ibs[AMDGPU_CS_GANG_SIZE] = { }; 182 struct amdgpu_vm *vm = &fpriv->vm; 183 uint64_t *chunk_array; 184 uint32_t uf_offset = 0; 185 size_t size; 186 int ret; 187 int i; 188 189 chunk_array = memdup_array_user(u64_to_user_ptr(cs->in.chunks), 190 cs->in.num_chunks, 191 sizeof(uint64_t)); 192 if (IS_ERR(chunk_array)) 193 return PTR_ERR(chunk_array); 194 195 p->nchunks = cs->in.num_chunks; 196 p->chunks = kvmalloc_array(p->nchunks, sizeof(struct amdgpu_cs_chunk), 197 GFP_KERNEL); 198 if (!p->chunks) { 199 ret = -ENOMEM; 200 goto free_chunk; 201 } 202 203 for (i = 0; i < p->nchunks; i++) { 204 struct drm_amdgpu_cs_chunk __user *chunk_ptr = NULL; 205 struct drm_amdgpu_cs_chunk user_chunk; 206 207 chunk_ptr = u64_to_user_ptr(chunk_array[i]); 208 if (copy_from_user(&user_chunk, chunk_ptr, 209 sizeof(struct drm_amdgpu_cs_chunk))) { 210 ret = -EFAULT; 211 i--; 212 goto free_partial_kdata; 213 } 214 p->chunks[i].chunk_id = user_chunk.chunk_id; 215 p->chunks[i].length_dw = user_chunk.length_dw; 216 217 size = p->chunks[i].length_dw; 218 219 p->chunks[i].kdata = vmemdup_array_user(u64_to_user_ptr(user_chunk.chunk_data), 220 size, 221 sizeof(uint32_t)); 222 if (IS_ERR(p->chunks[i].kdata)) { 223 ret = PTR_ERR(p->chunks[i].kdata); 224 i--; 225 goto free_partial_kdata; 226 } 227 size *= sizeof(uint32_t); 228 229 /* Assume the worst on the following checks */ 230 ret = -EINVAL; 231 switch (p->chunks[i].chunk_id) { 232 case AMDGPU_CHUNK_ID_IB: 233 if (size < sizeof(struct drm_amdgpu_cs_chunk_ib)) 234 goto free_partial_kdata; 235 236 ret = amdgpu_cs_p1_ib(p, p->chunks[i].kdata, num_ibs); 237 if (ret) 238 goto free_partial_kdata; 239 break; 240 241 case AMDGPU_CHUNK_ID_FENCE: 242 if (size < sizeof(struct drm_amdgpu_cs_chunk_fence)) 243 goto free_partial_kdata; 244 245 ret = amdgpu_cs_p1_user_fence(p, p->chunks[i].kdata, 246 &uf_offset); 247 if (ret) 248 goto free_partial_kdata; 249 break; 250 251 case AMDGPU_CHUNK_ID_BO_HANDLES: 252 if (size < sizeof(struct drm_amdgpu_bo_list_in)) 253 goto free_partial_kdata; 254 255 /* Only a single BO list is allowed to simplify handling. */ 256 if (p->bo_list) 257 goto free_partial_kdata; 258 259 ret = amdgpu_cs_p1_bo_handles(p, p->chunks[i].kdata); 260 if (ret) 261 goto free_partial_kdata; 262 break; 263 264 case AMDGPU_CHUNK_ID_DEPENDENCIES: 265 case AMDGPU_CHUNK_ID_SYNCOBJ_IN: 266 case AMDGPU_CHUNK_ID_SYNCOBJ_OUT: 267 case AMDGPU_CHUNK_ID_SCHEDULED_DEPENDENCIES: 268 case AMDGPU_CHUNK_ID_SYNCOBJ_TIMELINE_WAIT: 269 case AMDGPU_CHUNK_ID_SYNCOBJ_TIMELINE_SIGNAL: 270 case AMDGPU_CHUNK_ID_CP_GFX_SHADOW: 271 break; 272 273 default: 274 goto free_partial_kdata; 275 } 276 } 277 278 if (!p->gang_size || (amdgpu_sriov_vf(p->adev) && p->gang_size > 1)) { 279 ret = -EINVAL; 280 goto free_all_kdata; 281 } 282 283 for (i = 0; i < p->gang_size; ++i) { 284 ret = amdgpu_job_alloc(p->adev, vm, p->entities[i], vm, 285 num_ibs[i], &p->jobs[i], 286 p->filp->client_id); 287 if (ret) 288 goto free_all_kdata; 289 switch (p->adev->enforce_isolation[fpriv->xcp_id]) { 290 case AMDGPU_ENFORCE_ISOLATION_DISABLE: 291 default: 292 p->jobs[i]->enforce_isolation = false; 293 p->jobs[i]->run_cleaner_shader = false; 294 break; 295 case AMDGPU_ENFORCE_ISOLATION_ENABLE: 296 p->jobs[i]->enforce_isolation = true; 297 p->jobs[i]->run_cleaner_shader = true; 298 break; 299 case AMDGPU_ENFORCE_ISOLATION_ENABLE_LEGACY: 300 p->jobs[i]->enforce_isolation = true; 301 p->jobs[i]->run_cleaner_shader = false; 302 break; 303 case AMDGPU_ENFORCE_ISOLATION_NO_CLEANER_SHADER: 304 p->jobs[i]->enforce_isolation = true; 305 p->jobs[i]->run_cleaner_shader = false; 306 break; 307 } 308 } 309 p->gang_leader = p->jobs[p->gang_leader_idx]; 310 311 if (p->ctx->generation != p->gang_leader->generation) { 312 ret = -ECANCELED; 313 goto free_all_kdata; 314 } 315 316 if (p->uf_bo) 317 p->gang_leader->uf_addr = uf_offset; 318 kvfree(chunk_array); 319 320 /* Use this opportunity to fill in task info for the vm */ 321 amdgpu_vm_set_task_info(vm); 322 323 return 0; 324 325 free_all_kdata: 326 i = p->nchunks - 1; 327 free_partial_kdata: 328 for (; i >= 0; i--) 329 kvfree(p->chunks[i].kdata); 330 kvfree(p->chunks); 331 p->chunks = NULL; 332 p->nchunks = 0; 333 free_chunk: 334 kvfree(chunk_array); 335 336 return ret; 337 } 338 339 static int amdgpu_cs_p2_ib(struct amdgpu_cs_parser *p, 340 struct amdgpu_cs_chunk *chunk, 341 unsigned int *ce_preempt, 342 unsigned int *de_preempt) 343 { 344 struct drm_amdgpu_cs_chunk_ib *chunk_ib = chunk->kdata; 345 struct amdgpu_fpriv *fpriv = p->filp->driver_priv; 346 struct amdgpu_vm *vm = &fpriv->vm; 347 struct amdgpu_ring *ring; 348 struct amdgpu_job *job; 349 struct amdgpu_ib *ib; 350 int r; 351 352 r = amdgpu_cs_job_idx(p, chunk_ib); 353 if (r < 0) 354 return r; 355 356 job = p->jobs[r]; 357 ring = amdgpu_job_ring(job); 358 ib = &job->ibs[job->num_ibs++]; 359 360 /* submissions to kernel queues are disabled */ 361 if (ring->no_user_submission) 362 return -EINVAL; 363 364 /* MM engine doesn't support user fences */ 365 if (p->uf_bo && ring->funcs->no_user_fence) 366 return -EINVAL; 367 368 if (!p->adev->debug_enable_ce_cs && 369 chunk_ib->flags & AMDGPU_IB_FLAG_CE) { 370 dev_err_ratelimited(p->adev->dev, "CE CS is blocked, use debug=0x400 to override\n"); 371 return -EINVAL; 372 } 373 374 if (chunk_ib->ip_type == AMDGPU_HW_IP_GFX && 375 chunk_ib->flags & AMDGPU_IB_FLAG_PREEMPT) { 376 if (chunk_ib->flags & AMDGPU_IB_FLAG_CE) 377 (*ce_preempt)++; 378 else 379 (*de_preempt)++; 380 381 /* Each GFX command submit allows only 1 IB max 382 * preemptible for CE & DE */ 383 if (*ce_preempt > 1 || *de_preempt > 1) 384 return -EINVAL; 385 } 386 387 if (chunk_ib->flags & AMDGPU_IB_FLAG_PREAMBLE) 388 job->preamble_status |= AMDGPU_PREAMBLE_IB_PRESENT; 389 390 r = amdgpu_ib_get(p->adev, vm, ring->funcs->parse_cs ? 391 chunk_ib->ib_bytes : 0, 392 AMDGPU_IB_POOL_DELAYED, ib); 393 if (r) { 394 drm_err(adev_to_drm(p->adev), "Failed to get ib !\n"); 395 return r; 396 } 397 398 ib->gpu_addr = chunk_ib->va_start; 399 ib->length_dw = chunk_ib->ib_bytes / 4; 400 ib->flags = chunk_ib->flags; 401 return 0; 402 } 403 404 static int amdgpu_cs_p2_dependencies(struct amdgpu_cs_parser *p, 405 struct amdgpu_cs_chunk *chunk) 406 { 407 struct drm_amdgpu_cs_chunk_dep *deps = chunk->kdata; 408 struct amdgpu_fpriv *fpriv = p->filp->driver_priv; 409 unsigned int num_deps; 410 int i, r; 411 412 num_deps = chunk->length_dw * 4 / 413 sizeof(struct drm_amdgpu_cs_chunk_dep); 414 415 for (i = 0; i < num_deps; ++i) { 416 struct amdgpu_ctx *ctx; 417 struct drm_sched_entity *entity; 418 struct dma_fence *fence; 419 420 ctx = amdgpu_ctx_get(fpriv, deps[i].ctx_id); 421 if (ctx == NULL) 422 return -EINVAL; 423 424 r = amdgpu_ctx_get_entity(ctx, deps[i].ip_type, 425 deps[i].ip_instance, 426 deps[i].ring, &entity); 427 if (r) { 428 amdgpu_ctx_put(ctx); 429 return r; 430 } 431 432 fence = amdgpu_ctx_get_fence(ctx, entity, deps[i].handle); 433 amdgpu_ctx_put(ctx); 434 435 if (IS_ERR(fence)) 436 return PTR_ERR(fence); 437 else if (!fence) 438 continue; 439 440 if (chunk->chunk_id == AMDGPU_CHUNK_ID_SCHEDULED_DEPENDENCIES) { 441 struct drm_sched_fence *s_fence; 442 struct dma_fence *old = fence; 443 444 s_fence = to_drm_sched_fence(fence); 445 fence = dma_fence_get(&s_fence->scheduled); 446 dma_fence_put(old); 447 } 448 449 r = amdgpu_sync_fence(&p->sync, fence, GFP_KERNEL); 450 dma_fence_put(fence); 451 if (r) 452 return r; 453 } 454 return 0; 455 } 456 457 static int amdgpu_syncobj_lookup_and_add(struct amdgpu_cs_parser *p, 458 uint32_t handle, u64 point, 459 u64 flags) 460 { 461 struct dma_fence *fence; 462 int r; 463 464 r = drm_syncobj_find_fence(p->filp, handle, point, flags, &fence); 465 if (r) { 466 drm_err(adev_to_drm(p->adev), "syncobj %u failed to find fence @ %llu (%d)!\n", 467 handle, point, r); 468 return r; 469 } 470 471 r = amdgpu_sync_fence(&p->sync, fence, GFP_KERNEL); 472 dma_fence_put(fence); 473 return r; 474 } 475 476 static int amdgpu_cs_p2_syncobj_in(struct amdgpu_cs_parser *p, 477 struct amdgpu_cs_chunk *chunk) 478 { 479 struct drm_amdgpu_cs_chunk_sem *deps = chunk->kdata; 480 unsigned int num_deps; 481 int i, r; 482 483 num_deps = chunk->length_dw * 4 / 484 sizeof(struct drm_amdgpu_cs_chunk_sem); 485 for (i = 0; i < num_deps; ++i) { 486 r = amdgpu_syncobj_lookup_and_add(p, deps[i].handle, 0, 0); 487 if (r) 488 return r; 489 } 490 491 return 0; 492 } 493 494 static int amdgpu_cs_p2_syncobj_timeline_wait(struct amdgpu_cs_parser *p, 495 struct amdgpu_cs_chunk *chunk) 496 { 497 struct drm_amdgpu_cs_chunk_syncobj *syncobj_deps = chunk->kdata; 498 unsigned int num_deps; 499 int i, r; 500 501 num_deps = chunk->length_dw * 4 / 502 sizeof(struct drm_amdgpu_cs_chunk_syncobj); 503 for (i = 0; i < num_deps; ++i) { 504 r = amdgpu_syncobj_lookup_and_add(p, syncobj_deps[i].handle, 505 syncobj_deps[i].point, 506 syncobj_deps[i].flags); 507 if (r) 508 return r; 509 } 510 511 return 0; 512 } 513 514 static int amdgpu_cs_p2_syncobj_out(struct amdgpu_cs_parser *p, 515 struct amdgpu_cs_chunk *chunk) 516 { 517 struct drm_amdgpu_cs_chunk_sem *deps = chunk->kdata; 518 unsigned int num_deps; 519 int i; 520 521 num_deps = chunk->length_dw * 4 / 522 sizeof(struct drm_amdgpu_cs_chunk_sem); 523 524 if (p->post_deps) 525 return -EINVAL; 526 527 p->post_deps = kmalloc_array(num_deps, sizeof(*p->post_deps), 528 GFP_KERNEL); 529 p->num_post_deps = 0; 530 531 if (!p->post_deps) 532 return -ENOMEM; 533 534 535 for (i = 0; i < num_deps; ++i) { 536 p->post_deps[i].syncobj = 537 drm_syncobj_find(p->filp, deps[i].handle); 538 if (!p->post_deps[i].syncobj) 539 return -EINVAL; 540 p->post_deps[i].chain = NULL; 541 p->post_deps[i].point = 0; 542 p->num_post_deps++; 543 } 544 545 return 0; 546 } 547 548 static int amdgpu_cs_p2_syncobj_timeline_signal(struct amdgpu_cs_parser *p, 549 struct amdgpu_cs_chunk *chunk) 550 { 551 struct drm_amdgpu_cs_chunk_syncobj *syncobj_deps = chunk->kdata; 552 unsigned int num_deps; 553 int i; 554 555 num_deps = chunk->length_dw * 4 / 556 sizeof(struct drm_amdgpu_cs_chunk_syncobj); 557 558 if (p->post_deps) 559 return -EINVAL; 560 561 p->post_deps = kmalloc_array(num_deps, sizeof(*p->post_deps), 562 GFP_KERNEL); 563 p->num_post_deps = 0; 564 565 if (!p->post_deps) 566 return -ENOMEM; 567 568 for (i = 0; i < num_deps; ++i) { 569 struct amdgpu_cs_post_dep *dep = &p->post_deps[i]; 570 571 dep->chain = NULL; 572 if (syncobj_deps[i].point) { 573 dep->chain = dma_fence_chain_alloc(); 574 if (!dep->chain) 575 return -ENOMEM; 576 } 577 578 dep->syncobj = drm_syncobj_find(p->filp, 579 syncobj_deps[i].handle); 580 if (!dep->syncobj) { 581 dma_fence_chain_free(dep->chain); 582 return -EINVAL; 583 } 584 dep->point = syncobj_deps[i].point; 585 p->num_post_deps++; 586 } 587 588 return 0; 589 } 590 591 static int amdgpu_cs_p2_shadow(struct amdgpu_cs_parser *p, 592 struct amdgpu_cs_chunk *chunk) 593 { 594 struct drm_amdgpu_cs_chunk_cp_gfx_shadow *shadow = chunk->kdata; 595 int i; 596 597 if (shadow->flags & ~AMDGPU_CS_CHUNK_CP_GFX_SHADOW_FLAGS_INIT_SHADOW) 598 return -EINVAL; 599 600 for (i = 0; i < p->gang_size; ++i) { 601 p->jobs[i]->shadow_va = shadow->shadow_va; 602 p->jobs[i]->csa_va = shadow->csa_va; 603 p->jobs[i]->gds_va = shadow->gds_va; 604 p->jobs[i]->init_shadow = 605 shadow->flags & AMDGPU_CS_CHUNK_CP_GFX_SHADOW_FLAGS_INIT_SHADOW; 606 } 607 608 return 0; 609 } 610 611 static int amdgpu_cs_pass2(struct amdgpu_cs_parser *p) 612 { 613 unsigned int ce_preempt = 0, de_preempt = 0; 614 int i, r; 615 616 for (i = 0; i < p->nchunks; ++i) { 617 struct amdgpu_cs_chunk *chunk; 618 619 chunk = &p->chunks[i]; 620 621 switch (chunk->chunk_id) { 622 case AMDGPU_CHUNK_ID_IB: 623 r = amdgpu_cs_p2_ib(p, chunk, &ce_preempt, &de_preempt); 624 if (r) 625 return r; 626 break; 627 case AMDGPU_CHUNK_ID_DEPENDENCIES: 628 case AMDGPU_CHUNK_ID_SCHEDULED_DEPENDENCIES: 629 r = amdgpu_cs_p2_dependencies(p, chunk); 630 if (r) 631 return r; 632 break; 633 case AMDGPU_CHUNK_ID_SYNCOBJ_IN: 634 r = amdgpu_cs_p2_syncobj_in(p, chunk); 635 if (r) 636 return r; 637 break; 638 case AMDGPU_CHUNK_ID_SYNCOBJ_OUT: 639 r = amdgpu_cs_p2_syncobj_out(p, chunk); 640 if (r) 641 return r; 642 break; 643 case AMDGPU_CHUNK_ID_SYNCOBJ_TIMELINE_WAIT: 644 r = amdgpu_cs_p2_syncobj_timeline_wait(p, chunk); 645 if (r) 646 return r; 647 break; 648 case AMDGPU_CHUNK_ID_SYNCOBJ_TIMELINE_SIGNAL: 649 r = amdgpu_cs_p2_syncobj_timeline_signal(p, chunk); 650 if (r) 651 return r; 652 break; 653 case AMDGPU_CHUNK_ID_CP_GFX_SHADOW: 654 r = amdgpu_cs_p2_shadow(p, chunk); 655 if (r) 656 return r; 657 break; 658 } 659 } 660 661 return 0; 662 } 663 664 /* Convert microseconds to bytes. */ 665 static u64 us_to_bytes(struct amdgpu_device *adev, s64 us) 666 { 667 if (us <= 0 || !adev->mm_stats.log2_max_MBps) 668 return 0; 669 670 /* Since accum_us is incremented by a million per second, just 671 * multiply it by the number of MB/s to get the number of bytes. 672 */ 673 return us << adev->mm_stats.log2_max_MBps; 674 } 675 676 static s64 bytes_to_us(struct amdgpu_device *adev, u64 bytes) 677 { 678 if (!adev->mm_stats.log2_max_MBps) 679 return 0; 680 681 return bytes >> adev->mm_stats.log2_max_MBps; 682 } 683 684 /* Returns how many bytes TTM can move right now. If no bytes can be moved, 685 * it returns 0. If it returns non-zero, it's OK to move at least one buffer, 686 * which means it can go over the threshold once. If that happens, the driver 687 * will be in debt and no other buffer migrations can be done until that debt 688 * is repaid. 689 * 690 * This approach allows moving a buffer of any size (it's important to allow 691 * that). 692 * 693 * The currency is simply time in microseconds and it increases as the clock 694 * ticks. The accumulated microseconds (us) are converted to bytes and 695 * returned. 696 */ 697 static void amdgpu_cs_get_threshold_for_moves(struct amdgpu_device *adev, 698 u64 *max_bytes, 699 u64 *max_vis_bytes) 700 { 701 s64 time_us, increment_us; 702 u64 free_vram, total_vram, used_vram; 703 /* Allow a maximum of 200 accumulated ms. This is basically per-IB 704 * throttling. 705 * 706 * It means that in order to get full max MBps, at least 5 IBs per 707 * second must be submitted and not more than 200ms apart from each 708 * other. 709 */ 710 const s64 us_upper_bound = 200000; 711 712 if ((!adev->mm_stats.log2_max_MBps) || !ttm_resource_manager_used(&adev->mman.vram_mgr.manager)) { 713 *max_bytes = 0; 714 *max_vis_bytes = 0; 715 return; 716 } 717 718 total_vram = adev->gmc.real_vram_size - atomic64_read(&adev->vram_pin_size); 719 used_vram = ttm_resource_manager_usage(&adev->mman.vram_mgr.manager); 720 free_vram = used_vram >= total_vram ? 0 : total_vram - used_vram; 721 722 spin_lock(&adev->mm_stats.lock); 723 724 /* Increase the amount of accumulated us. */ 725 time_us = ktime_to_us(ktime_get()); 726 increment_us = time_us - adev->mm_stats.last_update_us; 727 adev->mm_stats.last_update_us = time_us; 728 adev->mm_stats.accum_us = min(adev->mm_stats.accum_us + increment_us, 729 us_upper_bound); 730 731 /* This prevents the short period of low performance when the VRAM 732 * usage is low and the driver is in debt or doesn't have enough 733 * accumulated us to fill VRAM quickly. 734 * 735 * The situation can occur in these cases: 736 * - a lot of VRAM is freed by userspace 737 * - the presence of a big buffer causes a lot of evictions 738 * (solution: split buffers into smaller ones) 739 * 740 * If 128 MB or 1/8th of VRAM is free, start filling it now by setting 741 * accum_us to a positive number. 742 */ 743 if (free_vram >= 128 * 1024 * 1024 || free_vram >= total_vram / 8) { 744 s64 min_us; 745 746 /* Be more aggressive on dGPUs. Try to fill a portion of free 747 * VRAM now. 748 */ 749 if (!(adev->flags & AMD_IS_APU)) 750 min_us = bytes_to_us(adev, free_vram / 4); 751 else 752 min_us = 0; /* Reset accum_us on APUs. */ 753 754 adev->mm_stats.accum_us = max(min_us, adev->mm_stats.accum_us); 755 } 756 757 /* This is set to 0 if the driver is in debt to disallow (optional) 758 * buffer moves. 759 */ 760 *max_bytes = us_to_bytes(adev, adev->mm_stats.accum_us); 761 762 /* Do the same for visible VRAM if half of it is free */ 763 if (!amdgpu_gmc_vram_full_visible(&adev->gmc)) { 764 u64 total_vis_vram = adev->gmc.visible_vram_size; 765 u64 used_vis_vram = 766 amdgpu_vram_mgr_vis_usage(&adev->mman.vram_mgr); 767 768 if (used_vis_vram < total_vis_vram) { 769 u64 free_vis_vram = total_vis_vram - used_vis_vram; 770 771 adev->mm_stats.accum_us_vis = min(adev->mm_stats.accum_us_vis + 772 increment_us, us_upper_bound); 773 774 if (free_vis_vram >= total_vis_vram / 2) 775 adev->mm_stats.accum_us_vis = 776 max(bytes_to_us(adev, free_vis_vram / 2), 777 adev->mm_stats.accum_us_vis); 778 } 779 780 *max_vis_bytes = us_to_bytes(adev, adev->mm_stats.accum_us_vis); 781 } else { 782 *max_vis_bytes = 0; 783 } 784 785 spin_unlock(&adev->mm_stats.lock); 786 } 787 788 /* Report how many bytes have really been moved for the last command 789 * submission. This can result in a debt that can stop buffer migrations 790 * temporarily. 791 */ 792 void amdgpu_cs_report_moved_bytes(struct amdgpu_device *adev, u64 num_bytes, 793 u64 num_vis_bytes) 794 { 795 spin_lock(&adev->mm_stats.lock); 796 adev->mm_stats.accum_us -= bytes_to_us(adev, num_bytes); 797 adev->mm_stats.accum_us_vis -= bytes_to_us(adev, num_vis_bytes); 798 spin_unlock(&adev->mm_stats.lock); 799 } 800 801 static int amdgpu_cs_bo_validate(void *param, struct amdgpu_bo *bo) 802 { 803 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 804 struct amdgpu_cs_parser *p = param; 805 struct ttm_operation_ctx ctx = { 806 .interruptible = true, 807 .no_wait_gpu = false, 808 .resv = bo->tbo.base.resv 809 }; 810 uint32_t domain; 811 int r; 812 813 if (bo->tbo.pin_count) 814 return 0; 815 816 /* Don't move this buffer if we have depleted our allowance 817 * to move it. Don't move anything if the threshold is zero. 818 */ 819 if (p->bytes_moved < p->bytes_moved_threshold && 820 (!bo->tbo.base.dma_buf || 821 list_empty(&bo->tbo.base.dma_buf->attachments))) { 822 if (!amdgpu_gmc_vram_full_visible(&adev->gmc) && 823 (bo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED)) { 824 /* And don't move a CPU_ACCESS_REQUIRED BO to limited 825 * visible VRAM if we've depleted our allowance to do 826 * that. 827 */ 828 if (p->bytes_moved_vis < p->bytes_moved_vis_threshold) 829 domain = bo->preferred_domains; 830 else 831 domain = bo->allowed_domains; 832 } else { 833 domain = bo->preferred_domains; 834 } 835 } else { 836 domain = bo->allowed_domains; 837 } 838 839 retry: 840 amdgpu_bo_placement_from_domain(bo, domain); 841 r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 842 843 p->bytes_moved += ctx.bytes_moved; 844 if (!amdgpu_gmc_vram_full_visible(&adev->gmc) && 845 amdgpu_res_cpu_visible(adev, bo->tbo.resource)) 846 p->bytes_moved_vis += ctx.bytes_moved; 847 848 if (unlikely(r == -ENOMEM) && domain != bo->allowed_domains) { 849 domain = bo->allowed_domains; 850 goto retry; 851 } 852 853 return r; 854 } 855 856 static int amdgpu_cs_parser_bos(struct amdgpu_cs_parser *p, 857 union drm_amdgpu_cs *cs) 858 { 859 struct amdgpu_fpriv *fpriv = p->filp->driver_priv; 860 struct ttm_operation_ctx ctx = { true, false }; 861 struct amdgpu_vm *vm = &fpriv->vm; 862 struct amdgpu_bo_list_entry *e; 863 struct drm_gem_object *obj; 864 unsigned long index; 865 unsigned int i; 866 int r; 867 868 /* p->bo_list could already be assigned if AMDGPU_CHUNK_ID_BO_HANDLES is present */ 869 if (cs->in.bo_list_handle) { 870 if (p->bo_list) 871 return -EINVAL; 872 873 r = amdgpu_bo_list_get(fpriv, cs->in.bo_list_handle, 874 &p->bo_list); 875 if (r) 876 return r; 877 } else if (!p->bo_list) { 878 /* Create a empty bo_list when no handle is provided */ 879 r = amdgpu_bo_list_create(p->adev, p->filp, NULL, 0, 880 &p->bo_list); 881 if (r) 882 return r; 883 } 884 885 mutex_lock(&p->bo_list->bo_list_mutex); 886 887 /* Get userptr backing pages. If pages are updated after registered 888 * in amdgpu_gem_userptr_ioctl(), amdgpu_cs_list_validate() will do 889 * amdgpu_ttm_backend_bind() to flush and invalidate new pages 890 */ 891 amdgpu_bo_list_for_each_userptr_entry(e, p->bo_list) { 892 bool userpage_invalidated = false; 893 struct amdgpu_bo *bo = e->bo; 894 895 e->range = amdgpu_hmm_range_alloc(); 896 if (unlikely(!e->range)) 897 return -ENOMEM; 898 899 r = amdgpu_ttm_tt_get_user_pages(bo, e->range); 900 if (r) 901 goto out_free_user_pages; 902 903 for (i = 0; i < bo->tbo.ttm->num_pages; i++) { 904 if (bo->tbo.ttm->pages[i] != hmm_pfn_to_page(e->range->hmm_pfns[i])) { 905 userpage_invalidated = true; 906 break; 907 } 908 } 909 e->user_invalidated = userpage_invalidated; 910 } 911 912 drm_exec_until_all_locked(&p->exec) { 913 r = amdgpu_vm_lock_pd(&fpriv->vm, &p->exec, 1 + p->gang_size); 914 drm_exec_retry_on_contention(&p->exec); 915 if (unlikely(r)) 916 goto out_free_user_pages; 917 918 amdgpu_bo_list_for_each_entry(e, p->bo_list) { 919 /* One fence for TTM and one for each CS job */ 920 r = drm_exec_prepare_obj(&p->exec, &e->bo->tbo.base, 921 1 + p->gang_size); 922 drm_exec_retry_on_contention(&p->exec); 923 if (unlikely(r)) 924 goto out_free_user_pages; 925 926 e->bo_va = amdgpu_vm_bo_find(vm, e->bo); 927 } 928 929 if (p->uf_bo) { 930 r = drm_exec_prepare_obj(&p->exec, &p->uf_bo->tbo.base, 931 1 + p->gang_size); 932 drm_exec_retry_on_contention(&p->exec); 933 if (unlikely(r)) 934 goto out_free_user_pages; 935 } 936 } 937 938 amdgpu_bo_list_for_each_userptr_entry(e, p->bo_list) { 939 struct mm_struct *usermm; 940 941 usermm = amdgpu_ttm_tt_get_usermm(e->bo->tbo.ttm); 942 if (usermm && usermm != current->mm) { 943 r = -EPERM; 944 goto out_free_user_pages; 945 } 946 947 if (amdgpu_ttm_tt_is_userptr(e->bo->tbo.ttm) && 948 e->user_invalidated) { 949 amdgpu_bo_placement_from_domain(e->bo, 950 AMDGPU_GEM_DOMAIN_CPU); 951 r = ttm_bo_validate(&e->bo->tbo, &e->bo->placement, 952 &ctx); 953 if (r) 954 goto out_free_user_pages; 955 956 amdgpu_ttm_tt_set_user_pages(e->bo->tbo.ttm, 957 e->range); 958 } 959 } 960 961 amdgpu_cs_get_threshold_for_moves(p->adev, &p->bytes_moved_threshold, 962 &p->bytes_moved_vis_threshold); 963 p->bytes_moved = 0; 964 p->bytes_moved_vis = 0; 965 966 r = amdgpu_vm_validate(p->adev, &fpriv->vm, NULL, 967 amdgpu_cs_bo_validate, p); 968 if (r) { 969 drm_err(adev_to_drm(p->adev), "amdgpu_vm_validate() failed.\n"); 970 goto out_free_user_pages; 971 } 972 973 drm_exec_for_each_locked_object(&p->exec, index, obj) { 974 r = amdgpu_cs_bo_validate(p, gem_to_amdgpu_bo(obj)); 975 if (unlikely(r)) 976 goto out_free_user_pages; 977 } 978 979 if (p->uf_bo) { 980 r = amdgpu_ttm_alloc_gart(&p->uf_bo->tbo); 981 if (unlikely(r)) 982 goto out_free_user_pages; 983 984 p->gang_leader->uf_addr += amdgpu_bo_gpu_offset(p->uf_bo); 985 } 986 987 amdgpu_cs_report_moved_bytes(p->adev, p->bytes_moved, 988 p->bytes_moved_vis); 989 990 for (i = 0; i < p->gang_size; ++i) 991 amdgpu_job_set_resources(p->jobs[i], p->bo_list->gds_obj, 992 p->bo_list->gws_obj, 993 p->bo_list->oa_obj); 994 return 0; 995 996 out_free_user_pages: 997 amdgpu_bo_list_for_each_userptr_entry(e, p->bo_list) { 998 amdgpu_hmm_range_free(e->range); 999 e->range = NULL; 1000 } 1001 mutex_unlock(&p->bo_list->bo_list_mutex); 1002 return r; 1003 } 1004 1005 static void trace_amdgpu_cs_ibs(struct amdgpu_cs_parser *p) 1006 { 1007 int i, j; 1008 1009 if (!trace_amdgpu_cs_enabled()) 1010 return; 1011 1012 for (i = 0; i < p->gang_size; ++i) { 1013 struct amdgpu_job *job = p->jobs[i]; 1014 1015 for (j = 0; j < job->num_ibs; ++j) 1016 trace_amdgpu_cs(p, job, &job->ibs[j]); 1017 } 1018 } 1019 1020 static int amdgpu_cs_patch_ibs(struct amdgpu_cs_parser *p, 1021 struct amdgpu_job *job) 1022 { 1023 struct amdgpu_ring *ring = amdgpu_job_ring(job); 1024 unsigned int i; 1025 int r; 1026 1027 /* Only for UVD/VCE VM emulation */ 1028 if (!ring->funcs->parse_cs && !ring->funcs->patch_cs_in_place) 1029 return 0; 1030 1031 for (i = 0; i < job->num_ibs; ++i) { 1032 struct amdgpu_ib *ib = &job->ibs[i]; 1033 struct amdgpu_bo_va_mapping *m; 1034 struct amdgpu_bo *aobj; 1035 uint64_t va_start; 1036 uint8_t *kptr; 1037 1038 va_start = ib->gpu_addr & AMDGPU_GMC_HOLE_MASK; 1039 r = amdgpu_cs_find_mapping(p, va_start, &aobj, &m); 1040 if (r) { 1041 drm_err(adev_to_drm(p->adev), "IB va_start is invalid\n"); 1042 return r; 1043 } 1044 1045 if ((va_start + ib->length_dw * 4) > 1046 (m->last + 1) * AMDGPU_GPU_PAGE_SIZE) { 1047 drm_err(adev_to_drm(p->adev), "IB va_start+ib_bytes is invalid\n"); 1048 return -EINVAL; 1049 } 1050 1051 /* the IB should be reserved at this point */ 1052 r = amdgpu_bo_kmap(aobj, (void **)&kptr); 1053 if (r) 1054 return r; 1055 1056 kptr += va_start - (m->start * AMDGPU_GPU_PAGE_SIZE); 1057 1058 if (ring->funcs->parse_cs) { 1059 memcpy(ib->ptr, kptr, ib->length_dw * 4); 1060 amdgpu_bo_kunmap(aobj); 1061 1062 r = amdgpu_ring_parse_cs(ring, p, job, ib); 1063 if (r) 1064 return r; 1065 1066 if (ib->sa_bo) 1067 ib->gpu_addr = amdgpu_sa_bo_gpu_addr(ib->sa_bo); 1068 } else { 1069 ib->ptr = (uint32_t *)kptr; 1070 r = amdgpu_ring_patch_cs_in_place(ring, p, job, ib); 1071 amdgpu_bo_kunmap(aobj); 1072 if (r) 1073 return r; 1074 } 1075 } 1076 1077 return 0; 1078 } 1079 1080 static int amdgpu_cs_patch_jobs(struct amdgpu_cs_parser *p) 1081 { 1082 unsigned int i; 1083 int r; 1084 1085 for (i = 0; i < p->gang_size; ++i) { 1086 r = amdgpu_cs_patch_ibs(p, p->jobs[i]); 1087 if (r) 1088 return r; 1089 } 1090 return 0; 1091 } 1092 1093 static int amdgpu_cs_vm_handling(struct amdgpu_cs_parser *p) 1094 { 1095 struct amdgpu_fpriv *fpriv = p->filp->driver_priv; 1096 struct amdgpu_job *job = p->gang_leader; 1097 struct amdgpu_device *adev = p->adev; 1098 struct amdgpu_vm *vm = &fpriv->vm; 1099 struct amdgpu_bo_list_entry *e; 1100 struct amdgpu_bo_va *bo_va; 1101 unsigned int i; 1102 int r; 1103 1104 /* 1105 * We can't use gang submit on with reserved VMIDs when the VM changes 1106 * can't be invalidated by more than one engine at the same time. 1107 */ 1108 if (p->gang_size > 1 && !adev->vm_manager.concurrent_flush) { 1109 for (i = 0; i < p->gang_size; ++i) { 1110 struct drm_sched_entity *entity = p->entities[i]; 1111 struct drm_gpu_scheduler *sched = entity->rq->sched; 1112 struct amdgpu_ring *ring = to_amdgpu_ring(sched); 1113 1114 if (amdgpu_vmid_uses_reserved(vm, ring->vm_hub)) 1115 return -EINVAL; 1116 } 1117 } 1118 1119 if (!amdgpu_vm_ready(vm)) 1120 return -EINVAL; 1121 1122 r = amdgpu_vm_clear_freed(adev, vm, NULL); 1123 if (r) 1124 return r; 1125 1126 r = amdgpu_vm_bo_update(adev, fpriv->prt_va, false); 1127 if (r) 1128 return r; 1129 1130 r = amdgpu_sync_fence(&p->sync, fpriv->prt_va->last_pt_update, 1131 GFP_KERNEL); 1132 if (r) 1133 return r; 1134 1135 if (fpriv->csa_va) { 1136 bo_va = fpriv->csa_va; 1137 BUG_ON(!bo_va); 1138 r = amdgpu_vm_bo_update(adev, bo_va, false); 1139 if (r) 1140 return r; 1141 1142 r = amdgpu_sync_fence(&p->sync, bo_va->last_pt_update, 1143 GFP_KERNEL); 1144 if (r) 1145 return r; 1146 } 1147 1148 /* FIXME: In theory this loop shouldn't be needed any more when 1149 * amdgpu_vm_handle_moved handles all moved BOs that are reserved 1150 * with p->ticket. But removing it caused test regressions, so I'm 1151 * leaving it here for now. 1152 */ 1153 amdgpu_bo_list_for_each_entry(e, p->bo_list) { 1154 bo_va = e->bo_va; 1155 if (bo_va == NULL) 1156 continue; 1157 1158 r = amdgpu_vm_bo_update(adev, bo_va, false); 1159 if (r) 1160 return r; 1161 1162 r = amdgpu_sync_fence(&p->sync, bo_va->last_pt_update, 1163 GFP_KERNEL); 1164 if (r) 1165 return r; 1166 } 1167 1168 r = amdgpu_vm_handle_moved(adev, vm, &p->exec.ticket); 1169 if (r) 1170 return r; 1171 1172 r = amdgpu_vm_update_pdes(adev, vm, false); 1173 if (r) 1174 return r; 1175 1176 r = amdgpu_sync_fence(&p->sync, vm->last_update, GFP_KERNEL); 1177 if (r) 1178 return r; 1179 1180 for (i = 0; i < p->gang_size; ++i) { 1181 job = p->jobs[i]; 1182 1183 if (!job->vm) 1184 continue; 1185 1186 job->vm_pd_addr = amdgpu_gmc_pd_addr(vm->root.bo); 1187 } 1188 1189 if (adev->debug_vm) { 1190 /* Invalidate all BOs to test for userspace bugs */ 1191 amdgpu_bo_list_for_each_entry(e, p->bo_list) { 1192 struct amdgpu_bo *bo = e->bo; 1193 1194 /* ignore duplicates */ 1195 if (!bo) 1196 continue; 1197 1198 amdgpu_vm_bo_invalidate(bo, false); 1199 } 1200 } 1201 1202 return 0; 1203 } 1204 1205 static int amdgpu_cs_sync_rings(struct amdgpu_cs_parser *p) 1206 { 1207 struct amdgpu_fpriv *fpriv = p->filp->driver_priv; 1208 struct drm_gpu_scheduler *sched; 1209 struct drm_gem_object *obj; 1210 struct dma_fence *fence; 1211 unsigned long index; 1212 unsigned int i; 1213 int r; 1214 1215 r = amdgpu_ctx_wait_prev_fence(p->ctx, p->entities[p->gang_leader_idx]); 1216 if (r) { 1217 if (r != -ERESTARTSYS) 1218 drm_err(adev_to_drm(p->adev), "amdgpu_ctx_wait_prev_fence failed.\n"); 1219 return r; 1220 } 1221 1222 drm_exec_for_each_locked_object(&p->exec, index, obj) { 1223 struct amdgpu_bo *bo = gem_to_amdgpu_bo(obj); 1224 1225 struct dma_resv *resv = bo->tbo.base.resv; 1226 enum amdgpu_sync_mode sync_mode; 1227 1228 sync_mode = amdgpu_bo_explicit_sync(bo) ? 1229 AMDGPU_SYNC_EXPLICIT : AMDGPU_SYNC_NE_OWNER; 1230 r = amdgpu_sync_resv(p->adev, &p->sync, resv, sync_mode, 1231 &fpriv->vm); 1232 if (r) 1233 return r; 1234 } 1235 1236 for (i = 0; i < p->gang_size; ++i) { 1237 r = amdgpu_sync_push_to_job(&p->sync, p->jobs[i]); 1238 if (r) 1239 return r; 1240 } 1241 1242 sched = p->gang_leader->base.entity->rq->sched; 1243 while ((fence = amdgpu_sync_get_fence(&p->sync))) { 1244 struct drm_sched_fence *s_fence = to_drm_sched_fence(fence); 1245 1246 /* 1247 * When we have an dependency it might be necessary to insert a 1248 * pipeline sync to make sure that all caches etc are flushed and the 1249 * next job actually sees the results from the previous one 1250 * before we start executing on the same scheduler ring. 1251 */ 1252 if (!s_fence || s_fence->sched != sched) { 1253 dma_fence_put(fence); 1254 continue; 1255 } 1256 1257 r = amdgpu_sync_fence(&p->gang_leader->explicit_sync, fence, 1258 GFP_KERNEL); 1259 dma_fence_put(fence); 1260 if (r) 1261 return r; 1262 } 1263 return 0; 1264 } 1265 1266 static void amdgpu_cs_post_dependencies(struct amdgpu_cs_parser *p) 1267 { 1268 int i; 1269 1270 for (i = 0; i < p->num_post_deps; ++i) { 1271 if (p->post_deps[i].chain && p->post_deps[i].point) { 1272 drm_syncobj_add_point(p->post_deps[i].syncobj, 1273 p->post_deps[i].chain, 1274 p->fence, p->post_deps[i].point); 1275 p->post_deps[i].chain = NULL; 1276 } else { 1277 drm_syncobj_replace_fence(p->post_deps[i].syncobj, 1278 p->fence); 1279 } 1280 } 1281 } 1282 1283 static int amdgpu_cs_submit(struct amdgpu_cs_parser *p, 1284 union drm_amdgpu_cs *cs) 1285 { 1286 struct amdgpu_fpriv *fpriv = p->filp->driver_priv; 1287 struct amdgpu_job *leader = p->gang_leader; 1288 struct amdgpu_bo_list_entry *e; 1289 struct drm_gem_object *gobj; 1290 unsigned long index; 1291 unsigned int i; 1292 uint64_t seq; 1293 int r; 1294 1295 for (i = 0; i < p->gang_size; ++i) 1296 drm_sched_job_arm(&p->jobs[i]->base); 1297 1298 for (i = 0; i < p->gang_size; ++i) { 1299 struct dma_fence *fence; 1300 1301 if (p->jobs[i] == leader) 1302 continue; 1303 1304 fence = &p->jobs[i]->base.s_fence->scheduled; 1305 dma_fence_get(fence); 1306 r = drm_sched_job_add_dependency(&leader->base, fence); 1307 if (r) { 1308 dma_fence_put(fence); 1309 return r; 1310 } 1311 } 1312 1313 if (p->gang_size > 1) { 1314 for (i = 0; i < p->gang_size; ++i) 1315 amdgpu_job_set_gang_leader(p->jobs[i], leader); 1316 } 1317 1318 /* No memory allocation is allowed while holding the notifier lock. 1319 * The lock is held until amdgpu_cs_submit is finished and fence is 1320 * added to BOs. 1321 */ 1322 mutex_lock(&p->adev->notifier_lock); 1323 1324 /* If userptr are invalidated after amdgpu_cs_parser_bos(), return 1325 * -EAGAIN, drmIoctl in libdrm will restart the amdgpu_cs_ioctl. 1326 */ 1327 r = 0; 1328 amdgpu_bo_list_for_each_userptr_entry(e, p->bo_list) { 1329 r |= !amdgpu_hmm_range_valid(e->range); 1330 amdgpu_hmm_range_free(e->range); 1331 e->range = NULL; 1332 } 1333 if (r) { 1334 r = -EAGAIN; 1335 mutex_unlock(&p->adev->notifier_lock); 1336 return r; 1337 } 1338 1339 p->fence = dma_fence_get(&leader->base.s_fence->finished); 1340 drm_exec_for_each_locked_object(&p->exec, index, gobj) { 1341 1342 ttm_bo_move_to_lru_tail_unlocked(&gem_to_amdgpu_bo(gobj)->tbo); 1343 1344 /* Everybody except for the gang leader uses READ */ 1345 for (i = 0; i < p->gang_size; ++i) { 1346 if (p->jobs[i] == leader) 1347 continue; 1348 1349 dma_resv_add_fence(gobj->resv, 1350 &p->jobs[i]->base.s_fence->finished, 1351 DMA_RESV_USAGE_READ); 1352 } 1353 1354 /* The gang leader as remembered as writer */ 1355 dma_resv_add_fence(gobj->resv, p->fence, DMA_RESV_USAGE_WRITE); 1356 } 1357 1358 seq = amdgpu_ctx_add_fence(p->ctx, p->entities[p->gang_leader_idx], 1359 p->fence); 1360 amdgpu_cs_post_dependencies(p); 1361 1362 if ((leader->preamble_status & AMDGPU_PREAMBLE_IB_PRESENT) && 1363 !p->ctx->preamble_presented) { 1364 leader->preamble_status |= AMDGPU_PREAMBLE_IB_PRESENT_FIRST; 1365 p->ctx->preamble_presented = true; 1366 } 1367 1368 cs->out.handle = seq; 1369 leader->uf_sequence = seq; 1370 1371 amdgpu_vm_bo_trace_cs(&fpriv->vm, &p->exec.ticket); 1372 for (i = 0; i < p->gang_size; ++i) { 1373 amdgpu_job_free_resources(p->jobs[i]); 1374 trace_amdgpu_cs_ioctl(p->jobs[i]); 1375 drm_sched_entity_push_job(&p->jobs[i]->base); 1376 p->jobs[i] = NULL; 1377 } 1378 1379 amdgpu_vm_move_to_lru_tail(p->adev, &fpriv->vm); 1380 1381 mutex_unlock(&p->adev->notifier_lock); 1382 mutex_unlock(&p->bo_list->bo_list_mutex); 1383 return 0; 1384 } 1385 1386 /* Cleanup the parser structure */ 1387 static void amdgpu_cs_parser_fini(struct amdgpu_cs_parser *parser) 1388 { 1389 unsigned int i; 1390 1391 amdgpu_sync_free(&parser->sync); 1392 drm_exec_fini(&parser->exec); 1393 1394 for (i = 0; i < parser->num_post_deps; i++) { 1395 drm_syncobj_put(parser->post_deps[i].syncobj); 1396 kfree(parser->post_deps[i].chain); 1397 } 1398 kfree(parser->post_deps); 1399 1400 dma_fence_put(parser->fence); 1401 1402 if (parser->ctx) 1403 amdgpu_ctx_put(parser->ctx); 1404 if (parser->bo_list) 1405 amdgpu_bo_list_put(parser->bo_list); 1406 1407 for (i = 0; i < parser->nchunks; i++) 1408 kvfree(parser->chunks[i].kdata); 1409 kvfree(parser->chunks); 1410 for (i = 0; i < parser->gang_size; ++i) { 1411 if (parser->jobs[i]) 1412 amdgpu_job_free(parser->jobs[i]); 1413 } 1414 amdgpu_bo_unref(&parser->uf_bo); 1415 } 1416 1417 int amdgpu_cs_ioctl(struct drm_device *dev, void *data, struct drm_file *filp) 1418 { 1419 struct amdgpu_device *adev = drm_to_adev(dev); 1420 struct amdgpu_cs_parser parser; 1421 int r; 1422 1423 if (amdgpu_ras_intr_triggered()) 1424 return -EHWPOISON; 1425 1426 if (!adev->accel_working) 1427 return -EBUSY; 1428 1429 r = amdgpu_cs_parser_init(&parser, adev, filp, data); 1430 if (r) { 1431 drm_err_ratelimited(dev, "Failed to initialize parser %d!\n", r); 1432 return r; 1433 } 1434 1435 r = amdgpu_cs_pass1(&parser, data); 1436 if (r) 1437 goto error_fini; 1438 1439 r = amdgpu_cs_pass2(&parser); 1440 if (r) 1441 goto error_fini; 1442 1443 r = amdgpu_cs_parser_bos(&parser, data); 1444 if (r) { 1445 if (r == -ENOMEM) 1446 drm_err(dev, "Not enough memory for command submission!\n"); 1447 else if (r != -ERESTARTSYS && r != -EAGAIN) 1448 drm_dbg(dev, "Failed to process the buffer list %d!\n", r); 1449 goto error_fini; 1450 } 1451 1452 r = amdgpu_cs_patch_jobs(&parser); 1453 if (r) 1454 goto error_backoff; 1455 1456 r = amdgpu_cs_vm_handling(&parser); 1457 if (r) 1458 goto error_backoff; 1459 1460 r = amdgpu_cs_sync_rings(&parser); 1461 if (r) 1462 goto error_backoff; 1463 1464 trace_amdgpu_cs_ibs(&parser); 1465 1466 r = amdgpu_cs_submit(&parser, data); 1467 if (r) 1468 goto error_backoff; 1469 1470 amdgpu_cs_parser_fini(&parser); 1471 return 0; 1472 1473 error_backoff: 1474 mutex_unlock(&parser.bo_list->bo_list_mutex); 1475 1476 error_fini: 1477 amdgpu_cs_parser_fini(&parser); 1478 return r; 1479 } 1480 1481 /** 1482 * amdgpu_cs_wait_ioctl - wait for a command submission to finish 1483 * 1484 * @dev: drm device 1485 * @data: data from userspace 1486 * @filp: file private 1487 * 1488 * Wait for the command submission identified by handle to finish. 1489 */ 1490 int amdgpu_cs_wait_ioctl(struct drm_device *dev, void *data, 1491 struct drm_file *filp) 1492 { 1493 union drm_amdgpu_wait_cs *wait = data; 1494 unsigned long timeout = amdgpu_gem_timeout(wait->in.timeout); 1495 struct drm_sched_entity *entity; 1496 struct amdgpu_ctx *ctx; 1497 struct dma_fence *fence; 1498 long r; 1499 1500 ctx = amdgpu_ctx_get(filp->driver_priv, wait->in.ctx_id); 1501 if (ctx == NULL) 1502 return -EINVAL; 1503 1504 r = amdgpu_ctx_get_entity(ctx, wait->in.ip_type, wait->in.ip_instance, 1505 wait->in.ring, &entity); 1506 if (r) { 1507 amdgpu_ctx_put(ctx); 1508 return r; 1509 } 1510 1511 fence = amdgpu_ctx_get_fence(ctx, entity, wait->in.handle); 1512 if (IS_ERR(fence)) 1513 r = PTR_ERR(fence); 1514 else if (fence) { 1515 r = dma_fence_wait_timeout(fence, true, timeout); 1516 if (r > 0 && fence->error) 1517 r = fence->error; 1518 dma_fence_put(fence); 1519 } else 1520 r = 1; 1521 1522 amdgpu_ctx_put(ctx); 1523 if (r < 0) 1524 return r; 1525 1526 memset(wait, 0, sizeof(*wait)); 1527 wait->out.status = (r == 0); 1528 1529 return 0; 1530 } 1531 1532 /** 1533 * amdgpu_cs_get_fence - helper to get fence from drm_amdgpu_fence 1534 * 1535 * @adev: amdgpu device 1536 * @filp: file private 1537 * @user: drm_amdgpu_fence copied from user space 1538 */ 1539 static struct dma_fence *amdgpu_cs_get_fence(struct amdgpu_device *adev, 1540 struct drm_file *filp, 1541 struct drm_amdgpu_fence *user) 1542 { 1543 struct drm_sched_entity *entity; 1544 struct amdgpu_ctx *ctx; 1545 struct dma_fence *fence; 1546 int r; 1547 1548 ctx = amdgpu_ctx_get(filp->driver_priv, user->ctx_id); 1549 if (ctx == NULL) 1550 return ERR_PTR(-EINVAL); 1551 1552 r = amdgpu_ctx_get_entity(ctx, user->ip_type, user->ip_instance, 1553 user->ring, &entity); 1554 if (r) { 1555 amdgpu_ctx_put(ctx); 1556 return ERR_PTR(r); 1557 } 1558 1559 fence = amdgpu_ctx_get_fence(ctx, entity, user->seq_no); 1560 amdgpu_ctx_put(ctx); 1561 1562 return fence; 1563 } 1564 1565 int amdgpu_cs_fence_to_handle_ioctl(struct drm_device *dev, void *data, 1566 struct drm_file *filp) 1567 { 1568 struct amdgpu_device *adev = drm_to_adev(dev); 1569 union drm_amdgpu_fence_to_handle *info = data; 1570 struct dma_fence *fence; 1571 struct drm_syncobj *syncobj; 1572 struct sync_file *sync_file; 1573 int fd, r; 1574 1575 fence = amdgpu_cs_get_fence(adev, filp, &info->in.fence); 1576 if (IS_ERR(fence)) 1577 return PTR_ERR(fence); 1578 1579 if (!fence) 1580 fence = dma_fence_get_stub(); 1581 1582 switch (info->in.what) { 1583 case AMDGPU_FENCE_TO_HANDLE_GET_SYNCOBJ: 1584 r = drm_syncobj_create(&syncobj, 0, fence); 1585 dma_fence_put(fence); 1586 if (r) 1587 return r; 1588 r = drm_syncobj_get_handle(filp, syncobj, &info->out.handle); 1589 drm_syncobj_put(syncobj); 1590 return r; 1591 1592 case AMDGPU_FENCE_TO_HANDLE_GET_SYNCOBJ_FD: 1593 r = drm_syncobj_create(&syncobj, 0, fence); 1594 dma_fence_put(fence); 1595 if (r) 1596 return r; 1597 r = drm_syncobj_get_fd(syncobj, (int *)&info->out.handle); 1598 drm_syncobj_put(syncobj); 1599 return r; 1600 1601 case AMDGPU_FENCE_TO_HANDLE_GET_SYNC_FILE_FD: 1602 fd = get_unused_fd_flags(O_CLOEXEC); 1603 if (fd < 0) { 1604 dma_fence_put(fence); 1605 return fd; 1606 } 1607 1608 sync_file = sync_file_create(fence); 1609 dma_fence_put(fence); 1610 if (!sync_file) { 1611 put_unused_fd(fd); 1612 return -ENOMEM; 1613 } 1614 1615 fd_install(fd, sync_file->file); 1616 info->out.handle = fd; 1617 return 0; 1618 1619 default: 1620 dma_fence_put(fence); 1621 return -EINVAL; 1622 } 1623 } 1624 1625 /** 1626 * amdgpu_cs_wait_all_fences - wait on all fences to signal 1627 * 1628 * @adev: amdgpu device 1629 * @filp: file private 1630 * @wait: wait parameters 1631 * @fences: array of drm_amdgpu_fence 1632 */ 1633 static int amdgpu_cs_wait_all_fences(struct amdgpu_device *adev, 1634 struct drm_file *filp, 1635 union drm_amdgpu_wait_fences *wait, 1636 struct drm_amdgpu_fence *fences) 1637 { 1638 uint32_t fence_count = wait->in.fence_count; 1639 unsigned int i; 1640 long r = 1; 1641 1642 for (i = 0; i < fence_count; i++) { 1643 struct dma_fence *fence; 1644 unsigned long timeout = amdgpu_gem_timeout(wait->in.timeout_ns); 1645 1646 fence = amdgpu_cs_get_fence(adev, filp, &fences[i]); 1647 if (IS_ERR(fence)) 1648 return PTR_ERR(fence); 1649 else if (!fence) 1650 continue; 1651 1652 r = dma_fence_wait_timeout(fence, true, timeout); 1653 if (r > 0 && fence->error) 1654 r = fence->error; 1655 1656 dma_fence_put(fence); 1657 if (r < 0) 1658 return r; 1659 1660 if (r == 0) 1661 break; 1662 } 1663 1664 memset(wait, 0, sizeof(*wait)); 1665 wait->out.status = (r > 0); 1666 1667 return 0; 1668 } 1669 1670 /** 1671 * amdgpu_cs_wait_any_fence - wait on any fence to signal 1672 * 1673 * @adev: amdgpu device 1674 * @filp: file private 1675 * @wait: wait parameters 1676 * @fences: array of drm_amdgpu_fence 1677 */ 1678 static int amdgpu_cs_wait_any_fence(struct amdgpu_device *adev, 1679 struct drm_file *filp, 1680 union drm_amdgpu_wait_fences *wait, 1681 struct drm_amdgpu_fence *fences) 1682 { 1683 unsigned long timeout = amdgpu_gem_timeout(wait->in.timeout_ns); 1684 uint32_t fence_count = wait->in.fence_count; 1685 uint32_t first = ~0; 1686 struct dma_fence **array; 1687 unsigned int i; 1688 long r; 1689 1690 /* Prepare the fence array */ 1691 array = kcalloc(fence_count, sizeof(struct dma_fence *), GFP_KERNEL); 1692 1693 if (array == NULL) 1694 return -ENOMEM; 1695 1696 for (i = 0; i < fence_count; i++) { 1697 struct dma_fence *fence; 1698 1699 fence = amdgpu_cs_get_fence(adev, filp, &fences[i]); 1700 if (IS_ERR(fence)) { 1701 r = PTR_ERR(fence); 1702 goto err_free_fence_array; 1703 } else if (fence) { 1704 array[i] = fence; 1705 } else { /* NULL, the fence has been already signaled */ 1706 r = 1; 1707 first = i; 1708 goto out; 1709 } 1710 } 1711 1712 r = dma_fence_wait_any_timeout(array, fence_count, true, timeout, 1713 &first); 1714 if (r < 0) 1715 goto err_free_fence_array; 1716 1717 out: 1718 memset(wait, 0, sizeof(*wait)); 1719 wait->out.status = (r > 0); 1720 wait->out.first_signaled = first; 1721 1722 if (first < fence_count && array[first]) 1723 r = array[first]->error; 1724 else 1725 r = 0; 1726 1727 err_free_fence_array: 1728 for (i = 0; i < fence_count; i++) 1729 dma_fence_put(array[i]); 1730 kfree(array); 1731 1732 return r; 1733 } 1734 1735 /** 1736 * amdgpu_cs_wait_fences_ioctl - wait for multiple command submissions to finish 1737 * 1738 * @dev: drm device 1739 * @data: data from userspace 1740 * @filp: file private 1741 */ 1742 int amdgpu_cs_wait_fences_ioctl(struct drm_device *dev, void *data, 1743 struct drm_file *filp) 1744 { 1745 struct amdgpu_device *adev = drm_to_adev(dev); 1746 union drm_amdgpu_wait_fences *wait = data; 1747 struct drm_amdgpu_fence *fences; 1748 int r; 1749 1750 /* Get the fences from userspace */ 1751 fences = memdup_array_user(u64_to_user_ptr(wait->in.fences), 1752 wait->in.fence_count, 1753 sizeof(struct drm_amdgpu_fence)); 1754 if (IS_ERR(fences)) 1755 return PTR_ERR(fences); 1756 1757 if (wait->in.wait_all) 1758 r = amdgpu_cs_wait_all_fences(adev, filp, wait, fences); 1759 else 1760 r = amdgpu_cs_wait_any_fence(adev, filp, wait, fences); 1761 1762 kfree(fences); 1763 1764 return r; 1765 } 1766 1767 /** 1768 * amdgpu_cs_find_mapping - find bo_va for VM address 1769 * 1770 * @parser: command submission parser context 1771 * @addr: VM address 1772 * @bo: resulting BO of the mapping found 1773 * @map: Placeholder to return found BO mapping 1774 * 1775 * Search the buffer objects in the command submission context for a certain 1776 * virtual memory address. Returns allocation structure when found, NULL 1777 * otherwise. 1778 */ 1779 int amdgpu_cs_find_mapping(struct amdgpu_cs_parser *parser, 1780 uint64_t addr, struct amdgpu_bo **bo, 1781 struct amdgpu_bo_va_mapping **map) 1782 { 1783 struct amdgpu_fpriv *fpriv = parser->filp->driver_priv; 1784 struct ttm_operation_ctx ctx = { false, false }; 1785 struct amdgpu_vm *vm = &fpriv->vm; 1786 struct amdgpu_bo_va_mapping *mapping; 1787 int i, r; 1788 1789 addr /= AMDGPU_GPU_PAGE_SIZE; 1790 1791 mapping = amdgpu_vm_bo_lookup_mapping(vm, addr); 1792 if (!mapping || !mapping->bo_va || !mapping->bo_va->base.bo) 1793 return -EINVAL; 1794 1795 *bo = mapping->bo_va->base.bo; 1796 *map = mapping; 1797 1798 /* Double check that the BO is reserved by this CS */ 1799 if (dma_resv_locking_ctx((*bo)->tbo.base.resv) != &parser->exec.ticket) 1800 return -EINVAL; 1801 1802 /* Make sure VRAM is allocated contigiously */ 1803 (*bo)->flags |= AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS; 1804 if ((*bo)->tbo.resource->mem_type == TTM_PL_VRAM && 1805 !((*bo)->tbo.resource->placement & TTM_PL_FLAG_CONTIGUOUS)) { 1806 1807 amdgpu_bo_placement_from_domain(*bo, (*bo)->allowed_domains); 1808 for (i = 0; i < (*bo)->placement.num_placement; i++) 1809 (*bo)->placements[i].flags |= TTM_PL_FLAG_CONTIGUOUS; 1810 r = ttm_bo_validate(&(*bo)->tbo, &(*bo)->placement, &ctx); 1811 if (r) 1812 return r; 1813 } 1814 1815 return amdgpu_ttm_alloc_gart(&(*bo)->tbo); 1816 } 1817