xref: /linux/drivers/gpu/drm/amd/amdgpu/amdgpu_cs.c (revision 79d2e1919a2728ef49d938eb20ebd5903c14dfb0)
1 /*
2  * Copyright 2008 Jerome Glisse.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22  * DEALINGS IN THE SOFTWARE.
23  *
24  * Authors:
25  *    Jerome Glisse <glisse@freedesktop.org>
26  */
27 
28 #include <linux/file.h>
29 #include <linux/pagemap.h>
30 #include <linux/sync_file.h>
31 #include <linux/dma-buf.h>
32 
33 #include <drm/amdgpu_drm.h>
34 #include <drm/drm_syncobj.h>
35 #include <drm/ttm/ttm_tt.h>
36 
37 #include "amdgpu_cs.h"
38 #include "amdgpu.h"
39 #include "amdgpu_trace.h"
40 #include "amdgpu_gmc.h"
41 #include "amdgpu_gem.h"
42 #include "amdgpu_ras.h"
43 
44 static int amdgpu_cs_parser_init(struct amdgpu_cs_parser *p,
45 				 struct amdgpu_device *adev,
46 				 struct drm_file *filp,
47 				 union drm_amdgpu_cs *cs)
48 {
49 	struct amdgpu_fpriv *fpriv = filp->driver_priv;
50 
51 	if (cs->in.num_chunks == 0)
52 		return -EINVAL;
53 
54 	memset(p, 0, sizeof(*p));
55 	p->adev = adev;
56 	p->filp = filp;
57 
58 	p->ctx = amdgpu_ctx_get(fpriv, cs->in.ctx_id);
59 	if (!p->ctx)
60 		return -EINVAL;
61 
62 	if (atomic_read(&p->ctx->guilty)) {
63 		amdgpu_ctx_put(p->ctx);
64 		return -ECANCELED;
65 	}
66 
67 	amdgpu_sync_create(&p->sync);
68 	drm_exec_init(&p->exec, DRM_EXEC_INTERRUPTIBLE_WAIT |
69 		      DRM_EXEC_IGNORE_DUPLICATES, 0);
70 	return 0;
71 }
72 
73 static int amdgpu_cs_job_idx(struct amdgpu_cs_parser *p,
74 			     struct drm_amdgpu_cs_chunk_ib *chunk_ib)
75 {
76 	struct drm_sched_entity *entity;
77 	unsigned int i;
78 	int r;
79 
80 	r = amdgpu_ctx_get_entity(p->ctx, chunk_ib->ip_type,
81 				  chunk_ib->ip_instance,
82 				  chunk_ib->ring, &entity);
83 	if (r)
84 		return r;
85 
86 	/*
87 	 * Abort if there is no run queue associated with this entity.
88 	 * Possibly because of disabled HW IP.
89 	 */
90 	if (entity->rq == NULL)
91 		return -EINVAL;
92 
93 	/* Check if we can add this IB to some existing job */
94 	for (i = 0; i < p->gang_size; ++i)
95 		if (p->entities[i] == entity)
96 			return i;
97 
98 	/* If not increase the gang size if possible */
99 	if (i == AMDGPU_CS_GANG_SIZE)
100 		return -EINVAL;
101 
102 	p->entities[i] = entity;
103 	p->gang_size = i + 1;
104 	return i;
105 }
106 
107 static int amdgpu_cs_p1_ib(struct amdgpu_cs_parser *p,
108 			   struct drm_amdgpu_cs_chunk_ib *chunk_ib,
109 			   unsigned int *num_ibs)
110 {
111 	int r;
112 
113 	r = amdgpu_cs_job_idx(p, chunk_ib);
114 	if (r < 0)
115 		return r;
116 
117 	if (num_ibs[r] >= amdgpu_ring_max_ibs(chunk_ib->ip_type))
118 		return -EINVAL;
119 
120 	++(num_ibs[r]);
121 	p->gang_leader_idx = r;
122 	return 0;
123 }
124 
125 static int amdgpu_cs_p1_user_fence(struct amdgpu_cs_parser *p,
126 				   struct drm_amdgpu_cs_chunk_fence *data,
127 				   uint32_t *offset)
128 {
129 	struct drm_gem_object *gobj;
130 	unsigned long size;
131 
132 	gobj = drm_gem_object_lookup(p->filp, data->handle);
133 	if (gobj == NULL)
134 		return -EINVAL;
135 
136 	p->uf_bo = amdgpu_bo_ref(gem_to_amdgpu_bo(gobj));
137 	drm_gem_object_put(gobj);
138 
139 	size = amdgpu_bo_size(p->uf_bo);
140 	if (size != PAGE_SIZE || data->offset > (size - 8))
141 		return -EINVAL;
142 
143 	if (amdgpu_ttm_tt_get_usermm(p->uf_bo->tbo.ttm))
144 		return -EINVAL;
145 
146 	*offset = data->offset;
147 	return 0;
148 }
149 
150 static int amdgpu_cs_p1_bo_handles(struct amdgpu_cs_parser *p,
151 				   struct drm_amdgpu_bo_list_in *data)
152 {
153 	struct drm_amdgpu_bo_list_entry *info;
154 	int r;
155 
156 	r = amdgpu_bo_create_list_entry_array(data, &info);
157 	if (r)
158 		return r;
159 
160 	r = amdgpu_bo_list_create(p->adev, p->filp, info, data->bo_number,
161 				  &p->bo_list);
162 	if (r)
163 		goto error_free;
164 
165 	kvfree(info);
166 	return 0;
167 
168 error_free:
169 	kvfree(info);
170 
171 	return r;
172 }
173 
174 /* Copy the data from userspace and go over it the first time */
175 static int amdgpu_cs_pass1(struct amdgpu_cs_parser *p,
176 			   union drm_amdgpu_cs *cs)
177 {
178 	struct amdgpu_fpriv *fpriv = p->filp->driver_priv;
179 	unsigned int num_ibs[AMDGPU_CS_GANG_SIZE] = { };
180 	struct amdgpu_vm *vm = &fpriv->vm;
181 	uint64_t *chunk_array_user;
182 	uint64_t *chunk_array;
183 	uint32_t uf_offset = 0;
184 	size_t size;
185 	int ret;
186 	int i;
187 
188 	chunk_array = kvmalloc_array(cs->in.num_chunks, sizeof(uint64_t),
189 				     GFP_KERNEL);
190 	if (!chunk_array)
191 		return -ENOMEM;
192 
193 	/* get chunks */
194 	chunk_array_user = u64_to_user_ptr(cs->in.chunks);
195 	if (copy_from_user(chunk_array, chunk_array_user,
196 			   sizeof(uint64_t)*cs->in.num_chunks)) {
197 		ret = -EFAULT;
198 		goto free_chunk;
199 	}
200 
201 	p->nchunks = cs->in.num_chunks;
202 	p->chunks = kvmalloc_array(p->nchunks, sizeof(struct amdgpu_cs_chunk),
203 			    GFP_KERNEL);
204 	if (!p->chunks) {
205 		ret = -ENOMEM;
206 		goto free_chunk;
207 	}
208 
209 	for (i = 0; i < p->nchunks; i++) {
210 		struct drm_amdgpu_cs_chunk __user *chunk_ptr = NULL;
211 		struct drm_amdgpu_cs_chunk user_chunk;
212 		uint32_t __user *cdata;
213 
214 		chunk_ptr = u64_to_user_ptr(chunk_array[i]);
215 		if (copy_from_user(&user_chunk, chunk_ptr,
216 				       sizeof(struct drm_amdgpu_cs_chunk))) {
217 			ret = -EFAULT;
218 			i--;
219 			goto free_partial_kdata;
220 		}
221 		p->chunks[i].chunk_id = user_chunk.chunk_id;
222 		p->chunks[i].length_dw = user_chunk.length_dw;
223 
224 		size = p->chunks[i].length_dw;
225 		cdata = u64_to_user_ptr(user_chunk.chunk_data);
226 
227 		p->chunks[i].kdata = kvmalloc_array(size, sizeof(uint32_t),
228 						    GFP_KERNEL);
229 		if (p->chunks[i].kdata == NULL) {
230 			ret = -ENOMEM;
231 			i--;
232 			goto free_partial_kdata;
233 		}
234 		size *= sizeof(uint32_t);
235 		if (copy_from_user(p->chunks[i].kdata, cdata, size)) {
236 			ret = -EFAULT;
237 			goto free_partial_kdata;
238 		}
239 
240 		/* Assume the worst on the following checks */
241 		ret = -EINVAL;
242 		switch (p->chunks[i].chunk_id) {
243 		case AMDGPU_CHUNK_ID_IB:
244 			if (size < sizeof(struct drm_amdgpu_cs_chunk_ib))
245 				goto free_partial_kdata;
246 
247 			ret = amdgpu_cs_p1_ib(p, p->chunks[i].kdata, num_ibs);
248 			if (ret)
249 				goto free_partial_kdata;
250 			break;
251 
252 		case AMDGPU_CHUNK_ID_FENCE:
253 			if (size < sizeof(struct drm_amdgpu_cs_chunk_fence))
254 				goto free_partial_kdata;
255 
256 			ret = amdgpu_cs_p1_user_fence(p, p->chunks[i].kdata,
257 						      &uf_offset);
258 			if (ret)
259 				goto free_partial_kdata;
260 			break;
261 
262 		case AMDGPU_CHUNK_ID_BO_HANDLES:
263 			if (size < sizeof(struct drm_amdgpu_bo_list_in))
264 				goto free_partial_kdata;
265 
266 			/* Only a single BO list is allowed to simplify handling. */
267 			if (p->bo_list)
268 				goto free_partial_kdata;
269 
270 			ret = amdgpu_cs_p1_bo_handles(p, p->chunks[i].kdata);
271 			if (ret)
272 				goto free_partial_kdata;
273 			break;
274 
275 		case AMDGPU_CHUNK_ID_DEPENDENCIES:
276 		case AMDGPU_CHUNK_ID_SYNCOBJ_IN:
277 		case AMDGPU_CHUNK_ID_SYNCOBJ_OUT:
278 		case AMDGPU_CHUNK_ID_SCHEDULED_DEPENDENCIES:
279 		case AMDGPU_CHUNK_ID_SYNCOBJ_TIMELINE_WAIT:
280 		case AMDGPU_CHUNK_ID_SYNCOBJ_TIMELINE_SIGNAL:
281 		case AMDGPU_CHUNK_ID_CP_GFX_SHADOW:
282 			break;
283 
284 		default:
285 			goto free_partial_kdata;
286 		}
287 	}
288 
289 	if (!p->gang_size) {
290 		ret = -EINVAL;
291 		goto free_all_kdata;
292 	}
293 
294 	for (i = 0; i < p->gang_size; ++i) {
295 		ret = amdgpu_job_alloc(p->adev, vm, p->entities[i], vm,
296 				       num_ibs[i], &p->jobs[i]);
297 		if (ret)
298 			goto free_all_kdata;
299 		p->jobs[i]->enforce_isolation = p->adev->enforce_isolation[fpriv->xcp_id];
300 	}
301 	p->gang_leader = p->jobs[p->gang_leader_idx];
302 
303 	if (p->ctx->generation != p->gang_leader->generation) {
304 		ret = -ECANCELED;
305 		goto free_all_kdata;
306 	}
307 
308 	if (p->uf_bo)
309 		p->gang_leader->uf_addr = uf_offset;
310 	kvfree(chunk_array);
311 
312 	/* Use this opportunity to fill in task info for the vm */
313 	amdgpu_vm_set_task_info(vm);
314 
315 	return 0;
316 
317 free_all_kdata:
318 	i = p->nchunks - 1;
319 free_partial_kdata:
320 	for (; i >= 0; i--)
321 		kvfree(p->chunks[i].kdata);
322 	kvfree(p->chunks);
323 	p->chunks = NULL;
324 	p->nchunks = 0;
325 free_chunk:
326 	kvfree(chunk_array);
327 
328 	return ret;
329 }
330 
331 static int amdgpu_cs_p2_ib(struct amdgpu_cs_parser *p,
332 			   struct amdgpu_cs_chunk *chunk,
333 			   unsigned int *ce_preempt,
334 			   unsigned int *de_preempt)
335 {
336 	struct drm_amdgpu_cs_chunk_ib *chunk_ib = chunk->kdata;
337 	struct amdgpu_fpriv *fpriv = p->filp->driver_priv;
338 	struct amdgpu_vm *vm = &fpriv->vm;
339 	struct amdgpu_ring *ring;
340 	struct amdgpu_job *job;
341 	struct amdgpu_ib *ib;
342 	int r;
343 
344 	r = amdgpu_cs_job_idx(p, chunk_ib);
345 	if (r < 0)
346 		return r;
347 
348 	job = p->jobs[r];
349 	ring = amdgpu_job_ring(job);
350 	ib = &job->ibs[job->num_ibs++];
351 
352 	/* MM engine doesn't support user fences */
353 	if (p->uf_bo && ring->funcs->no_user_fence)
354 		return -EINVAL;
355 
356 	if (chunk_ib->ip_type == AMDGPU_HW_IP_GFX &&
357 	    chunk_ib->flags & AMDGPU_IB_FLAG_PREEMPT) {
358 		if (chunk_ib->flags & AMDGPU_IB_FLAG_CE)
359 			(*ce_preempt)++;
360 		else
361 			(*de_preempt)++;
362 
363 		/* Each GFX command submit allows only 1 IB max
364 		 * preemptible for CE & DE */
365 		if (*ce_preempt > 1 || *de_preempt > 1)
366 			return -EINVAL;
367 	}
368 
369 	if (chunk_ib->flags & AMDGPU_IB_FLAG_PREAMBLE)
370 		job->preamble_status |= AMDGPU_PREAMBLE_IB_PRESENT;
371 
372 	r =  amdgpu_ib_get(p->adev, vm, ring->funcs->parse_cs ?
373 			   chunk_ib->ib_bytes : 0,
374 			   AMDGPU_IB_POOL_DELAYED, ib);
375 	if (r) {
376 		DRM_ERROR("Failed to get ib !\n");
377 		return r;
378 	}
379 
380 	ib->gpu_addr = chunk_ib->va_start;
381 	ib->length_dw = chunk_ib->ib_bytes / 4;
382 	ib->flags = chunk_ib->flags;
383 	return 0;
384 }
385 
386 static int amdgpu_cs_p2_dependencies(struct amdgpu_cs_parser *p,
387 				     struct amdgpu_cs_chunk *chunk)
388 {
389 	struct drm_amdgpu_cs_chunk_dep *deps = chunk->kdata;
390 	struct amdgpu_fpriv *fpriv = p->filp->driver_priv;
391 	unsigned int num_deps;
392 	int i, r;
393 
394 	num_deps = chunk->length_dw * 4 /
395 		sizeof(struct drm_amdgpu_cs_chunk_dep);
396 
397 	for (i = 0; i < num_deps; ++i) {
398 		struct amdgpu_ctx *ctx;
399 		struct drm_sched_entity *entity;
400 		struct dma_fence *fence;
401 
402 		ctx = amdgpu_ctx_get(fpriv, deps[i].ctx_id);
403 		if (ctx == NULL)
404 			return -EINVAL;
405 
406 		r = amdgpu_ctx_get_entity(ctx, deps[i].ip_type,
407 					  deps[i].ip_instance,
408 					  deps[i].ring, &entity);
409 		if (r) {
410 			amdgpu_ctx_put(ctx);
411 			return r;
412 		}
413 
414 		fence = amdgpu_ctx_get_fence(ctx, entity, deps[i].handle);
415 		amdgpu_ctx_put(ctx);
416 
417 		if (IS_ERR(fence))
418 			return PTR_ERR(fence);
419 		else if (!fence)
420 			continue;
421 
422 		if (chunk->chunk_id == AMDGPU_CHUNK_ID_SCHEDULED_DEPENDENCIES) {
423 			struct drm_sched_fence *s_fence;
424 			struct dma_fence *old = fence;
425 
426 			s_fence = to_drm_sched_fence(fence);
427 			fence = dma_fence_get(&s_fence->scheduled);
428 			dma_fence_put(old);
429 		}
430 
431 		r = amdgpu_sync_fence(&p->sync, fence);
432 		dma_fence_put(fence);
433 		if (r)
434 			return r;
435 	}
436 	return 0;
437 }
438 
439 static int amdgpu_syncobj_lookup_and_add(struct amdgpu_cs_parser *p,
440 					 uint32_t handle, u64 point,
441 					 u64 flags)
442 {
443 	struct dma_fence *fence;
444 	int r;
445 
446 	r = drm_syncobj_find_fence(p->filp, handle, point, flags, &fence);
447 	if (r) {
448 		DRM_ERROR("syncobj %u failed to find fence @ %llu (%d)!\n",
449 			  handle, point, r);
450 		return r;
451 	}
452 
453 	r = amdgpu_sync_fence(&p->sync, fence);
454 	dma_fence_put(fence);
455 	return r;
456 }
457 
458 static int amdgpu_cs_p2_syncobj_in(struct amdgpu_cs_parser *p,
459 				   struct amdgpu_cs_chunk *chunk)
460 {
461 	struct drm_amdgpu_cs_chunk_sem *deps = chunk->kdata;
462 	unsigned int num_deps;
463 	int i, r;
464 
465 	num_deps = chunk->length_dw * 4 /
466 		sizeof(struct drm_amdgpu_cs_chunk_sem);
467 	for (i = 0; i < num_deps; ++i) {
468 		r = amdgpu_syncobj_lookup_and_add(p, deps[i].handle, 0, 0);
469 		if (r)
470 			return r;
471 	}
472 
473 	return 0;
474 }
475 
476 static int amdgpu_cs_p2_syncobj_timeline_wait(struct amdgpu_cs_parser *p,
477 					      struct amdgpu_cs_chunk *chunk)
478 {
479 	struct drm_amdgpu_cs_chunk_syncobj *syncobj_deps = chunk->kdata;
480 	unsigned int num_deps;
481 	int i, r;
482 
483 	num_deps = chunk->length_dw * 4 /
484 		sizeof(struct drm_amdgpu_cs_chunk_syncobj);
485 	for (i = 0; i < num_deps; ++i) {
486 		r = amdgpu_syncobj_lookup_and_add(p, syncobj_deps[i].handle,
487 						  syncobj_deps[i].point,
488 						  syncobj_deps[i].flags);
489 		if (r)
490 			return r;
491 	}
492 
493 	return 0;
494 }
495 
496 static int amdgpu_cs_p2_syncobj_out(struct amdgpu_cs_parser *p,
497 				    struct amdgpu_cs_chunk *chunk)
498 {
499 	struct drm_amdgpu_cs_chunk_sem *deps = chunk->kdata;
500 	unsigned int num_deps;
501 	int i;
502 
503 	num_deps = chunk->length_dw * 4 /
504 		sizeof(struct drm_amdgpu_cs_chunk_sem);
505 
506 	if (p->post_deps)
507 		return -EINVAL;
508 
509 	p->post_deps = kmalloc_array(num_deps, sizeof(*p->post_deps),
510 				     GFP_KERNEL);
511 	p->num_post_deps = 0;
512 
513 	if (!p->post_deps)
514 		return -ENOMEM;
515 
516 
517 	for (i = 0; i < num_deps; ++i) {
518 		p->post_deps[i].syncobj =
519 			drm_syncobj_find(p->filp, deps[i].handle);
520 		if (!p->post_deps[i].syncobj)
521 			return -EINVAL;
522 		p->post_deps[i].chain = NULL;
523 		p->post_deps[i].point = 0;
524 		p->num_post_deps++;
525 	}
526 
527 	return 0;
528 }
529 
530 static int amdgpu_cs_p2_syncobj_timeline_signal(struct amdgpu_cs_parser *p,
531 						struct amdgpu_cs_chunk *chunk)
532 {
533 	struct drm_amdgpu_cs_chunk_syncobj *syncobj_deps = chunk->kdata;
534 	unsigned int num_deps;
535 	int i;
536 
537 	num_deps = chunk->length_dw * 4 /
538 		sizeof(struct drm_amdgpu_cs_chunk_syncobj);
539 
540 	if (p->post_deps)
541 		return -EINVAL;
542 
543 	p->post_deps = kmalloc_array(num_deps, sizeof(*p->post_deps),
544 				     GFP_KERNEL);
545 	p->num_post_deps = 0;
546 
547 	if (!p->post_deps)
548 		return -ENOMEM;
549 
550 	for (i = 0; i < num_deps; ++i) {
551 		struct amdgpu_cs_post_dep *dep = &p->post_deps[i];
552 
553 		dep->chain = NULL;
554 		if (syncobj_deps[i].point) {
555 			dep->chain = dma_fence_chain_alloc();
556 			if (!dep->chain)
557 				return -ENOMEM;
558 		}
559 
560 		dep->syncobj = drm_syncobj_find(p->filp,
561 						syncobj_deps[i].handle);
562 		if (!dep->syncobj) {
563 			dma_fence_chain_free(dep->chain);
564 			return -EINVAL;
565 		}
566 		dep->point = syncobj_deps[i].point;
567 		p->num_post_deps++;
568 	}
569 
570 	return 0;
571 }
572 
573 static int amdgpu_cs_p2_shadow(struct amdgpu_cs_parser *p,
574 			       struct amdgpu_cs_chunk *chunk)
575 {
576 	struct drm_amdgpu_cs_chunk_cp_gfx_shadow *shadow = chunk->kdata;
577 	int i;
578 
579 	if (shadow->flags & ~AMDGPU_CS_CHUNK_CP_GFX_SHADOW_FLAGS_INIT_SHADOW)
580 		return -EINVAL;
581 
582 	for (i = 0; i < p->gang_size; ++i) {
583 		p->jobs[i]->shadow_va = shadow->shadow_va;
584 		p->jobs[i]->csa_va = shadow->csa_va;
585 		p->jobs[i]->gds_va = shadow->gds_va;
586 		p->jobs[i]->init_shadow =
587 			shadow->flags & AMDGPU_CS_CHUNK_CP_GFX_SHADOW_FLAGS_INIT_SHADOW;
588 	}
589 
590 	return 0;
591 }
592 
593 static int amdgpu_cs_pass2(struct amdgpu_cs_parser *p)
594 {
595 	unsigned int ce_preempt = 0, de_preempt = 0;
596 	int i, r;
597 
598 	for (i = 0; i < p->nchunks; ++i) {
599 		struct amdgpu_cs_chunk *chunk;
600 
601 		chunk = &p->chunks[i];
602 
603 		switch (chunk->chunk_id) {
604 		case AMDGPU_CHUNK_ID_IB:
605 			r = amdgpu_cs_p2_ib(p, chunk, &ce_preempt, &de_preempt);
606 			if (r)
607 				return r;
608 			break;
609 		case AMDGPU_CHUNK_ID_DEPENDENCIES:
610 		case AMDGPU_CHUNK_ID_SCHEDULED_DEPENDENCIES:
611 			r = amdgpu_cs_p2_dependencies(p, chunk);
612 			if (r)
613 				return r;
614 			break;
615 		case AMDGPU_CHUNK_ID_SYNCOBJ_IN:
616 			r = amdgpu_cs_p2_syncobj_in(p, chunk);
617 			if (r)
618 				return r;
619 			break;
620 		case AMDGPU_CHUNK_ID_SYNCOBJ_OUT:
621 			r = amdgpu_cs_p2_syncobj_out(p, chunk);
622 			if (r)
623 				return r;
624 			break;
625 		case AMDGPU_CHUNK_ID_SYNCOBJ_TIMELINE_WAIT:
626 			r = amdgpu_cs_p2_syncobj_timeline_wait(p, chunk);
627 			if (r)
628 				return r;
629 			break;
630 		case AMDGPU_CHUNK_ID_SYNCOBJ_TIMELINE_SIGNAL:
631 			r = amdgpu_cs_p2_syncobj_timeline_signal(p, chunk);
632 			if (r)
633 				return r;
634 			break;
635 		case AMDGPU_CHUNK_ID_CP_GFX_SHADOW:
636 			r = amdgpu_cs_p2_shadow(p, chunk);
637 			if (r)
638 				return r;
639 			break;
640 		}
641 	}
642 
643 	return 0;
644 }
645 
646 /* Convert microseconds to bytes. */
647 static u64 us_to_bytes(struct amdgpu_device *adev, s64 us)
648 {
649 	if (us <= 0 || !adev->mm_stats.log2_max_MBps)
650 		return 0;
651 
652 	/* Since accum_us is incremented by a million per second, just
653 	 * multiply it by the number of MB/s to get the number of bytes.
654 	 */
655 	return us << adev->mm_stats.log2_max_MBps;
656 }
657 
658 static s64 bytes_to_us(struct amdgpu_device *adev, u64 bytes)
659 {
660 	if (!adev->mm_stats.log2_max_MBps)
661 		return 0;
662 
663 	return bytes >> adev->mm_stats.log2_max_MBps;
664 }
665 
666 /* Returns how many bytes TTM can move right now. If no bytes can be moved,
667  * it returns 0. If it returns non-zero, it's OK to move at least one buffer,
668  * which means it can go over the threshold once. If that happens, the driver
669  * will be in debt and no other buffer migrations can be done until that debt
670  * is repaid.
671  *
672  * This approach allows moving a buffer of any size (it's important to allow
673  * that).
674  *
675  * The currency is simply time in microseconds and it increases as the clock
676  * ticks. The accumulated microseconds (us) are converted to bytes and
677  * returned.
678  */
679 static void amdgpu_cs_get_threshold_for_moves(struct amdgpu_device *adev,
680 					      u64 *max_bytes,
681 					      u64 *max_vis_bytes)
682 {
683 	s64 time_us, increment_us;
684 	u64 free_vram, total_vram, used_vram;
685 	/* Allow a maximum of 200 accumulated ms. This is basically per-IB
686 	 * throttling.
687 	 *
688 	 * It means that in order to get full max MBps, at least 5 IBs per
689 	 * second must be submitted and not more than 200ms apart from each
690 	 * other.
691 	 */
692 	const s64 us_upper_bound = 200000;
693 
694 	if (!adev->mm_stats.log2_max_MBps) {
695 		*max_bytes = 0;
696 		*max_vis_bytes = 0;
697 		return;
698 	}
699 
700 	total_vram = adev->gmc.real_vram_size - atomic64_read(&adev->vram_pin_size);
701 	used_vram = ttm_resource_manager_usage(&adev->mman.vram_mgr.manager);
702 	free_vram = used_vram >= total_vram ? 0 : total_vram - used_vram;
703 
704 	spin_lock(&adev->mm_stats.lock);
705 
706 	/* Increase the amount of accumulated us. */
707 	time_us = ktime_to_us(ktime_get());
708 	increment_us = time_us - adev->mm_stats.last_update_us;
709 	adev->mm_stats.last_update_us = time_us;
710 	adev->mm_stats.accum_us = min(adev->mm_stats.accum_us + increment_us,
711 				      us_upper_bound);
712 
713 	/* This prevents the short period of low performance when the VRAM
714 	 * usage is low and the driver is in debt or doesn't have enough
715 	 * accumulated us to fill VRAM quickly.
716 	 *
717 	 * The situation can occur in these cases:
718 	 * - a lot of VRAM is freed by userspace
719 	 * - the presence of a big buffer causes a lot of evictions
720 	 *   (solution: split buffers into smaller ones)
721 	 *
722 	 * If 128 MB or 1/8th of VRAM is free, start filling it now by setting
723 	 * accum_us to a positive number.
724 	 */
725 	if (free_vram >= 128 * 1024 * 1024 || free_vram >= total_vram / 8) {
726 		s64 min_us;
727 
728 		/* Be more aggressive on dGPUs. Try to fill a portion of free
729 		 * VRAM now.
730 		 */
731 		if (!(adev->flags & AMD_IS_APU))
732 			min_us = bytes_to_us(adev, free_vram / 4);
733 		else
734 			min_us = 0; /* Reset accum_us on APUs. */
735 
736 		adev->mm_stats.accum_us = max(min_us, adev->mm_stats.accum_us);
737 	}
738 
739 	/* This is set to 0 if the driver is in debt to disallow (optional)
740 	 * buffer moves.
741 	 */
742 	*max_bytes = us_to_bytes(adev, adev->mm_stats.accum_us);
743 
744 	/* Do the same for visible VRAM if half of it is free */
745 	if (!amdgpu_gmc_vram_full_visible(&adev->gmc)) {
746 		u64 total_vis_vram = adev->gmc.visible_vram_size;
747 		u64 used_vis_vram =
748 		  amdgpu_vram_mgr_vis_usage(&adev->mman.vram_mgr);
749 
750 		if (used_vis_vram < total_vis_vram) {
751 			u64 free_vis_vram = total_vis_vram - used_vis_vram;
752 
753 			adev->mm_stats.accum_us_vis = min(adev->mm_stats.accum_us_vis +
754 							  increment_us, us_upper_bound);
755 
756 			if (free_vis_vram >= total_vis_vram / 2)
757 				adev->mm_stats.accum_us_vis =
758 					max(bytes_to_us(adev, free_vis_vram / 2),
759 					    adev->mm_stats.accum_us_vis);
760 		}
761 
762 		*max_vis_bytes = us_to_bytes(adev, adev->mm_stats.accum_us_vis);
763 	} else {
764 		*max_vis_bytes = 0;
765 	}
766 
767 	spin_unlock(&adev->mm_stats.lock);
768 }
769 
770 /* Report how many bytes have really been moved for the last command
771  * submission. This can result in a debt that can stop buffer migrations
772  * temporarily.
773  */
774 void amdgpu_cs_report_moved_bytes(struct amdgpu_device *adev, u64 num_bytes,
775 				  u64 num_vis_bytes)
776 {
777 	spin_lock(&adev->mm_stats.lock);
778 	adev->mm_stats.accum_us -= bytes_to_us(adev, num_bytes);
779 	adev->mm_stats.accum_us_vis -= bytes_to_us(adev, num_vis_bytes);
780 	spin_unlock(&adev->mm_stats.lock);
781 }
782 
783 static int amdgpu_cs_bo_validate(void *param, struct amdgpu_bo *bo)
784 {
785 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
786 	struct amdgpu_cs_parser *p = param;
787 	struct ttm_operation_ctx ctx = {
788 		.interruptible = true,
789 		.no_wait_gpu = false,
790 		.resv = bo->tbo.base.resv
791 	};
792 	uint32_t domain;
793 	int r;
794 
795 	if (bo->tbo.pin_count)
796 		return 0;
797 
798 	/* Don't move this buffer if we have depleted our allowance
799 	 * to move it. Don't move anything if the threshold is zero.
800 	 */
801 	if (p->bytes_moved < p->bytes_moved_threshold &&
802 	    (!bo->tbo.base.dma_buf ||
803 	    list_empty(&bo->tbo.base.dma_buf->attachments))) {
804 		if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
805 		    (bo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED)) {
806 			/* And don't move a CPU_ACCESS_REQUIRED BO to limited
807 			 * visible VRAM if we've depleted our allowance to do
808 			 * that.
809 			 */
810 			if (p->bytes_moved_vis < p->bytes_moved_vis_threshold)
811 				domain = bo->preferred_domains;
812 			else
813 				domain = bo->allowed_domains;
814 		} else {
815 			domain = bo->preferred_domains;
816 		}
817 	} else {
818 		domain = bo->allowed_domains;
819 	}
820 
821 retry:
822 	amdgpu_bo_placement_from_domain(bo, domain);
823 	r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
824 
825 	p->bytes_moved += ctx.bytes_moved;
826 	if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
827 	    amdgpu_res_cpu_visible(adev, bo->tbo.resource))
828 		p->bytes_moved_vis += ctx.bytes_moved;
829 
830 	if (unlikely(r == -ENOMEM) && domain != bo->allowed_domains) {
831 		domain = bo->allowed_domains;
832 		goto retry;
833 	}
834 
835 	return r;
836 }
837 
838 static int amdgpu_cs_parser_bos(struct amdgpu_cs_parser *p,
839 				union drm_amdgpu_cs *cs)
840 {
841 	struct amdgpu_fpriv *fpriv = p->filp->driver_priv;
842 	struct ttm_operation_ctx ctx = { true, false };
843 	struct amdgpu_vm *vm = &fpriv->vm;
844 	struct amdgpu_bo_list_entry *e;
845 	struct drm_gem_object *obj;
846 	unsigned long index;
847 	unsigned int i;
848 	int r;
849 
850 	/* p->bo_list could already be assigned if AMDGPU_CHUNK_ID_BO_HANDLES is present */
851 	if (cs->in.bo_list_handle) {
852 		if (p->bo_list)
853 			return -EINVAL;
854 
855 		r = amdgpu_bo_list_get(fpriv, cs->in.bo_list_handle,
856 				       &p->bo_list);
857 		if (r)
858 			return r;
859 	} else if (!p->bo_list) {
860 		/* Create a empty bo_list when no handle is provided */
861 		r = amdgpu_bo_list_create(p->adev, p->filp, NULL, 0,
862 					  &p->bo_list);
863 		if (r)
864 			return r;
865 	}
866 
867 	mutex_lock(&p->bo_list->bo_list_mutex);
868 
869 	/* Get userptr backing pages. If pages are updated after registered
870 	 * in amdgpu_gem_userptr_ioctl(), amdgpu_cs_list_validate() will do
871 	 * amdgpu_ttm_backend_bind() to flush and invalidate new pages
872 	 */
873 	amdgpu_bo_list_for_each_userptr_entry(e, p->bo_list) {
874 		bool userpage_invalidated = false;
875 		struct amdgpu_bo *bo = e->bo;
876 		int i;
877 
878 		e->user_pages = kvcalloc(bo->tbo.ttm->num_pages,
879 					 sizeof(struct page *),
880 					 GFP_KERNEL);
881 		if (!e->user_pages) {
882 			DRM_ERROR("kvmalloc_array failure\n");
883 			r = -ENOMEM;
884 			goto out_free_user_pages;
885 		}
886 
887 		r = amdgpu_ttm_tt_get_user_pages(bo, e->user_pages, &e->range);
888 		if (r) {
889 			kvfree(e->user_pages);
890 			e->user_pages = NULL;
891 			goto out_free_user_pages;
892 		}
893 
894 		for (i = 0; i < bo->tbo.ttm->num_pages; i++) {
895 			if (bo->tbo.ttm->pages[i] != e->user_pages[i]) {
896 				userpage_invalidated = true;
897 				break;
898 			}
899 		}
900 		e->user_invalidated = userpage_invalidated;
901 	}
902 
903 	drm_exec_until_all_locked(&p->exec) {
904 		r = amdgpu_vm_lock_pd(&fpriv->vm, &p->exec, 1 + p->gang_size);
905 		drm_exec_retry_on_contention(&p->exec);
906 		if (unlikely(r))
907 			goto out_free_user_pages;
908 
909 		amdgpu_bo_list_for_each_entry(e, p->bo_list) {
910 			/* One fence for TTM and one for each CS job */
911 			r = drm_exec_prepare_obj(&p->exec, &e->bo->tbo.base,
912 						 1 + p->gang_size);
913 			drm_exec_retry_on_contention(&p->exec);
914 			if (unlikely(r))
915 				goto out_free_user_pages;
916 
917 			e->bo_va = amdgpu_vm_bo_find(vm, e->bo);
918 		}
919 
920 		if (p->uf_bo) {
921 			r = drm_exec_prepare_obj(&p->exec, &p->uf_bo->tbo.base,
922 						 1 + p->gang_size);
923 			drm_exec_retry_on_contention(&p->exec);
924 			if (unlikely(r))
925 				goto out_free_user_pages;
926 		}
927 	}
928 
929 	amdgpu_bo_list_for_each_userptr_entry(e, p->bo_list) {
930 		struct mm_struct *usermm;
931 
932 		usermm = amdgpu_ttm_tt_get_usermm(e->bo->tbo.ttm);
933 		if (usermm && usermm != current->mm) {
934 			r = -EPERM;
935 			goto out_free_user_pages;
936 		}
937 
938 		if (amdgpu_ttm_tt_is_userptr(e->bo->tbo.ttm) &&
939 		    e->user_invalidated && e->user_pages) {
940 			amdgpu_bo_placement_from_domain(e->bo,
941 							AMDGPU_GEM_DOMAIN_CPU);
942 			r = ttm_bo_validate(&e->bo->tbo, &e->bo->placement,
943 					    &ctx);
944 			if (r)
945 				goto out_free_user_pages;
946 
947 			amdgpu_ttm_tt_set_user_pages(e->bo->tbo.ttm,
948 						     e->user_pages);
949 		}
950 
951 		kvfree(e->user_pages);
952 		e->user_pages = NULL;
953 	}
954 
955 	amdgpu_cs_get_threshold_for_moves(p->adev, &p->bytes_moved_threshold,
956 					  &p->bytes_moved_vis_threshold);
957 	p->bytes_moved = 0;
958 	p->bytes_moved_vis = 0;
959 
960 	r = amdgpu_vm_validate(p->adev, &fpriv->vm, NULL,
961 			       amdgpu_cs_bo_validate, p);
962 	if (r) {
963 		DRM_ERROR("amdgpu_vm_validate() failed.\n");
964 		goto out_free_user_pages;
965 	}
966 
967 	drm_exec_for_each_locked_object(&p->exec, index, obj) {
968 		r = amdgpu_cs_bo_validate(p, gem_to_amdgpu_bo(obj));
969 		if (unlikely(r))
970 			goto out_free_user_pages;
971 	}
972 
973 	if (p->uf_bo) {
974 		r = amdgpu_ttm_alloc_gart(&p->uf_bo->tbo);
975 		if (unlikely(r))
976 			goto out_free_user_pages;
977 
978 		p->gang_leader->uf_addr += amdgpu_bo_gpu_offset(p->uf_bo);
979 	}
980 
981 	amdgpu_cs_report_moved_bytes(p->adev, p->bytes_moved,
982 				     p->bytes_moved_vis);
983 
984 	for (i = 0; i < p->gang_size; ++i)
985 		amdgpu_job_set_resources(p->jobs[i], p->bo_list->gds_obj,
986 					 p->bo_list->gws_obj,
987 					 p->bo_list->oa_obj);
988 	return 0;
989 
990 out_free_user_pages:
991 	amdgpu_bo_list_for_each_userptr_entry(e, p->bo_list) {
992 		struct amdgpu_bo *bo = e->bo;
993 
994 		if (!e->user_pages)
995 			continue;
996 		amdgpu_ttm_tt_get_user_pages_done(bo->tbo.ttm, e->range);
997 		kvfree(e->user_pages);
998 		e->user_pages = NULL;
999 		e->range = NULL;
1000 	}
1001 	mutex_unlock(&p->bo_list->bo_list_mutex);
1002 	return r;
1003 }
1004 
1005 static void trace_amdgpu_cs_ibs(struct amdgpu_cs_parser *p)
1006 {
1007 	int i, j;
1008 
1009 	if (!trace_amdgpu_cs_enabled())
1010 		return;
1011 
1012 	for (i = 0; i < p->gang_size; ++i) {
1013 		struct amdgpu_job *job = p->jobs[i];
1014 
1015 		for (j = 0; j < job->num_ibs; ++j)
1016 			trace_amdgpu_cs(p, job, &job->ibs[j]);
1017 	}
1018 }
1019 
1020 static int amdgpu_cs_patch_ibs(struct amdgpu_cs_parser *p,
1021 			       struct amdgpu_job *job)
1022 {
1023 	struct amdgpu_ring *ring = amdgpu_job_ring(job);
1024 	unsigned int i;
1025 	int r;
1026 
1027 	/* Only for UVD/VCE VM emulation */
1028 	if (!ring->funcs->parse_cs && !ring->funcs->patch_cs_in_place)
1029 		return 0;
1030 
1031 	for (i = 0; i < job->num_ibs; ++i) {
1032 		struct amdgpu_ib *ib = &job->ibs[i];
1033 		struct amdgpu_bo_va_mapping *m;
1034 		struct amdgpu_bo *aobj;
1035 		uint64_t va_start;
1036 		uint8_t *kptr;
1037 
1038 		va_start = ib->gpu_addr & AMDGPU_GMC_HOLE_MASK;
1039 		r = amdgpu_cs_find_mapping(p, va_start, &aobj, &m);
1040 		if (r) {
1041 			DRM_ERROR("IB va_start is invalid\n");
1042 			return r;
1043 		}
1044 
1045 		if ((va_start + ib->length_dw * 4) >
1046 		    (m->last + 1) * AMDGPU_GPU_PAGE_SIZE) {
1047 			DRM_ERROR("IB va_start+ib_bytes is invalid\n");
1048 			return -EINVAL;
1049 		}
1050 
1051 		/* the IB should be reserved at this point */
1052 		r = amdgpu_bo_kmap(aobj, (void **)&kptr);
1053 		if (r)
1054 			return r;
1055 
1056 		kptr += va_start - (m->start * AMDGPU_GPU_PAGE_SIZE);
1057 
1058 		if (ring->funcs->parse_cs) {
1059 			memcpy(ib->ptr, kptr, ib->length_dw * 4);
1060 			amdgpu_bo_kunmap(aobj);
1061 
1062 			r = amdgpu_ring_parse_cs(ring, p, job, ib);
1063 			if (r)
1064 				return r;
1065 
1066 			if (ib->sa_bo)
1067 				ib->gpu_addr =  amdgpu_sa_bo_gpu_addr(ib->sa_bo);
1068 		} else {
1069 			ib->ptr = (uint32_t *)kptr;
1070 			r = amdgpu_ring_patch_cs_in_place(ring, p, job, ib);
1071 			amdgpu_bo_kunmap(aobj);
1072 			if (r)
1073 				return r;
1074 		}
1075 	}
1076 
1077 	return 0;
1078 }
1079 
1080 static int amdgpu_cs_patch_jobs(struct amdgpu_cs_parser *p)
1081 {
1082 	unsigned int i;
1083 	int r;
1084 
1085 	for (i = 0; i < p->gang_size; ++i) {
1086 		r = amdgpu_cs_patch_ibs(p, p->jobs[i]);
1087 		if (r)
1088 			return r;
1089 	}
1090 	return 0;
1091 }
1092 
1093 static int amdgpu_cs_vm_handling(struct amdgpu_cs_parser *p)
1094 {
1095 	struct amdgpu_fpriv *fpriv = p->filp->driver_priv;
1096 	struct amdgpu_job *job = p->gang_leader;
1097 	struct amdgpu_device *adev = p->adev;
1098 	struct amdgpu_vm *vm = &fpriv->vm;
1099 	struct amdgpu_bo_list_entry *e;
1100 	struct amdgpu_bo_va *bo_va;
1101 	unsigned int i;
1102 	int r;
1103 
1104 	/*
1105 	 * We can't use gang submit on with reserved VMIDs when the VM changes
1106 	 * can't be invalidated by more than one engine at the same time.
1107 	 */
1108 	if (p->gang_size > 1 && !p->adev->vm_manager.concurrent_flush) {
1109 		for (i = 0; i < p->gang_size; ++i) {
1110 			struct drm_sched_entity *entity = p->entities[i];
1111 			struct drm_gpu_scheduler *sched = entity->rq->sched;
1112 			struct amdgpu_ring *ring = to_amdgpu_ring(sched);
1113 
1114 			if (amdgpu_vmid_uses_reserved(adev, vm, ring->vm_hub))
1115 				return -EINVAL;
1116 		}
1117 	}
1118 
1119 	r = amdgpu_vm_clear_freed(adev, vm, NULL);
1120 	if (r)
1121 		return r;
1122 
1123 	r = amdgpu_vm_bo_update(adev, fpriv->prt_va, false);
1124 	if (r)
1125 		return r;
1126 
1127 	r = amdgpu_sync_fence(&p->sync, fpriv->prt_va->last_pt_update);
1128 	if (r)
1129 		return r;
1130 
1131 	if (fpriv->csa_va) {
1132 		bo_va = fpriv->csa_va;
1133 		BUG_ON(!bo_va);
1134 		r = amdgpu_vm_bo_update(adev, bo_va, false);
1135 		if (r)
1136 			return r;
1137 
1138 		r = amdgpu_sync_fence(&p->sync, bo_va->last_pt_update);
1139 		if (r)
1140 			return r;
1141 	}
1142 
1143 	/* FIXME: In theory this loop shouldn't be needed any more when
1144 	 * amdgpu_vm_handle_moved handles all moved BOs that are reserved
1145 	 * with p->ticket. But removing it caused test regressions, so I'm
1146 	 * leaving it here for now.
1147 	 */
1148 	amdgpu_bo_list_for_each_entry(e, p->bo_list) {
1149 		bo_va = e->bo_va;
1150 		if (bo_va == NULL)
1151 			continue;
1152 
1153 		r = amdgpu_vm_bo_update(adev, bo_va, false);
1154 		if (r)
1155 			return r;
1156 
1157 		r = amdgpu_sync_fence(&p->sync, bo_va->last_pt_update);
1158 		if (r)
1159 			return r;
1160 	}
1161 
1162 	r = amdgpu_vm_handle_moved(adev, vm, &p->exec.ticket);
1163 	if (r)
1164 		return r;
1165 
1166 	r = amdgpu_vm_update_pdes(adev, vm, false);
1167 	if (r)
1168 		return r;
1169 
1170 	r = amdgpu_sync_fence(&p->sync, vm->last_update);
1171 	if (r)
1172 		return r;
1173 
1174 	for (i = 0; i < p->gang_size; ++i) {
1175 		job = p->jobs[i];
1176 
1177 		if (!job->vm)
1178 			continue;
1179 
1180 		job->vm_pd_addr = amdgpu_gmc_pd_addr(vm->root.bo);
1181 	}
1182 
1183 	if (adev->debug_vm) {
1184 		/* Invalidate all BOs to test for userspace bugs */
1185 		amdgpu_bo_list_for_each_entry(e, p->bo_list) {
1186 			struct amdgpu_bo *bo = e->bo;
1187 
1188 			/* ignore duplicates */
1189 			if (!bo)
1190 				continue;
1191 
1192 			amdgpu_vm_bo_invalidate(adev, bo, false);
1193 		}
1194 	}
1195 
1196 	return 0;
1197 }
1198 
1199 static int amdgpu_cs_sync_rings(struct amdgpu_cs_parser *p)
1200 {
1201 	struct amdgpu_fpriv *fpriv = p->filp->driver_priv;
1202 	struct drm_gpu_scheduler *sched;
1203 	struct drm_gem_object *obj;
1204 	struct dma_fence *fence;
1205 	unsigned long index;
1206 	unsigned int i;
1207 	int r;
1208 
1209 	r = amdgpu_ctx_wait_prev_fence(p->ctx, p->entities[p->gang_leader_idx]);
1210 	if (r) {
1211 		if (r != -ERESTARTSYS)
1212 			DRM_ERROR("amdgpu_ctx_wait_prev_fence failed.\n");
1213 		return r;
1214 	}
1215 
1216 	drm_exec_for_each_locked_object(&p->exec, index, obj) {
1217 		struct amdgpu_bo *bo = gem_to_amdgpu_bo(obj);
1218 
1219 		struct dma_resv *resv = bo->tbo.base.resv;
1220 		enum amdgpu_sync_mode sync_mode;
1221 
1222 		sync_mode = amdgpu_bo_explicit_sync(bo) ?
1223 			AMDGPU_SYNC_EXPLICIT : AMDGPU_SYNC_NE_OWNER;
1224 		r = amdgpu_sync_resv(p->adev, &p->sync, resv, sync_mode,
1225 				     &fpriv->vm);
1226 		if (r)
1227 			return r;
1228 	}
1229 
1230 	for (i = 0; i < p->gang_size; ++i) {
1231 		r = amdgpu_sync_push_to_job(&p->sync, p->jobs[i]);
1232 		if (r)
1233 			return r;
1234 	}
1235 
1236 	sched = p->gang_leader->base.entity->rq->sched;
1237 	while ((fence = amdgpu_sync_get_fence(&p->sync))) {
1238 		struct drm_sched_fence *s_fence = to_drm_sched_fence(fence);
1239 
1240 		/*
1241 		 * When we have an dependency it might be necessary to insert a
1242 		 * pipeline sync to make sure that all caches etc are flushed and the
1243 		 * next job actually sees the results from the previous one
1244 		 * before we start executing on the same scheduler ring.
1245 		 */
1246 		if (!s_fence || s_fence->sched != sched) {
1247 			dma_fence_put(fence);
1248 			continue;
1249 		}
1250 
1251 		r = amdgpu_sync_fence(&p->gang_leader->explicit_sync, fence);
1252 		dma_fence_put(fence);
1253 		if (r)
1254 			return r;
1255 	}
1256 	return 0;
1257 }
1258 
1259 static void amdgpu_cs_post_dependencies(struct amdgpu_cs_parser *p)
1260 {
1261 	int i;
1262 
1263 	for (i = 0; i < p->num_post_deps; ++i) {
1264 		if (p->post_deps[i].chain && p->post_deps[i].point) {
1265 			drm_syncobj_add_point(p->post_deps[i].syncobj,
1266 					      p->post_deps[i].chain,
1267 					      p->fence, p->post_deps[i].point);
1268 			p->post_deps[i].chain = NULL;
1269 		} else {
1270 			drm_syncobj_replace_fence(p->post_deps[i].syncobj,
1271 						  p->fence);
1272 		}
1273 	}
1274 }
1275 
1276 static int amdgpu_cs_submit(struct amdgpu_cs_parser *p,
1277 			    union drm_amdgpu_cs *cs)
1278 {
1279 	struct amdgpu_fpriv *fpriv = p->filp->driver_priv;
1280 	struct amdgpu_job *leader = p->gang_leader;
1281 	struct amdgpu_bo_list_entry *e;
1282 	struct drm_gem_object *gobj;
1283 	unsigned long index;
1284 	unsigned int i;
1285 	uint64_t seq;
1286 	int r;
1287 
1288 	for (i = 0; i < p->gang_size; ++i)
1289 		drm_sched_job_arm(&p->jobs[i]->base);
1290 
1291 	for (i = 0; i < p->gang_size; ++i) {
1292 		struct dma_fence *fence;
1293 
1294 		if (p->jobs[i] == leader)
1295 			continue;
1296 
1297 		fence = &p->jobs[i]->base.s_fence->scheduled;
1298 		dma_fence_get(fence);
1299 		r = drm_sched_job_add_dependency(&leader->base, fence);
1300 		if (r) {
1301 			dma_fence_put(fence);
1302 			return r;
1303 		}
1304 	}
1305 
1306 	if (p->gang_size > 1) {
1307 		for (i = 0; i < p->gang_size; ++i)
1308 			amdgpu_job_set_gang_leader(p->jobs[i], leader);
1309 	}
1310 
1311 	/* No memory allocation is allowed while holding the notifier lock.
1312 	 * The lock is held until amdgpu_cs_submit is finished and fence is
1313 	 * added to BOs.
1314 	 */
1315 	mutex_lock(&p->adev->notifier_lock);
1316 
1317 	/* If userptr are invalidated after amdgpu_cs_parser_bos(), return
1318 	 * -EAGAIN, drmIoctl in libdrm will restart the amdgpu_cs_ioctl.
1319 	 */
1320 	r = 0;
1321 	amdgpu_bo_list_for_each_userptr_entry(e, p->bo_list) {
1322 		r |= !amdgpu_ttm_tt_get_user_pages_done(e->bo->tbo.ttm,
1323 							e->range);
1324 		e->range = NULL;
1325 	}
1326 	if (r) {
1327 		r = -EAGAIN;
1328 		mutex_unlock(&p->adev->notifier_lock);
1329 		return r;
1330 	}
1331 
1332 	p->fence = dma_fence_get(&leader->base.s_fence->finished);
1333 	drm_exec_for_each_locked_object(&p->exec, index, gobj) {
1334 
1335 		ttm_bo_move_to_lru_tail_unlocked(&gem_to_amdgpu_bo(gobj)->tbo);
1336 
1337 		/* Everybody except for the gang leader uses READ */
1338 		for (i = 0; i < p->gang_size; ++i) {
1339 			if (p->jobs[i] == leader)
1340 				continue;
1341 
1342 			dma_resv_add_fence(gobj->resv,
1343 					   &p->jobs[i]->base.s_fence->finished,
1344 					   DMA_RESV_USAGE_READ);
1345 		}
1346 
1347 		/* The gang leader as remembered as writer */
1348 		dma_resv_add_fence(gobj->resv, p->fence, DMA_RESV_USAGE_WRITE);
1349 	}
1350 
1351 	seq = amdgpu_ctx_add_fence(p->ctx, p->entities[p->gang_leader_idx],
1352 				   p->fence);
1353 	amdgpu_cs_post_dependencies(p);
1354 
1355 	if ((leader->preamble_status & AMDGPU_PREAMBLE_IB_PRESENT) &&
1356 	    !p->ctx->preamble_presented) {
1357 		leader->preamble_status |= AMDGPU_PREAMBLE_IB_PRESENT_FIRST;
1358 		p->ctx->preamble_presented = true;
1359 	}
1360 
1361 	cs->out.handle = seq;
1362 	leader->uf_sequence = seq;
1363 
1364 	amdgpu_vm_bo_trace_cs(&fpriv->vm, &p->exec.ticket);
1365 	for (i = 0; i < p->gang_size; ++i) {
1366 		amdgpu_job_free_resources(p->jobs[i]);
1367 		trace_amdgpu_cs_ioctl(p->jobs[i]);
1368 		drm_sched_entity_push_job(&p->jobs[i]->base);
1369 		p->jobs[i] = NULL;
1370 	}
1371 
1372 	amdgpu_vm_move_to_lru_tail(p->adev, &fpriv->vm);
1373 
1374 	mutex_unlock(&p->adev->notifier_lock);
1375 	mutex_unlock(&p->bo_list->bo_list_mutex);
1376 	return 0;
1377 }
1378 
1379 /* Cleanup the parser structure */
1380 static void amdgpu_cs_parser_fini(struct amdgpu_cs_parser *parser)
1381 {
1382 	unsigned int i;
1383 
1384 	amdgpu_sync_free(&parser->sync);
1385 	drm_exec_fini(&parser->exec);
1386 
1387 	for (i = 0; i < parser->num_post_deps; i++) {
1388 		drm_syncobj_put(parser->post_deps[i].syncobj);
1389 		kfree(parser->post_deps[i].chain);
1390 	}
1391 	kfree(parser->post_deps);
1392 
1393 	dma_fence_put(parser->fence);
1394 
1395 	if (parser->ctx)
1396 		amdgpu_ctx_put(parser->ctx);
1397 	if (parser->bo_list)
1398 		amdgpu_bo_list_put(parser->bo_list);
1399 
1400 	for (i = 0; i < parser->nchunks; i++)
1401 		kvfree(parser->chunks[i].kdata);
1402 	kvfree(parser->chunks);
1403 	for (i = 0; i < parser->gang_size; ++i) {
1404 		if (parser->jobs[i])
1405 			amdgpu_job_free(parser->jobs[i]);
1406 	}
1407 	amdgpu_bo_unref(&parser->uf_bo);
1408 }
1409 
1410 int amdgpu_cs_ioctl(struct drm_device *dev, void *data, struct drm_file *filp)
1411 {
1412 	struct amdgpu_device *adev = drm_to_adev(dev);
1413 	struct amdgpu_cs_parser parser;
1414 	int r;
1415 
1416 	if (amdgpu_ras_intr_triggered())
1417 		return -EHWPOISON;
1418 
1419 	if (!adev->accel_working)
1420 		return -EBUSY;
1421 
1422 	r = amdgpu_cs_parser_init(&parser, adev, filp, data);
1423 	if (r) {
1424 		DRM_ERROR_RATELIMITED("Failed to initialize parser %d!\n", r);
1425 		return r;
1426 	}
1427 
1428 	r = amdgpu_cs_pass1(&parser, data);
1429 	if (r)
1430 		goto error_fini;
1431 
1432 	r = amdgpu_cs_pass2(&parser);
1433 	if (r)
1434 		goto error_fini;
1435 
1436 	r = amdgpu_cs_parser_bos(&parser, data);
1437 	if (r) {
1438 		if (r == -ENOMEM)
1439 			DRM_ERROR("Not enough memory for command submission!\n");
1440 		else if (r != -ERESTARTSYS && r != -EAGAIN)
1441 			DRM_DEBUG("Failed to process the buffer list %d!\n", r);
1442 		goto error_fini;
1443 	}
1444 
1445 	r = amdgpu_cs_patch_jobs(&parser);
1446 	if (r)
1447 		goto error_backoff;
1448 
1449 	r = amdgpu_cs_vm_handling(&parser);
1450 	if (r)
1451 		goto error_backoff;
1452 
1453 	r = amdgpu_cs_sync_rings(&parser);
1454 	if (r)
1455 		goto error_backoff;
1456 
1457 	trace_amdgpu_cs_ibs(&parser);
1458 
1459 	r = amdgpu_cs_submit(&parser, data);
1460 	if (r)
1461 		goto error_backoff;
1462 
1463 	amdgpu_cs_parser_fini(&parser);
1464 	return 0;
1465 
1466 error_backoff:
1467 	mutex_unlock(&parser.bo_list->bo_list_mutex);
1468 
1469 error_fini:
1470 	amdgpu_cs_parser_fini(&parser);
1471 	return r;
1472 }
1473 
1474 /**
1475  * amdgpu_cs_wait_ioctl - wait for a command submission to finish
1476  *
1477  * @dev: drm device
1478  * @data: data from userspace
1479  * @filp: file private
1480  *
1481  * Wait for the command submission identified by handle to finish.
1482  */
1483 int amdgpu_cs_wait_ioctl(struct drm_device *dev, void *data,
1484 			 struct drm_file *filp)
1485 {
1486 	union drm_amdgpu_wait_cs *wait = data;
1487 	unsigned long timeout = amdgpu_gem_timeout(wait->in.timeout);
1488 	struct drm_sched_entity *entity;
1489 	struct amdgpu_ctx *ctx;
1490 	struct dma_fence *fence;
1491 	long r;
1492 
1493 	ctx = amdgpu_ctx_get(filp->driver_priv, wait->in.ctx_id);
1494 	if (ctx == NULL)
1495 		return -EINVAL;
1496 
1497 	r = amdgpu_ctx_get_entity(ctx, wait->in.ip_type, wait->in.ip_instance,
1498 				  wait->in.ring, &entity);
1499 	if (r) {
1500 		amdgpu_ctx_put(ctx);
1501 		return r;
1502 	}
1503 
1504 	fence = amdgpu_ctx_get_fence(ctx, entity, wait->in.handle);
1505 	if (IS_ERR(fence))
1506 		r = PTR_ERR(fence);
1507 	else if (fence) {
1508 		r = dma_fence_wait_timeout(fence, true, timeout);
1509 		if (r > 0 && fence->error)
1510 			r = fence->error;
1511 		dma_fence_put(fence);
1512 	} else
1513 		r = 1;
1514 
1515 	amdgpu_ctx_put(ctx);
1516 	if (r < 0)
1517 		return r;
1518 
1519 	memset(wait, 0, sizeof(*wait));
1520 	wait->out.status = (r == 0);
1521 
1522 	return 0;
1523 }
1524 
1525 /**
1526  * amdgpu_cs_get_fence - helper to get fence from drm_amdgpu_fence
1527  *
1528  * @adev: amdgpu device
1529  * @filp: file private
1530  * @user: drm_amdgpu_fence copied from user space
1531  */
1532 static struct dma_fence *amdgpu_cs_get_fence(struct amdgpu_device *adev,
1533 					     struct drm_file *filp,
1534 					     struct drm_amdgpu_fence *user)
1535 {
1536 	struct drm_sched_entity *entity;
1537 	struct amdgpu_ctx *ctx;
1538 	struct dma_fence *fence;
1539 	int r;
1540 
1541 	ctx = amdgpu_ctx_get(filp->driver_priv, user->ctx_id);
1542 	if (ctx == NULL)
1543 		return ERR_PTR(-EINVAL);
1544 
1545 	r = amdgpu_ctx_get_entity(ctx, user->ip_type, user->ip_instance,
1546 				  user->ring, &entity);
1547 	if (r) {
1548 		amdgpu_ctx_put(ctx);
1549 		return ERR_PTR(r);
1550 	}
1551 
1552 	fence = amdgpu_ctx_get_fence(ctx, entity, user->seq_no);
1553 	amdgpu_ctx_put(ctx);
1554 
1555 	return fence;
1556 }
1557 
1558 int amdgpu_cs_fence_to_handle_ioctl(struct drm_device *dev, void *data,
1559 				    struct drm_file *filp)
1560 {
1561 	struct amdgpu_device *adev = drm_to_adev(dev);
1562 	union drm_amdgpu_fence_to_handle *info = data;
1563 	struct dma_fence *fence;
1564 	struct drm_syncobj *syncobj;
1565 	struct sync_file *sync_file;
1566 	int fd, r;
1567 
1568 	fence = amdgpu_cs_get_fence(adev, filp, &info->in.fence);
1569 	if (IS_ERR(fence))
1570 		return PTR_ERR(fence);
1571 
1572 	if (!fence)
1573 		fence = dma_fence_get_stub();
1574 
1575 	switch (info->in.what) {
1576 	case AMDGPU_FENCE_TO_HANDLE_GET_SYNCOBJ:
1577 		r = drm_syncobj_create(&syncobj, 0, fence);
1578 		dma_fence_put(fence);
1579 		if (r)
1580 			return r;
1581 		r = drm_syncobj_get_handle(filp, syncobj, &info->out.handle);
1582 		drm_syncobj_put(syncobj);
1583 		return r;
1584 
1585 	case AMDGPU_FENCE_TO_HANDLE_GET_SYNCOBJ_FD:
1586 		r = drm_syncobj_create(&syncobj, 0, fence);
1587 		dma_fence_put(fence);
1588 		if (r)
1589 			return r;
1590 		r = drm_syncobj_get_fd(syncobj, (int *)&info->out.handle);
1591 		drm_syncobj_put(syncobj);
1592 		return r;
1593 
1594 	case AMDGPU_FENCE_TO_HANDLE_GET_SYNC_FILE_FD:
1595 		fd = get_unused_fd_flags(O_CLOEXEC);
1596 		if (fd < 0) {
1597 			dma_fence_put(fence);
1598 			return fd;
1599 		}
1600 
1601 		sync_file = sync_file_create(fence);
1602 		dma_fence_put(fence);
1603 		if (!sync_file) {
1604 			put_unused_fd(fd);
1605 			return -ENOMEM;
1606 		}
1607 
1608 		fd_install(fd, sync_file->file);
1609 		info->out.handle = fd;
1610 		return 0;
1611 
1612 	default:
1613 		dma_fence_put(fence);
1614 		return -EINVAL;
1615 	}
1616 }
1617 
1618 /**
1619  * amdgpu_cs_wait_all_fences - wait on all fences to signal
1620  *
1621  * @adev: amdgpu device
1622  * @filp: file private
1623  * @wait: wait parameters
1624  * @fences: array of drm_amdgpu_fence
1625  */
1626 static int amdgpu_cs_wait_all_fences(struct amdgpu_device *adev,
1627 				     struct drm_file *filp,
1628 				     union drm_amdgpu_wait_fences *wait,
1629 				     struct drm_amdgpu_fence *fences)
1630 {
1631 	uint32_t fence_count = wait->in.fence_count;
1632 	unsigned int i;
1633 	long r = 1;
1634 
1635 	for (i = 0; i < fence_count; i++) {
1636 		struct dma_fence *fence;
1637 		unsigned long timeout = amdgpu_gem_timeout(wait->in.timeout_ns);
1638 
1639 		fence = amdgpu_cs_get_fence(adev, filp, &fences[i]);
1640 		if (IS_ERR(fence))
1641 			return PTR_ERR(fence);
1642 		else if (!fence)
1643 			continue;
1644 
1645 		r = dma_fence_wait_timeout(fence, true, timeout);
1646 		if (r > 0 && fence->error)
1647 			r = fence->error;
1648 
1649 		dma_fence_put(fence);
1650 		if (r < 0)
1651 			return r;
1652 
1653 		if (r == 0)
1654 			break;
1655 	}
1656 
1657 	memset(wait, 0, sizeof(*wait));
1658 	wait->out.status = (r > 0);
1659 
1660 	return 0;
1661 }
1662 
1663 /**
1664  * amdgpu_cs_wait_any_fence - wait on any fence to signal
1665  *
1666  * @adev: amdgpu device
1667  * @filp: file private
1668  * @wait: wait parameters
1669  * @fences: array of drm_amdgpu_fence
1670  */
1671 static int amdgpu_cs_wait_any_fence(struct amdgpu_device *adev,
1672 				    struct drm_file *filp,
1673 				    union drm_amdgpu_wait_fences *wait,
1674 				    struct drm_amdgpu_fence *fences)
1675 {
1676 	unsigned long timeout = amdgpu_gem_timeout(wait->in.timeout_ns);
1677 	uint32_t fence_count = wait->in.fence_count;
1678 	uint32_t first = ~0;
1679 	struct dma_fence **array;
1680 	unsigned int i;
1681 	long r;
1682 
1683 	/* Prepare the fence array */
1684 	array = kcalloc(fence_count, sizeof(struct dma_fence *), GFP_KERNEL);
1685 
1686 	if (array == NULL)
1687 		return -ENOMEM;
1688 
1689 	for (i = 0; i < fence_count; i++) {
1690 		struct dma_fence *fence;
1691 
1692 		fence = amdgpu_cs_get_fence(adev, filp, &fences[i]);
1693 		if (IS_ERR(fence)) {
1694 			r = PTR_ERR(fence);
1695 			goto err_free_fence_array;
1696 		} else if (fence) {
1697 			array[i] = fence;
1698 		} else { /* NULL, the fence has been already signaled */
1699 			r = 1;
1700 			first = i;
1701 			goto out;
1702 		}
1703 	}
1704 
1705 	r = dma_fence_wait_any_timeout(array, fence_count, true, timeout,
1706 				       &first);
1707 	if (r < 0)
1708 		goto err_free_fence_array;
1709 
1710 out:
1711 	memset(wait, 0, sizeof(*wait));
1712 	wait->out.status = (r > 0);
1713 	wait->out.first_signaled = first;
1714 
1715 	if (first < fence_count && array[first])
1716 		r = array[first]->error;
1717 	else
1718 		r = 0;
1719 
1720 err_free_fence_array:
1721 	for (i = 0; i < fence_count; i++)
1722 		dma_fence_put(array[i]);
1723 	kfree(array);
1724 
1725 	return r;
1726 }
1727 
1728 /**
1729  * amdgpu_cs_wait_fences_ioctl - wait for multiple command submissions to finish
1730  *
1731  * @dev: drm device
1732  * @data: data from userspace
1733  * @filp: file private
1734  */
1735 int amdgpu_cs_wait_fences_ioctl(struct drm_device *dev, void *data,
1736 				struct drm_file *filp)
1737 {
1738 	struct amdgpu_device *adev = drm_to_adev(dev);
1739 	union drm_amdgpu_wait_fences *wait = data;
1740 	uint32_t fence_count = wait->in.fence_count;
1741 	struct drm_amdgpu_fence *fences_user;
1742 	struct drm_amdgpu_fence *fences;
1743 	int r;
1744 
1745 	/* Get the fences from userspace */
1746 	fences = kmalloc_array(fence_count, sizeof(struct drm_amdgpu_fence),
1747 			GFP_KERNEL);
1748 	if (fences == NULL)
1749 		return -ENOMEM;
1750 
1751 	fences_user = u64_to_user_ptr(wait->in.fences);
1752 	if (copy_from_user(fences, fences_user,
1753 		sizeof(struct drm_amdgpu_fence) * fence_count)) {
1754 		r = -EFAULT;
1755 		goto err_free_fences;
1756 	}
1757 
1758 	if (wait->in.wait_all)
1759 		r = amdgpu_cs_wait_all_fences(adev, filp, wait, fences);
1760 	else
1761 		r = amdgpu_cs_wait_any_fence(adev, filp, wait, fences);
1762 
1763 err_free_fences:
1764 	kfree(fences);
1765 
1766 	return r;
1767 }
1768 
1769 /**
1770  * amdgpu_cs_find_mapping - find bo_va for VM address
1771  *
1772  * @parser: command submission parser context
1773  * @addr: VM address
1774  * @bo: resulting BO of the mapping found
1775  * @map: Placeholder to return found BO mapping
1776  *
1777  * Search the buffer objects in the command submission context for a certain
1778  * virtual memory address. Returns allocation structure when found, NULL
1779  * otherwise.
1780  */
1781 int amdgpu_cs_find_mapping(struct amdgpu_cs_parser *parser,
1782 			   uint64_t addr, struct amdgpu_bo **bo,
1783 			   struct amdgpu_bo_va_mapping **map)
1784 {
1785 	struct amdgpu_fpriv *fpriv = parser->filp->driver_priv;
1786 	struct ttm_operation_ctx ctx = { false, false };
1787 	struct amdgpu_vm *vm = &fpriv->vm;
1788 	struct amdgpu_bo_va_mapping *mapping;
1789 	int i, r;
1790 
1791 	addr /= AMDGPU_GPU_PAGE_SIZE;
1792 
1793 	mapping = amdgpu_vm_bo_lookup_mapping(vm, addr);
1794 	if (!mapping || !mapping->bo_va || !mapping->bo_va->base.bo)
1795 		return -EINVAL;
1796 
1797 	*bo = mapping->bo_va->base.bo;
1798 	*map = mapping;
1799 
1800 	/* Double check that the BO is reserved by this CS */
1801 	if (dma_resv_locking_ctx((*bo)->tbo.base.resv) != &parser->exec.ticket)
1802 		return -EINVAL;
1803 
1804 	/* Make sure VRAM is allocated contigiously */
1805 	(*bo)->flags |= AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS;
1806 	if ((*bo)->tbo.resource->mem_type == TTM_PL_VRAM &&
1807 	    !((*bo)->tbo.resource->placement & TTM_PL_FLAG_CONTIGUOUS)) {
1808 
1809 		amdgpu_bo_placement_from_domain(*bo, (*bo)->allowed_domains);
1810 		for (i = 0; i < (*bo)->placement.num_placement; i++)
1811 			(*bo)->placements[i].flags |= TTM_PL_FLAG_CONTIGUOUS;
1812 		r = ttm_bo_validate(&(*bo)->tbo, &(*bo)->placement, &ctx);
1813 		if (r)
1814 			return r;
1815 	}
1816 
1817 	return amdgpu_ttm_alloc_gart(&(*bo)->tbo);
1818 }
1819