1 /* 2 * Copyright 2008 Jerome Glisse. 3 * All Rights Reserved. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice (including the next 13 * paragraph) shall be included in all copies or substantial portions of the 14 * Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 22 * DEALINGS IN THE SOFTWARE. 23 * 24 * Authors: 25 * Jerome Glisse <glisse@freedesktop.org> 26 */ 27 28 #include <linux/file.h> 29 #include <linux/pagemap.h> 30 #include <linux/sync_file.h> 31 #include <linux/dma-buf.h> 32 33 #include <drm/amdgpu_drm.h> 34 #include <drm/drm_syncobj.h> 35 #include <drm/ttm/ttm_tt.h> 36 37 #include "amdgpu_cs.h" 38 #include "amdgpu.h" 39 #include "amdgpu_trace.h" 40 #include "amdgpu_gmc.h" 41 #include "amdgpu_gem.h" 42 #include "amdgpu_ras.h" 43 44 static int amdgpu_cs_parser_init(struct amdgpu_cs_parser *p, 45 struct amdgpu_device *adev, 46 struct drm_file *filp, 47 union drm_amdgpu_cs *cs) 48 { 49 struct amdgpu_fpriv *fpriv = filp->driver_priv; 50 51 if (cs->in.num_chunks == 0) 52 return -EINVAL; 53 54 memset(p, 0, sizeof(*p)); 55 p->adev = adev; 56 p->filp = filp; 57 58 p->ctx = amdgpu_ctx_get(fpriv, cs->in.ctx_id); 59 if (!p->ctx) 60 return -EINVAL; 61 62 if (atomic_read(&p->ctx->guilty)) { 63 amdgpu_ctx_put(p->ctx); 64 return -ECANCELED; 65 } 66 67 amdgpu_sync_create(&p->sync); 68 drm_exec_init(&p->exec, DRM_EXEC_INTERRUPTIBLE_WAIT | 69 DRM_EXEC_IGNORE_DUPLICATES, 0); 70 return 0; 71 } 72 73 static int amdgpu_cs_job_idx(struct amdgpu_cs_parser *p, 74 struct drm_amdgpu_cs_chunk_ib *chunk_ib) 75 { 76 struct drm_sched_entity *entity; 77 unsigned int i; 78 int r; 79 80 r = amdgpu_ctx_get_entity(p->ctx, chunk_ib->ip_type, 81 chunk_ib->ip_instance, 82 chunk_ib->ring, &entity); 83 if (r) 84 return r; 85 86 /* 87 * Abort if there is no run queue associated with this entity. 88 * Possibly because of disabled HW IP. 89 */ 90 if (entity->rq == NULL) 91 return -EINVAL; 92 93 /* Check if we can add this IB to some existing job */ 94 for (i = 0; i < p->gang_size; ++i) 95 if (p->entities[i] == entity) 96 return i; 97 98 /* If not increase the gang size if possible */ 99 if (i == AMDGPU_CS_GANG_SIZE) 100 return -EINVAL; 101 102 p->entities[i] = entity; 103 p->gang_size = i + 1; 104 return i; 105 } 106 107 static int amdgpu_cs_p1_ib(struct amdgpu_cs_parser *p, 108 struct drm_amdgpu_cs_chunk_ib *chunk_ib, 109 unsigned int *num_ibs) 110 { 111 int r; 112 113 r = amdgpu_cs_job_idx(p, chunk_ib); 114 if (r < 0) 115 return r; 116 117 if (num_ibs[r] >= amdgpu_ring_max_ibs(chunk_ib->ip_type)) 118 return -EINVAL; 119 120 ++(num_ibs[r]); 121 p->gang_leader_idx = r; 122 return 0; 123 } 124 125 static int amdgpu_cs_p1_user_fence(struct amdgpu_cs_parser *p, 126 struct drm_amdgpu_cs_chunk_fence *data, 127 uint32_t *offset) 128 { 129 struct drm_gem_object *gobj; 130 unsigned long size; 131 132 gobj = drm_gem_object_lookup(p->filp, data->handle); 133 if (gobj == NULL) 134 return -EINVAL; 135 136 p->uf_bo = amdgpu_bo_ref(gem_to_amdgpu_bo(gobj)); 137 drm_gem_object_put(gobj); 138 139 size = amdgpu_bo_size(p->uf_bo); 140 if (size != PAGE_SIZE || data->offset > (size - 8)) 141 return -EINVAL; 142 143 if (amdgpu_ttm_tt_get_usermm(p->uf_bo->tbo.ttm)) 144 return -EINVAL; 145 146 *offset = data->offset; 147 return 0; 148 } 149 150 static int amdgpu_cs_p1_bo_handles(struct amdgpu_cs_parser *p, 151 struct drm_amdgpu_bo_list_in *data) 152 { 153 struct drm_amdgpu_bo_list_entry *info; 154 int r; 155 156 r = amdgpu_bo_create_list_entry_array(data, &info); 157 if (r) 158 return r; 159 160 r = amdgpu_bo_list_create(p->adev, p->filp, info, data->bo_number, 161 &p->bo_list); 162 if (r) 163 goto error_free; 164 165 kvfree(info); 166 return 0; 167 168 error_free: 169 kvfree(info); 170 171 return r; 172 } 173 174 /* Copy the data from userspace and go over it the first time */ 175 static int amdgpu_cs_pass1(struct amdgpu_cs_parser *p, 176 union drm_amdgpu_cs *cs) 177 { 178 struct amdgpu_fpriv *fpriv = p->filp->driver_priv; 179 unsigned int num_ibs[AMDGPU_CS_GANG_SIZE] = { }; 180 struct amdgpu_vm *vm = &fpriv->vm; 181 uint64_t *chunk_array_user; 182 uint64_t *chunk_array; 183 uint32_t uf_offset = 0; 184 size_t size; 185 int ret; 186 int i; 187 188 chunk_array = kvmalloc_array(cs->in.num_chunks, sizeof(uint64_t), 189 GFP_KERNEL); 190 if (!chunk_array) 191 return -ENOMEM; 192 193 /* get chunks */ 194 chunk_array_user = u64_to_user_ptr(cs->in.chunks); 195 if (copy_from_user(chunk_array, chunk_array_user, 196 sizeof(uint64_t)*cs->in.num_chunks)) { 197 ret = -EFAULT; 198 goto free_chunk; 199 } 200 201 p->nchunks = cs->in.num_chunks; 202 p->chunks = kvmalloc_array(p->nchunks, sizeof(struct amdgpu_cs_chunk), 203 GFP_KERNEL); 204 if (!p->chunks) { 205 ret = -ENOMEM; 206 goto free_chunk; 207 } 208 209 for (i = 0; i < p->nchunks; i++) { 210 struct drm_amdgpu_cs_chunk __user *chunk_ptr = NULL; 211 struct drm_amdgpu_cs_chunk user_chunk; 212 uint32_t __user *cdata; 213 214 chunk_ptr = u64_to_user_ptr(chunk_array[i]); 215 if (copy_from_user(&user_chunk, chunk_ptr, 216 sizeof(struct drm_amdgpu_cs_chunk))) { 217 ret = -EFAULT; 218 i--; 219 goto free_partial_kdata; 220 } 221 p->chunks[i].chunk_id = user_chunk.chunk_id; 222 p->chunks[i].length_dw = user_chunk.length_dw; 223 224 size = p->chunks[i].length_dw; 225 cdata = u64_to_user_ptr(user_chunk.chunk_data); 226 227 p->chunks[i].kdata = kvmalloc_array(size, sizeof(uint32_t), 228 GFP_KERNEL); 229 if (p->chunks[i].kdata == NULL) { 230 ret = -ENOMEM; 231 i--; 232 goto free_partial_kdata; 233 } 234 size *= sizeof(uint32_t); 235 if (copy_from_user(p->chunks[i].kdata, cdata, size)) { 236 ret = -EFAULT; 237 goto free_partial_kdata; 238 } 239 240 /* Assume the worst on the following checks */ 241 ret = -EINVAL; 242 switch (p->chunks[i].chunk_id) { 243 case AMDGPU_CHUNK_ID_IB: 244 if (size < sizeof(struct drm_amdgpu_cs_chunk_ib)) 245 goto free_partial_kdata; 246 247 ret = amdgpu_cs_p1_ib(p, p->chunks[i].kdata, num_ibs); 248 if (ret) 249 goto free_partial_kdata; 250 break; 251 252 case AMDGPU_CHUNK_ID_FENCE: 253 if (size < sizeof(struct drm_amdgpu_cs_chunk_fence)) 254 goto free_partial_kdata; 255 256 ret = amdgpu_cs_p1_user_fence(p, p->chunks[i].kdata, 257 &uf_offset); 258 if (ret) 259 goto free_partial_kdata; 260 break; 261 262 case AMDGPU_CHUNK_ID_BO_HANDLES: 263 if (size < sizeof(struct drm_amdgpu_bo_list_in)) 264 goto free_partial_kdata; 265 266 /* Only a single BO list is allowed to simplify handling. */ 267 if (p->bo_list) 268 goto free_partial_kdata; 269 270 ret = amdgpu_cs_p1_bo_handles(p, p->chunks[i].kdata); 271 if (ret) 272 goto free_partial_kdata; 273 break; 274 275 case AMDGPU_CHUNK_ID_DEPENDENCIES: 276 case AMDGPU_CHUNK_ID_SYNCOBJ_IN: 277 case AMDGPU_CHUNK_ID_SYNCOBJ_OUT: 278 case AMDGPU_CHUNK_ID_SCHEDULED_DEPENDENCIES: 279 case AMDGPU_CHUNK_ID_SYNCOBJ_TIMELINE_WAIT: 280 case AMDGPU_CHUNK_ID_SYNCOBJ_TIMELINE_SIGNAL: 281 case AMDGPU_CHUNK_ID_CP_GFX_SHADOW: 282 break; 283 284 default: 285 goto free_partial_kdata; 286 } 287 } 288 289 if (!p->gang_size) { 290 ret = -EINVAL; 291 goto free_all_kdata; 292 } 293 294 for (i = 0; i < p->gang_size; ++i) { 295 ret = amdgpu_job_alloc(p->adev, vm, p->entities[i], vm, 296 num_ibs[i], &p->jobs[i], 297 p->filp->client_id); 298 if (ret) 299 goto free_all_kdata; 300 switch (p->adev->enforce_isolation[fpriv->xcp_id]) { 301 case AMDGPU_ENFORCE_ISOLATION_DISABLE: 302 default: 303 p->jobs[i]->enforce_isolation = false; 304 p->jobs[i]->run_cleaner_shader = false; 305 break; 306 case AMDGPU_ENFORCE_ISOLATION_ENABLE: 307 p->jobs[i]->enforce_isolation = true; 308 p->jobs[i]->run_cleaner_shader = true; 309 break; 310 case AMDGPU_ENFORCE_ISOLATION_ENABLE_LEGACY: 311 p->jobs[i]->enforce_isolation = true; 312 p->jobs[i]->run_cleaner_shader = false; 313 break; 314 case AMDGPU_ENFORCE_ISOLATION_NO_CLEANER_SHADER: 315 p->jobs[i]->enforce_isolation = true; 316 p->jobs[i]->run_cleaner_shader = false; 317 break; 318 } 319 } 320 p->gang_leader = p->jobs[p->gang_leader_idx]; 321 322 if (p->ctx->generation != p->gang_leader->generation) { 323 ret = -ECANCELED; 324 goto free_all_kdata; 325 } 326 327 if (p->uf_bo) 328 p->gang_leader->uf_addr = uf_offset; 329 kvfree(chunk_array); 330 331 /* Use this opportunity to fill in task info for the vm */ 332 amdgpu_vm_set_task_info(vm); 333 334 return 0; 335 336 free_all_kdata: 337 i = p->nchunks - 1; 338 free_partial_kdata: 339 for (; i >= 0; i--) 340 kvfree(p->chunks[i].kdata); 341 kvfree(p->chunks); 342 p->chunks = NULL; 343 p->nchunks = 0; 344 free_chunk: 345 kvfree(chunk_array); 346 347 return ret; 348 } 349 350 static int amdgpu_cs_p2_ib(struct amdgpu_cs_parser *p, 351 struct amdgpu_cs_chunk *chunk, 352 unsigned int *ce_preempt, 353 unsigned int *de_preempt) 354 { 355 struct drm_amdgpu_cs_chunk_ib *chunk_ib = chunk->kdata; 356 struct amdgpu_fpriv *fpriv = p->filp->driver_priv; 357 struct amdgpu_vm *vm = &fpriv->vm; 358 struct amdgpu_ring *ring; 359 struct amdgpu_job *job; 360 struct amdgpu_ib *ib; 361 int r; 362 363 r = amdgpu_cs_job_idx(p, chunk_ib); 364 if (r < 0) 365 return r; 366 367 job = p->jobs[r]; 368 ring = amdgpu_job_ring(job); 369 ib = &job->ibs[job->num_ibs++]; 370 371 /* submissions to kernel queues are disabled */ 372 if (ring->no_user_submission) 373 return -EINVAL; 374 375 /* MM engine doesn't support user fences */ 376 if (p->uf_bo && ring->funcs->no_user_fence) 377 return -EINVAL; 378 379 if (chunk_ib->ip_type == AMDGPU_HW_IP_GFX && 380 chunk_ib->flags & AMDGPU_IB_FLAG_PREEMPT) { 381 if (chunk_ib->flags & AMDGPU_IB_FLAG_CE) 382 (*ce_preempt)++; 383 else 384 (*de_preempt)++; 385 386 /* Each GFX command submit allows only 1 IB max 387 * preemptible for CE & DE */ 388 if (*ce_preempt > 1 || *de_preempt > 1) 389 return -EINVAL; 390 } 391 392 if (chunk_ib->flags & AMDGPU_IB_FLAG_PREAMBLE) 393 job->preamble_status |= AMDGPU_PREAMBLE_IB_PRESENT; 394 395 r = amdgpu_ib_get(p->adev, vm, ring->funcs->parse_cs ? 396 chunk_ib->ib_bytes : 0, 397 AMDGPU_IB_POOL_DELAYED, ib); 398 if (r) { 399 DRM_ERROR("Failed to get ib !\n"); 400 return r; 401 } 402 403 ib->gpu_addr = chunk_ib->va_start; 404 ib->length_dw = chunk_ib->ib_bytes / 4; 405 ib->flags = chunk_ib->flags; 406 return 0; 407 } 408 409 static int amdgpu_cs_p2_dependencies(struct amdgpu_cs_parser *p, 410 struct amdgpu_cs_chunk *chunk) 411 { 412 struct drm_amdgpu_cs_chunk_dep *deps = chunk->kdata; 413 struct amdgpu_fpriv *fpriv = p->filp->driver_priv; 414 unsigned int num_deps; 415 int i, r; 416 417 num_deps = chunk->length_dw * 4 / 418 sizeof(struct drm_amdgpu_cs_chunk_dep); 419 420 for (i = 0; i < num_deps; ++i) { 421 struct amdgpu_ctx *ctx; 422 struct drm_sched_entity *entity; 423 struct dma_fence *fence; 424 425 ctx = amdgpu_ctx_get(fpriv, deps[i].ctx_id); 426 if (ctx == NULL) 427 return -EINVAL; 428 429 r = amdgpu_ctx_get_entity(ctx, deps[i].ip_type, 430 deps[i].ip_instance, 431 deps[i].ring, &entity); 432 if (r) { 433 amdgpu_ctx_put(ctx); 434 return r; 435 } 436 437 fence = amdgpu_ctx_get_fence(ctx, entity, deps[i].handle); 438 amdgpu_ctx_put(ctx); 439 440 if (IS_ERR(fence)) 441 return PTR_ERR(fence); 442 else if (!fence) 443 continue; 444 445 if (chunk->chunk_id == AMDGPU_CHUNK_ID_SCHEDULED_DEPENDENCIES) { 446 struct drm_sched_fence *s_fence; 447 struct dma_fence *old = fence; 448 449 s_fence = to_drm_sched_fence(fence); 450 fence = dma_fence_get(&s_fence->scheduled); 451 dma_fence_put(old); 452 } 453 454 r = amdgpu_sync_fence(&p->sync, fence, GFP_KERNEL); 455 dma_fence_put(fence); 456 if (r) 457 return r; 458 } 459 return 0; 460 } 461 462 static int amdgpu_syncobj_lookup_and_add(struct amdgpu_cs_parser *p, 463 uint32_t handle, u64 point, 464 u64 flags) 465 { 466 struct dma_fence *fence; 467 int r; 468 469 r = drm_syncobj_find_fence(p->filp, handle, point, flags, &fence); 470 if (r) { 471 DRM_ERROR("syncobj %u failed to find fence @ %llu (%d)!\n", 472 handle, point, r); 473 return r; 474 } 475 476 r = amdgpu_sync_fence(&p->sync, fence, GFP_KERNEL); 477 dma_fence_put(fence); 478 return r; 479 } 480 481 static int amdgpu_cs_p2_syncobj_in(struct amdgpu_cs_parser *p, 482 struct amdgpu_cs_chunk *chunk) 483 { 484 struct drm_amdgpu_cs_chunk_sem *deps = chunk->kdata; 485 unsigned int num_deps; 486 int i, r; 487 488 num_deps = chunk->length_dw * 4 / 489 sizeof(struct drm_amdgpu_cs_chunk_sem); 490 for (i = 0; i < num_deps; ++i) { 491 r = amdgpu_syncobj_lookup_and_add(p, deps[i].handle, 0, 0); 492 if (r) 493 return r; 494 } 495 496 return 0; 497 } 498 499 static int amdgpu_cs_p2_syncobj_timeline_wait(struct amdgpu_cs_parser *p, 500 struct amdgpu_cs_chunk *chunk) 501 { 502 struct drm_amdgpu_cs_chunk_syncobj *syncobj_deps = chunk->kdata; 503 unsigned int num_deps; 504 int i, r; 505 506 num_deps = chunk->length_dw * 4 / 507 sizeof(struct drm_amdgpu_cs_chunk_syncobj); 508 for (i = 0; i < num_deps; ++i) { 509 r = amdgpu_syncobj_lookup_and_add(p, syncobj_deps[i].handle, 510 syncobj_deps[i].point, 511 syncobj_deps[i].flags); 512 if (r) 513 return r; 514 } 515 516 return 0; 517 } 518 519 static int amdgpu_cs_p2_syncobj_out(struct amdgpu_cs_parser *p, 520 struct amdgpu_cs_chunk *chunk) 521 { 522 struct drm_amdgpu_cs_chunk_sem *deps = chunk->kdata; 523 unsigned int num_deps; 524 int i; 525 526 num_deps = chunk->length_dw * 4 / 527 sizeof(struct drm_amdgpu_cs_chunk_sem); 528 529 if (p->post_deps) 530 return -EINVAL; 531 532 p->post_deps = kmalloc_array(num_deps, sizeof(*p->post_deps), 533 GFP_KERNEL); 534 p->num_post_deps = 0; 535 536 if (!p->post_deps) 537 return -ENOMEM; 538 539 540 for (i = 0; i < num_deps; ++i) { 541 p->post_deps[i].syncobj = 542 drm_syncobj_find(p->filp, deps[i].handle); 543 if (!p->post_deps[i].syncobj) 544 return -EINVAL; 545 p->post_deps[i].chain = NULL; 546 p->post_deps[i].point = 0; 547 p->num_post_deps++; 548 } 549 550 return 0; 551 } 552 553 static int amdgpu_cs_p2_syncobj_timeline_signal(struct amdgpu_cs_parser *p, 554 struct amdgpu_cs_chunk *chunk) 555 { 556 struct drm_amdgpu_cs_chunk_syncobj *syncobj_deps = chunk->kdata; 557 unsigned int num_deps; 558 int i; 559 560 num_deps = chunk->length_dw * 4 / 561 sizeof(struct drm_amdgpu_cs_chunk_syncobj); 562 563 if (p->post_deps) 564 return -EINVAL; 565 566 p->post_deps = kmalloc_array(num_deps, sizeof(*p->post_deps), 567 GFP_KERNEL); 568 p->num_post_deps = 0; 569 570 if (!p->post_deps) 571 return -ENOMEM; 572 573 for (i = 0; i < num_deps; ++i) { 574 struct amdgpu_cs_post_dep *dep = &p->post_deps[i]; 575 576 dep->chain = NULL; 577 if (syncobj_deps[i].point) { 578 dep->chain = dma_fence_chain_alloc(); 579 if (!dep->chain) 580 return -ENOMEM; 581 } 582 583 dep->syncobj = drm_syncobj_find(p->filp, 584 syncobj_deps[i].handle); 585 if (!dep->syncobj) { 586 dma_fence_chain_free(dep->chain); 587 return -EINVAL; 588 } 589 dep->point = syncobj_deps[i].point; 590 p->num_post_deps++; 591 } 592 593 return 0; 594 } 595 596 static int amdgpu_cs_p2_shadow(struct amdgpu_cs_parser *p, 597 struct amdgpu_cs_chunk *chunk) 598 { 599 struct drm_amdgpu_cs_chunk_cp_gfx_shadow *shadow = chunk->kdata; 600 int i; 601 602 if (shadow->flags & ~AMDGPU_CS_CHUNK_CP_GFX_SHADOW_FLAGS_INIT_SHADOW) 603 return -EINVAL; 604 605 for (i = 0; i < p->gang_size; ++i) { 606 p->jobs[i]->shadow_va = shadow->shadow_va; 607 p->jobs[i]->csa_va = shadow->csa_va; 608 p->jobs[i]->gds_va = shadow->gds_va; 609 p->jobs[i]->init_shadow = 610 shadow->flags & AMDGPU_CS_CHUNK_CP_GFX_SHADOW_FLAGS_INIT_SHADOW; 611 } 612 613 return 0; 614 } 615 616 static int amdgpu_cs_pass2(struct amdgpu_cs_parser *p) 617 { 618 unsigned int ce_preempt = 0, de_preempt = 0; 619 int i, r; 620 621 for (i = 0; i < p->nchunks; ++i) { 622 struct amdgpu_cs_chunk *chunk; 623 624 chunk = &p->chunks[i]; 625 626 switch (chunk->chunk_id) { 627 case AMDGPU_CHUNK_ID_IB: 628 r = amdgpu_cs_p2_ib(p, chunk, &ce_preempt, &de_preempt); 629 if (r) 630 return r; 631 break; 632 case AMDGPU_CHUNK_ID_DEPENDENCIES: 633 case AMDGPU_CHUNK_ID_SCHEDULED_DEPENDENCIES: 634 r = amdgpu_cs_p2_dependencies(p, chunk); 635 if (r) 636 return r; 637 break; 638 case AMDGPU_CHUNK_ID_SYNCOBJ_IN: 639 r = amdgpu_cs_p2_syncobj_in(p, chunk); 640 if (r) 641 return r; 642 break; 643 case AMDGPU_CHUNK_ID_SYNCOBJ_OUT: 644 r = amdgpu_cs_p2_syncobj_out(p, chunk); 645 if (r) 646 return r; 647 break; 648 case AMDGPU_CHUNK_ID_SYNCOBJ_TIMELINE_WAIT: 649 r = amdgpu_cs_p2_syncobj_timeline_wait(p, chunk); 650 if (r) 651 return r; 652 break; 653 case AMDGPU_CHUNK_ID_SYNCOBJ_TIMELINE_SIGNAL: 654 r = amdgpu_cs_p2_syncobj_timeline_signal(p, chunk); 655 if (r) 656 return r; 657 break; 658 case AMDGPU_CHUNK_ID_CP_GFX_SHADOW: 659 r = amdgpu_cs_p2_shadow(p, chunk); 660 if (r) 661 return r; 662 break; 663 } 664 } 665 666 return 0; 667 } 668 669 /* Convert microseconds to bytes. */ 670 static u64 us_to_bytes(struct amdgpu_device *adev, s64 us) 671 { 672 if (us <= 0 || !adev->mm_stats.log2_max_MBps) 673 return 0; 674 675 /* Since accum_us is incremented by a million per second, just 676 * multiply it by the number of MB/s to get the number of bytes. 677 */ 678 return us << adev->mm_stats.log2_max_MBps; 679 } 680 681 static s64 bytes_to_us(struct amdgpu_device *adev, u64 bytes) 682 { 683 if (!adev->mm_stats.log2_max_MBps) 684 return 0; 685 686 return bytes >> adev->mm_stats.log2_max_MBps; 687 } 688 689 /* Returns how many bytes TTM can move right now. If no bytes can be moved, 690 * it returns 0. If it returns non-zero, it's OK to move at least one buffer, 691 * which means it can go over the threshold once. If that happens, the driver 692 * will be in debt and no other buffer migrations can be done until that debt 693 * is repaid. 694 * 695 * This approach allows moving a buffer of any size (it's important to allow 696 * that). 697 * 698 * The currency is simply time in microseconds and it increases as the clock 699 * ticks. The accumulated microseconds (us) are converted to bytes and 700 * returned. 701 */ 702 static void amdgpu_cs_get_threshold_for_moves(struct amdgpu_device *adev, 703 u64 *max_bytes, 704 u64 *max_vis_bytes) 705 { 706 s64 time_us, increment_us; 707 u64 free_vram, total_vram, used_vram; 708 /* Allow a maximum of 200 accumulated ms. This is basically per-IB 709 * throttling. 710 * 711 * It means that in order to get full max MBps, at least 5 IBs per 712 * second must be submitted and not more than 200ms apart from each 713 * other. 714 */ 715 const s64 us_upper_bound = 200000; 716 717 if (!adev->mm_stats.log2_max_MBps) { 718 *max_bytes = 0; 719 *max_vis_bytes = 0; 720 return; 721 } 722 723 total_vram = adev->gmc.real_vram_size - atomic64_read(&adev->vram_pin_size); 724 used_vram = ttm_resource_manager_usage(&adev->mman.vram_mgr.manager); 725 free_vram = used_vram >= total_vram ? 0 : total_vram - used_vram; 726 727 spin_lock(&adev->mm_stats.lock); 728 729 /* Increase the amount of accumulated us. */ 730 time_us = ktime_to_us(ktime_get()); 731 increment_us = time_us - adev->mm_stats.last_update_us; 732 adev->mm_stats.last_update_us = time_us; 733 adev->mm_stats.accum_us = min(adev->mm_stats.accum_us + increment_us, 734 us_upper_bound); 735 736 /* This prevents the short period of low performance when the VRAM 737 * usage is low and the driver is in debt or doesn't have enough 738 * accumulated us to fill VRAM quickly. 739 * 740 * The situation can occur in these cases: 741 * - a lot of VRAM is freed by userspace 742 * - the presence of a big buffer causes a lot of evictions 743 * (solution: split buffers into smaller ones) 744 * 745 * If 128 MB or 1/8th of VRAM is free, start filling it now by setting 746 * accum_us to a positive number. 747 */ 748 if (free_vram >= 128 * 1024 * 1024 || free_vram >= total_vram / 8) { 749 s64 min_us; 750 751 /* Be more aggressive on dGPUs. Try to fill a portion of free 752 * VRAM now. 753 */ 754 if (!(adev->flags & AMD_IS_APU)) 755 min_us = bytes_to_us(adev, free_vram / 4); 756 else 757 min_us = 0; /* Reset accum_us on APUs. */ 758 759 adev->mm_stats.accum_us = max(min_us, adev->mm_stats.accum_us); 760 } 761 762 /* This is set to 0 if the driver is in debt to disallow (optional) 763 * buffer moves. 764 */ 765 *max_bytes = us_to_bytes(adev, adev->mm_stats.accum_us); 766 767 /* Do the same for visible VRAM if half of it is free */ 768 if (!amdgpu_gmc_vram_full_visible(&adev->gmc)) { 769 u64 total_vis_vram = adev->gmc.visible_vram_size; 770 u64 used_vis_vram = 771 amdgpu_vram_mgr_vis_usage(&adev->mman.vram_mgr); 772 773 if (used_vis_vram < total_vis_vram) { 774 u64 free_vis_vram = total_vis_vram - used_vis_vram; 775 776 adev->mm_stats.accum_us_vis = min(adev->mm_stats.accum_us_vis + 777 increment_us, us_upper_bound); 778 779 if (free_vis_vram >= total_vis_vram / 2) 780 adev->mm_stats.accum_us_vis = 781 max(bytes_to_us(adev, free_vis_vram / 2), 782 adev->mm_stats.accum_us_vis); 783 } 784 785 *max_vis_bytes = us_to_bytes(adev, adev->mm_stats.accum_us_vis); 786 } else { 787 *max_vis_bytes = 0; 788 } 789 790 spin_unlock(&adev->mm_stats.lock); 791 } 792 793 /* Report how many bytes have really been moved for the last command 794 * submission. This can result in a debt that can stop buffer migrations 795 * temporarily. 796 */ 797 void amdgpu_cs_report_moved_bytes(struct amdgpu_device *adev, u64 num_bytes, 798 u64 num_vis_bytes) 799 { 800 spin_lock(&adev->mm_stats.lock); 801 adev->mm_stats.accum_us -= bytes_to_us(adev, num_bytes); 802 adev->mm_stats.accum_us_vis -= bytes_to_us(adev, num_vis_bytes); 803 spin_unlock(&adev->mm_stats.lock); 804 } 805 806 static int amdgpu_cs_bo_validate(void *param, struct amdgpu_bo *bo) 807 { 808 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 809 struct amdgpu_cs_parser *p = param; 810 struct ttm_operation_ctx ctx = { 811 .interruptible = true, 812 .no_wait_gpu = false, 813 .resv = bo->tbo.base.resv 814 }; 815 uint32_t domain; 816 int r; 817 818 if (bo->tbo.pin_count) 819 return 0; 820 821 /* Don't move this buffer if we have depleted our allowance 822 * to move it. Don't move anything if the threshold is zero. 823 */ 824 if (p->bytes_moved < p->bytes_moved_threshold && 825 (!bo->tbo.base.dma_buf || 826 list_empty(&bo->tbo.base.dma_buf->attachments))) { 827 if (!amdgpu_gmc_vram_full_visible(&adev->gmc) && 828 (bo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED)) { 829 /* And don't move a CPU_ACCESS_REQUIRED BO to limited 830 * visible VRAM if we've depleted our allowance to do 831 * that. 832 */ 833 if (p->bytes_moved_vis < p->bytes_moved_vis_threshold) 834 domain = bo->preferred_domains; 835 else 836 domain = bo->allowed_domains; 837 } else { 838 domain = bo->preferred_domains; 839 } 840 } else { 841 domain = bo->allowed_domains; 842 } 843 844 retry: 845 amdgpu_bo_placement_from_domain(bo, domain); 846 r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 847 848 p->bytes_moved += ctx.bytes_moved; 849 if (!amdgpu_gmc_vram_full_visible(&adev->gmc) && 850 amdgpu_res_cpu_visible(adev, bo->tbo.resource)) 851 p->bytes_moved_vis += ctx.bytes_moved; 852 853 if (unlikely(r == -ENOMEM) && domain != bo->allowed_domains) { 854 domain = bo->allowed_domains; 855 goto retry; 856 } 857 858 return r; 859 } 860 861 static int amdgpu_cs_parser_bos(struct amdgpu_cs_parser *p, 862 union drm_amdgpu_cs *cs) 863 { 864 struct amdgpu_fpriv *fpriv = p->filp->driver_priv; 865 struct ttm_operation_ctx ctx = { true, false }; 866 struct amdgpu_vm *vm = &fpriv->vm; 867 struct amdgpu_bo_list_entry *e; 868 struct drm_gem_object *obj; 869 unsigned long index; 870 unsigned int i; 871 int r; 872 873 /* p->bo_list could already be assigned if AMDGPU_CHUNK_ID_BO_HANDLES is present */ 874 if (cs->in.bo_list_handle) { 875 if (p->bo_list) 876 return -EINVAL; 877 878 r = amdgpu_bo_list_get(fpriv, cs->in.bo_list_handle, 879 &p->bo_list); 880 if (r) 881 return r; 882 } else if (!p->bo_list) { 883 /* Create a empty bo_list when no handle is provided */ 884 r = amdgpu_bo_list_create(p->adev, p->filp, NULL, 0, 885 &p->bo_list); 886 if (r) 887 return r; 888 } 889 890 mutex_lock(&p->bo_list->bo_list_mutex); 891 892 /* Get userptr backing pages. If pages are updated after registered 893 * in amdgpu_gem_userptr_ioctl(), amdgpu_cs_list_validate() will do 894 * amdgpu_ttm_backend_bind() to flush and invalidate new pages 895 */ 896 amdgpu_bo_list_for_each_userptr_entry(e, p->bo_list) { 897 bool userpage_invalidated = false; 898 struct amdgpu_bo *bo = e->bo; 899 int i; 900 901 e->user_pages = kvcalloc(bo->tbo.ttm->num_pages, 902 sizeof(struct page *), 903 GFP_KERNEL); 904 if (!e->user_pages) { 905 DRM_ERROR("kvmalloc_array failure\n"); 906 r = -ENOMEM; 907 goto out_free_user_pages; 908 } 909 910 r = amdgpu_ttm_tt_get_user_pages(bo, e->user_pages, &e->range); 911 if (r) { 912 kvfree(e->user_pages); 913 e->user_pages = NULL; 914 goto out_free_user_pages; 915 } 916 917 for (i = 0; i < bo->tbo.ttm->num_pages; i++) { 918 if (bo->tbo.ttm->pages[i] != e->user_pages[i]) { 919 userpage_invalidated = true; 920 break; 921 } 922 } 923 e->user_invalidated = userpage_invalidated; 924 } 925 926 drm_exec_until_all_locked(&p->exec) { 927 r = amdgpu_vm_lock_pd(&fpriv->vm, &p->exec, 1 + p->gang_size); 928 drm_exec_retry_on_contention(&p->exec); 929 if (unlikely(r)) 930 goto out_free_user_pages; 931 932 amdgpu_bo_list_for_each_entry(e, p->bo_list) { 933 /* One fence for TTM and one for each CS job */ 934 r = drm_exec_prepare_obj(&p->exec, &e->bo->tbo.base, 935 1 + p->gang_size); 936 drm_exec_retry_on_contention(&p->exec); 937 if (unlikely(r)) 938 goto out_free_user_pages; 939 940 e->bo_va = amdgpu_vm_bo_find(vm, e->bo); 941 } 942 943 if (p->uf_bo) { 944 r = drm_exec_prepare_obj(&p->exec, &p->uf_bo->tbo.base, 945 1 + p->gang_size); 946 drm_exec_retry_on_contention(&p->exec); 947 if (unlikely(r)) 948 goto out_free_user_pages; 949 } 950 } 951 952 amdgpu_bo_list_for_each_userptr_entry(e, p->bo_list) { 953 struct mm_struct *usermm; 954 955 usermm = amdgpu_ttm_tt_get_usermm(e->bo->tbo.ttm); 956 if (usermm && usermm != current->mm) { 957 r = -EPERM; 958 goto out_free_user_pages; 959 } 960 961 if (amdgpu_ttm_tt_is_userptr(e->bo->tbo.ttm) && 962 e->user_invalidated && e->user_pages) { 963 amdgpu_bo_placement_from_domain(e->bo, 964 AMDGPU_GEM_DOMAIN_CPU); 965 r = ttm_bo_validate(&e->bo->tbo, &e->bo->placement, 966 &ctx); 967 if (r) 968 goto out_free_user_pages; 969 970 amdgpu_ttm_tt_set_user_pages(e->bo->tbo.ttm, 971 e->user_pages); 972 } 973 974 kvfree(e->user_pages); 975 e->user_pages = NULL; 976 } 977 978 amdgpu_cs_get_threshold_for_moves(p->adev, &p->bytes_moved_threshold, 979 &p->bytes_moved_vis_threshold); 980 p->bytes_moved = 0; 981 p->bytes_moved_vis = 0; 982 983 r = amdgpu_vm_validate(p->adev, &fpriv->vm, NULL, 984 amdgpu_cs_bo_validate, p); 985 if (r) { 986 DRM_ERROR("amdgpu_vm_validate() failed.\n"); 987 goto out_free_user_pages; 988 } 989 990 drm_exec_for_each_locked_object(&p->exec, index, obj) { 991 r = amdgpu_cs_bo_validate(p, gem_to_amdgpu_bo(obj)); 992 if (unlikely(r)) 993 goto out_free_user_pages; 994 } 995 996 if (p->uf_bo) { 997 r = amdgpu_ttm_alloc_gart(&p->uf_bo->tbo); 998 if (unlikely(r)) 999 goto out_free_user_pages; 1000 1001 p->gang_leader->uf_addr += amdgpu_bo_gpu_offset(p->uf_bo); 1002 } 1003 1004 amdgpu_cs_report_moved_bytes(p->adev, p->bytes_moved, 1005 p->bytes_moved_vis); 1006 1007 for (i = 0; i < p->gang_size; ++i) 1008 amdgpu_job_set_resources(p->jobs[i], p->bo_list->gds_obj, 1009 p->bo_list->gws_obj, 1010 p->bo_list->oa_obj); 1011 return 0; 1012 1013 out_free_user_pages: 1014 amdgpu_bo_list_for_each_userptr_entry(e, p->bo_list) { 1015 struct amdgpu_bo *bo = e->bo; 1016 1017 if (!e->user_pages) 1018 continue; 1019 amdgpu_ttm_tt_get_user_pages_done(bo->tbo.ttm, e->range); 1020 kvfree(e->user_pages); 1021 e->user_pages = NULL; 1022 e->range = NULL; 1023 } 1024 mutex_unlock(&p->bo_list->bo_list_mutex); 1025 return r; 1026 } 1027 1028 static void trace_amdgpu_cs_ibs(struct amdgpu_cs_parser *p) 1029 { 1030 int i, j; 1031 1032 if (!trace_amdgpu_cs_enabled()) 1033 return; 1034 1035 for (i = 0; i < p->gang_size; ++i) { 1036 struct amdgpu_job *job = p->jobs[i]; 1037 1038 for (j = 0; j < job->num_ibs; ++j) 1039 trace_amdgpu_cs(p, job, &job->ibs[j]); 1040 } 1041 } 1042 1043 static int amdgpu_cs_patch_ibs(struct amdgpu_cs_parser *p, 1044 struct amdgpu_job *job) 1045 { 1046 struct amdgpu_ring *ring = amdgpu_job_ring(job); 1047 unsigned int i; 1048 int r; 1049 1050 /* Only for UVD/VCE VM emulation */ 1051 if (!ring->funcs->parse_cs && !ring->funcs->patch_cs_in_place) 1052 return 0; 1053 1054 for (i = 0; i < job->num_ibs; ++i) { 1055 struct amdgpu_ib *ib = &job->ibs[i]; 1056 struct amdgpu_bo_va_mapping *m; 1057 struct amdgpu_bo *aobj; 1058 uint64_t va_start; 1059 uint8_t *kptr; 1060 1061 va_start = ib->gpu_addr & AMDGPU_GMC_HOLE_MASK; 1062 r = amdgpu_cs_find_mapping(p, va_start, &aobj, &m); 1063 if (r) { 1064 DRM_ERROR("IB va_start is invalid\n"); 1065 return r; 1066 } 1067 1068 if ((va_start + ib->length_dw * 4) > 1069 (m->last + 1) * AMDGPU_GPU_PAGE_SIZE) { 1070 DRM_ERROR("IB va_start+ib_bytes is invalid\n"); 1071 return -EINVAL; 1072 } 1073 1074 /* the IB should be reserved at this point */ 1075 r = amdgpu_bo_kmap(aobj, (void **)&kptr); 1076 if (r) 1077 return r; 1078 1079 kptr += va_start - (m->start * AMDGPU_GPU_PAGE_SIZE); 1080 1081 if (ring->funcs->parse_cs) { 1082 memcpy(ib->ptr, kptr, ib->length_dw * 4); 1083 amdgpu_bo_kunmap(aobj); 1084 1085 r = amdgpu_ring_parse_cs(ring, p, job, ib); 1086 if (r) 1087 return r; 1088 1089 if (ib->sa_bo) 1090 ib->gpu_addr = amdgpu_sa_bo_gpu_addr(ib->sa_bo); 1091 } else { 1092 ib->ptr = (uint32_t *)kptr; 1093 r = amdgpu_ring_patch_cs_in_place(ring, p, job, ib); 1094 amdgpu_bo_kunmap(aobj); 1095 if (r) 1096 return r; 1097 } 1098 } 1099 1100 return 0; 1101 } 1102 1103 static int amdgpu_cs_patch_jobs(struct amdgpu_cs_parser *p) 1104 { 1105 unsigned int i; 1106 int r; 1107 1108 for (i = 0; i < p->gang_size; ++i) { 1109 r = amdgpu_cs_patch_ibs(p, p->jobs[i]); 1110 if (r) 1111 return r; 1112 } 1113 return 0; 1114 } 1115 1116 static int amdgpu_cs_vm_handling(struct amdgpu_cs_parser *p) 1117 { 1118 struct amdgpu_fpriv *fpriv = p->filp->driver_priv; 1119 struct amdgpu_job *job = p->gang_leader; 1120 struct amdgpu_device *adev = p->adev; 1121 struct amdgpu_vm *vm = &fpriv->vm; 1122 struct amdgpu_bo_list_entry *e; 1123 struct amdgpu_bo_va *bo_va; 1124 unsigned int i; 1125 int r; 1126 1127 /* 1128 * We can't use gang submit on with reserved VMIDs when the VM changes 1129 * can't be invalidated by more than one engine at the same time. 1130 */ 1131 if (p->gang_size > 1 && !adev->vm_manager.concurrent_flush) { 1132 for (i = 0; i < p->gang_size; ++i) { 1133 struct drm_sched_entity *entity = p->entities[i]; 1134 struct drm_gpu_scheduler *sched = entity->rq->sched; 1135 struct amdgpu_ring *ring = to_amdgpu_ring(sched); 1136 1137 if (amdgpu_vmid_uses_reserved(vm, ring->vm_hub)) 1138 return -EINVAL; 1139 } 1140 } 1141 1142 if (!amdgpu_vm_ready(vm)) 1143 return -EINVAL; 1144 1145 r = amdgpu_vm_clear_freed(adev, vm, NULL); 1146 if (r) 1147 return r; 1148 1149 r = amdgpu_vm_bo_update(adev, fpriv->prt_va, false); 1150 if (r) 1151 return r; 1152 1153 r = amdgpu_sync_fence(&p->sync, fpriv->prt_va->last_pt_update, 1154 GFP_KERNEL); 1155 if (r) 1156 return r; 1157 1158 if (fpriv->csa_va) { 1159 bo_va = fpriv->csa_va; 1160 BUG_ON(!bo_va); 1161 r = amdgpu_vm_bo_update(adev, bo_va, false); 1162 if (r) 1163 return r; 1164 1165 r = amdgpu_sync_fence(&p->sync, bo_va->last_pt_update, 1166 GFP_KERNEL); 1167 if (r) 1168 return r; 1169 } 1170 1171 /* FIXME: In theory this loop shouldn't be needed any more when 1172 * amdgpu_vm_handle_moved handles all moved BOs that are reserved 1173 * with p->ticket. But removing it caused test regressions, so I'm 1174 * leaving it here for now. 1175 */ 1176 amdgpu_bo_list_for_each_entry(e, p->bo_list) { 1177 bo_va = e->bo_va; 1178 if (bo_va == NULL) 1179 continue; 1180 1181 r = amdgpu_vm_bo_update(adev, bo_va, false); 1182 if (r) 1183 return r; 1184 1185 r = amdgpu_sync_fence(&p->sync, bo_va->last_pt_update, 1186 GFP_KERNEL); 1187 if (r) 1188 return r; 1189 } 1190 1191 r = amdgpu_vm_handle_moved(adev, vm, &p->exec.ticket); 1192 if (r) 1193 return r; 1194 1195 r = amdgpu_vm_update_pdes(adev, vm, false); 1196 if (r) 1197 return r; 1198 1199 r = amdgpu_sync_fence(&p->sync, vm->last_update, GFP_KERNEL); 1200 if (r) 1201 return r; 1202 1203 for (i = 0; i < p->gang_size; ++i) { 1204 job = p->jobs[i]; 1205 1206 if (!job->vm) 1207 continue; 1208 1209 job->vm_pd_addr = amdgpu_gmc_pd_addr(vm->root.bo); 1210 } 1211 1212 if (adev->debug_vm) { 1213 /* Invalidate all BOs to test for userspace bugs */ 1214 amdgpu_bo_list_for_each_entry(e, p->bo_list) { 1215 struct amdgpu_bo *bo = e->bo; 1216 1217 /* ignore duplicates */ 1218 if (!bo) 1219 continue; 1220 1221 amdgpu_vm_bo_invalidate(bo, false); 1222 } 1223 } 1224 1225 return 0; 1226 } 1227 1228 static int amdgpu_cs_sync_rings(struct amdgpu_cs_parser *p) 1229 { 1230 struct amdgpu_fpriv *fpriv = p->filp->driver_priv; 1231 struct drm_gpu_scheduler *sched; 1232 struct drm_gem_object *obj; 1233 struct dma_fence *fence; 1234 unsigned long index; 1235 unsigned int i; 1236 int r; 1237 1238 r = amdgpu_ctx_wait_prev_fence(p->ctx, p->entities[p->gang_leader_idx]); 1239 if (r) { 1240 if (r != -ERESTARTSYS) 1241 DRM_ERROR("amdgpu_ctx_wait_prev_fence failed.\n"); 1242 return r; 1243 } 1244 1245 drm_exec_for_each_locked_object(&p->exec, index, obj) { 1246 struct amdgpu_bo *bo = gem_to_amdgpu_bo(obj); 1247 1248 struct dma_resv *resv = bo->tbo.base.resv; 1249 enum amdgpu_sync_mode sync_mode; 1250 1251 sync_mode = amdgpu_bo_explicit_sync(bo) ? 1252 AMDGPU_SYNC_EXPLICIT : AMDGPU_SYNC_NE_OWNER; 1253 r = amdgpu_sync_resv(p->adev, &p->sync, resv, sync_mode, 1254 &fpriv->vm); 1255 if (r) 1256 return r; 1257 } 1258 1259 for (i = 0; i < p->gang_size; ++i) { 1260 r = amdgpu_sync_push_to_job(&p->sync, p->jobs[i]); 1261 if (r) 1262 return r; 1263 } 1264 1265 sched = p->gang_leader->base.entity->rq->sched; 1266 while ((fence = amdgpu_sync_get_fence(&p->sync))) { 1267 struct drm_sched_fence *s_fence = to_drm_sched_fence(fence); 1268 1269 /* 1270 * When we have an dependency it might be necessary to insert a 1271 * pipeline sync to make sure that all caches etc are flushed and the 1272 * next job actually sees the results from the previous one 1273 * before we start executing on the same scheduler ring. 1274 */ 1275 if (!s_fence || s_fence->sched != sched) { 1276 dma_fence_put(fence); 1277 continue; 1278 } 1279 1280 r = amdgpu_sync_fence(&p->gang_leader->explicit_sync, fence, 1281 GFP_KERNEL); 1282 dma_fence_put(fence); 1283 if (r) 1284 return r; 1285 } 1286 return 0; 1287 } 1288 1289 static void amdgpu_cs_post_dependencies(struct amdgpu_cs_parser *p) 1290 { 1291 int i; 1292 1293 for (i = 0; i < p->num_post_deps; ++i) { 1294 if (p->post_deps[i].chain && p->post_deps[i].point) { 1295 drm_syncobj_add_point(p->post_deps[i].syncobj, 1296 p->post_deps[i].chain, 1297 p->fence, p->post_deps[i].point); 1298 p->post_deps[i].chain = NULL; 1299 } else { 1300 drm_syncobj_replace_fence(p->post_deps[i].syncobj, 1301 p->fence); 1302 } 1303 } 1304 } 1305 1306 static int amdgpu_cs_submit(struct amdgpu_cs_parser *p, 1307 union drm_amdgpu_cs *cs) 1308 { 1309 struct amdgpu_fpriv *fpriv = p->filp->driver_priv; 1310 struct amdgpu_job *leader = p->gang_leader; 1311 struct amdgpu_bo_list_entry *e; 1312 struct drm_gem_object *gobj; 1313 unsigned long index; 1314 unsigned int i; 1315 uint64_t seq; 1316 int r; 1317 1318 for (i = 0; i < p->gang_size; ++i) 1319 drm_sched_job_arm(&p->jobs[i]->base); 1320 1321 for (i = 0; i < p->gang_size; ++i) { 1322 struct dma_fence *fence; 1323 1324 if (p->jobs[i] == leader) 1325 continue; 1326 1327 fence = &p->jobs[i]->base.s_fence->scheduled; 1328 dma_fence_get(fence); 1329 r = drm_sched_job_add_dependency(&leader->base, fence); 1330 if (r) { 1331 dma_fence_put(fence); 1332 return r; 1333 } 1334 } 1335 1336 if (p->gang_size > 1) { 1337 for (i = 0; i < p->gang_size; ++i) 1338 amdgpu_job_set_gang_leader(p->jobs[i], leader); 1339 } 1340 1341 /* No memory allocation is allowed while holding the notifier lock. 1342 * The lock is held until amdgpu_cs_submit is finished and fence is 1343 * added to BOs. 1344 */ 1345 mutex_lock(&p->adev->notifier_lock); 1346 1347 /* If userptr are invalidated after amdgpu_cs_parser_bos(), return 1348 * -EAGAIN, drmIoctl in libdrm will restart the amdgpu_cs_ioctl. 1349 */ 1350 r = 0; 1351 amdgpu_bo_list_for_each_userptr_entry(e, p->bo_list) { 1352 r |= !amdgpu_ttm_tt_get_user_pages_done(e->bo->tbo.ttm, 1353 e->range); 1354 e->range = NULL; 1355 } 1356 if (r) { 1357 r = -EAGAIN; 1358 mutex_unlock(&p->adev->notifier_lock); 1359 return r; 1360 } 1361 1362 p->fence = dma_fence_get(&leader->base.s_fence->finished); 1363 drm_exec_for_each_locked_object(&p->exec, index, gobj) { 1364 1365 ttm_bo_move_to_lru_tail_unlocked(&gem_to_amdgpu_bo(gobj)->tbo); 1366 1367 /* Everybody except for the gang leader uses READ */ 1368 for (i = 0; i < p->gang_size; ++i) { 1369 if (p->jobs[i] == leader) 1370 continue; 1371 1372 dma_resv_add_fence(gobj->resv, 1373 &p->jobs[i]->base.s_fence->finished, 1374 DMA_RESV_USAGE_READ); 1375 } 1376 1377 /* The gang leader as remembered as writer */ 1378 dma_resv_add_fence(gobj->resv, p->fence, DMA_RESV_USAGE_WRITE); 1379 } 1380 1381 seq = amdgpu_ctx_add_fence(p->ctx, p->entities[p->gang_leader_idx], 1382 p->fence); 1383 amdgpu_cs_post_dependencies(p); 1384 1385 if ((leader->preamble_status & AMDGPU_PREAMBLE_IB_PRESENT) && 1386 !p->ctx->preamble_presented) { 1387 leader->preamble_status |= AMDGPU_PREAMBLE_IB_PRESENT_FIRST; 1388 p->ctx->preamble_presented = true; 1389 } 1390 1391 cs->out.handle = seq; 1392 leader->uf_sequence = seq; 1393 1394 amdgpu_vm_bo_trace_cs(&fpriv->vm, &p->exec.ticket); 1395 for (i = 0; i < p->gang_size; ++i) { 1396 amdgpu_job_free_resources(p->jobs[i]); 1397 trace_amdgpu_cs_ioctl(p->jobs[i]); 1398 drm_sched_entity_push_job(&p->jobs[i]->base); 1399 p->jobs[i] = NULL; 1400 } 1401 1402 amdgpu_vm_move_to_lru_tail(p->adev, &fpriv->vm); 1403 1404 mutex_unlock(&p->adev->notifier_lock); 1405 mutex_unlock(&p->bo_list->bo_list_mutex); 1406 return 0; 1407 } 1408 1409 /* Cleanup the parser structure */ 1410 static void amdgpu_cs_parser_fini(struct amdgpu_cs_parser *parser) 1411 { 1412 unsigned int i; 1413 1414 amdgpu_sync_free(&parser->sync); 1415 drm_exec_fini(&parser->exec); 1416 1417 for (i = 0; i < parser->num_post_deps; i++) { 1418 drm_syncobj_put(parser->post_deps[i].syncobj); 1419 kfree(parser->post_deps[i].chain); 1420 } 1421 kfree(parser->post_deps); 1422 1423 dma_fence_put(parser->fence); 1424 1425 if (parser->ctx) 1426 amdgpu_ctx_put(parser->ctx); 1427 if (parser->bo_list) 1428 amdgpu_bo_list_put(parser->bo_list); 1429 1430 for (i = 0; i < parser->nchunks; i++) 1431 kvfree(parser->chunks[i].kdata); 1432 kvfree(parser->chunks); 1433 for (i = 0; i < parser->gang_size; ++i) { 1434 if (parser->jobs[i]) 1435 amdgpu_job_free(parser->jobs[i]); 1436 } 1437 amdgpu_bo_unref(&parser->uf_bo); 1438 } 1439 1440 int amdgpu_cs_ioctl(struct drm_device *dev, void *data, struct drm_file *filp) 1441 { 1442 struct amdgpu_device *adev = drm_to_adev(dev); 1443 struct amdgpu_cs_parser parser; 1444 int r; 1445 1446 if (amdgpu_ras_intr_triggered()) 1447 return -EHWPOISON; 1448 1449 if (!adev->accel_working) 1450 return -EBUSY; 1451 1452 r = amdgpu_cs_parser_init(&parser, adev, filp, data); 1453 if (r) { 1454 DRM_ERROR_RATELIMITED("Failed to initialize parser %d!\n", r); 1455 return r; 1456 } 1457 1458 r = amdgpu_cs_pass1(&parser, data); 1459 if (r) 1460 goto error_fini; 1461 1462 r = amdgpu_cs_pass2(&parser); 1463 if (r) 1464 goto error_fini; 1465 1466 r = amdgpu_cs_parser_bos(&parser, data); 1467 if (r) { 1468 if (r == -ENOMEM) 1469 DRM_ERROR("Not enough memory for command submission!\n"); 1470 else if (r != -ERESTARTSYS && r != -EAGAIN) 1471 DRM_DEBUG("Failed to process the buffer list %d!\n", r); 1472 goto error_fini; 1473 } 1474 1475 r = amdgpu_cs_patch_jobs(&parser); 1476 if (r) 1477 goto error_backoff; 1478 1479 r = amdgpu_cs_vm_handling(&parser); 1480 if (r) 1481 goto error_backoff; 1482 1483 r = amdgpu_cs_sync_rings(&parser); 1484 if (r) 1485 goto error_backoff; 1486 1487 trace_amdgpu_cs_ibs(&parser); 1488 1489 r = amdgpu_cs_submit(&parser, data); 1490 if (r) 1491 goto error_backoff; 1492 1493 amdgpu_cs_parser_fini(&parser); 1494 return 0; 1495 1496 error_backoff: 1497 mutex_unlock(&parser.bo_list->bo_list_mutex); 1498 1499 error_fini: 1500 amdgpu_cs_parser_fini(&parser); 1501 return r; 1502 } 1503 1504 /** 1505 * amdgpu_cs_wait_ioctl - wait for a command submission to finish 1506 * 1507 * @dev: drm device 1508 * @data: data from userspace 1509 * @filp: file private 1510 * 1511 * Wait for the command submission identified by handle to finish. 1512 */ 1513 int amdgpu_cs_wait_ioctl(struct drm_device *dev, void *data, 1514 struct drm_file *filp) 1515 { 1516 union drm_amdgpu_wait_cs *wait = data; 1517 unsigned long timeout = amdgpu_gem_timeout(wait->in.timeout); 1518 struct drm_sched_entity *entity; 1519 struct amdgpu_ctx *ctx; 1520 struct dma_fence *fence; 1521 long r; 1522 1523 ctx = amdgpu_ctx_get(filp->driver_priv, wait->in.ctx_id); 1524 if (ctx == NULL) 1525 return -EINVAL; 1526 1527 r = amdgpu_ctx_get_entity(ctx, wait->in.ip_type, wait->in.ip_instance, 1528 wait->in.ring, &entity); 1529 if (r) { 1530 amdgpu_ctx_put(ctx); 1531 return r; 1532 } 1533 1534 fence = amdgpu_ctx_get_fence(ctx, entity, wait->in.handle); 1535 if (IS_ERR(fence)) 1536 r = PTR_ERR(fence); 1537 else if (fence) { 1538 r = dma_fence_wait_timeout(fence, true, timeout); 1539 if (r > 0 && fence->error) 1540 r = fence->error; 1541 dma_fence_put(fence); 1542 } else 1543 r = 1; 1544 1545 amdgpu_ctx_put(ctx); 1546 if (r < 0) 1547 return r; 1548 1549 memset(wait, 0, sizeof(*wait)); 1550 wait->out.status = (r == 0); 1551 1552 return 0; 1553 } 1554 1555 /** 1556 * amdgpu_cs_get_fence - helper to get fence from drm_amdgpu_fence 1557 * 1558 * @adev: amdgpu device 1559 * @filp: file private 1560 * @user: drm_amdgpu_fence copied from user space 1561 */ 1562 static struct dma_fence *amdgpu_cs_get_fence(struct amdgpu_device *adev, 1563 struct drm_file *filp, 1564 struct drm_amdgpu_fence *user) 1565 { 1566 struct drm_sched_entity *entity; 1567 struct amdgpu_ctx *ctx; 1568 struct dma_fence *fence; 1569 int r; 1570 1571 ctx = amdgpu_ctx_get(filp->driver_priv, user->ctx_id); 1572 if (ctx == NULL) 1573 return ERR_PTR(-EINVAL); 1574 1575 r = amdgpu_ctx_get_entity(ctx, user->ip_type, user->ip_instance, 1576 user->ring, &entity); 1577 if (r) { 1578 amdgpu_ctx_put(ctx); 1579 return ERR_PTR(r); 1580 } 1581 1582 fence = amdgpu_ctx_get_fence(ctx, entity, user->seq_no); 1583 amdgpu_ctx_put(ctx); 1584 1585 return fence; 1586 } 1587 1588 int amdgpu_cs_fence_to_handle_ioctl(struct drm_device *dev, void *data, 1589 struct drm_file *filp) 1590 { 1591 struct amdgpu_device *adev = drm_to_adev(dev); 1592 union drm_amdgpu_fence_to_handle *info = data; 1593 struct dma_fence *fence; 1594 struct drm_syncobj *syncobj; 1595 struct sync_file *sync_file; 1596 int fd, r; 1597 1598 fence = amdgpu_cs_get_fence(adev, filp, &info->in.fence); 1599 if (IS_ERR(fence)) 1600 return PTR_ERR(fence); 1601 1602 if (!fence) 1603 fence = dma_fence_get_stub(); 1604 1605 switch (info->in.what) { 1606 case AMDGPU_FENCE_TO_HANDLE_GET_SYNCOBJ: 1607 r = drm_syncobj_create(&syncobj, 0, fence); 1608 dma_fence_put(fence); 1609 if (r) 1610 return r; 1611 r = drm_syncobj_get_handle(filp, syncobj, &info->out.handle); 1612 drm_syncobj_put(syncobj); 1613 return r; 1614 1615 case AMDGPU_FENCE_TO_HANDLE_GET_SYNCOBJ_FD: 1616 r = drm_syncobj_create(&syncobj, 0, fence); 1617 dma_fence_put(fence); 1618 if (r) 1619 return r; 1620 r = drm_syncobj_get_fd(syncobj, (int *)&info->out.handle); 1621 drm_syncobj_put(syncobj); 1622 return r; 1623 1624 case AMDGPU_FENCE_TO_HANDLE_GET_SYNC_FILE_FD: 1625 fd = get_unused_fd_flags(O_CLOEXEC); 1626 if (fd < 0) { 1627 dma_fence_put(fence); 1628 return fd; 1629 } 1630 1631 sync_file = sync_file_create(fence); 1632 dma_fence_put(fence); 1633 if (!sync_file) { 1634 put_unused_fd(fd); 1635 return -ENOMEM; 1636 } 1637 1638 fd_install(fd, sync_file->file); 1639 info->out.handle = fd; 1640 return 0; 1641 1642 default: 1643 dma_fence_put(fence); 1644 return -EINVAL; 1645 } 1646 } 1647 1648 /** 1649 * amdgpu_cs_wait_all_fences - wait on all fences to signal 1650 * 1651 * @adev: amdgpu device 1652 * @filp: file private 1653 * @wait: wait parameters 1654 * @fences: array of drm_amdgpu_fence 1655 */ 1656 static int amdgpu_cs_wait_all_fences(struct amdgpu_device *adev, 1657 struct drm_file *filp, 1658 union drm_amdgpu_wait_fences *wait, 1659 struct drm_amdgpu_fence *fences) 1660 { 1661 uint32_t fence_count = wait->in.fence_count; 1662 unsigned int i; 1663 long r = 1; 1664 1665 for (i = 0; i < fence_count; i++) { 1666 struct dma_fence *fence; 1667 unsigned long timeout = amdgpu_gem_timeout(wait->in.timeout_ns); 1668 1669 fence = amdgpu_cs_get_fence(adev, filp, &fences[i]); 1670 if (IS_ERR(fence)) 1671 return PTR_ERR(fence); 1672 else if (!fence) 1673 continue; 1674 1675 r = dma_fence_wait_timeout(fence, true, timeout); 1676 if (r > 0 && fence->error) 1677 r = fence->error; 1678 1679 dma_fence_put(fence); 1680 if (r < 0) 1681 return r; 1682 1683 if (r == 0) 1684 break; 1685 } 1686 1687 memset(wait, 0, sizeof(*wait)); 1688 wait->out.status = (r > 0); 1689 1690 return 0; 1691 } 1692 1693 /** 1694 * amdgpu_cs_wait_any_fence - wait on any fence to signal 1695 * 1696 * @adev: amdgpu device 1697 * @filp: file private 1698 * @wait: wait parameters 1699 * @fences: array of drm_amdgpu_fence 1700 */ 1701 static int amdgpu_cs_wait_any_fence(struct amdgpu_device *adev, 1702 struct drm_file *filp, 1703 union drm_amdgpu_wait_fences *wait, 1704 struct drm_amdgpu_fence *fences) 1705 { 1706 unsigned long timeout = amdgpu_gem_timeout(wait->in.timeout_ns); 1707 uint32_t fence_count = wait->in.fence_count; 1708 uint32_t first = ~0; 1709 struct dma_fence **array; 1710 unsigned int i; 1711 long r; 1712 1713 /* Prepare the fence array */ 1714 array = kcalloc(fence_count, sizeof(struct dma_fence *), GFP_KERNEL); 1715 1716 if (array == NULL) 1717 return -ENOMEM; 1718 1719 for (i = 0; i < fence_count; i++) { 1720 struct dma_fence *fence; 1721 1722 fence = amdgpu_cs_get_fence(adev, filp, &fences[i]); 1723 if (IS_ERR(fence)) { 1724 r = PTR_ERR(fence); 1725 goto err_free_fence_array; 1726 } else if (fence) { 1727 array[i] = fence; 1728 } else { /* NULL, the fence has been already signaled */ 1729 r = 1; 1730 first = i; 1731 goto out; 1732 } 1733 } 1734 1735 r = dma_fence_wait_any_timeout(array, fence_count, true, timeout, 1736 &first); 1737 if (r < 0) 1738 goto err_free_fence_array; 1739 1740 out: 1741 memset(wait, 0, sizeof(*wait)); 1742 wait->out.status = (r > 0); 1743 wait->out.first_signaled = first; 1744 1745 if (first < fence_count && array[first]) 1746 r = array[first]->error; 1747 else 1748 r = 0; 1749 1750 err_free_fence_array: 1751 for (i = 0; i < fence_count; i++) 1752 dma_fence_put(array[i]); 1753 kfree(array); 1754 1755 return r; 1756 } 1757 1758 /** 1759 * amdgpu_cs_wait_fences_ioctl - wait for multiple command submissions to finish 1760 * 1761 * @dev: drm device 1762 * @data: data from userspace 1763 * @filp: file private 1764 */ 1765 int amdgpu_cs_wait_fences_ioctl(struct drm_device *dev, void *data, 1766 struct drm_file *filp) 1767 { 1768 struct amdgpu_device *adev = drm_to_adev(dev); 1769 union drm_amdgpu_wait_fences *wait = data; 1770 uint32_t fence_count = wait->in.fence_count; 1771 struct drm_amdgpu_fence *fences_user; 1772 struct drm_amdgpu_fence *fences; 1773 int r; 1774 1775 /* Get the fences from userspace */ 1776 fences = kmalloc_array(fence_count, sizeof(struct drm_amdgpu_fence), 1777 GFP_KERNEL); 1778 if (fences == NULL) 1779 return -ENOMEM; 1780 1781 fences_user = u64_to_user_ptr(wait->in.fences); 1782 if (copy_from_user(fences, fences_user, 1783 sizeof(struct drm_amdgpu_fence) * fence_count)) { 1784 r = -EFAULT; 1785 goto err_free_fences; 1786 } 1787 1788 if (wait->in.wait_all) 1789 r = amdgpu_cs_wait_all_fences(adev, filp, wait, fences); 1790 else 1791 r = amdgpu_cs_wait_any_fence(adev, filp, wait, fences); 1792 1793 err_free_fences: 1794 kfree(fences); 1795 1796 return r; 1797 } 1798 1799 /** 1800 * amdgpu_cs_find_mapping - find bo_va for VM address 1801 * 1802 * @parser: command submission parser context 1803 * @addr: VM address 1804 * @bo: resulting BO of the mapping found 1805 * @map: Placeholder to return found BO mapping 1806 * 1807 * Search the buffer objects in the command submission context for a certain 1808 * virtual memory address. Returns allocation structure when found, NULL 1809 * otherwise. 1810 */ 1811 int amdgpu_cs_find_mapping(struct amdgpu_cs_parser *parser, 1812 uint64_t addr, struct amdgpu_bo **bo, 1813 struct amdgpu_bo_va_mapping **map) 1814 { 1815 struct amdgpu_fpriv *fpriv = parser->filp->driver_priv; 1816 struct ttm_operation_ctx ctx = { false, false }; 1817 struct amdgpu_vm *vm = &fpriv->vm; 1818 struct amdgpu_bo_va_mapping *mapping; 1819 int i, r; 1820 1821 addr /= AMDGPU_GPU_PAGE_SIZE; 1822 1823 mapping = amdgpu_vm_bo_lookup_mapping(vm, addr); 1824 if (!mapping || !mapping->bo_va || !mapping->bo_va->base.bo) 1825 return -EINVAL; 1826 1827 *bo = mapping->bo_va->base.bo; 1828 *map = mapping; 1829 1830 /* Double check that the BO is reserved by this CS */ 1831 if (dma_resv_locking_ctx((*bo)->tbo.base.resv) != &parser->exec.ticket) 1832 return -EINVAL; 1833 1834 /* Make sure VRAM is allocated contigiously */ 1835 (*bo)->flags |= AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS; 1836 if ((*bo)->tbo.resource->mem_type == TTM_PL_VRAM && 1837 !((*bo)->tbo.resource->placement & TTM_PL_FLAG_CONTIGUOUS)) { 1838 1839 amdgpu_bo_placement_from_domain(*bo, (*bo)->allowed_domains); 1840 for (i = 0; i < (*bo)->placement.num_placement; i++) 1841 (*bo)->placements[i].flags |= TTM_PL_FLAG_CONTIGUOUS; 1842 r = ttm_bo_validate(&(*bo)->tbo, &(*bo)->placement, &ctx); 1843 if (r) 1844 return r; 1845 } 1846 1847 return amdgpu_ttm_alloc_gart(&(*bo)->tbo); 1848 } 1849