1 /* 2 * Copyright 2008 Jerome Glisse. 3 * All Rights Reserved. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice (including the next 13 * paragraph) shall be included in all copies or substantial portions of the 14 * Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 22 * DEALINGS IN THE SOFTWARE. 23 * 24 * Authors: 25 * Jerome Glisse <glisse@freedesktop.org> 26 */ 27 28 #include <linux/file.h> 29 #include <linux/pagemap.h> 30 #include <linux/sync_file.h> 31 #include <linux/dma-buf.h> 32 33 #include <drm/amdgpu_drm.h> 34 #include <drm/drm_syncobj.h> 35 #include <drm/ttm/ttm_tt.h> 36 37 #include "amdgpu_cs.h" 38 #include "amdgpu.h" 39 #include "amdgpu_trace.h" 40 #include "amdgpu_gmc.h" 41 #include "amdgpu_gem.h" 42 #include "amdgpu_ras.h" 43 44 static int amdgpu_cs_parser_init(struct amdgpu_cs_parser *p, 45 struct amdgpu_device *adev, 46 struct drm_file *filp, 47 union drm_amdgpu_cs *cs) 48 { 49 struct amdgpu_fpriv *fpriv = filp->driver_priv; 50 51 if (cs->in.num_chunks == 0) 52 return -EINVAL; 53 54 memset(p, 0, sizeof(*p)); 55 p->adev = adev; 56 p->filp = filp; 57 58 p->ctx = amdgpu_ctx_get(fpriv, cs->in.ctx_id); 59 if (!p->ctx) 60 return -EINVAL; 61 62 if (atomic_read(&p->ctx->guilty)) { 63 amdgpu_ctx_put(p->ctx); 64 return -ECANCELED; 65 } 66 67 amdgpu_sync_create(&p->sync); 68 drm_exec_init(&p->exec, DRM_EXEC_INTERRUPTIBLE_WAIT | 69 DRM_EXEC_IGNORE_DUPLICATES, 0); 70 return 0; 71 } 72 73 static int amdgpu_cs_job_idx(struct amdgpu_cs_parser *p, 74 struct drm_amdgpu_cs_chunk_ib *chunk_ib) 75 { 76 struct drm_sched_entity *entity; 77 unsigned int i; 78 int r; 79 80 r = amdgpu_ctx_get_entity(p->ctx, chunk_ib->ip_type, 81 chunk_ib->ip_instance, 82 chunk_ib->ring, &entity); 83 if (r) 84 return r; 85 86 /* 87 * Abort if there is no run queue associated with this entity. 88 * Possibly because of disabled HW IP. 89 */ 90 if (entity->rq == NULL) 91 return -EINVAL; 92 93 /* Check if we can add this IB to some existing job */ 94 for (i = 0; i < p->gang_size; ++i) 95 if (p->entities[i] == entity) 96 return i; 97 98 /* If not increase the gang size if possible */ 99 if (i == AMDGPU_CS_GANG_SIZE) 100 return -EINVAL; 101 102 p->entities[i] = entity; 103 p->gang_size = i + 1; 104 return i; 105 } 106 107 static int amdgpu_cs_p1_ib(struct amdgpu_cs_parser *p, 108 struct drm_amdgpu_cs_chunk_ib *chunk_ib, 109 unsigned int *num_ibs) 110 { 111 int r; 112 113 r = amdgpu_cs_job_idx(p, chunk_ib); 114 if (r < 0) 115 return r; 116 117 if (num_ibs[r] >= amdgpu_ring_max_ibs(chunk_ib->ip_type)) 118 return -EINVAL; 119 120 ++(num_ibs[r]); 121 p->gang_leader_idx = r; 122 return 0; 123 } 124 125 static int amdgpu_cs_p1_user_fence(struct amdgpu_cs_parser *p, 126 struct drm_amdgpu_cs_chunk_fence *data, 127 uint32_t *offset) 128 { 129 struct drm_gem_object *gobj; 130 unsigned long size; 131 132 gobj = drm_gem_object_lookup(p->filp, data->handle); 133 if (gobj == NULL) 134 return -EINVAL; 135 136 p->uf_bo = amdgpu_bo_ref(gem_to_amdgpu_bo(gobj)); 137 drm_gem_object_put(gobj); 138 139 size = amdgpu_bo_size(p->uf_bo); 140 if (size != PAGE_SIZE || data->offset > (size - 8)) 141 return -EINVAL; 142 143 if (amdgpu_ttm_tt_get_usermm(p->uf_bo->tbo.ttm)) 144 return -EINVAL; 145 146 *offset = data->offset; 147 return 0; 148 } 149 150 static int amdgpu_cs_p1_bo_handles(struct amdgpu_cs_parser *p, 151 struct drm_amdgpu_bo_list_in *data) 152 { 153 struct drm_amdgpu_bo_list_entry *info; 154 int r; 155 156 r = amdgpu_bo_create_list_entry_array(data, &info); 157 if (r) 158 return r; 159 160 r = amdgpu_bo_list_create(p->adev, p->filp, info, data->bo_number, 161 &p->bo_list); 162 if (r) 163 goto error_free; 164 165 kvfree(info); 166 return 0; 167 168 error_free: 169 kvfree(info); 170 171 return r; 172 } 173 174 /* Copy the data from userspace and go over it the first time */ 175 static int amdgpu_cs_pass1(struct amdgpu_cs_parser *p, 176 union drm_amdgpu_cs *cs) 177 { 178 struct amdgpu_fpriv *fpriv = p->filp->driver_priv; 179 unsigned int num_ibs[AMDGPU_CS_GANG_SIZE] = { }; 180 struct amdgpu_vm *vm = &fpriv->vm; 181 uint64_t *chunk_array; 182 uint32_t uf_offset = 0; 183 size_t size; 184 int ret; 185 int i; 186 187 chunk_array = memdup_array_user(u64_to_user_ptr(cs->in.chunks), 188 cs->in.num_chunks, 189 sizeof(uint64_t)); 190 if (IS_ERR(chunk_array)) 191 return PTR_ERR(chunk_array); 192 193 p->nchunks = cs->in.num_chunks; 194 p->chunks = kvmalloc_array(p->nchunks, sizeof(struct amdgpu_cs_chunk), 195 GFP_KERNEL); 196 if (!p->chunks) { 197 ret = -ENOMEM; 198 goto free_chunk; 199 } 200 201 for (i = 0; i < p->nchunks; i++) { 202 struct drm_amdgpu_cs_chunk __user *chunk_ptr = NULL; 203 struct drm_amdgpu_cs_chunk user_chunk; 204 205 chunk_ptr = u64_to_user_ptr(chunk_array[i]); 206 if (copy_from_user(&user_chunk, chunk_ptr, 207 sizeof(struct drm_amdgpu_cs_chunk))) { 208 ret = -EFAULT; 209 i--; 210 goto free_partial_kdata; 211 } 212 p->chunks[i].chunk_id = user_chunk.chunk_id; 213 p->chunks[i].length_dw = user_chunk.length_dw; 214 215 size = p->chunks[i].length_dw; 216 217 p->chunks[i].kdata = vmemdup_array_user(u64_to_user_ptr(user_chunk.chunk_data), 218 size, 219 sizeof(uint32_t)); 220 if (IS_ERR(p->chunks[i].kdata)) { 221 ret = PTR_ERR(p->chunks[i].kdata); 222 i--; 223 goto free_partial_kdata; 224 } 225 size *= sizeof(uint32_t); 226 227 /* Assume the worst on the following checks */ 228 ret = -EINVAL; 229 switch (p->chunks[i].chunk_id) { 230 case AMDGPU_CHUNK_ID_IB: 231 if (size < sizeof(struct drm_amdgpu_cs_chunk_ib)) 232 goto free_partial_kdata; 233 234 ret = amdgpu_cs_p1_ib(p, p->chunks[i].kdata, num_ibs); 235 if (ret) 236 goto free_partial_kdata; 237 break; 238 239 case AMDGPU_CHUNK_ID_FENCE: 240 if (size < sizeof(struct drm_amdgpu_cs_chunk_fence)) 241 goto free_partial_kdata; 242 243 ret = amdgpu_cs_p1_user_fence(p, p->chunks[i].kdata, 244 &uf_offset); 245 if (ret) 246 goto free_partial_kdata; 247 break; 248 249 case AMDGPU_CHUNK_ID_BO_HANDLES: 250 if (size < sizeof(struct drm_amdgpu_bo_list_in)) 251 goto free_partial_kdata; 252 253 /* Only a single BO list is allowed to simplify handling. */ 254 if (p->bo_list) 255 goto free_partial_kdata; 256 257 ret = amdgpu_cs_p1_bo_handles(p, p->chunks[i].kdata); 258 if (ret) 259 goto free_partial_kdata; 260 break; 261 262 case AMDGPU_CHUNK_ID_DEPENDENCIES: 263 case AMDGPU_CHUNK_ID_SYNCOBJ_IN: 264 case AMDGPU_CHUNK_ID_SYNCOBJ_OUT: 265 case AMDGPU_CHUNK_ID_SCHEDULED_DEPENDENCIES: 266 case AMDGPU_CHUNK_ID_SYNCOBJ_TIMELINE_WAIT: 267 case AMDGPU_CHUNK_ID_SYNCOBJ_TIMELINE_SIGNAL: 268 case AMDGPU_CHUNK_ID_CP_GFX_SHADOW: 269 break; 270 271 default: 272 goto free_partial_kdata; 273 } 274 } 275 276 if (!p->gang_size) { 277 ret = -EINVAL; 278 goto free_all_kdata; 279 } 280 281 for (i = 0; i < p->gang_size; ++i) { 282 ret = amdgpu_job_alloc(p->adev, vm, p->entities[i], vm, 283 num_ibs[i], &p->jobs[i], 284 p->filp->client_id); 285 if (ret) 286 goto free_all_kdata; 287 switch (p->adev->enforce_isolation[fpriv->xcp_id]) { 288 case AMDGPU_ENFORCE_ISOLATION_DISABLE: 289 default: 290 p->jobs[i]->enforce_isolation = false; 291 p->jobs[i]->run_cleaner_shader = false; 292 break; 293 case AMDGPU_ENFORCE_ISOLATION_ENABLE: 294 p->jobs[i]->enforce_isolation = true; 295 p->jobs[i]->run_cleaner_shader = true; 296 break; 297 case AMDGPU_ENFORCE_ISOLATION_ENABLE_LEGACY: 298 p->jobs[i]->enforce_isolation = true; 299 p->jobs[i]->run_cleaner_shader = false; 300 break; 301 case AMDGPU_ENFORCE_ISOLATION_NO_CLEANER_SHADER: 302 p->jobs[i]->enforce_isolation = true; 303 p->jobs[i]->run_cleaner_shader = false; 304 break; 305 } 306 } 307 p->gang_leader = p->jobs[p->gang_leader_idx]; 308 309 if (p->ctx->generation != p->gang_leader->generation) { 310 ret = -ECANCELED; 311 goto free_all_kdata; 312 } 313 314 if (p->uf_bo) 315 p->gang_leader->uf_addr = uf_offset; 316 kvfree(chunk_array); 317 318 /* Use this opportunity to fill in task info for the vm */ 319 amdgpu_vm_set_task_info(vm); 320 321 return 0; 322 323 free_all_kdata: 324 i = p->nchunks - 1; 325 free_partial_kdata: 326 for (; i >= 0; i--) 327 kvfree(p->chunks[i].kdata); 328 kvfree(p->chunks); 329 p->chunks = NULL; 330 p->nchunks = 0; 331 free_chunk: 332 kvfree(chunk_array); 333 334 return ret; 335 } 336 337 static int amdgpu_cs_p2_ib(struct amdgpu_cs_parser *p, 338 struct amdgpu_cs_chunk *chunk, 339 unsigned int *ce_preempt, 340 unsigned int *de_preempt) 341 { 342 struct drm_amdgpu_cs_chunk_ib *chunk_ib = chunk->kdata; 343 struct amdgpu_fpriv *fpriv = p->filp->driver_priv; 344 struct amdgpu_vm *vm = &fpriv->vm; 345 struct amdgpu_ring *ring; 346 struct amdgpu_job *job; 347 struct amdgpu_ib *ib; 348 int r; 349 350 r = amdgpu_cs_job_idx(p, chunk_ib); 351 if (r < 0) 352 return r; 353 354 job = p->jobs[r]; 355 ring = amdgpu_job_ring(job); 356 ib = &job->ibs[job->num_ibs++]; 357 358 /* submissions to kernel queues are disabled */ 359 if (ring->no_user_submission) 360 return -EINVAL; 361 362 /* MM engine doesn't support user fences */ 363 if (p->uf_bo && ring->funcs->no_user_fence) 364 return -EINVAL; 365 366 if (chunk_ib->ip_type == AMDGPU_HW_IP_GFX && 367 chunk_ib->flags & AMDGPU_IB_FLAG_PREEMPT) { 368 if (chunk_ib->flags & AMDGPU_IB_FLAG_CE) 369 (*ce_preempt)++; 370 else 371 (*de_preempt)++; 372 373 /* Each GFX command submit allows only 1 IB max 374 * preemptible for CE & DE */ 375 if (*ce_preempt > 1 || *de_preempt > 1) 376 return -EINVAL; 377 } 378 379 if (chunk_ib->flags & AMDGPU_IB_FLAG_PREAMBLE) 380 job->preamble_status |= AMDGPU_PREAMBLE_IB_PRESENT; 381 382 r = amdgpu_ib_get(p->adev, vm, ring->funcs->parse_cs ? 383 chunk_ib->ib_bytes : 0, 384 AMDGPU_IB_POOL_DELAYED, ib); 385 if (r) { 386 drm_err(adev_to_drm(p->adev), "Failed to get ib !\n"); 387 return r; 388 } 389 390 ib->gpu_addr = chunk_ib->va_start; 391 ib->length_dw = chunk_ib->ib_bytes / 4; 392 ib->flags = chunk_ib->flags; 393 return 0; 394 } 395 396 static int amdgpu_cs_p2_dependencies(struct amdgpu_cs_parser *p, 397 struct amdgpu_cs_chunk *chunk) 398 { 399 struct drm_amdgpu_cs_chunk_dep *deps = chunk->kdata; 400 struct amdgpu_fpriv *fpriv = p->filp->driver_priv; 401 unsigned int num_deps; 402 int i, r; 403 404 num_deps = chunk->length_dw * 4 / 405 sizeof(struct drm_amdgpu_cs_chunk_dep); 406 407 for (i = 0; i < num_deps; ++i) { 408 struct amdgpu_ctx *ctx; 409 struct drm_sched_entity *entity; 410 struct dma_fence *fence; 411 412 ctx = amdgpu_ctx_get(fpriv, deps[i].ctx_id); 413 if (ctx == NULL) 414 return -EINVAL; 415 416 r = amdgpu_ctx_get_entity(ctx, deps[i].ip_type, 417 deps[i].ip_instance, 418 deps[i].ring, &entity); 419 if (r) { 420 amdgpu_ctx_put(ctx); 421 return r; 422 } 423 424 fence = amdgpu_ctx_get_fence(ctx, entity, deps[i].handle); 425 amdgpu_ctx_put(ctx); 426 427 if (IS_ERR(fence)) 428 return PTR_ERR(fence); 429 else if (!fence) 430 continue; 431 432 if (chunk->chunk_id == AMDGPU_CHUNK_ID_SCHEDULED_DEPENDENCIES) { 433 struct drm_sched_fence *s_fence; 434 struct dma_fence *old = fence; 435 436 s_fence = to_drm_sched_fence(fence); 437 fence = dma_fence_get(&s_fence->scheduled); 438 dma_fence_put(old); 439 } 440 441 r = amdgpu_sync_fence(&p->sync, fence, GFP_KERNEL); 442 dma_fence_put(fence); 443 if (r) 444 return r; 445 } 446 return 0; 447 } 448 449 static int amdgpu_syncobj_lookup_and_add(struct amdgpu_cs_parser *p, 450 uint32_t handle, u64 point, 451 u64 flags) 452 { 453 struct dma_fence *fence; 454 int r; 455 456 r = drm_syncobj_find_fence(p->filp, handle, point, flags, &fence); 457 if (r) { 458 drm_err(adev_to_drm(p->adev), "syncobj %u failed to find fence @ %llu (%d)!\n", 459 handle, point, r); 460 return r; 461 } 462 463 r = amdgpu_sync_fence(&p->sync, fence, GFP_KERNEL); 464 dma_fence_put(fence); 465 return r; 466 } 467 468 static int amdgpu_cs_p2_syncobj_in(struct amdgpu_cs_parser *p, 469 struct amdgpu_cs_chunk *chunk) 470 { 471 struct drm_amdgpu_cs_chunk_sem *deps = chunk->kdata; 472 unsigned int num_deps; 473 int i, r; 474 475 num_deps = chunk->length_dw * 4 / 476 sizeof(struct drm_amdgpu_cs_chunk_sem); 477 for (i = 0; i < num_deps; ++i) { 478 r = amdgpu_syncobj_lookup_and_add(p, deps[i].handle, 0, 0); 479 if (r) 480 return r; 481 } 482 483 return 0; 484 } 485 486 static int amdgpu_cs_p2_syncobj_timeline_wait(struct amdgpu_cs_parser *p, 487 struct amdgpu_cs_chunk *chunk) 488 { 489 struct drm_amdgpu_cs_chunk_syncobj *syncobj_deps = chunk->kdata; 490 unsigned int num_deps; 491 int i, r; 492 493 num_deps = chunk->length_dw * 4 / 494 sizeof(struct drm_amdgpu_cs_chunk_syncobj); 495 for (i = 0; i < num_deps; ++i) { 496 r = amdgpu_syncobj_lookup_and_add(p, syncobj_deps[i].handle, 497 syncobj_deps[i].point, 498 syncobj_deps[i].flags); 499 if (r) 500 return r; 501 } 502 503 return 0; 504 } 505 506 static int amdgpu_cs_p2_syncobj_out(struct amdgpu_cs_parser *p, 507 struct amdgpu_cs_chunk *chunk) 508 { 509 struct drm_amdgpu_cs_chunk_sem *deps = chunk->kdata; 510 unsigned int num_deps; 511 int i; 512 513 num_deps = chunk->length_dw * 4 / 514 sizeof(struct drm_amdgpu_cs_chunk_sem); 515 516 if (p->post_deps) 517 return -EINVAL; 518 519 p->post_deps = kmalloc_array(num_deps, sizeof(*p->post_deps), 520 GFP_KERNEL); 521 p->num_post_deps = 0; 522 523 if (!p->post_deps) 524 return -ENOMEM; 525 526 527 for (i = 0; i < num_deps; ++i) { 528 p->post_deps[i].syncobj = 529 drm_syncobj_find(p->filp, deps[i].handle); 530 if (!p->post_deps[i].syncobj) 531 return -EINVAL; 532 p->post_deps[i].chain = NULL; 533 p->post_deps[i].point = 0; 534 p->num_post_deps++; 535 } 536 537 return 0; 538 } 539 540 static int amdgpu_cs_p2_syncobj_timeline_signal(struct amdgpu_cs_parser *p, 541 struct amdgpu_cs_chunk *chunk) 542 { 543 struct drm_amdgpu_cs_chunk_syncobj *syncobj_deps = chunk->kdata; 544 unsigned int num_deps; 545 int i; 546 547 num_deps = chunk->length_dw * 4 / 548 sizeof(struct drm_amdgpu_cs_chunk_syncobj); 549 550 if (p->post_deps) 551 return -EINVAL; 552 553 p->post_deps = kmalloc_array(num_deps, sizeof(*p->post_deps), 554 GFP_KERNEL); 555 p->num_post_deps = 0; 556 557 if (!p->post_deps) 558 return -ENOMEM; 559 560 for (i = 0; i < num_deps; ++i) { 561 struct amdgpu_cs_post_dep *dep = &p->post_deps[i]; 562 563 dep->chain = NULL; 564 if (syncobj_deps[i].point) { 565 dep->chain = dma_fence_chain_alloc(); 566 if (!dep->chain) 567 return -ENOMEM; 568 } 569 570 dep->syncobj = drm_syncobj_find(p->filp, 571 syncobj_deps[i].handle); 572 if (!dep->syncobj) { 573 dma_fence_chain_free(dep->chain); 574 return -EINVAL; 575 } 576 dep->point = syncobj_deps[i].point; 577 p->num_post_deps++; 578 } 579 580 return 0; 581 } 582 583 static int amdgpu_cs_p2_shadow(struct amdgpu_cs_parser *p, 584 struct amdgpu_cs_chunk *chunk) 585 { 586 struct drm_amdgpu_cs_chunk_cp_gfx_shadow *shadow = chunk->kdata; 587 int i; 588 589 if (shadow->flags & ~AMDGPU_CS_CHUNK_CP_GFX_SHADOW_FLAGS_INIT_SHADOW) 590 return -EINVAL; 591 592 for (i = 0; i < p->gang_size; ++i) { 593 p->jobs[i]->shadow_va = shadow->shadow_va; 594 p->jobs[i]->csa_va = shadow->csa_va; 595 p->jobs[i]->gds_va = shadow->gds_va; 596 p->jobs[i]->init_shadow = 597 shadow->flags & AMDGPU_CS_CHUNK_CP_GFX_SHADOW_FLAGS_INIT_SHADOW; 598 } 599 600 return 0; 601 } 602 603 static int amdgpu_cs_pass2(struct amdgpu_cs_parser *p) 604 { 605 unsigned int ce_preempt = 0, de_preempt = 0; 606 int i, r; 607 608 for (i = 0; i < p->nchunks; ++i) { 609 struct amdgpu_cs_chunk *chunk; 610 611 chunk = &p->chunks[i]; 612 613 switch (chunk->chunk_id) { 614 case AMDGPU_CHUNK_ID_IB: 615 r = amdgpu_cs_p2_ib(p, chunk, &ce_preempt, &de_preempt); 616 if (r) 617 return r; 618 break; 619 case AMDGPU_CHUNK_ID_DEPENDENCIES: 620 case AMDGPU_CHUNK_ID_SCHEDULED_DEPENDENCIES: 621 r = amdgpu_cs_p2_dependencies(p, chunk); 622 if (r) 623 return r; 624 break; 625 case AMDGPU_CHUNK_ID_SYNCOBJ_IN: 626 r = amdgpu_cs_p2_syncobj_in(p, chunk); 627 if (r) 628 return r; 629 break; 630 case AMDGPU_CHUNK_ID_SYNCOBJ_OUT: 631 r = amdgpu_cs_p2_syncobj_out(p, chunk); 632 if (r) 633 return r; 634 break; 635 case AMDGPU_CHUNK_ID_SYNCOBJ_TIMELINE_WAIT: 636 r = amdgpu_cs_p2_syncobj_timeline_wait(p, chunk); 637 if (r) 638 return r; 639 break; 640 case AMDGPU_CHUNK_ID_SYNCOBJ_TIMELINE_SIGNAL: 641 r = amdgpu_cs_p2_syncobj_timeline_signal(p, chunk); 642 if (r) 643 return r; 644 break; 645 case AMDGPU_CHUNK_ID_CP_GFX_SHADOW: 646 r = amdgpu_cs_p2_shadow(p, chunk); 647 if (r) 648 return r; 649 break; 650 } 651 } 652 653 return 0; 654 } 655 656 /* Convert microseconds to bytes. */ 657 static u64 us_to_bytes(struct amdgpu_device *adev, s64 us) 658 { 659 if (us <= 0 || !adev->mm_stats.log2_max_MBps) 660 return 0; 661 662 /* Since accum_us is incremented by a million per second, just 663 * multiply it by the number of MB/s to get the number of bytes. 664 */ 665 return us << adev->mm_stats.log2_max_MBps; 666 } 667 668 static s64 bytes_to_us(struct amdgpu_device *adev, u64 bytes) 669 { 670 if (!adev->mm_stats.log2_max_MBps) 671 return 0; 672 673 return bytes >> adev->mm_stats.log2_max_MBps; 674 } 675 676 /* Returns how many bytes TTM can move right now. If no bytes can be moved, 677 * it returns 0. If it returns non-zero, it's OK to move at least one buffer, 678 * which means it can go over the threshold once. If that happens, the driver 679 * will be in debt and no other buffer migrations can be done until that debt 680 * is repaid. 681 * 682 * This approach allows moving a buffer of any size (it's important to allow 683 * that). 684 * 685 * The currency is simply time in microseconds and it increases as the clock 686 * ticks. The accumulated microseconds (us) are converted to bytes and 687 * returned. 688 */ 689 static void amdgpu_cs_get_threshold_for_moves(struct amdgpu_device *adev, 690 u64 *max_bytes, 691 u64 *max_vis_bytes) 692 { 693 s64 time_us, increment_us; 694 u64 free_vram, total_vram, used_vram; 695 /* Allow a maximum of 200 accumulated ms. This is basically per-IB 696 * throttling. 697 * 698 * It means that in order to get full max MBps, at least 5 IBs per 699 * second must be submitted and not more than 200ms apart from each 700 * other. 701 */ 702 const s64 us_upper_bound = 200000; 703 704 if (!adev->mm_stats.log2_max_MBps) { 705 *max_bytes = 0; 706 *max_vis_bytes = 0; 707 return; 708 } 709 710 total_vram = adev->gmc.real_vram_size - atomic64_read(&adev->vram_pin_size); 711 used_vram = ttm_resource_manager_usage(&adev->mman.vram_mgr.manager); 712 free_vram = used_vram >= total_vram ? 0 : total_vram - used_vram; 713 714 spin_lock(&adev->mm_stats.lock); 715 716 /* Increase the amount of accumulated us. */ 717 time_us = ktime_to_us(ktime_get()); 718 increment_us = time_us - adev->mm_stats.last_update_us; 719 adev->mm_stats.last_update_us = time_us; 720 adev->mm_stats.accum_us = min(adev->mm_stats.accum_us + increment_us, 721 us_upper_bound); 722 723 /* This prevents the short period of low performance when the VRAM 724 * usage is low and the driver is in debt or doesn't have enough 725 * accumulated us to fill VRAM quickly. 726 * 727 * The situation can occur in these cases: 728 * - a lot of VRAM is freed by userspace 729 * - the presence of a big buffer causes a lot of evictions 730 * (solution: split buffers into smaller ones) 731 * 732 * If 128 MB or 1/8th of VRAM is free, start filling it now by setting 733 * accum_us to a positive number. 734 */ 735 if (free_vram >= 128 * 1024 * 1024 || free_vram >= total_vram / 8) { 736 s64 min_us; 737 738 /* Be more aggressive on dGPUs. Try to fill a portion of free 739 * VRAM now. 740 */ 741 if (!(adev->flags & AMD_IS_APU)) 742 min_us = bytes_to_us(adev, free_vram / 4); 743 else 744 min_us = 0; /* Reset accum_us on APUs. */ 745 746 adev->mm_stats.accum_us = max(min_us, adev->mm_stats.accum_us); 747 } 748 749 /* This is set to 0 if the driver is in debt to disallow (optional) 750 * buffer moves. 751 */ 752 *max_bytes = us_to_bytes(adev, adev->mm_stats.accum_us); 753 754 /* Do the same for visible VRAM if half of it is free */ 755 if (!amdgpu_gmc_vram_full_visible(&adev->gmc)) { 756 u64 total_vis_vram = adev->gmc.visible_vram_size; 757 u64 used_vis_vram = 758 amdgpu_vram_mgr_vis_usage(&adev->mman.vram_mgr); 759 760 if (used_vis_vram < total_vis_vram) { 761 u64 free_vis_vram = total_vis_vram - used_vis_vram; 762 763 adev->mm_stats.accum_us_vis = min(adev->mm_stats.accum_us_vis + 764 increment_us, us_upper_bound); 765 766 if (free_vis_vram >= total_vis_vram / 2) 767 adev->mm_stats.accum_us_vis = 768 max(bytes_to_us(adev, free_vis_vram / 2), 769 adev->mm_stats.accum_us_vis); 770 } 771 772 *max_vis_bytes = us_to_bytes(adev, adev->mm_stats.accum_us_vis); 773 } else { 774 *max_vis_bytes = 0; 775 } 776 777 spin_unlock(&adev->mm_stats.lock); 778 } 779 780 /* Report how many bytes have really been moved for the last command 781 * submission. This can result in a debt that can stop buffer migrations 782 * temporarily. 783 */ 784 void amdgpu_cs_report_moved_bytes(struct amdgpu_device *adev, u64 num_bytes, 785 u64 num_vis_bytes) 786 { 787 spin_lock(&adev->mm_stats.lock); 788 adev->mm_stats.accum_us -= bytes_to_us(adev, num_bytes); 789 adev->mm_stats.accum_us_vis -= bytes_to_us(adev, num_vis_bytes); 790 spin_unlock(&adev->mm_stats.lock); 791 } 792 793 static int amdgpu_cs_bo_validate(void *param, struct amdgpu_bo *bo) 794 { 795 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 796 struct amdgpu_cs_parser *p = param; 797 struct ttm_operation_ctx ctx = { 798 .interruptible = true, 799 .no_wait_gpu = false, 800 .resv = bo->tbo.base.resv 801 }; 802 uint32_t domain; 803 int r; 804 805 if (bo->tbo.pin_count) 806 return 0; 807 808 /* Don't move this buffer if we have depleted our allowance 809 * to move it. Don't move anything if the threshold is zero. 810 */ 811 if (p->bytes_moved < p->bytes_moved_threshold && 812 (!bo->tbo.base.dma_buf || 813 list_empty(&bo->tbo.base.dma_buf->attachments))) { 814 if (!amdgpu_gmc_vram_full_visible(&adev->gmc) && 815 (bo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED)) { 816 /* And don't move a CPU_ACCESS_REQUIRED BO to limited 817 * visible VRAM if we've depleted our allowance to do 818 * that. 819 */ 820 if (p->bytes_moved_vis < p->bytes_moved_vis_threshold) 821 domain = bo->preferred_domains; 822 else 823 domain = bo->allowed_domains; 824 } else { 825 domain = bo->preferred_domains; 826 } 827 } else { 828 domain = bo->allowed_domains; 829 } 830 831 retry: 832 amdgpu_bo_placement_from_domain(bo, domain); 833 r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 834 835 p->bytes_moved += ctx.bytes_moved; 836 if (!amdgpu_gmc_vram_full_visible(&adev->gmc) && 837 amdgpu_res_cpu_visible(adev, bo->tbo.resource)) 838 p->bytes_moved_vis += ctx.bytes_moved; 839 840 if (unlikely(r == -ENOMEM) && domain != bo->allowed_domains) { 841 domain = bo->allowed_domains; 842 goto retry; 843 } 844 845 return r; 846 } 847 848 static int amdgpu_cs_parser_bos(struct amdgpu_cs_parser *p, 849 union drm_amdgpu_cs *cs) 850 { 851 struct amdgpu_fpriv *fpriv = p->filp->driver_priv; 852 struct ttm_operation_ctx ctx = { true, false }; 853 struct amdgpu_vm *vm = &fpriv->vm; 854 struct amdgpu_bo_list_entry *e; 855 struct drm_gem_object *obj; 856 unsigned long index; 857 unsigned int i; 858 int r; 859 860 /* p->bo_list could already be assigned if AMDGPU_CHUNK_ID_BO_HANDLES is present */ 861 if (cs->in.bo_list_handle) { 862 if (p->bo_list) 863 return -EINVAL; 864 865 r = amdgpu_bo_list_get(fpriv, cs->in.bo_list_handle, 866 &p->bo_list); 867 if (r) 868 return r; 869 } else if (!p->bo_list) { 870 /* Create a empty bo_list when no handle is provided */ 871 r = amdgpu_bo_list_create(p->adev, p->filp, NULL, 0, 872 &p->bo_list); 873 if (r) 874 return r; 875 } 876 877 mutex_lock(&p->bo_list->bo_list_mutex); 878 879 /* Get userptr backing pages. If pages are updated after registered 880 * in amdgpu_gem_userptr_ioctl(), amdgpu_cs_list_validate() will do 881 * amdgpu_ttm_backend_bind() to flush and invalidate new pages 882 */ 883 amdgpu_bo_list_for_each_userptr_entry(e, p->bo_list) { 884 bool userpage_invalidated = false; 885 struct amdgpu_bo *bo = e->bo; 886 int i; 887 888 e->user_pages = kvcalloc(bo->tbo.ttm->num_pages, 889 sizeof(struct page *), 890 GFP_KERNEL); 891 if (!e->user_pages) { 892 drm_err(adev_to_drm(p->adev), "kvmalloc_array failure\n"); 893 r = -ENOMEM; 894 goto out_free_user_pages; 895 } 896 897 r = amdgpu_ttm_tt_get_user_pages(bo, e->user_pages, &e->range); 898 if (r) { 899 kvfree(e->user_pages); 900 e->user_pages = NULL; 901 goto out_free_user_pages; 902 } 903 904 for (i = 0; i < bo->tbo.ttm->num_pages; i++) { 905 if (bo->tbo.ttm->pages[i] != e->user_pages[i]) { 906 userpage_invalidated = true; 907 break; 908 } 909 } 910 e->user_invalidated = userpage_invalidated; 911 } 912 913 drm_exec_until_all_locked(&p->exec) { 914 r = amdgpu_vm_lock_pd(&fpriv->vm, &p->exec, 1 + p->gang_size); 915 drm_exec_retry_on_contention(&p->exec); 916 if (unlikely(r)) 917 goto out_free_user_pages; 918 919 amdgpu_bo_list_for_each_entry(e, p->bo_list) { 920 /* One fence for TTM and one for each CS job */ 921 r = drm_exec_prepare_obj(&p->exec, &e->bo->tbo.base, 922 1 + p->gang_size); 923 drm_exec_retry_on_contention(&p->exec); 924 if (unlikely(r)) 925 goto out_free_user_pages; 926 927 e->bo_va = amdgpu_vm_bo_find(vm, e->bo); 928 } 929 930 if (p->uf_bo) { 931 r = drm_exec_prepare_obj(&p->exec, &p->uf_bo->tbo.base, 932 1 + p->gang_size); 933 drm_exec_retry_on_contention(&p->exec); 934 if (unlikely(r)) 935 goto out_free_user_pages; 936 } 937 } 938 939 amdgpu_bo_list_for_each_userptr_entry(e, p->bo_list) { 940 struct mm_struct *usermm; 941 942 usermm = amdgpu_ttm_tt_get_usermm(e->bo->tbo.ttm); 943 if (usermm && usermm != current->mm) { 944 r = -EPERM; 945 goto out_free_user_pages; 946 } 947 948 if (amdgpu_ttm_tt_is_userptr(e->bo->tbo.ttm) && 949 e->user_invalidated && e->user_pages) { 950 amdgpu_bo_placement_from_domain(e->bo, 951 AMDGPU_GEM_DOMAIN_CPU); 952 r = ttm_bo_validate(&e->bo->tbo, &e->bo->placement, 953 &ctx); 954 if (r) 955 goto out_free_user_pages; 956 957 amdgpu_ttm_tt_set_user_pages(e->bo->tbo.ttm, 958 e->user_pages); 959 } 960 961 kvfree(e->user_pages); 962 e->user_pages = NULL; 963 } 964 965 amdgpu_cs_get_threshold_for_moves(p->adev, &p->bytes_moved_threshold, 966 &p->bytes_moved_vis_threshold); 967 p->bytes_moved = 0; 968 p->bytes_moved_vis = 0; 969 970 r = amdgpu_vm_validate(p->adev, &fpriv->vm, NULL, 971 amdgpu_cs_bo_validate, p); 972 if (r) { 973 drm_err(adev_to_drm(p->adev), "amdgpu_vm_validate() failed.\n"); 974 goto out_free_user_pages; 975 } 976 977 drm_exec_for_each_locked_object(&p->exec, index, obj) { 978 r = amdgpu_cs_bo_validate(p, gem_to_amdgpu_bo(obj)); 979 if (unlikely(r)) 980 goto out_free_user_pages; 981 } 982 983 if (p->uf_bo) { 984 r = amdgpu_ttm_alloc_gart(&p->uf_bo->tbo); 985 if (unlikely(r)) 986 goto out_free_user_pages; 987 988 p->gang_leader->uf_addr += amdgpu_bo_gpu_offset(p->uf_bo); 989 } 990 991 amdgpu_cs_report_moved_bytes(p->adev, p->bytes_moved, 992 p->bytes_moved_vis); 993 994 for (i = 0; i < p->gang_size; ++i) 995 amdgpu_job_set_resources(p->jobs[i], p->bo_list->gds_obj, 996 p->bo_list->gws_obj, 997 p->bo_list->oa_obj); 998 return 0; 999 1000 out_free_user_pages: 1001 amdgpu_bo_list_for_each_userptr_entry(e, p->bo_list) { 1002 struct amdgpu_bo *bo = e->bo; 1003 1004 if (!e->user_pages) 1005 continue; 1006 amdgpu_ttm_tt_get_user_pages_done(bo->tbo.ttm, e->range); 1007 kvfree(e->user_pages); 1008 e->user_pages = NULL; 1009 e->range = NULL; 1010 } 1011 mutex_unlock(&p->bo_list->bo_list_mutex); 1012 return r; 1013 } 1014 1015 static void trace_amdgpu_cs_ibs(struct amdgpu_cs_parser *p) 1016 { 1017 int i, j; 1018 1019 if (!trace_amdgpu_cs_enabled()) 1020 return; 1021 1022 for (i = 0; i < p->gang_size; ++i) { 1023 struct amdgpu_job *job = p->jobs[i]; 1024 1025 for (j = 0; j < job->num_ibs; ++j) 1026 trace_amdgpu_cs(p, job, &job->ibs[j]); 1027 } 1028 } 1029 1030 static int amdgpu_cs_patch_ibs(struct amdgpu_cs_parser *p, 1031 struct amdgpu_job *job) 1032 { 1033 struct amdgpu_ring *ring = amdgpu_job_ring(job); 1034 unsigned int i; 1035 int r; 1036 1037 /* Only for UVD/VCE VM emulation */ 1038 if (!ring->funcs->parse_cs && !ring->funcs->patch_cs_in_place) 1039 return 0; 1040 1041 for (i = 0; i < job->num_ibs; ++i) { 1042 struct amdgpu_ib *ib = &job->ibs[i]; 1043 struct amdgpu_bo_va_mapping *m; 1044 struct amdgpu_bo *aobj; 1045 uint64_t va_start; 1046 uint8_t *kptr; 1047 1048 va_start = ib->gpu_addr & AMDGPU_GMC_HOLE_MASK; 1049 r = amdgpu_cs_find_mapping(p, va_start, &aobj, &m); 1050 if (r) { 1051 drm_err(adev_to_drm(p->adev), "IB va_start is invalid\n"); 1052 return r; 1053 } 1054 1055 if ((va_start + ib->length_dw * 4) > 1056 (m->last + 1) * AMDGPU_GPU_PAGE_SIZE) { 1057 drm_err(adev_to_drm(p->adev), "IB va_start+ib_bytes is invalid\n"); 1058 return -EINVAL; 1059 } 1060 1061 /* the IB should be reserved at this point */ 1062 r = amdgpu_bo_kmap(aobj, (void **)&kptr); 1063 if (r) 1064 return r; 1065 1066 kptr += va_start - (m->start * AMDGPU_GPU_PAGE_SIZE); 1067 1068 if (ring->funcs->parse_cs) { 1069 memcpy(ib->ptr, kptr, ib->length_dw * 4); 1070 amdgpu_bo_kunmap(aobj); 1071 1072 r = amdgpu_ring_parse_cs(ring, p, job, ib); 1073 if (r) 1074 return r; 1075 1076 if (ib->sa_bo) 1077 ib->gpu_addr = amdgpu_sa_bo_gpu_addr(ib->sa_bo); 1078 } else { 1079 ib->ptr = (uint32_t *)kptr; 1080 r = amdgpu_ring_patch_cs_in_place(ring, p, job, ib); 1081 amdgpu_bo_kunmap(aobj); 1082 if (r) 1083 return r; 1084 } 1085 } 1086 1087 return 0; 1088 } 1089 1090 static int amdgpu_cs_patch_jobs(struct amdgpu_cs_parser *p) 1091 { 1092 unsigned int i; 1093 int r; 1094 1095 for (i = 0; i < p->gang_size; ++i) { 1096 r = amdgpu_cs_patch_ibs(p, p->jobs[i]); 1097 if (r) 1098 return r; 1099 } 1100 return 0; 1101 } 1102 1103 static int amdgpu_cs_vm_handling(struct amdgpu_cs_parser *p) 1104 { 1105 struct amdgpu_fpriv *fpriv = p->filp->driver_priv; 1106 struct amdgpu_job *job = p->gang_leader; 1107 struct amdgpu_device *adev = p->adev; 1108 struct amdgpu_vm *vm = &fpriv->vm; 1109 struct amdgpu_bo_list_entry *e; 1110 struct amdgpu_bo_va *bo_va; 1111 unsigned int i; 1112 int r; 1113 1114 /* 1115 * We can't use gang submit on with reserved VMIDs when the VM changes 1116 * can't be invalidated by more than one engine at the same time. 1117 */ 1118 if (p->gang_size > 1 && !adev->vm_manager.concurrent_flush) { 1119 for (i = 0; i < p->gang_size; ++i) { 1120 struct drm_sched_entity *entity = p->entities[i]; 1121 struct drm_gpu_scheduler *sched = entity->rq->sched; 1122 struct amdgpu_ring *ring = to_amdgpu_ring(sched); 1123 1124 if (amdgpu_vmid_uses_reserved(vm, ring->vm_hub)) 1125 return -EINVAL; 1126 } 1127 } 1128 1129 if (!amdgpu_vm_ready(vm)) 1130 return -EINVAL; 1131 1132 r = amdgpu_vm_clear_freed(adev, vm, NULL); 1133 if (r) 1134 return r; 1135 1136 r = amdgpu_vm_bo_update(adev, fpriv->prt_va, false); 1137 if (r) 1138 return r; 1139 1140 r = amdgpu_sync_fence(&p->sync, fpriv->prt_va->last_pt_update, 1141 GFP_KERNEL); 1142 if (r) 1143 return r; 1144 1145 if (fpriv->csa_va) { 1146 bo_va = fpriv->csa_va; 1147 BUG_ON(!bo_va); 1148 r = amdgpu_vm_bo_update(adev, bo_va, false); 1149 if (r) 1150 return r; 1151 1152 r = amdgpu_sync_fence(&p->sync, bo_va->last_pt_update, 1153 GFP_KERNEL); 1154 if (r) 1155 return r; 1156 } 1157 1158 /* FIXME: In theory this loop shouldn't be needed any more when 1159 * amdgpu_vm_handle_moved handles all moved BOs that are reserved 1160 * with p->ticket. But removing it caused test regressions, so I'm 1161 * leaving it here for now. 1162 */ 1163 amdgpu_bo_list_for_each_entry(e, p->bo_list) { 1164 bo_va = e->bo_va; 1165 if (bo_va == NULL) 1166 continue; 1167 1168 r = amdgpu_vm_bo_update(adev, bo_va, false); 1169 if (r) 1170 return r; 1171 1172 r = amdgpu_sync_fence(&p->sync, bo_va->last_pt_update, 1173 GFP_KERNEL); 1174 if (r) 1175 return r; 1176 } 1177 1178 r = amdgpu_vm_handle_moved(adev, vm, &p->exec.ticket); 1179 if (r) 1180 return r; 1181 1182 r = amdgpu_vm_update_pdes(adev, vm, false); 1183 if (r) 1184 return r; 1185 1186 r = amdgpu_sync_fence(&p->sync, vm->last_update, GFP_KERNEL); 1187 if (r) 1188 return r; 1189 1190 for (i = 0; i < p->gang_size; ++i) { 1191 job = p->jobs[i]; 1192 1193 if (!job->vm) 1194 continue; 1195 1196 job->vm_pd_addr = amdgpu_gmc_pd_addr(vm->root.bo); 1197 } 1198 1199 if (adev->debug_vm) { 1200 /* Invalidate all BOs to test for userspace bugs */ 1201 amdgpu_bo_list_for_each_entry(e, p->bo_list) { 1202 struct amdgpu_bo *bo = e->bo; 1203 1204 /* ignore duplicates */ 1205 if (!bo) 1206 continue; 1207 1208 amdgpu_vm_bo_invalidate(bo, false); 1209 } 1210 } 1211 1212 return 0; 1213 } 1214 1215 static int amdgpu_cs_sync_rings(struct amdgpu_cs_parser *p) 1216 { 1217 struct amdgpu_fpriv *fpriv = p->filp->driver_priv; 1218 struct drm_gpu_scheduler *sched; 1219 struct drm_gem_object *obj; 1220 struct dma_fence *fence; 1221 unsigned long index; 1222 unsigned int i; 1223 int r; 1224 1225 r = amdgpu_ctx_wait_prev_fence(p->ctx, p->entities[p->gang_leader_idx]); 1226 if (r) { 1227 if (r != -ERESTARTSYS) 1228 drm_err(adev_to_drm(p->adev), "amdgpu_ctx_wait_prev_fence failed.\n"); 1229 return r; 1230 } 1231 1232 drm_exec_for_each_locked_object(&p->exec, index, obj) { 1233 struct amdgpu_bo *bo = gem_to_amdgpu_bo(obj); 1234 1235 struct dma_resv *resv = bo->tbo.base.resv; 1236 enum amdgpu_sync_mode sync_mode; 1237 1238 sync_mode = amdgpu_bo_explicit_sync(bo) ? 1239 AMDGPU_SYNC_EXPLICIT : AMDGPU_SYNC_NE_OWNER; 1240 r = amdgpu_sync_resv(p->adev, &p->sync, resv, sync_mode, 1241 &fpriv->vm); 1242 if (r) 1243 return r; 1244 } 1245 1246 for (i = 0; i < p->gang_size; ++i) { 1247 r = amdgpu_sync_push_to_job(&p->sync, p->jobs[i]); 1248 if (r) 1249 return r; 1250 } 1251 1252 sched = p->gang_leader->base.entity->rq->sched; 1253 while ((fence = amdgpu_sync_get_fence(&p->sync))) { 1254 struct drm_sched_fence *s_fence = to_drm_sched_fence(fence); 1255 1256 /* 1257 * When we have an dependency it might be necessary to insert a 1258 * pipeline sync to make sure that all caches etc are flushed and the 1259 * next job actually sees the results from the previous one 1260 * before we start executing on the same scheduler ring. 1261 */ 1262 if (!s_fence || s_fence->sched != sched) { 1263 dma_fence_put(fence); 1264 continue; 1265 } 1266 1267 r = amdgpu_sync_fence(&p->gang_leader->explicit_sync, fence, 1268 GFP_KERNEL); 1269 dma_fence_put(fence); 1270 if (r) 1271 return r; 1272 } 1273 return 0; 1274 } 1275 1276 static void amdgpu_cs_post_dependencies(struct amdgpu_cs_parser *p) 1277 { 1278 int i; 1279 1280 for (i = 0; i < p->num_post_deps; ++i) { 1281 if (p->post_deps[i].chain && p->post_deps[i].point) { 1282 drm_syncobj_add_point(p->post_deps[i].syncobj, 1283 p->post_deps[i].chain, 1284 p->fence, p->post_deps[i].point); 1285 p->post_deps[i].chain = NULL; 1286 } else { 1287 drm_syncobj_replace_fence(p->post_deps[i].syncobj, 1288 p->fence); 1289 } 1290 } 1291 } 1292 1293 static int amdgpu_cs_submit(struct amdgpu_cs_parser *p, 1294 union drm_amdgpu_cs *cs) 1295 { 1296 struct amdgpu_fpriv *fpriv = p->filp->driver_priv; 1297 struct amdgpu_job *leader = p->gang_leader; 1298 struct amdgpu_bo_list_entry *e; 1299 struct drm_gem_object *gobj; 1300 unsigned long index; 1301 unsigned int i; 1302 uint64_t seq; 1303 int r; 1304 1305 for (i = 0; i < p->gang_size; ++i) 1306 drm_sched_job_arm(&p->jobs[i]->base); 1307 1308 for (i = 0; i < p->gang_size; ++i) { 1309 struct dma_fence *fence; 1310 1311 if (p->jobs[i] == leader) 1312 continue; 1313 1314 fence = &p->jobs[i]->base.s_fence->scheduled; 1315 dma_fence_get(fence); 1316 r = drm_sched_job_add_dependency(&leader->base, fence); 1317 if (r) { 1318 dma_fence_put(fence); 1319 return r; 1320 } 1321 } 1322 1323 if (p->gang_size > 1) { 1324 for (i = 0; i < p->gang_size; ++i) 1325 amdgpu_job_set_gang_leader(p->jobs[i], leader); 1326 } 1327 1328 /* No memory allocation is allowed while holding the notifier lock. 1329 * The lock is held until amdgpu_cs_submit is finished and fence is 1330 * added to BOs. 1331 */ 1332 mutex_lock(&p->adev->notifier_lock); 1333 1334 /* If userptr are invalidated after amdgpu_cs_parser_bos(), return 1335 * -EAGAIN, drmIoctl in libdrm will restart the amdgpu_cs_ioctl. 1336 */ 1337 r = 0; 1338 amdgpu_bo_list_for_each_userptr_entry(e, p->bo_list) { 1339 r |= !amdgpu_ttm_tt_get_user_pages_done(e->bo->tbo.ttm, 1340 e->range); 1341 e->range = NULL; 1342 } 1343 if (r) { 1344 r = -EAGAIN; 1345 mutex_unlock(&p->adev->notifier_lock); 1346 return r; 1347 } 1348 1349 p->fence = dma_fence_get(&leader->base.s_fence->finished); 1350 drm_exec_for_each_locked_object(&p->exec, index, gobj) { 1351 1352 ttm_bo_move_to_lru_tail_unlocked(&gem_to_amdgpu_bo(gobj)->tbo); 1353 1354 /* Everybody except for the gang leader uses READ */ 1355 for (i = 0; i < p->gang_size; ++i) { 1356 if (p->jobs[i] == leader) 1357 continue; 1358 1359 dma_resv_add_fence(gobj->resv, 1360 &p->jobs[i]->base.s_fence->finished, 1361 DMA_RESV_USAGE_READ); 1362 } 1363 1364 /* The gang leader as remembered as writer */ 1365 dma_resv_add_fence(gobj->resv, p->fence, DMA_RESV_USAGE_WRITE); 1366 } 1367 1368 seq = amdgpu_ctx_add_fence(p->ctx, p->entities[p->gang_leader_idx], 1369 p->fence); 1370 amdgpu_cs_post_dependencies(p); 1371 1372 if ((leader->preamble_status & AMDGPU_PREAMBLE_IB_PRESENT) && 1373 !p->ctx->preamble_presented) { 1374 leader->preamble_status |= AMDGPU_PREAMBLE_IB_PRESENT_FIRST; 1375 p->ctx->preamble_presented = true; 1376 } 1377 1378 cs->out.handle = seq; 1379 leader->uf_sequence = seq; 1380 1381 amdgpu_vm_bo_trace_cs(&fpriv->vm, &p->exec.ticket); 1382 for (i = 0; i < p->gang_size; ++i) { 1383 amdgpu_job_free_resources(p->jobs[i]); 1384 trace_amdgpu_cs_ioctl(p->jobs[i]); 1385 drm_sched_entity_push_job(&p->jobs[i]->base); 1386 p->jobs[i] = NULL; 1387 } 1388 1389 amdgpu_vm_move_to_lru_tail(p->adev, &fpriv->vm); 1390 1391 mutex_unlock(&p->adev->notifier_lock); 1392 mutex_unlock(&p->bo_list->bo_list_mutex); 1393 return 0; 1394 } 1395 1396 /* Cleanup the parser structure */ 1397 static void amdgpu_cs_parser_fini(struct amdgpu_cs_parser *parser) 1398 { 1399 unsigned int i; 1400 1401 amdgpu_sync_free(&parser->sync); 1402 drm_exec_fini(&parser->exec); 1403 1404 for (i = 0; i < parser->num_post_deps; i++) { 1405 drm_syncobj_put(parser->post_deps[i].syncobj); 1406 kfree(parser->post_deps[i].chain); 1407 } 1408 kfree(parser->post_deps); 1409 1410 dma_fence_put(parser->fence); 1411 1412 if (parser->ctx) 1413 amdgpu_ctx_put(parser->ctx); 1414 if (parser->bo_list) 1415 amdgpu_bo_list_put(parser->bo_list); 1416 1417 for (i = 0; i < parser->nchunks; i++) 1418 kvfree(parser->chunks[i].kdata); 1419 kvfree(parser->chunks); 1420 for (i = 0; i < parser->gang_size; ++i) { 1421 if (parser->jobs[i]) 1422 amdgpu_job_free(parser->jobs[i]); 1423 } 1424 amdgpu_bo_unref(&parser->uf_bo); 1425 } 1426 1427 int amdgpu_cs_ioctl(struct drm_device *dev, void *data, struct drm_file *filp) 1428 { 1429 struct amdgpu_device *adev = drm_to_adev(dev); 1430 struct amdgpu_cs_parser parser; 1431 int r; 1432 1433 if (amdgpu_ras_intr_triggered()) 1434 return -EHWPOISON; 1435 1436 if (!adev->accel_working) 1437 return -EBUSY; 1438 1439 r = amdgpu_cs_parser_init(&parser, adev, filp, data); 1440 if (r) { 1441 drm_err_ratelimited(dev, "Failed to initialize parser %d!\n", r); 1442 return r; 1443 } 1444 1445 r = amdgpu_cs_pass1(&parser, data); 1446 if (r) 1447 goto error_fini; 1448 1449 r = amdgpu_cs_pass2(&parser); 1450 if (r) 1451 goto error_fini; 1452 1453 r = amdgpu_cs_parser_bos(&parser, data); 1454 if (r) { 1455 if (r == -ENOMEM) 1456 drm_err(dev, "Not enough memory for command submission!\n"); 1457 else if (r != -ERESTARTSYS && r != -EAGAIN) 1458 drm_dbg(dev, "Failed to process the buffer list %d!\n", r); 1459 goto error_fini; 1460 } 1461 1462 r = amdgpu_cs_patch_jobs(&parser); 1463 if (r) 1464 goto error_backoff; 1465 1466 r = amdgpu_cs_vm_handling(&parser); 1467 if (r) 1468 goto error_backoff; 1469 1470 r = amdgpu_cs_sync_rings(&parser); 1471 if (r) 1472 goto error_backoff; 1473 1474 trace_amdgpu_cs_ibs(&parser); 1475 1476 r = amdgpu_cs_submit(&parser, data); 1477 if (r) 1478 goto error_backoff; 1479 1480 amdgpu_cs_parser_fini(&parser); 1481 return 0; 1482 1483 error_backoff: 1484 mutex_unlock(&parser.bo_list->bo_list_mutex); 1485 1486 error_fini: 1487 amdgpu_cs_parser_fini(&parser); 1488 return r; 1489 } 1490 1491 /** 1492 * amdgpu_cs_wait_ioctl - wait for a command submission to finish 1493 * 1494 * @dev: drm device 1495 * @data: data from userspace 1496 * @filp: file private 1497 * 1498 * Wait for the command submission identified by handle to finish. 1499 */ 1500 int amdgpu_cs_wait_ioctl(struct drm_device *dev, void *data, 1501 struct drm_file *filp) 1502 { 1503 union drm_amdgpu_wait_cs *wait = data; 1504 unsigned long timeout = amdgpu_gem_timeout(wait->in.timeout); 1505 struct drm_sched_entity *entity; 1506 struct amdgpu_ctx *ctx; 1507 struct dma_fence *fence; 1508 long r; 1509 1510 ctx = amdgpu_ctx_get(filp->driver_priv, wait->in.ctx_id); 1511 if (ctx == NULL) 1512 return -EINVAL; 1513 1514 r = amdgpu_ctx_get_entity(ctx, wait->in.ip_type, wait->in.ip_instance, 1515 wait->in.ring, &entity); 1516 if (r) { 1517 amdgpu_ctx_put(ctx); 1518 return r; 1519 } 1520 1521 fence = amdgpu_ctx_get_fence(ctx, entity, wait->in.handle); 1522 if (IS_ERR(fence)) 1523 r = PTR_ERR(fence); 1524 else if (fence) { 1525 r = dma_fence_wait_timeout(fence, true, timeout); 1526 if (r > 0 && fence->error) 1527 r = fence->error; 1528 dma_fence_put(fence); 1529 } else 1530 r = 1; 1531 1532 amdgpu_ctx_put(ctx); 1533 if (r < 0) 1534 return r; 1535 1536 memset(wait, 0, sizeof(*wait)); 1537 wait->out.status = (r == 0); 1538 1539 return 0; 1540 } 1541 1542 /** 1543 * amdgpu_cs_get_fence - helper to get fence from drm_amdgpu_fence 1544 * 1545 * @adev: amdgpu device 1546 * @filp: file private 1547 * @user: drm_amdgpu_fence copied from user space 1548 */ 1549 static struct dma_fence *amdgpu_cs_get_fence(struct amdgpu_device *adev, 1550 struct drm_file *filp, 1551 struct drm_amdgpu_fence *user) 1552 { 1553 struct drm_sched_entity *entity; 1554 struct amdgpu_ctx *ctx; 1555 struct dma_fence *fence; 1556 int r; 1557 1558 ctx = amdgpu_ctx_get(filp->driver_priv, user->ctx_id); 1559 if (ctx == NULL) 1560 return ERR_PTR(-EINVAL); 1561 1562 r = amdgpu_ctx_get_entity(ctx, user->ip_type, user->ip_instance, 1563 user->ring, &entity); 1564 if (r) { 1565 amdgpu_ctx_put(ctx); 1566 return ERR_PTR(r); 1567 } 1568 1569 fence = amdgpu_ctx_get_fence(ctx, entity, user->seq_no); 1570 amdgpu_ctx_put(ctx); 1571 1572 return fence; 1573 } 1574 1575 int amdgpu_cs_fence_to_handle_ioctl(struct drm_device *dev, void *data, 1576 struct drm_file *filp) 1577 { 1578 struct amdgpu_device *adev = drm_to_adev(dev); 1579 union drm_amdgpu_fence_to_handle *info = data; 1580 struct dma_fence *fence; 1581 struct drm_syncobj *syncobj; 1582 struct sync_file *sync_file; 1583 int fd, r; 1584 1585 fence = amdgpu_cs_get_fence(adev, filp, &info->in.fence); 1586 if (IS_ERR(fence)) 1587 return PTR_ERR(fence); 1588 1589 if (!fence) 1590 fence = dma_fence_get_stub(); 1591 1592 switch (info->in.what) { 1593 case AMDGPU_FENCE_TO_HANDLE_GET_SYNCOBJ: 1594 r = drm_syncobj_create(&syncobj, 0, fence); 1595 dma_fence_put(fence); 1596 if (r) 1597 return r; 1598 r = drm_syncobj_get_handle(filp, syncobj, &info->out.handle); 1599 drm_syncobj_put(syncobj); 1600 return r; 1601 1602 case AMDGPU_FENCE_TO_HANDLE_GET_SYNCOBJ_FD: 1603 r = drm_syncobj_create(&syncobj, 0, fence); 1604 dma_fence_put(fence); 1605 if (r) 1606 return r; 1607 r = drm_syncobj_get_fd(syncobj, (int *)&info->out.handle); 1608 drm_syncobj_put(syncobj); 1609 return r; 1610 1611 case AMDGPU_FENCE_TO_HANDLE_GET_SYNC_FILE_FD: 1612 fd = get_unused_fd_flags(O_CLOEXEC); 1613 if (fd < 0) { 1614 dma_fence_put(fence); 1615 return fd; 1616 } 1617 1618 sync_file = sync_file_create(fence); 1619 dma_fence_put(fence); 1620 if (!sync_file) { 1621 put_unused_fd(fd); 1622 return -ENOMEM; 1623 } 1624 1625 fd_install(fd, sync_file->file); 1626 info->out.handle = fd; 1627 return 0; 1628 1629 default: 1630 dma_fence_put(fence); 1631 return -EINVAL; 1632 } 1633 } 1634 1635 /** 1636 * amdgpu_cs_wait_all_fences - wait on all fences to signal 1637 * 1638 * @adev: amdgpu device 1639 * @filp: file private 1640 * @wait: wait parameters 1641 * @fences: array of drm_amdgpu_fence 1642 */ 1643 static int amdgpu_cs_wait_all_fences(struct amdgpu_device *adev, 1644 struct drm_file *filp, 1645 union drm_amdgpu_wait_fences *wait, 1646 struct drm_amdgpu_fence *fences) 1647 { 1648 uint32_t fence_count = wait->in.fence_count; 1649 unsigned int i; 1650 long r = 1; 1651 1652 for (i = 0; i < fence_count; i++) { 1653 struct dma_fence *fence; 1654 unsigned long timeout = amdgpu_gem_timeout(wait->in.timeout_ns); 1655 1656 fence = amdgpu_cs_get_fence(adev, filp, &fences[i]); 1657 if (IS_ERR(fence)) 1658 return PTR_ERR(fence); 1659 else if (!fence) 1660 continue; 1661 1662 r = dma_fence_wait_timeout(fence, true, timeout); 1663 if (r > 0 && fence->error) 1664 r = fence->error; 1665 1666 dma_fence_put(fence); 1667 if (r < 0) 1668 return r; 1669 1670 if (r == 0) 1671 break; 1672 } 1673 1674 memset(wait, 0, sizeof(*wait)); 1675 wait->out.status = (r > 0); 1676 1677 return 0; 1678 } 1679 1680 /** 1681 * amdgpu_cs_wait_any_fence - wait on any fence to signal 1682 * 1683 * @adev: amdgpu device 1684 * @filp: file private 1685 * @wait: wait parameters 1686 * @fences: array of drm_amdgpu_fence 1687 */ 1688 static int amdgpu_cs_wait_any_fence(struct amdgpu_device *adev, 1689 struct drm_file *filp, 1690 union drm_amdgpu_wait_fences *wait, 1691 struct drm_amdgpu_fence *fences) 1692 { 1693 unsigned long timeout = amdgpu_gem_timeout(wait->in.timeout_ns); 1694 uint32_t fence_count = wait->in.fence_count; 1695 uint32_t first = ~0; 1696 struct dma_fence **array; 1697 unsigned int i; 1698 long r; 1699 1700 /* Prepare the fence array */ 1701 array = kcalloc(fence_count, sizeof(struct dma_fence *), GFP_KERNEL); 1702 1703 if (array == NULL) 1704 return -ENOMEM; 1705 1706 for (i = 0; i < fence_count; i++) { 1707 struct dma_fence *fence; 1708 1709 fence = amdgpu_cs_get_fence(adev, filp, &fences[i]); 1710 if (IS_ERR(fence)) { 1711 r = PTR_ERR(fence); 1712 goto err_free_fence_array; 1713 } else if (fence) { 1714 array[i] = fence; 1715 } else { /* NULL, the fence has been already signaled */ 1716 r = 1; 1717 first = i; 1718 goto out; 1719 } 1720 } 1721 1722 r = dma_fence_wait_any_timeout(array, fence_count, true, timeout, 1723 &first); 1724 if (r < 0) 1725 goto err_free_fence_array; 1726 1727 out: 1728 memset(wait, 0, sizeof(*wait)); 1729 wait->out.status = (r > 0); 1730 wait->out.first_signaled = first; 1731 1732 if (first < fence_count && array[first]) 1733 r = array[first]->error; 1734 else 1735 r = 0; 1736 1737 err_free_fence_array: 1738 for (i = 0; i < fence_count; i++) 1739 dma_fence_put(array[i]); 1740 kfree(array); 1741 1742 return r; 1743 } 1744 1745 /** 1746 * amdgpu_cs_wait_fences_ioctl - wait for multiple command submissions to finish 1747 * 1748 * @dev: drm device 1749 * @data: data from userspace 1750 * @filp: file private 1751 */ 1752 int amdgpu_cs_wait_fences_ioctl(struct drm_device *dev, void *data, 1753 struct drm_file *filp) 1754 { 1755 struct amdgpu_device *adev = drm_to_adev(dev); 1756 union drm_amdgpu_wait_fences *wait = data; 1757 struct drm_amdgpu_fence *fences; 1758 int r; 1759 1760 /* Get the fences from userspace */ 1761 fences = memdup_array_user(u64_to_user_ptr(wait->in.fences), 1762 wait->in.fence_count, 1763 sizeof(struct drm_amdgpu_fence)); 1764 if (IS_ERR(fences)) 1765 return PTR_ERR(fences); 1766 1767 if (wait->in.wait_all) 1768 r = amdgpu_cs_wait_all_fences(adev, filp, wait, fences); 1769 else 1770 r = amdgpu_cs_wait_any_fence(adev, filp, wait, fences); 1771 1772 kfree(fences); 1773 1774 return r; 1775 } 1776 1777 /** 1778 * amdgpu_cs_find_mapping - find bo_va for VM address 1779 * 1780 * @parser: command submission parser context 1781 * @addr: VM address 1782 * @bo: resulting BO of the mapping found 1783 * @map: Placeholder to return found BO mapping 1784 * 1785 * Search the buffer objects in the command submission context for a certain 1786 * virtual memory address. Returns allocation structure when found, NULL 1787 * otherwise. 1788 */ 1789 int amdgpu_cs_find_mapping(struct amdgpu_cs_parser *parser, 1790 uint64_t addr, struct amdgpu_bo **bo, 1791 struct amdgpu_bo_va_mapping **map) 1792 { 1793 struct amdgpu_fpriv *fpriv = parser->filp->driver_priv; 1794 struct ttm_operation_ctx ctx = { false, false }; 1795 struct amdgpu_vm *vm = &fpriv->vm; 1796 struct amdgpu_bo_va_mapping *mapping; 1797 int i, r; 1798 1799 addr /= AMDGPU_GPU_PAGE_SIZE; 1800 1801 mapping = amdgpu_vm_bo_lookup_mapping(vm, addr); 1802 if (!mapping || !mapping->bo_va || !mapping->bo_va->base.bo) 1803 return -EINVAL; 1804 1805 *bo = mapping->bo_va->base.bo; 1806 *map = mapping; 1807 1808 /* Double check that the BO is reserved by this CS */ 1809 if (dma_resv_locking_ctx((*bo)->tbo.base.resv) != &parser->exec.ticket) 1810 return -EINVAL; 1811 1812 /* Make sure VRAM is allocated contigiously */ 1813 (*bo)->flags |= AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS; 1814 if ((*bo)->tbo.resource->mem_type == TTM_PL_VRAM && 1815 !((*bo)->tbo.resource->placement & TTM_PL_FLAG_CONTIGUOUS)) { 1816 1817 amdgpu_bo_placement_from_domain(*bo, (*bo)->allowed_domains); 1818 for (i = 0; i < (*bo)->placement.num_placement; i++) 1819 (*bo)->placements[i].flags |= TTM_PL_FLAG_CONTIGUOUS; 1820 r = ttm_bo_validate(&(*bo)->tbo, &(*bo)->placement, &ctx); 1821 if (r) 1822 return r; 1823 } 1824 1825 return amdgpu_ttm_alloc_gart(&(*bo)->tbo); 1826 } 1827