1 /* 2 * Copyright 2008 Jerome Glisse. 3 * All Rights Reserved. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice (including the next 13 * paragraph) shall be included in all copies or substantial portions of the 14 * Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 22 * DEALINGS IN THE SOFTWARE. 23 * 24 * Authors: 25 * Jerome Glisse <glisse@freedesktop.org> 26 */ 27 28 #include <linux/file.h> 29 #include <linux/pagemap.h> 30 #include <linux/sync_file.h> 31 #include <linux/dma-buf.h> 32 33 #include <drm/amdgpu_drm.h> 34 #include <drm/drm_syncobj.h> 35 #include <drm/ttm/ttm_tt.h> 36 37 #include "amdgpu_cs.h" 38 #include "amdgpu.h" 39 #include "amdgpu_trace.h" 40 #include "amdgpu_gmc.h" 41 #include "amdgpu_gem.h" 42 #include "amdgpu_ras.h" 43 44 static int amdgpu_cs_parser_init(struct amdgpu_cs_parser *p, 45 struct amdgpu_device *adev, 46 struct drm_file *filp, 47 union drm_amdgpu_cs *cs) 48 { 49 struct amdgpu_fpriv *fpriv = filp->driver_priv; 50 51 if (cs->in.num_chunks == 0) 52 return -EINVAL; 53 54 memset(p, 0, sizeof(*p)); 55 p->adev = adev; 56 p->filp = filp; 57 58 p->ctx = amdgpu_ctx_get(fpriv, cs->in.ctx_id); 59 if (!p->ctx) 60 return -EINVAL; 61 62 if (atomic_read(&p->ctx->guilty)) { 63 amdgpu_ctx_put(p->ctx); 64 return -ECANCELED; 65 } 66 67 amdgpu_sync_create(&p->sync); 68 drm_exec_init(&p->exec, DRM_EXEC_INTERRUPTIBLE_WAIT | 69 DRM_EXEC_IGNORE_DUPLICATES, 0); 70 return 0; 71 } 72 73 static int amdgpu_cs_job_idx(struct amdgpu_cs_parser *p, 74 struct drm_amdgpu_cs_chunk_ib *chunk_ib) 75 { 76 struct drm_sched_entity *entity; 77 unsigned int i; 78 int r; 79 80 r = amdgpu_ctx_get_entity(p->ctx, chunk_ib->ip_type, 81 chunk_ib->ip_instance, 82 chunk_ib->ring, &entity); 83 if (r) 84 return r; 85 86 /* 87 * Abort if there is no run queue associated with this entity. 88 * Possibly because of disabled HW IP. 89 */ 90 if (entity->rq == NULL) 91 return -EINVAL; 92 93 /* Check if we can add this IB to some existing job */ 94 for (i = 0; i < p->gang_size; ++i) 95 if (p->entities[i] == entity) 96 return i; 97 98 /* If not increase the gang size if possible */ 99 if (i == AMDGPU_CS_GANG_SIZE) 100 return -EINVAL; 101 102 p->entities[i] = entity; 103 p->gang_size = i + 1; 104 return i; 105 } 106 107 static int amdgpu_cs_p1_ib(struct amdgpu_cs_parser *p, 108 struct drm_amdgpu_cs_chunk_ib *chunk_ib, 109 unsigned int *num_ibs) 110 { 111 int r; 112 113 r = amdgpu_cs_job_idx(p, chunk_ib); 114 if (r < 0) 115 return r; 116 117 if (num_ibs[r] >= amdgpu_ring_max_ibs(chunk_ib->ip_type)) 118 return -EINVAL; 119 120 ++(num_ibs[r]); 121 p->gang_leader_idx = r; 122 return 0; 123 } 124 125 static int amdgpu_cs_p1_user_fence(struct amdgpu_cs_parser *p, 126 struct drm_amdgpu_cs_chunk_fence *data, 127 uint32_t *offset) 128 { 129 struct drm_gem_object *gobj; 130 unsigned long size; 131 132 gobj = drm_gem_object_lookup(p->filp, data->handle); 133 if (gobj == NULL) 134 return -EINVAL; 135 136 p->uf_bo = amdgpu_bo_ref(gem_to_amdgpu_bo(gobj)); 137 drm_gem_object_put(gobj); 138 139 size = amdgpu_bo_size(p->uf_bo); 140 if (size != PAGE_SIZE || data->offset > (size - 8)) 141 return -EINVAL; 142 143 if (amdgpu_ttm_tt_get_usermm(p->uf_bo->tbo.ttm)) 144 return -EINVAL; 145 146 *offset = data->offset; 147 return 0; 148 } 149 150 static int amdgpu_cs_p1_bo_handles(struct amdgpu_cs_parser *p, 151 struct drm_amdgpu_bo_list_in *data) 152 { 153 struct drm_amdgpu_bo_list_entry *info; 154 int r; 155 156 r = amdgpu_bo_create_list_entry_array(data, &info); 157 if (r) 158 return r; 159 160 r = amdgpu_bo_list_create(p->adev, p->filp, info, data->bo_number, 161 &p->bo_list); 162 if (r) 163 goto error_free; 164 165 kvfree(info); 166 return 0; 167 168 error_free: 169 kvfree(info); 170 171 return r; 172 } 173 174 /* Copy the data from userspace and go over it the first time */ 175 static int amdgpu_cs_pass1(struct amdgpu_cs_parser *p, 176 union drm_amdgpu_cs *cs) 177 { 178 struct amdgpu_fpriv *fpriv = p->filp->driver_priv; 179 unsigned int num_ibs[AMDGPU_CS_GANG_SIZE] = { }; 180 struct amdgpu_vm *vm = &fpriv->vm; 181 uint64_t *chunk_array_user; 182 uint64_t *chunk_array; 183 uint32_t uf_offset = 0; 184 size_t size; 185 int ret; 186 int i; 187 188 chunk_array = kvmalloc_array(cs->in.num_chunks, sizeof(uint64_t), 189 GFP_KERNEL); 190 if (!chunk_array) 191 return -ENOMEM; 192 193 /* get chunks */ 194 chunk_array_user = u64_to_user_ptr(cs->in.chunks); 195 if (copy_from_user(chunk_array, chunk_array_user, 196 sizeof(uint64_t)*cs->in.num_chunks)) { 197 ret = -EFAULT; 198 goto free_chunk; 199 } 200 201 p->nchunks = cs->in.num_chunks; 202 p->chunks = kvmalloc_array(p->nchunks, sizeof(struct amdgpu_cs_chunk), 203 GFP_KERNEL); 204 if (!p->chunks) { 205 ret = -ENOMEM; 206 goto free_chunk; 207 } 208 209 for (i = 0; i < p->nchunks; i++) { 210 struct drm_amdgpu_cs_chunk __user *chunk_ptr = NULL; 211 struct drm_amdgpu_cs_chunk user_chunk; 212 uint32_t __user *cdata; 213 214 chunk_ptr = u64_to_user_ptr(chunk_array[i]); 215 if (copy_from_user(&user_chunk, chunk_ptr, 216 sizeof(struct drm_amdgpu_cs_chunk))) { 217 ret = -EFAULT; 218 i--; 219 goto free_partial_kdata; 220 } 221 p->chunks[i].chunk_id = user_chunk.chunk_id; 222 p->chunks[i].length_dw = user_chunk.length_dw; 223 224 size = p->chunks[i].length_dw; 225 cdata = u64_to_user_ptr(user_chunk.chunk_data); 226 227 p->chunks[i].kdata = kvmalloc_array(size, sizeof(uint32_t), 228 GFP_KERNEL); 229 if (p->chunks[i].kdata == NULL) { 230 ret = -ENOMEM; 231 i--; 232 goto free_partial_kdata; 233 } 234 size *= sizeof(uint32_t); 235 if (copy_from_user(p->chunks[i].kdata, cdata, size)) { 236 ret = -EFAULT; 237 goto free_partial_kdata; 238 } 239 240 /* Assume the worst on the following checks */ 241 ret = -EINVAL; 242 switch (p->chunks[i].chunk_id) { 243 case AMDGPU_CHUNK_ID_IB: 244 if (size < sizeof(struct drm_amdgpu_cs_chunk_ib)) 245 goto free_partial_kdata; 246 247 ret = amdgpu_cs_p1_ib(p, p->chunks[i].kdata, num_ibs); 248 if (ret) 249 goto free_partial_kdata; 250 break; 251 252 case AMDGPU_CHUNK_ID_FENCE: 253 if (size < sizeof(struct drm_amdgpu_cs_chunk_fence)) 254 goto free_partial_kdata; 255 256 ret = amdgpu_cs_p1_user_fence(p, p->chunks[i].kdata, 257 &uf_offset); 258 if (ret) 259 goto free_partial_kdata; 260 break; 261 262 case AMDGPU_CHUNK_ID_BO_HANDLES: 263 if (size < sizeof(struct drm_amdgpu_bo_list_in)) 264 goto free_partial_kdata; 265 266 /* Only a single BO list is allowed to simplify handling. */ 267 if (p->bo_list) 268 ret = -EINVAL; 269 270 ret = amdgpu_cs_p1_bo_handles(p, p->chunks[i].kdata); 271 if (ret) 272 goto free_partial_kdata; 273 break; 274 275 case AMDGPU_CHUNK_ID_DEPENDENCIES: 276 case AMDGPU_CHUNK_ID_SYNCOBJ_IN: 277 case AMDGPU_CHUNK_ID_SYNCOBJ_OUT: 278 case AMDGPU_CHUNK_ID_SCHEDULED_DEPENDENCIES: 279 case AMDGPU_CHUNK_ID_SYNCOBJ_TIMELINE_WAIT: 280 case AMDGPU_CHUNK_ID_SYNCOBJ_TIMELINE_SIGNAL: 281 case AMDGPU_CHUNK_ID_CP_GFX_SHADOW: 282 break; 283 284 default: 285 goto free_partial_kdata; 286 } 287 } 288 289 if (!p->gang_size) { 290 ret = -EINVAL; 291 goto free_all_kdata; 292 } 293 294 for (i = 0; i < p->gang_size; ++i) { 295 ret = amdgpu_job_alloc(p->adev, vm, p->entities[i], vm, 296 num_ibs[i], &p->jobs[i]); 297 if (ret) 298 goto free_all_kdata; 299 } 300 p->gang_leader = p->jobs[p->gang_leader_idx]; 301 302 if (p->ctx->generation != p->gang_leader->generation) { 303 ret = -ECANCELED; 304 goto free_all_kdata; 305 } 306 307 if (p->uf_bo) 308 p->gang_leader->uf_addr = uf_offset; 309 kvfree(chunk_array); 310 311 /* Use this opportunity to fill in task info for the vm */ 312 amdgpu_vm_set_task_info(vm); 313 314 return 0; 315 316 free_all_kdata: 317 i = p->nchunks - 1; 318 free_partial_kdata: 319 for (; i >= 0; i--) 320 kvfree(p->chunks[i].kdata); 321 kvfree(p->chunks); 322 p->chunks = NULL; 323 p->nchunks = 0; 324 free_chunk: 325 kvfree(chunk_array); 326 327 return ret; 328 } 329 330 static int amdgpu_cs_p2_ib(struct amdgpu_cs_parser *p, 331 struct amdgpu_cs_chunk *chunk, 332 unsigned int *ce_preempt, 333 unsigned int *de_preempt) 334 { 335 struct drm_amdgpu_cs_chunk_ib *chunk_ib = chunk->kdata; 336 struct amdgpu_fpriv *fpriv = p->filp->driver_priv; 337 struct amdgpu_vm *vm = &fpriv->vm; 338 struct amdgpu_ring *ring; 339 struct amdgpu_job *job; 340 struct amdgpu_ib *ib; 341 int r; 342 343 r = amdgpu_cs_job_idx(p, chunk_ib); 344 if (r < 0) 345 return r; 346 347 job = p->jobs[r]; 348 ring = amdgpu_job_ring(job); 349 ib = &job->ibs[job->num_ibs++]; 350 351 /* MM engine doesn't support user fences */ 352 if (p->uf_bo && ring->funcs->no_user_fence) 353 return -EINVAL; 354 355 if (chunk_ib->ip_type == AMDGPU_HW_IP_GFX && 356 chunk_ib->flags & AMDGPU_IB_FLAG_PREEMPT) { 357 if (chunk_ib->flags & AMDGPU_IB_FLAG_CE) 358 (*ce_preempt)++; 359 else 360 (*de_preempt)++; 361 362 /* Each GFX command submit allows only 1 IB max 363 * preemptible for CE & DE */ 364 if (*ce_preempt > 1 || *de_preempt > 1) 365 return -EINVAL; 366 } 367 368 if (chunk_ib->flags & AMDGPU_IB_FLAG_PREAMBLE) 369 job->preamble_status |= AMDGPU_PREAMBLE_IB_PRESENT; 370 371 r = amdgpu_ib_get(p->adev, vm, ring->funcs->parse_cs ? 372 chunk_ib->ib_bytes : 0, 373 AMDGPU_IB_POOL_DELAYED, ib); 374 if (r) { 375 DRM_ERROR("Failed to get ib !\n"); 376 return r; 377 } 378 379 ib->gpu_addr = chunk_ib->va_start; 380 ib->length_dw = chunk_ib->ib_bytes / 4; 381 ib->flags = chunk_ib->flags; 382 return 0; 383 } 384 385 static int amdgpu_cs_p2_dependencies(struct amdgpu_cs_parser *p, 386 struct amdgpu_cs_chunk *chunk) 387 { 388 struct drm_amdgpu_cs_chunk_dep *deps = chunk->kdata; 389 struct amdgpu_fpriv *fpriv = p->filp->driver_priv; 390 unsigned int num_deps; 391 int i, r; 392 393 num_deps = chunk->length_dw * 4 / 394 sizeof(struct drm_amdgpu_cs_chunk_dep); 395 396 for (i = 0; i < num_deps; ++i) { 397 struct amdgpu_ctx *ctx; 398 struct drm_sched_entity *entity; 399 struct dma_fence *fence; 400 401 ctx = amdgpu_ctx_get(fpriv, deps[i].ctx_id); 402 if (ctx == NULL) 403 return -EINVAL; 404 405 r = amdgpu_ctx_get_entity(ctx, deps[i].ip_type, 406 deps[i].ip_instance, 407 deps[i].ring, &entity); 408 if (r) { 409 amdgpu_ctx_put(ctx); 410 return r; 411 } 412 413 fence = amdgpu_ctx_get_fence(ctx, entity, deps[i].handle); 414 amdgpu_ctx_put(ctx); 415 416 if (IS_ERR(fence)) 417 return PTR_ERR(fence); 418 else if (!fence) 419 continue; 420 421 if (chunk->chunk_id == AMDGPU_CHUNK_ID_SCHEDULED_DEPENDENCIES) { 422 struct drm_sched_fence *s_fence; 423 struct dma_fence *old = fence; 424 425 s_fence = to_drm_sched_fence(fence); 426 fence = dma_fence_get(&s_fence->scheduled); 427 dma_fence_put(old); 428 } 429 430 r = amdgpu_sync_fence(&p->sync, fence); 431 dma_fence_put(fence); 432 if (r) 433 return r; 434 } 435 return 0; 436 } 437 438 static int amdgpu_syncobj_lookup_and_add(struct amdgpu_cs_parser *p, 439 uint32_t handle, u64 point, 440 u64 flags) 441 { 442 struct dma_fence *fence; 443 int r; 444 445 r = drm_syncobj_find_fence(p->filp, handle, point, flags, &fence); 446 if (r) { 447 DRM_ERROR("syncobj %u failed to find fence @ %llu (%d)!\n", 448 handle, point, r); 449 return r; 450 } 451 452 r = amdgpu_sync_fence(&p->sync, fence); 453 dma_fence_put(fence); 454 return r; 455 } 456 457 static int amdgpu_cs_p2_syncobj_in(struct amdgpu_cs_parser *p, 458 struct amdgpu_cs_chunk *chunk) 459 { 460 struct drm_amdgpu_cs_chunk_sem *deps = chunk->kdata; 461 unsigned int num_deps; 462 int i, r; 463 464 num_deps = chunk->length_dw * 4 / 465 sizeof(struct drm_amdgpu_cs_chunk_sem); 466 for (i = 0; i < num_deps; ++i) { 467 r = amdgpu_syncobj_lookup_and_add(p, deps[i].handle, 0, 0); 468 if (r) 469 return r; 470 } 471 472 return 0; 473 } 474 475 static int amdgpu_cs_p2_syncobj_timeline_wait(struct amdgpu_cs_parser *p, 476 struct amdgpu_cs_chunk *chunk) 477 { 478 struct drm_amdgpu_cs_chunk_syncobj *syncobj_deps = chunk->kdata; 479 unsigned int num_deps; 480 int i, r; 481 482 num_deps = chunk->length_dw * 4 / 483 sizeof(struct drm_amdgpu_cs_chunk_syncobj); 484 for (i = 0; i < num_deps; ++i) { 485 r = amdgpu_syncobj_lookup_and_add(p, syncobj_deps[i].handle, 486 syncobj_deps[i].point, 487 syncobj_deps[i].flags); 488 if (r) 489 return r; 490 } 491 492 return 0; 493 } 494 495 static int amdgpu_cs_p2_syncobj_out(struct amdgpu_cs_parser *p, 496 struct amdgpu_cs_chunk *chunk) 497 { 498 struct drm_amdgpu_cs_chunk_sem *deps = chunk->kdata; 499 unsigned int num_deps; 500 int i; 501 502 num_deps = chunk->length_dw * 4 / 503 sizeof(struct drm_amdgpu_cs_chunk_sem); 504 505 if (p->post_deps) 506 return -EINVAL; 507 508 p->post_deps = kmalloc_array(num_deps, sizeof(*p->post_deps), 509 GFP_KERNEL); 510 p->num_post_deps = 0; 511 512 if (!p->post_deps) 513 return -ENOMEM; 514 515 516 for (i = 0; i < num_deps; ++i) { 517 p->post_deps[i].syncobj = 518 drm_syncobj_find(p->filp, deps[i].handle); 519 if (!p->post_deps[i].syncobj) 520 return -EINVAL; 521 p->post_deps[i].chain = NULL; 522 p->post_deps[i].point = 0; 523 p->num_post_deps++; 524 } 525 526 return 0; 527 } 528 529 static int amdgpu_cs_p2_syncobj_timeline_signal(struct amdgpu_cs_parser *p, 530 struct amdgpu_cs_chunk *chunk) 531 { 532 struct drm_amdgpu_cs_chunk_syncobj *syncobj_deps = chunk->kdata; 533 unsigned int num_deps; 534 int i; 535 536 num_deps = chunk->length_dw * 4 / 537 sizeof(struct drm_amdgpu_cs_chunk_syncobj); 538 539 if (p->post_deps) 540 return -EINVAL; 541 542 p->post_deps = kmalloc_array(num_deps, sizeof(*p->post_deps), 543 GFP_KERNEL); 544 p->num_post_deps = 0; 545 546 if (!p->post_deps) 547 return -ENOMEM; 548 549 for (i = 0; i < num_deps; ++i) { 550 struct amdgpu_cs_post_dep *dep = &p->post_deps[i]; 551 552 dep->chain = NULL; 553 if (syncobj_deps[i].point) { 554 dep->chain = dma_fence_chain_alloc(); 555 if (!dep->chain) 556 return -ENOMEM; 557 } 558 559 dep->syncobj = drm_syncobj_find(p->filp, 560 syncobj_deps[i].handle); 561 if (!dep->syncobj) { 562 dma_fence_chain_free(dep->chain); 563 return -EINVAL; 564 } 565 dep->point = syncobj_deps[i].point; 566 p->num_post_deps++; 567 } 568 569 return 0; 570 } 571 572 static int amdgpu_cs_p2_shadow(struct amdgpu_cs_parser *p, 573 struct amdgpu_cs_chunk *chunk) 574 { 575 struct drm_amdgpu_cs_chunk_cp_gfx_shadow *shadow = chunk->kdata; 576 int i; 577 578 if (shadow->flags & ~AMDGPU_CS_CHUNK_CP_GFX_SHADOW_FLAGS_INIT_SHADOW) 579 return -EINVAL; 580 581 for (i = 0; i < p->gang_size; ++i) { 582 p->jobs[i]->shadow_va = shadow->shadow_va; 583 p->jobs[i]->csa_va = shadow->csa_va; 584 p->jobs[i]->gds_va = shadow->gds_va; 585 p->jobs[i]->init_shadow = 586 shadow->flags & AMDGPU_CS_CHUNK_CP_GFX_SHADOW_FLAGS_INIT_SHADOW; 587 } 588 589 return 0; 590 } 591 592 static int amdgpu_cs_pass2(struct amdgpu_cs_parser *p) 593 { 594 unsigned int ce_preempt = 0, de_preempt = 0; 595 int i, r; 596 597 for (i = 0; i < p->nchunks; ++i) { 598 struct amdgpu_cs_chunk *chunk; 599 600 chunk = &p->chunks[i]; 601 602 switch (chunk->chunk_id) { 603 case AMDGPU_CHUNK_ID_IB: 604 r = amdgpu_cs_p2_ib(p, chunk, &ce_preempt, &de_preempt); 605 if (r) 606 return r; 607 break; 608 case AMDGPU_CHUNK_ID_DEPENDENCIES: 609 case AMDGPU_CHUNK_ID_SCHEDULED_DEPENDENCIES: 610 r = amdgpu_cs_p2_dependencies(p, chunk); 611 if (r) 612 return r; 613 break; 614 case AMDGPU_CHUNK_ID_SYNCOBJ_IN: 615 r = amdgpu_cs_p2_syncobj_in(p, chunk); 616 if (r) 617 return r; 618 break; 619 case AMDGPU_CHUNK_ID_SYNCOBJ_OUT: 620 r = amdgpu_cs_p2_syncobj_out(p, chunk); 621 if (r) 622 return r; 623 break; 624 case AMDGPU_CHUNK_ID_SYNCOBJ_TIMELINE_WAIT: 625 r = amdgpu_cs_p2_syncobj_timeline_wait(p, chunk); 626 if (r) 627 return r; 628 break; 629 case AMDGPU_CHUNK_ID_SYNCOBJ_TIMELINE_SIGNAL: 630 r = amdgpu_cs_p2_syncobj_timeline_signal(p, chunk); 631 if (r) 632 return r; 633 break; 634 case AMDGPU_CHUNK_ID_CP_GFX_SHADOW: 635 r = amdgpu_cs_p2_shadow(p, chunk); 636 if (r) 637 return r; 638 break; 639 } 640 } 641 642 return 0; 643 } 644 645 /* Convert microseconds to bytes. */ 646 static u64 us_to_bytes(struct amdgpu_device *adev, s64 us) 647 { 648 if (us <= 0 || !adev->mm_stats.log2_max_MBps) 649 return 0; 650 651 /* Since accum_us is incremented by a million per second, just 652 * multiply it by the number of MB/s to get the number of bytes. 653 */ 654 return us << adev->mm_stats.log2_max_MBps; 655 } 656 657 static s64 bytes_to_us(struct amdgpu_device *adev, u64 bytes) 658 { 659 if (!adev->mm_stats.log2_max_MBps) 660 return 0; 661 662 return bytes >> adev->mm_stats.log2_max_MBps; 663 } 664 665 /* Returns how many bytes TTM can move right now. If no bytes can be moved, 666 * it returns 0. If it returns non-zero, it's OK to move at least one buffer, 667 * which means it can go over the threshold once. If that happens, the driver 668 * will be in debt and no other buffer migrations can be done until that debt 669 * is repaid. 670 * 671 * This approach allows moving a buffer of any size (it's important to allow 672 * that). 673 * 674 * The currency is simply time in microseconds and it increases as the clock 675 * ticks. The accumulated microseconds (us) are converted to bytes and 676 * returned. 677 */ 678 static void amdgpu_cs_get_threshold_for_moves(struct amdgpu_device *adev, 679 u64 *max_bytes, 680 u64 *max_vis_bytes) 681 { 682 s64 time_us, increment_us; 683 u64 free_vram, total_vram, used_vram; 684 /* Allow a maximum of 200 accumulated ms. This is basically per-IB 685 * throttling. 686 * 687 * It means that in order to get full max MBps, at least 5 IBs per 688 * second must be submitted and not more than 200ms apart from each 689 * other. 690 */ 691 const s64 us_upper_bound = 200000; 692 693 if (!adev->mm_stats.log2_max_MBps) { 694 *max_bytes = 0; 695 *max_vis_bytes = 0; 696 return; 697 } 698 699 total_vram = adev->gmc.real_vram_size - atomic64_read(&adev->vram_pin_size); 700 used_vram = ttm_resource_manager_usage(&adev->mman.vram_mgr.manager); 701 free_vram = used_vram >= total_vram ? 0 : total_vram - used_vram; 702 703 spin_lock(&adev->mm_stats.lock); 704 705 /* Increase the amount of accumulated us. */ 706 time_us = ktime_to_us(ktime_get()); 707 increment_us = time_us - adev->mm_stats.last_update_us; 708 adev->mm_stats.last_update_us = time_us; 709 adev->mm_stats.accum_us = min(adev->mm_stats.accum_us + increment_us, 710 us_upper_bound); 711 712 /* This prevents the short period of low performance when the VRAM 713 * usage is low and the driver is in debt or doesn't have enough 714 * accumulated us to fill VRAM quickly. 715 * 716 * The situation can occur in these cases: 717 * - a lot of VRAM is freed by userspace 718 * - the presence of a big buffer causes a lot of evictions 719 * (solution: split buffers into smaller ones) 720 * 721 * If 128 MB or 1/8th of VRAM is free, start filling it now by setting 722 * accum_us to a positive number. 723 */ 724 if (free_vram >= 128 * 1024 * 1024 || free_vram >= total_vram / 8) { 725 s64 min_us; 726 727 /* Be more aggressive on dGPUs. Try to fill a portion of free 728 * VRAM now. 729 */ 730 if (!(adev->flags & AMD_IS_APU)) 731 min_us = bytes_to_us(adev, free_vram / 4); 732 else 733 min_us = 0; /* Reset accum_us on APUs. */ 734 735 adev->mm_stats.accum_us = max(min_us, adev->mm_stats.accum_us); 736 } 737 738 /* This is set to 0 if the driver is in debt to disallow (optional) 739 * buffer moves. 740 */ 741 *max_bytes = us_to_bytes(adev, adev->mm_stats.accum_us); 742 743 /* Do the same for visible VRAM if half of it is free */ 744 if (!amdgpu_gmc_vram_full_visible(&adev->gmc)) { 745 u64 total_vis_vram = adev->gmc.visible_vram_size; 746 u64 used_vis_vram = 747 amdgpu_vram_mgr_vis_usage(&adev->mman.vram_mgr); 748 749 if (used_vis_vram < total_vis_vram) { 750 u64 free_vis_vram = total_vis_vram - used_vis_vram; 751 752 adev->mm_stats.accum_us_vis = min(adev->mm_stats.accum_us_vis + 753 increment_us, us_upper_bound); 754 755 if (free_vis_vram >= total_vis_vram / 2) 756 adev->mm_stats.accum_us_vis = 757 max(bytes_to_us(adev, free_vis_vram / 2), 758 adev->mm_stats.accum_us_vis); 759 } 760 761 *max_vis_bytes = us_to_bytes(adev, adev->mm_stats.accum_us_vis); 762 } else { 763 *max_vis_bytes = 0; 764 } 765 766 spin_unlock(&adev->mm_stats.lock); 767 } 768 769 /* Report how many bytes have really been moved for the last command 770 * submission. This can result in a debt that can stop buffer migrations 771 * temporarily. 772 */ 773 void amdgpu_cs_report_moved_bytes(struct amdgpu_device *adev, u64 num_bytes, 774 u64 num_vis_bytes) 775 { 776 spin_lock(&adev->mm_stats.lock); 777 adev->mm_stats.accum_us -= bytes_to_us(adev, num_bytes); 778 adev->mm_stats.accum_us_vis -= bytes_to_us(adev, num_vis_bytes); 779 spin_unlock(&adev->mm_stats.lock); 780 } 781 782 static int amdgpu_cs_bo_validate(void *param, struct amdgpu_bo *bo) 783 { 784 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 785 struct amdgpu_cs_parser *p = param; 786 struct ttm_operation_ctx ctx = { 787 .interruptible = true, 788 .no_wait_gpu = false, 789 .resv = bo->tbo.base.resv 790 }; 791 uint32_t domain; 792 int r; 793 794 if (bo->tbo.pin_count) 795 return 0; 796 797 /* Don't move this buffer if we have depleted our allowance 798 * to move it. Don't move anything if the threshold is zero. 799 */ 800 if (p->bytes_moved < p->bytes_moved_threshold && 801 (!bo->tbo.base.dma_buf || 802 list_empty(&bo->tbo.base.dma_buf->attachments))) { 803 if (!amdgpu_gmc_vram_full_visible(&adev->gmc) && 804 (bo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED)) { 805 /* And don't move a CPU_ACCESS_REQUIRED BO to limited 806 * visible VRAM if we've depleted our allowance to do 807 * that. 808 */ 809 if (p->bytes_moved_vis < p->bytes_moved_vis_threshold) 810 domain = bo->preferred_domains; 811 else 812 domain = bo->allowed_domains; 813 } else { 814 domain = bo->preferred_domains; 815 } 816 } else { 817 domain = bo->allowed_domains; 818 } 819 820 retry: 821 amdgpu_bo_placement_from_domain(bo, domain); 822 r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 823 824 p->bytes_moved += ctx.bytes_moved; 825 if (!amdgpu_gmc_vram_full_visible(&adev->gmc) && 826 amdgpu_res_cpu_visible(adev, bo->tbo.resource)) 827 p->bytes_moved_vis += ctx.bytes_moved; 828 829 if (unlikely(r == -ENOMEM) && domain != bo->allowed_domains) { 830 domain = bo->allowed_domains; 831 goto retry; 832 } 833 834 return r; 835 } 836 837 static int amdgpu_cs_parser_bos(struct amdgpu_cs_parser *p, 838 union drm_amdgpu_cs *cs) 839 { 840 struct amdgpu_fpriv *fpriv = p->filp->driver_priv; 841 struct ttm_operation_ctx ctx = { true, false }; 842 struct amdgpu_vm *vm = &fpriv->vm; 843 struct amdgpu_bo_list_entry *e; 844 struct drm_gem_object *obj; 845 unsigned long index; 846 unsigned int i; 847 int r; 848 849 /* p->bo_list could already be assigned if AMDGPU_CHUNK_ID_BO_HANDLES is present */ 850 if (cs->in.bo_list_handle) { 851 if (p->bo_list) 852 return -EINVAL; 853 854 r = amdgpu_bo_list_get(fpriv, cs->in.bo_list_handle, 855 &p->bo_list); 856 if (r) 857 return r; 858 } else if (!p->bo_list) { 859 /* Create a empty bo_list when no handle is provided */ 860 r = amdgpu_bo_list_create(p->adev, p->filp, NULL, 0, 861 &p->bo_list); 862 if (r) 863 return r; 864 } 865 866 mutex_lock(&p->bo_list->bo_list_mutex); 867 868 /* Get userptr backing pages. If pages are updated after registered 869 * in amdgpu_gem_userptr_ioctl(), amdgpu_cs_list_validate() will do 870 * amdgpu_ttm_backend_bind() to flush and invalidate new pages 871 */ 872 amdgpu_bo_list_for_each_userptr_entry(e, p->bo_list) { 873 bool userpage_invalidated = false; 874 struct amdgpu_bo *bo = e->bo; 875 int i; 876 877 e->user_pages = kvcalloc(bo->tbo.ttm->num_pages, 878 sizeof(struct page *), 879 GFP_KERNEL); 880 if (!e->user_pages) { 881 DRM_ERROR("kvmalloc_array failure\n"); 882 r = -ENOMEM; 883 goto out_free_user_pages; 884 } 885 886 r = amdgpu_ttm_tt_get_user_pages(bo, e->user_pages, &e->range); 887 if (r) { 888 kvfree(e->user_pages); 889 e->user_pages = NULL; 890 goto out_free_user_pages; 891 } 892 893 for (i = 0; i < bo->tbo.ttm->num_pages; i++) { 894 if (bo->tbo.ttm->pages[i] != e->user_pages[i]) { 895 userpage_invalidated = true; 896 break; 897 } 898 } 899 e->user_invalidated = userpage_invalidated; 900 } 901 902 drm_exec_until_all_locked(&p->exec) { 903 r = amdgpu_vm_lock_pd(&fpriv->vm, &p->exec, 1 + p->gang_size); 904 drm_exec_retry_on_contention(&p->exec); 905 if (unlikely(r)) 906 goto out_free_user_pages; 907 908 amdgpu_bo_list_for_each_entry(e, p->bo_list) { 909 /* One fence for TTM and one for each CS job */ 910 r = drm_exec_prepare_obj(&p->exec, &e->bo->tbo.base, 911 1 + p->gang_size); 912 drm_exec_retry_on_contention(&p->exec); 913 if (unlikely(r)) 914 goto out_free_user_pages; 915 916 e->bo_va = amdgpu_vm_bo_find(vm, e->bo); 917 } 918 919 if (p->uf_bo) { 920 r = drm_exec_prepare_obj(&p->exec, &p->uf_bo->tbo.base, 921 1 + p->gang_size); 922 drm_exec_retry_on_contention(&p->exec); 923 if (unlikely(r)) 924 goto out_free_user_pages; 925 } 926 } 927 928 amdgpu_bo_list_for_each_userptr_entry(e, p->bo_list) { 929 struct mm_struct *usermm; 930 931 usermm = amdgpu_ttm_tt_get_usermm(e->bo->tbo.ttm); 932 if (usermm && usermm != current->mm) { 933 r = -EPERM; 934 goto out_free_user_pages; 935 } 936 937 if (amdgpu_ttm_tt_is_userptr(e->bo->tbo.ttm) && 938 e->user_invalidated && e->user_pages) { 939 amdgpu_bo_placement_from_domain(e->bo, 940 AMDGPU_GEM_DOMAIN_CPU); 941 r = ttm_bo_validate(&e->bo->tbo, &e->bo->placement, 942 &ctx); 943 if (r) 944 goto out_free_user_pages; 945 946 amdgpu_ttm_tt_set_user_pages(e->bo->tbo.ttm, 947 e->user_pages); 948 } 949 950 kvfree(e->user_pages); 951 e->user_pages = NULL; 952 } 953 954 amdgpu_cs_get_threshold_for_moves(p->adev, &p->bytes_moved_threshold, 955 &p->bytes_moved_vis_threshold); 956 p->bytes_moved = 0; 957 p->bytes_moved_vis = 0; 958 959 r = amdgpu_vm_validate(p->adev, &fpriv->vm, NULL, 960 amdgpu_cs_bo_validate, p); 961 if (r) { 962 DRM_ERROR("amdgpu_vm_validate() failed.\n"); 963 goto out_free_user_pages; 964 } 965 966 drm_exec_for_each_locked_object(&p->exec, index, obj) { 967 r = amdgpu_cs_bo_validate(p, gem_to_amdgpu_bo(obj)); 968 if (unlikely(r)) 969 goto out_free_user_pages; 970 } 971 972 if (p->uf_bo) { 973 r = amdgpu_ttm_alloc_gart(&p->uf_bo->tbo); 974 if (unlikely(r)) 975 goto out_free_user_pages; 976 977 p->gang_leader->uf_addr += amdgpu_bo_gpu_offset(p->uf_bo); 978 } 979 980 amdgpu_cs_report_moved_bytes(p->adev, p->bytes_moved, 981 p->bytes_moved_vis); 982 983 for (i = 0; i < p->gang_size; ++i) 984 amdgpu_job_set_resources(p->jobs[i], p->bo_list->gds_obj, 985 p->bo_list->gws_obj, 986 p->bo_list->oa_obj); 987 return 0; 988 989 out_free_user_pages: 990 amdgpu_bo_list_for_each_userptr_entry(e, p->bo_list) { 991 struct amdgpu_bo *bo = e->bo; 992 993 if (!e->user_pages) 994 continue; 995 amdgpu_ttm_tt_get_user_pages_done(bo->tbo.ttm, e->range); 996 kvfree(e->user_pages); 997 e->user_pages = NULL; 998 e->range = NULL; 999 } 1000 mutex_unlock(&p->bo_list->bo_list_mutex); 1001 return r; 1002 } 1003 1004 static void trace_amdgpu_cs_ibs(struct amdgpu_cs_parser *p) 1005 { 1006 int i, j; 1007 1008 if (!trace_amdgpu_cs_enabled()) 1009 return; 1010 1011 for (i = 0; i < p->gang_size; ++i) { 1012 struct amdgpu_job *job = p->jobs[i]; 1013 1014 for (j = 0; j < job->num_ibs; ++j) 1015 trace_amdgpu_cs(p, job, &job->ibs[j]); 1016 } 1017 } 1018 1019 static int amdgpu_cs_patch_ibs(struct amdgpu_cs_parser *p, 1020 struct amdgpu_job *job) 1021 { 1022 struct amdgpu_ring *ring = amdgpu_job_ring(job); 1023 unsigned int i; 1024 int r; 1025 1026 /* Only for UVD/VCE VM emulation */ 1027 if (!ring->funcs->parse_cs && !ring->funcs->patch_cs_in_place) 1028 return 0; 1029 1030 for (i = 0; i < job->num_ibs; ++i) { 1031 struct amdgpu_ib *ib = &job->ibs[i]; 1032 struct amdgpu_bo_va_mapping *m; 1033 struct amdgpu_bo *aobj; 1034 uint64_t va_start; 1035 uint8_t *kptr; 1036 1037 va_start = ib->gpu_addr & AMDGPU_GMC_HOLE_MASK; 1038 r = amdgpu_cs_find_mapping(p, va_start, &aobj, &m); 1039 if (r) { 1040 DRM_ERROR("IB va_start is invalid\n"); 1041 return r; 1042 } 1043 1044 if ((va_start + ib->length_dw * 4) > 1045 (m->last + 1) * AMDGPU_GPU_PAGE_SIZE) { 1046 DRM_ERROR("IB va_start+ib_bytes is invalid\n"); 1047 return -EINVAL; 1048 } 1049 1050 /* the IB should be reserved at this point */ 1051 r = amdgpu_bo_kmap(aobj, (void **)&kptr); 1052 if (r) 1053 return r; 1054 1055 kptr += va_start - (m->start * AMDGPU_GPU_PAGE_SIZE); 1056 1057 if (ring->funcs->parse_cs) { 1058 memcpy(ib->ptr, kptr, ib->length_dw * 4); 1059 amdgpu_bo_kunmap(aobj); 1060 1061 r = amdgpu_ring_parse_cs(ring, p, job, ib); 1062 if (r) 1063 return r; 1064 } else { 1065 ib->ptr = (uint32_t *)kptr; 1066 r = amdgpu_ring_patch_cs_in_place(ring, p, job, ib); 1067 amdgpu_bo_kunmap(aobj); 1068 if (r) 1069 return r; 1070 } 1071 } 1072 1073 return 0; 1074 } 1075 1076 static int amdgpu_cs_patch_jobs(struct amdgpu_cs_parser *p) 1077 { 1078 unsigned int i; 1079 int r; 1080 1081 for (i = 0; i < p->gang_size; ++i) { 1082 r = amdgpu_cs_patch_ibs(p, p->jobs[i]); 1083 if (r) 1084 return r; 1085 } 1086 return 0; 1087 } 1088 1089 static int amdgpu_cs_vm_handling(struct amdgpu_cs_parser *p) 1090 { 1091 struct amdgpu_fpriv *fpriv = p->filp->driver_priv; 1092 struct amdgpu_job *job = p->gang_leader; 1093 struct amdgpu_device *adev = p->adev; 1094 struct amdgpu_vm *vm = &fpriv->vm; 1095 struct amdgpu_bo_list_entry *e; 1096 struct amdgpu_bo_va *bo_va; 1097 unsigned int i; 1098 int r; 1099 1100 /* 1101 * We can't use gang submit on with reserved VMIDs when the VM changes 1102 * can't be invalidated by more than one engine at the same time. 1103 */ 1104 if (p->gang_size > 1 && !p->adev->vm_manager.concurrent_flush) { 1105 for (i = 0; i < p->gang_size; ++i) { 1106 struct drm_sched_entity *entity = p->entities[i]; 1107 struct drm_gpu_scheduler *sched = entity->rq->sched; 1108 struct amdgpu_ring *ring = to_amdgpu_ring(sched); 1109 1110 if (amdgpu_vmid_uses_reserved(vm, ring->vm_hub)) 1111 return -EINVAL; 1112 } 1113 } 1114 1115 r = amdgpu_vm_clear_freed(adev, vm, NULL); 1116 if (r) 1117 return r; 1118 1119 r = amdgpu_vm_bo_update(adev, fpriv->prt_va, false); 1120 if (r) 1121 return r; 1122 1123 r = amdgpu_sync_fence(&p->sync, fpriv->prt_va->last_pt_update); 1124 if (r) 1125 return r; 1126 1127 if (fpriv->csa_va) { 1128 bo_va = fpriv->csa_va; 1129 BUG_ON(!bo_va); 1130 r = amdgpu_vm_bo_update(adev, bo_va, false); 1131 if (r) 1132 return r; 1133 1134 r = amdgpu_sync_fence(&p->sync, bo_va->last_pt_update); 1135 if (r) 1136 return r; 1137 } 1138 1139 /* FIXME: In theory this loop shouldn't be needed any more when 1140 * amdgpu_vm_handle_moved handles all moved BOs that are reserved 1141 * with p->ticket. But removing it caused test regressions, so I'm 1142 * leaving it here for now. 1143 */ 1144 amdgpu_bo_list_for_each_entry(e, p->bo_list) { 1145 bo_va = e->bo_va; 1146 if (bo_va == NULL) 1147 continue; 1148 1149 r = amdgpu_vm_bo_update(adev, bo_va, false); 1150 if (r) 1151 return r; 1152 1153 r = amdgpu_sync_fence(&p->sync, bo_va->last_pt_update); 1154 if (r) 1155 return r; 1156 } 1157 1158 r = amdgpu_vm_handle_moved(adev, vm, &p->exec.ticket); 1159 if (r) 1160 return r; 1161 1162 r = amdgpu_vm_update_pdes(adev, vm, false); 1163 if (r) 1164 return r; 1165 1166 r = amdgpu_sync_fence(&p->sync, vm->last_update); 1167 if (r) 1168 return r; 1169 1170 for (i = 0; i < p->gang_size; ++i) { 1171 job = p->jobs[i]; 1172 1173 if (!job->vm) 1174 continue; 1175 1176 job->vm_pd_addr = amdgpu_gmc_pd_addr(vm->root.bo); 1177 } 1178 1179 if (adev->debug_vm) { 1180 /* Invalidate all BOs to test for userspace bugs */ 1181 amdgpu_bo_list_for_each_entry(e, p->bo_list) { 1182 struct amdgpu_bo *bo = e->bo; 1183 1184 /* ignore duplicates */ 1185 if (!bo) 1186 continue; 1187 1188 amdgpu_vm_bo_invalidate(adev, bo, false); 1189 } 1190 } 1191 1192 return 0; 1193 } 1194 1195 static int amdgpu_cs_sync_rings(struct amdgpu_cs_parser *p) 1196 { 1197 struct amdgpu_fpriv *fpriv = p->filp->driver_priv; 1198 struct drm_gpu_scheduler *sched; 1199 struct drm_gem_object *obj; 1200 struct dma_fence *fence; 1201 unsigned long index; 1202 unsigned int i; 1203 int r; 1204 1205 r = amdgpu_ctx_wait_prev_fence(p->ctx, p->entities[p->gang_leader_idx]); 1206 if (r) { 1207 if (r != -ERESTARTSYS) 1208 DRM_ERROR("amdgpu_ctx_wait_prev_fence failed.\n"); 1209 return r; 1210 } 1211 1212 drm_exec_for_each_locked_object(&p->exec, index, obj) { 1213 struct amdgpu_bo *bo = gem_to_amdgpu_bo(obj); 1214 1215 struct dma_resv *resv = bo->tbo.base.resv; 1216 enum amdgpu_sync_mode sync_mode; 1217 1218 sync_mode = amdgpu_bo_explicit_sync(bo) ? 1219 AMDGPU_SYNC_EXPLICIT : AMDGPU_SYNC_NE_OWNER; 1220 r = amdgpu_sync_resv(p->adev, &p->sync, resv, sync_mode, 1221 &fpriv->vm); 1222 if (r) 1223 return r; 1224 } 1225 1226 for (i = 0; i < p->gang_size; ++i) { 1227 r = amdgpu_sync_push_to_job(&p->sync, p->jobs[i]); 1228 if (r) 1229 return r; 1230 } 1231 1232 sched = p->gang_leader->base.entity->rq->sched; 1233 while ((fence = amdgpu_sync_get_fence(&p->sync))) { 1234 struct drm_sched_fence *s_fence = to_drm_sched_fence(fence); 1235 1236 /* 1237 * When we have an dependency it might be necessary to insert a 1238 * pipeline sync to make sure that all caches etc are flushed and the 1239 * next job actually sees the results from the previous one 1240 * before we start executing on the same scheduler ring. 1241 */ 1242 if (!s_fence || s_fence->sched != sched) { 1243 dma_fence_put(fence); 1244 continue; 1245 } 1246 1247 r = amdgpu_sync_fence(&p->gang_leader->explicit_sync, fence); 1248 dma_fence_put(fence); 1249 if (r) 1250 return r; 1251 } 1252 return 0; 1253 } 1254 1255 static void amdgpu_cs_post_dependencies(struct amdgpu_cs_parser *p) 1256 { 1257 int i; 1258 1259 for (i = 0; i < p->num_post_deps; ++i) { 1260 if (p->post_deps[i].chain && p->post_deps[i].point) { 1261 drm_syncobj_add_point(p->post_deps[i].syncobj, 1262 p->post_deps[i].chain, 1263 p->fence, p->post_deps[i].point); 1264 p->post_deps[i].chain = NULL; 1265 } else { 1266 drm_syncobj_replace_fence(p->post_deps[i].syncobj, 1267 p->fence); 1268 } 1269 } 1270 } 1271 1272 static int amdgpu_cs_submit(struct amdgpu_cs_parser *p, 1273 union drm_amdgpu_cs *cs) 1274 { 1275 struct amdgpu_fpriv *fpriv = p->filp->driver_priv; 1276 struct amdgpu_job *leader = p->gang_leader; 1277 struct amdgpu_bo_list_entry *e; 1278 struct drm_gem_object *gobj; 1279 unsigned long index; 1280 unsigned int i; 1281 uint64_t seq; 1282 int r; 1283 1284 for (i = 0; i < p->gang_size; ++i) 1285 drm_sched_job_arm(&p->jobs[i]->base); 1286 1287 for (i = 0; i < p->gang_size; ++i) { 1288 struct dma_fence *fence; 1289 1290 if (p->jobs[i] == leader) 1291 continue; 1292 1293 fence = &p->jobs[i]->base.s_fence->scheduled; 1294 dma_fence_get(fence); 1295 r = drm_sched_job_add_dependency(&leader->base, fence); 1296 if (r) { 1297 dma_fence_put(fence); 1298 return r; 1299 } 1300 } 1301 1302 if (p->gang_size > 1) { 1303 for (i = 0; i < p->gang_size; ++i) 1304 amdgpu_job_set_gang_leader(p->jobs[i], leader); 1305 } 1306 1307 /* No memory allocation is allowed while holding the notifier lock. 1308 * The lock is held until amdgpu_cs_submit is finished and fence is 1309 * added to BOs. 1310 */ 1311 mutex_lock(&p->adev->notifier_lock); 1312 1313 /* If userptr are invalidated after amdgpu_cs_parser_bos(), return 1314 * -EAGAIN, drmIoctl in libdrm will restart the amdgpu_cs_ioctl. 1315 */ 1316 r = 0; 1317 amdgpu_bo_list_for_each_userptr_entry(e, p->bo_list) { 1318 r |= !amdgpu_ttm_tt_get_user_pages_done(e->bo->tbo.ttm, 1319 e->range); 1320 e->range = NULL; 1321 } 1322 if (r) { 1323 r = -EAGAIN; 1324 mutex_unlock(&p->adev->notifier_lock); 1325 return r; 1326 } 1327 1328 p->fence = dma_fence_get(&leader->base.s_fence->finished); 1329 drm_exec_for_each_locked_object(&p->exec, index, gobj) { 1330 1331 ttm_bo_move_to_lru_tail_unlocked(&gem_to_amdgpu_bo(gobj)->tbo); 1332 1333 /* Everybody except for the gang leader uses READ */ 1334 for (i = 0; i < p->gang_size; ++i) { 1335 if (p->jobs[i] == leader) 1336 continue; 1337 1338 dma_resv_add_fence(gobj->resv, 1339 &p->jobs[i]->base.s_fence->finished, 1340 DMA_RESV_USAGE_READ); 1341 } 1342 1343 /* The gang leader as remembered as writer */ 1344 dma_resv_add_fence(gobj->resv, p->fence, DMA_RESV_USAGE_WRITE); 1345 } 1346 1347 seq = amdgpu_ctx_add_fence(p->ctx, p->entities[p->gang_leader_idx], 1348 p->fence); 1349 amdgpu_cs_post_dependencies(p); 1350 1351 if ((leader->preamble_status & AMDGPU_PREAMBLE_IB_PRESENT) && 1352 !p->ctx->preamble_presented) { 1353 leader->preamble_status |= AMDGPU_PREAMBLE_IB_PRESENT_FIRST; 1354 p->ctx->preamble_presented = true; 1355 } 1356 1357 cs->out.handle = seq; 1358 leader->uf_sequence = seq; 1359 1360 amdgpu_vm_bo_trace_cs(&fpriv->vm, &p->exec.ticket); 1361 for (i = 0; i < p->gang_size; ++i) { 1362 amdgpu_job_free_resources(p->jobs[i]); 1363 trace_amdgpu_cs_ioctl(p->jobs[i]); 1364 drm_sched_entity_push_job(&p->jobs[i]->base); 1365 p->jobs[i] = NULL; 1366 } 1367 1368 amdgpu_vm_move_to_lru_tail(p->adev, &fpriv->vm); 1369 1370 mutex_unlock(&p->adev->notifier_lock); 1371 mutex_unlock(&p->bo_list->bo_list_mutex); 1372 return 0; 1373 } 1374 1375 /* Cleanup the parser structure */ 1376 static void amdgpu_cs_parser_fini(struct amdgpu_cs_parser *parser) 1377 { 1378 unsigned int i; 1379 1380 amdgpu_sync_free(&parser->sync); 1381 drm_exec_fini(&parser->exec); 1382 1383 for (i = 0; i < parser->num_post_deps; i++) { 1384 drm_syncobj_put(parser->post_deps[i].syncobj); 1385 kfree(parser->post_deps[i].chain); 1386 } 1387 kfree(parser->post_deps); 1388 1389 dma_fence_put(parser->fence); 1390 1391 if (parser->ctx) 1392 amdgpu_ctx_put(parser->ctx); 1393 if (parser->bo_list) 1394 amdgpu_bo_list_put(parser->bo_list); 1395 1396 for (i = 0; i < parser->nchunks; i++) 1397 kvfree(parser->chunks[i].kdata); 1398 kvfree(parser->chunks); 1399 for (i = 0; i < parser->gang_size; ++i) { 1400 if (parser->jobs[i]) 1401 amdgpu_job_free(parser->jobs[i]); 1402 } 1403 amdgpu_bo_unref(&parser->uf_bo); 1404 } 1405 1406 int amdgpu_cs_ioctl(struct drm_device *dev, void *data, struct drm_file *filp) 1407 { 1408 struct amdgpu_device *adev = drm_to_adev(dev); 1409 struct amdgpu_cs_parser parser; 1410 int r; 1411 1412 if (amdgpu_ras_intr_triggered()) 1413 return -EHWPOISON; 1414 1415 if (!adev->accel_working) 1416 return -EBUSY; 1417 1418 r = amdgpu_cs_parser_init(&parser, adev, filp, data); 1419 if (r) { 1420 DRM_ERROR_RATELIMITED("Failed to initialize parser %d!\n", r); 1421 return r; 1422 } 1423 1424 r = amdgpu_cs_pass1(&parser, data); 1425 if (r) 1426 goto error_fini; 1427 1428 r = amdgpu_cs_pass2(&parser); 1429 if (r) 1430 goto error_fini; 1431 1432 r = amdgpu_cs_parser_bos(&parser, data); 1433 if (r) { 1434 if (r == -ENOMEM) 1435 DRM_ERROR("Not enough memory for command submission!\n"); 1436 else if (r != -ERESTARTSYS && r != -EAGAIN) 1437 DRM_DEBUG("Failed to process the buffer list %d!\n", r); 1438 goto error_fini; 1439 } 1440 1441 r = amdgpu_cs_patch_jobs(&parser); 1442 if (r) 1443 goto error_backoff; 1444 1445 r = amdgpu_cs_vm_handling(&parser); 1446 if (r) 1447 goto error_backoff; 1448 1449 r = amdgpu_cs_sync_rings(&parser); 1450 if (r) 1451 goto error_backoff; 1452 1453 trace_amdgpu_cs_ibs(&parser); 1454 1455 r = amdgpu_cs_submit(&parser, data); 1456 if (r) 1457 goto error_backoff; 1458 1459 amdgpu_cs_parser_fini(&parser); 1460 return 0; 1461 1462 error_backoff: 1463 mutex_unlock(&parser.bo_list->bo_list_mutex); 1464 1465 error_fini: 1466 amdgpu_cs_parser_fini(&parser); 1467 return r; 1468 } 1469 1470 /** 1471 * amdgpu_cs_wait_ioctl - wait for a command submission to finish 1472 * 1473 * @dev: drm device 1474 * @data: data from userspace 1475 * @filp: file private 1476 * 1477 * Wait for the command submission identified by handle to finish. 1478 */ 1479 int amdgpu_cs_wait_ioctl(struct drm_device *dev, void *data, 1480 struct drm_file *filp) 1481 { 1482 union drm_amdgpu_wait_cs *wait = data; 1483 unsigned long timeout = amdgpu_gem_timeout(wait->in.timeout); 1484 struct drm_sched_entity *entity; 1485 struct amdgpu_ctx *ctx; 1486 struct dma_fence *fence; 1487 long r; 1488 1489 ctx = amdgpu_ctx_get(filp->driver_priv, wait->in.ctx_id); 1490 if (ctx == NULL) 1491 return -EINVAL; 1492 1493 r = amdgpu_ctx_get_entity(ctx, wait->in.ip_type, wait->in.ip_instance, 1494 wait->in.ring, &entity); 1495 if (r) { 1496 amdgpu_ctx_put(ctx); 1497 return r; 1498 } 1499 1500 fence = amdgpu_ctx_get_fence(ctx, entity, wait->in.handle); 1501 if (IS_ERR(fence)) 1502 r = PTR_ERR(fence); 1503 else if (fence) { 1504 r = dma_fence_wait_timeout(fence, true, timeout); 1505 if (r > 0 && fence->error) 1506 r = fence->error; 1507 dma_fence_put(fence); 1508 } else 1509 r = 1; 1510 1511 amdgpu_ctx_put(ctx); 1512 if (r < 0) 1513 return r; 1514 1515 memset(wait, 0, sizeof(*wait)); 1516 wait->out.status = (r == 0); 1517 1518 return 0; 1519 } 1520 1521 /** 1522 * amdgpu_cs_get_fence - helper to get fence from drm_amdgpu_fence 1523 * 1524 * @adev: amdgpu device 1525 * @filp: file private 1526 * @user: drm_amdgpu_fence copied from user space 1527 */ 1528 static struct dma_fence *amdgpu_cs_get_fence(struct amdgpu_device *adev, 1529 struct drm_file *filp, 1530 struct drm_amdgpu_fence *user) 1531 { 1532 struct drm_sched_entity *entity; 1533 struct amdgpu_ctx *ctx; 1534 struct dma_fence *fence; 1535 int r; 1536 1537 ctx = amdgpu_ctx_get(filp->driver_priv, user->ctx_id); 1538 if (ctx == NULL) 1539 return ERR_PTR(-EINVAL); 1540 1541 r = amdgpu_ctx_get_entity(ctx, user->ip_type, user->ip_instance, 1542 user->ring, &entity); 1543 if (r) { 1544 amdgpu_ctx_put(ctx); 1545 return ERR_PTR(r); 1546 } 1547 1548 fence = amdgpu_ctx_get_fence(ctx, entity, user->seq_no); 1549 amdgpu_ctx_put(ctx); 1550 1551 return fence; 1552 } 1553 1554 int amdgpu_cs_fence_to_handle_ioctl(struct drm_device *dev, void *data, 1555 struct drm_file *filp) 1556 { 1557 struct amdgpu_device *adev = drm_to_adev(dev); 1558 union drm_amdgpu_fence_to_handle *info = data; 1559 struct dma_fence *fence; 1560 struct drm_syncobj *syncobj; 1561 struct sync_file *sync_file; 1562 int fd, r; 1563 1564 fence = amdgpu_cs_get_fence(adev, filp, &info->in.fence); 1565 if (IS_ERR(fence)) 1566 return PTR_ERR(fence); 1567 1568 if (!fence) 1569 fence = dma_fence_get_stub(); 1570 1571 switch (info->in.what) { 1572 case AMDGPU_FENCE_TO_HANDLE_GET_SYNCOBJ: 1573 r = drm_syncobj_create(&syncobj, 0, fence); 1574 dma_fence_put(fence); 1575 if (r) 1576 return r; 1577 r = drm_syncobj_get_handle(filp, syncobj, &info->out.handle); 1578 drm_syncobj_put(syncobj); 1579 return r; 1580 1581 case AMDGPU_FENCE_TO_HANDLE_GET_SYNCOBJ_FD: 1582 r = drm_syncobj_create(&syncobj, 0, fence); 1583 dma_fence_put(fence); 1584 if (r) 1585 return r; 1586 r = drm_syncobj_get_fd(syncobj, (int *)&info->out.handle); 1587 drm_syncobj_put(syncobj); 1588 return r; 1589 1590 case AMDGPU_FENCE_TO_HANDLE_GET_SYNC_FILE_FD: 1591 fd = get_unused_fd_flags(O_CLOEXEC); 1592 if (fd < 0) { 1593 dma_fence_put(fence); 1594 return fd; 1595 } 1596 1597 sync_file = sync_file_create(fence); 1598 dma_fence_put(fence); 1599 if (!sync_file) { 1600 put_unused_fd(fd); 1601 return -ENOMEM; 1602 } 1603 1604 fd_install(fd, sync_file->file); 1605 info->out.handle = fd; 1606 return 0; 1607 1608 default: 1609 dma_fence_put(fence); 1610 return -EINVAL; 1611 } 1612 } 1613 1614 /** 1615 * amdgpu_cs_wait_all_fences - wait on all fences to signal 1616 * 1617 * @adev: amdgpu device 1618 * @filp: file private 1619 * @wait: wait parameters 1620 * @fences: array of drm_amdgpu_fence 1621 */ 1622 static int amdgpu_cs_wait_all_fences(struct amdgpu_device *adev, 1623 struct drm_file *filp, 1624 union drm_amdgpu_wait_fences *wait, 1625 struct drm_amdgpu_fence *fences) 1626 { 1627 uint32_t fence_count = wait->in.fence_count; 1628 unsigned int i; 1629 long r = 1; 1630 1631 for (i = 0; i < fence_count; i++) { 1632 struct dma_fence *fence; 1633 unsigned long timeout = amdgpu_gem_timeout(wait->in.timeout_ns); 1634 1635 fence = amdgpu_cs_get_fence(adev, filp, &fences[i]); 1636 if (IS_ERR(fence)) 1637 return PTR_ERR(fence); 1638 else if (!fence) 1639 continue; 1640 1641 r = dma_fence_wait_timeout(fence, true, timeout); 1642 if (r > 0 && fence->error) 1643 r = fence->error; 1644 1645 dma_fence_put(fence); 1646 if (r < 0) 1647 return r; 1648 1649 if (r == 0) 1650 break; 1651 } 1652 1653 memset(wait, 0, sizeof(*wait)); 1654 wait->out.status = (r > 0); 1655 1656 return 0; 1657 } 1658 1659 /** 1660 * amdgpu_cs_wait_any_fence - wait on any fence to signal 1661 * 1662 * @adev: amdgpu device 1663 * @filp: file private 1664 * @wait: wait parameters 1665 * @fences: array of drm_amdgpu_fence 1666 */ 1667 static int amdgpu_cs_wait_any_fence(struct amdgpu_device *adev, 1668 struct drm_file *filp, 1669 union drm_amdgpu_wait_fences *wait, 1670 struct drm_amdgpu_fence *fences) 1671 { 1672 unsigned long timeout = amdgpu_gem_timeout(wait->in.timeout_ns); 1673 uint32_t fence_count = wait->in.fence_count; 1674 uint32_t first = ~0; 1675 struct dma_fence **array; 1676 unsigned int i; 1677 long r; 1678 1679 /* Prepare the fence array */ 1680 array = kcalloc(fence_count, sizeof(struct dma_fence *), GFP_KERNEL); 1681 1682 if (array == NULL) 1683 return -ENOMEM; 1684 1685 for (i = 0; i < fence_count; i++) { 1686 struct dma_fence *fence; 1687 1688 fence = amdgpu_cs_get_fence(adev, filp, &fences[i]); 1689 if (IS_ERR(fence)) { 1690 r = PTR_ERR(fence); 1691 goto err_free_fence_array; 1692 } else if (fence) { 1693 array[i] = fence; 1694 } else { /* NULL, the fence has been already signaled */ 1695 r = 1; 1696 first = i; 1697 goto out; 1698 } 1699 } 1700 1701 r = dma_fence_wait_any_timeout(array, fence_count, true, timeout, 1702 &first); 1703 if (r < 0) 1704 goto err_free_fence_array; 1705 1706 out: 1707 memset(wait, 0, sizeof(*wait)); 1708 wait->out.status = (r > 0); 1709 wait->out.first_signaled = first; 1710 1711 if (first < fence_count && array[first]) 1712 r = array[first]->error; 1713 else 1714 r = 0; 1715 1716 err_free_fence_array: 1717 for (i = 0; i < fence_count; i++) 1718 dma_fence_put(array[i]); 1719 kfree(array); 1720 1721 return r; 1722 } 1723 1724 /** 1725 * amdgpu_cs_wait_fences_ioctl - wait for multiple command submissions to finish 1726 * 1727 * @dev: drm device 1728 * @data: data from userspace 1729 * @filp: file private 1730 */ 1731 int amdgpu_cs_wait_fences_ioctl(struct drm_device *dev, void *data, 1732 struct drm_file *filp) 1733 { 1734 struct amdgpu_device *adev = drm_to_adev(dev); 1735 union drm_amdgpu_wait_fences *wait = data; 1736 uint32_t fence_count = wait->in.fence_count; 1737 struct drm_amdgpu_fence *fences_user; 1738 struct drm_amdgpu_fence *fences; 1739 int r; 1740 1741 /* Get the fences from userspace */ 1742 fences = kmalloc_array(fence_count, sizeof(struct drm_amdgpu_fence), 1743 GFP_KERNEL); 1744 if (fences == NULL) 1745 return -ENOMEM; 1746 1747 fences_user = u64_to_user_ptr(wait->in.fences); 1748 if (copy_from_user(fences, fences_user, 1749 sizeof(struct drm_amdgpu_fence) * fence_count)) { 1750 r = -EFAULT; 1751 goto err_free_fences; 1752 } 1753 1754 if (wait->in.wait_all) 1755 r = amdgpu_cs_wait_all_fences(adev, filp, wait, fences); 1756 else 1757 r = amdgpu_cs_wait_any_fence(adev, filp, wait, fences); 1758 1759 err_free_fences: 1760 kfree(fences); 1761 1762 return r; 1763 } 1764 1765 /** 1766 * amdgpu_cs_find_mapping - find bo_va for VM address 1767 * 1768 * @parser: command submission parser context 1769 * @addr: VM address 1770 * @bo: resulting BO of the mapping found 1771 * @map: Placeholder to return found BO mapping 1772 * 1773 * Search the buffer objects in the command submission context for a certain 1774 * virtual memory address. Returns allocation structure when found, NULL 1775 * otherwise. 1776 */ 1777 int amdgpu_cs_find_mapping(struct amdgpu_cs_parser *parser, 1778 uint64_t addr, struct amdgpu_bo **bo, 1779 struct amdgpu_bo_va_mapping **map) 1780 { 1781 struct amdgpu_fpriv *fpriv = parser->filp->driver_priv; 1782 struct ttm_operation_ctx ctx = { false, false }; 1783 struct amdgpu_vm *vm = &fpriv->vm; 1784 struct amdgpu_bo_va_mapping *mapping; 1785 int i, r; 1786 1787 addr /= AMDGPU_GPU_PAGE_SIZE; 1788 1789 mapping = amdgpu_vm_bo_lookup_mapping(vm, addr); 1790 if (!mapping || !mapping->bo_va || !mapping->bo_va->base.bo) 1791 return -EINVAL; 1792 1793 *bo = mapping->bo_va->base.bo; 1794 *map = mapping; 1795 1796 /* Double check that the BO is reserved by this CS */ 1797 if (dma_resv_locking_ctx((*bo)->tbo.base.resv) != &parser->exec.ticket) 1798 return -EINVAL; 1799 1800 (*bo)->flags |= AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS; 1801 amdgpu_bo_placement_from_domain(*bo, (*bo)->allowed_domains); 1802 for (i = 0; i < (*bo)->placement.num_placement; i++) 1803 (*bo)->placements[i].flags |= TTM_PL_FLAG_CONTIGUOUS; 1804 r = ttm_bo_validate(&(*bo)->tbo, &(*bo)->placement, &ctx); 1805 if (r) 1806 return r; 1807 1808 return amdgpu_ttm_alloc_gart(&(*bo)->tbo); 1809 } 1810