1 /* 2 * Copyright 2008 Jerome Glisse. 3 * All Rights Reserved. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice (including the next 13 * paragraph) shall be included in all copies or substantial portions of the 14 * Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 22 * DEALINGS IN THE SOFTWARE. 23 * 24 * Authors: 25 * Jerome Glisse <glisse@freedesktop.org> 26 */ 27 28 #include <linux/file.h> 29 #include <linux/pagemap.h> 30 #include <linux/sync_file.h> 31 #include <linux/dma-buf.h> 32 #include <linux/hmm.h> 33 34 #include <drm/amdgpu_drm.h> 35 #include <drm/drm_syncobj.h> 36 #include <drm/ttm/ttm_tt.h> 37 38 #include "amdgpu_cs.h" 39 #include "amdgpu.h" 40 #include "amdgpu_trace.h" 41 #include "amdgpu_gmc.h" 42 #include "amdgpu_gem.h" 43 #include "amdgpu_ras.h" 44 45 static int amdgpu_cs_parser_init(struct amdgpu_cs_parser *p, 46 struct amdgpu_device *adev, 47 struct drm_file *filp, 48 union drm_amdgpu_cs *cs) 49 { 50 struct amdgpu_fpriv *fpriv = filp->driver_priv; 51 52 if (cs->in.num_chunks == 0) 53 return -EINVAL; 54 55 memset(p, 0, sizeof(*p)); 56 p->adev = adev; 57 p->filp = filp; 58 59 p->ctx = amdgpu_ctx_get(fpriv, cs->in.ctx_id); 60 if (!p->ctx) 61 return -EINVAL; 62 63 if (atomic_read(&p->ctx->guilty)) { 64 amdgpu_ctx_put(p->ctx); 65 return -ECANCELED; 66 } 67 68 amdgpu_sync_create(&p->sync); 69 drm_exec_init(&p->exec, DRM_EXEC_INTERRUPTIBLE_WAIT | 70 DRM_EXEC_IGNORE_DUPLICATES, 0); 71 return 0; 72 } 73 74 static int amdgpu_cs_job_idx(struct amdgpu_cs_parser *p, 75 struct drm_amdgpu_cs_chunk_ib *chunk_ib) 76 { 77 struct drm_sched_entity *entity; 78 unsigned int i; 79 int r; 80 81 r = amdgpu_ctx_get_entity(p->ctx, chunk_ib->ip_type, 82 chunk_ib->ip_instance, 83 chunk_ib->ring, &entity); 84 if (r) 85 return r; 86 87 /* 88 * Abort if there is no run queue associated with this entity. 89 * Possibly because of disabled HW IP. 90 */ 91 if (entity->rq == NULL) 92 return -EINVAL; 93 94 /* Check if we can add this IB to some existing job */ 95 for (i = 0; i < p->gang_size; ++i) 96 if (p->entities[i] == entity) 97 return i; 98 99 /* If not increase the gang size if possible */ 100 if (i == AMDGPU_CS_GANG_SIZE) 101 return -EINVAL; 102 103 p->entities[i] = entity; 104 p->gang_size = i + 1; 105 return i; 106 } 107 108 static int amdgpu_cs_p1_ib(struct amdgpu_cs_parser *p, 109 struct drm_amdgpu_cs_chunk_ib *chunk_ib, 110 unsigned int *num_ibs) 111 { 112 int r; 113 114 r = amdgpu_cs_job_idx(p, chunk_ib); 115 if (r < 0) 116 return r; 117 118 if (num_ibs[r] >= amdgpu_ring_max_ibs(chunk_ib->ip_type)) 119 return -EINVAL; 120 121 ++(num_ibs[r]); 122 p->gang_leader_idx = r; 123 return 0; 124 } 125 126 static int amdgpu_cs_p1_user_fence(struct amdgpu_cs_parser *p, 127 struct drm_amdgpu_cs_chunk_fence *data, 128 uint32_t *offset) 129 { 130 struct drm_gem_object *gobj; 131 unsigned long size; 132 133 gobj = drm_gem_object_lookup(p->filp, data->handle); 134 if (gobj == NULL) 135 return -EINVAL; 136 137 p->uf_bo = amdgpu_bo_ref(gem_to_amdgpu_bo(gobj)); 138 drm_gem_object_put(gobj); 139 140 size = amdgpu_bo_size(p->uf_bo); 141 if (size != PAGE_SIZE || data->offset > (size - 8)) 142 return -EINVAL; 143 144 if (amdgpu_ttm_tt_get_usermm(p->uf_bo->tbo.ttm)) 145 return -EINVAL; 146 147 *offset = data->offset; 148 return 0; 149 } 150 151 static int amdgpu_cs_p1_bo_handles(struct amdgpu_cs_parser *p, 152 struct drm_amdgpu_bo_list_in *data) 153 { 154 struct drm_amdgpu_bo_list_entry *info; 155 int r; 156 157 r = amdgpu_bo_create_list_entry_array(data, &info); 158 if (r) 159 return r; 160 161 r = amdgpu_bo_list_create(p->adev, p->filp, info, data->bo_number, 162 &p->bo_list); 163 if (r) 164 goto error_free; 165 166 kvfree(info); 167 return 0; 168 169 error_free: 170 kvfree(info); 171 172 return r; 173 } 174 175 /* Copy the data from userspace and go over it the first time */ 176 static int amdgpu_cs_pass1(struct amdgpu_cs_parser *p, 177 union drm_amdgpu_cs *cs) 178 { 179 struct amdgpu_fpriv *fpriv = p->filp->driver_priv; 180 unsigned int num_ibs[AMDGPU_CS_GANG_SIZE] = { }; 181 struct amdgpu_vm *vm = &fpriv->vm; 182 uint64_t *chunk_array; 183 uint32_t uf_offset = 0; 184 size_t size; 185 int ret; 186 int i; 187 188 chunk_array = memdup_array_user(u64_to_user_ptr(cs->in.chunks), 189 cs->in.num_chunks, 190 sizeof(uint64_t)); 191 if (IS_ERR(chunk_array)) 192 return PTR_ERR(chunk_array); 193 194 p->nchunks = cs->in.num_chunks; 195 p->chunks = kvmalloc_array(p->nchunks, sizeof(struct amdgpu_cs_chunk), 196 GFP_KERNEL); 197 if (!p->chunks) { 198 ret = -ENOMEM; 199 goto free_chunk; 200 } 201 202 for (i = 0; i < p->nchunks; i++) { 203 struct drm_amdgpu_cs_chunk __user *chunk_ptr = NULL; 204 struct drm_amdgpu_cs_chunk user_chunk; 205 206 chunk_ptr = u64_to_user_ptr(chunk_array[i]); 207 if (copy_from_user(&user_chunk, chunk_ptr, 208 sizeof(struct drm_amdgpu_cs_chunk))) { 209 ret = -EFAULT; 210 i--; 211 goto free_partial_kdata; 212 } 213 p->chunks[i].chunk_id = user_chunk.chunk_id; 214 p->chunks[i].length_dw = user_chunk.length_dw; 215 216 size = p->chunks[i].length_dw; 217 218 p->chunks[i].kdata = vmemdup_array_user(u64_to_user_ptr(user_chunk.chunk_data), 219 size, 220 sizeof(uint32_t)); 221 if (IS_ERR(p->chunks[i].kdata)) { 222 ret = PTR_ERR(p->chunks[i].kdata); 223 i--; 224 goto free_partial_kdata; 225 } 226 size *= sizeof(uint32_t); 227 228 /* Assume the worst on the following checks */ 229 ret = -EINVAL; 230 switch (p->chunks[i].chunk_id) { 231 case AMDGPU_CHUNK_ID_IB: 232 if (size < sizeof(struct drm_amdgpu_cs_chunk_ib)) 233 goto free_partial_kdata; 234 235 ret = amdgpu_cs_p1_ib(p, p->chunks[i].kdata, num_ibs); 236 if (ret) 237 goto free_partial_kdata; 238 break; 239 240 case AMDGPU_CHUNK_ID_FENCE: 241 if (size < sizeof(struct drm_amdgpu_cs_chunk_fence)) 242 goto free_partial_kdata; 243 244 ret = amdgpu_cs_p1_user_fence(p, p->chunks[i].kdata, 245 &uf_offset); 246 if (ret) 247 goto free_partial_kdata; 248 break; 249 250 case AMDGPU_CHUNK_ID_BO_HANDLES: 251 if (size < sizeof(struct drm_amdgpu_bo_list_in)) 252 goto free_partial_kdata; 253 254 /* Only a single BO list is allowed to simplify handling. */ 255 if (p->bo_list) 256 goto free_partial_kdata; 257 258 ret = amdgpu_cs_p1_bo_handles(p, p->chunks[i].kdata); 259 if (ret) 260 goto free_partial_kdata; 261 break; 262 263 case AMDGPU_CHUNK_ID_DEPENDENCIES: 264 case AMDGPU_CHUNK_ID_SYNCOBJ_IN: 265 case AMDGPU_CHUNK_ID_SYNCOBJ_OUT: 266 case AMDGPU_CHUNK_ID_SCHEDULED_DEPENDENCIES: 267 case AMDGPU_CHUNK_ID_SYNCOBJ_TIMELINE_WAIT: 268 case AMDGPU_CHUNK_ID_SYNCOBJ_TIMELINE_SIGNAL: 269 case AMDGPU_CHUNK_ID_CP_GFX_SHADOW: 270 break; 271 272 default: 273 goto free_partial_kdata; 274 } 275 } 276 277 if (!p->gang_size || (amdgpu_sriov_vf(p->adev) && p->gang_size > 1)) { 278 ret = -EINVAL; 279 goto free_all_kdata; 280 } 281 282 for (i = 0; i < p->gang_size; ++i) { 283 ret = amdgpu_job_alloc(p->adev, vm, p->entities[i], vm, 284 num_ibs[i], &p->jobs[i], 285 p->filp->client_id); 286 if (ret) 287 goto free_all_kdata; 288 switch (p->adev->enforce_isolation[fpriv->xcp_id]) { 289 case AMDGPU_ENFORCE_ISOLATION_DISABLE: 290 default: 291 p->jobs[i]->enforce_isolation = false; 292 p->jobs[i]->run_cleaner_shader = false; 293 break; 294 case AMDGPU_ENFORCE_ISOLATION_ENABLE: 295 p->jobs[i]->enforce_isolation = true; 296 p->jobs[i]->run_cleaner_shader = true; 297 break; 298 case AMDGPU_ENFORCE_ISOLATION_ENABLE_LEGACY: 299 p->jobs[i]->enforce_isolation = true; 300 p->jobs[i]->run_cleaner_shader = false; 301 break; 302 case AMDGPU_ENFORCE_ISOLATION_NO_CLEANER_SHADER: 303 p->jobs[i]->enforce_isolation = true; 304 p->jobs[i]->run_cleaner_shader = false; 305 break; 306 } 307 } 308 p->gang_leader = p->jobs[p->gang_leader_idx]; 309 310 if (p->ctx->generation != p->gang_leader->generation) { 311 ret = -ECANCELED; 312 goto free_all_kdata; 313 } 314 315 if (p->uf_bo) 316 p->gang_leader->uf_addr = uf_offset; 317 kvfree(chunk_array); 318 319 /* Use this opportunity to fill in task info for the vm */ 320 amdgpu_vm_set_task_info(vm); 321 322 return 0; 323 324 free_all_kdata: 325 i = p->nchunks - 1; 326 free_partial_kdata: 327 for (; i >= 0; i--) 328 kvfree(p->chunks[i].kdata); 329 kvfree(p->chunks); 330 p->chunks = NULL; 331 p->nchunks = 0; 332 free_chunk: 333 kvfree(chunk_array); 334 335 return ret; 336 } 337 338 static int amdgpu_cs_p2_ib(struct amdgpu_cs_parser *p, 339 struct amdgpu_cs_chunk *chunk, 340 unsigned int *ce_preempt, 341 unsigned int *de_preempt) 342 { 343 struct drm_amdgpu_cs_chunk_ib *chunk_ib = chunk->kdata; 344 struct amdgpu_fpriv *fpriv = p->filp->driver_priv; 345 struct amdgpu_vm *vm = &fpriv->vm; 346 struct amdgpu_ring *ring; 347 struct amdgpu_job *job; 348 struct amdgpu_ib *ib; 349 int r; 350 351 r = amdgpu_cs_job_idx(p, chunk_ib); 352 if (r < 0) 353 return r; 354 355 job = p->jobs[r]; 356 ring = amdgpu_job_ring(job); 357 ib = &job->ibs[job->num_ibs++]; 358 359 /* submissions to kernel queues are disabled */ 360 if (ring->no_user_submission) 361 return -EINVAL; 362 363 /* MM engine doesn't support user fences */ 364 if (p->uf_bo && ring->funcs->no_user_fence) 365 return -EINVAL; 366 367 if (chunk_ib->ip_type == AMDGPU_HW_IP_GFX && 368 chunk_ib->flags & AMDGPU_IB_FLAG_PREEMPT) { 369 if (chunk_ib->flags & AMDGPU_IB_FLAG_CE) 370 (*ce_preempt)++; 371 else 372 (*de_preempt)++; 373 374 /* Each GFX command submit allows only 1 IB max 375 * preemptible for CE & DE */ 376 if (*ce_preempt > 1 || *de_preempt > 1) 377 return -EINVAL; 378 } 379 380 if (chunk_ib->flags & AMDGPU_IB_FLAG_PREAMBLE) 381 job->preamble_status |= AMDGPU_PREAMBLE_IB_PRESENT; 382 383 r = amdgpu_ib_get(p->adev, vm, ring->funcs->parse_cs ? 384 chunk_ib->ib_bytes : 0, 385 AMDGPU_IB_POOL_DELAYED, ib); 386 if (r) { 387 drm_err(adev_to_drm(p->adev), "Failed to get ib !\n"); 388 return r; 389 } 390 391 ib->gpu_addr = chunk_ib->va_start; 392 ib->length_dw = chunk_ib->ib_bytes / 4; 393 ib->flags = chunk_ib->flags; 394 return 0; 395 } 396 397 static int amdgpu_cs_p2_dependencies(struct amdgpu_cs_parser *p, 398 struct amdgpu_cs_chunk *chunk) 399 { 400 struct drm_amdgpu_cs_chunk_dep *deps = chunk->kdata; 401 struct amdgpu_fpriv *fpriv = p->filp->driver_priv; 402 unsigned int num_deps; 403 int i, r; 404 405 num_deps = chunk->length_dw * 4 / 406 sizeof(struct drm_amdgpu_cs_chunk_dep); 407 408 for (i = 0; i < num_deps; ++i) { 409 struct amdgpu_ctx *ctx; 410 struct drm_sched_entity *entity; 411 struct dma_fence *fence; 412 413 ctx = amdgpu_ctx_get(fpriv, deps[i].ctx_id); 414 if (ctx == NULL) 415 return -EINVAL; 416 417 r = amdgpu_ctx_get_entity(ctx, deps[i].ip_type, 418 deps[i].ip_instance, 419 deps[i].ring, &entity); 420 if (r) { 421 amdgpu_ctx_put(ctx); 422 return r; 423 } 424 425 fence = amdgpu_ctx_get_fence(ctx, entity, deps[i].handle); 426 amdgpu_ctx_put(ctx); 427 428 if (IS_ERR(fence)) 429 return PTR_ERR(fence); 430 else if (!fence) 431 continue; 432 433 if (chunk->chunk_id == AMDGPU_CHUNK_ID_SCHEDULED_DEPENDENCIES) { 434 struct drm_sched_fence *s_fence; 435 struct dma_fence *old = fence; 436 437 s_fence = to_drm_sched_fence(fence); 438 fence = dma_fence_get(&s_fence->scheduled); 439 dma_fence_put(old); 440 } 441 442 r = amdgpu_sync_fence(&p->sync, fence, GFP_KERNEL); 443 dma_fence_put(fence); 444 if (r) 445 return r; 446 } 447 return 0; 448 } 449 450 static int amdgpu_syncobj_lookup_and_add(struct amdgpu_cs_parser *p, 451 uint32_t handle, u64 point, 452 u64 flags) 453 { 454 struct dma_fence *fence; 455 int r; 456 457 r = drm_syncobj_find_fence(p->filp, handle, point, flags, &fence); 458 if (r) { 459 drm_err(adev_to_drm(p->adev), "syncobj %u failed to find fence @ %llu (%d)!\n", 460 handle, point, r); 461 return r; 462 } 463 464 r = amdgpu_sync_fence(&p->sync, fence, GFP_KERNEL); 465 dma_fence_put(fence); 466 return r; 467 } 468 469 static int amdgpu_cs_p2_syncobj_in(struct amdgpu_cs_parser *p, 470 struct amdgpu_cs_chunk *chunk) 471 { 472 struct drm_amdgpu_cs_chunk_sem *deps = chunk->kdata; 473 unsigned int num_deps; 474 int i, r; 475 476 num_deps = chunk->length_dw * 4 / 477 sizeof(struct drm_amdgpu_cs_chunk_sem); 478 for (i = 0; i < num_deps; ++i) { 479 r = amdgpu_syncobj_lookup_and_add(p, deps[i].handle, 0, 0); 480 if (r) 481 return r; 482 } 483 484 return 0; 485 } 486 487 static int amdgpu_cs_p2_syncobj_timeline_wait(struct amdgpu_cs_parser *p, 488 struct amdgpu_cs_chunk *chunk) 489 { 490 struct drm_amdgpu_cs_chunk_syncobj *syncobj_deps = chunk->kdata; 491 unsigned int num_deps; 492 int i, r; 493 494 num_deps = chunk->length_dw * 4 / 495 sizeof(struct drm_amdgpu_cs_chunk_syncobj); 496 for (i = 0; i < num_deps; ++i) { 497 r = amdgpu_syncobj_lookup_and_add(p, syncobj_deps[i].handle, 498 syncobj_deps[i].point, 499 syncobj_deps[i].flags); 500 if (r) 501 return r; 502 } 503 504 return 0; 505 } 506 507 static int amdgpu_cs_p2_syncobj_out(struct amdgpu_cs_parser *p, 508 struct amdgpu_cs_chunk *chunk) 509 { 510 struct drm_amdgpu_cs_chunk_sem *deps = chunk->kdata; 511 unsigned int num_deps; 512 int i; 513 514 num_deps = chunk->length_dw * 4 / 515 sizeof(struct drm_amdgpu_cs_chunk_sem); 516 517 if (p->post_deps) 518 return -EINVAL; 519 520 p->post_deps = kmalloc_array(num_deps, sizeof(*p->post_deps), 521 GFP_KERNEL); 522 p->num_post_deps = 0; 523 524 if (!p->post_deps) 525 return -ENOMEM; 526 527 528 for (i = 0; i < num_deps; ++i) { 529 p->post_deps[i].syncobj = 530 drm_syncobj_find(p->filp, deps[i].handle); 531 if (!p->post_deps[i].syncobj) 532 return -EINVAL; 533 p->post_deps[i].chain = NULL; 534 p->post_deps[i].point = 0; 535 p->num_post_deps++; 536 } 537 538 return 0; 539 } 540 541 static int amdgpu_cs_p2_syncobj_timeline_signal(struct amdgpu_cs_parser *p, 542 struct amdgpu_cs_chunk *chunk) 543 { 544 struct drm_amdgpu_cs_chunk_syncobj *syncobj_deps = chunk->kdata; 545 unsigned int num_deps; 546 int i; 547 548 num_deps = chunk->length_dw * 4 / 549 sizeof(struct drm_amdgpu_cs_chunk_syncobj); 550 551 if (p->post_deps) 552 return -EINVAL; 553 554 p->post_deps = kmalloc_array(num_deps, sizeof(*p->post_deps), 555 GFP_KERNEL); 556 p->num_post_deps = 0; 557 558 if (!p->post_deps) 559 return -ENOMEM; 560 561 for (i = 0; i < num_deps; ++i) { 562 struct amdgpu_cs_post_dep *dep = &p->post_deps[i]; 563 564 dep->chain = NULL; 565 if (syncobj_deps[i].point) { 566 dep->chain = dma_fence_chain_alloc(); 567 if (!dep->chain) 568 return -ENOMEM; 569 } 570 571 dep->syncobj = drm_syncobj_find(p->filp, 572 syncobj_deps[i].handle); 573 if (!dep->syncobj) { 574 dma_fence_chain_free(dep->chain); 575 return -EINVAL; 576 } 577 dep->point = syncobj_deps[i].point; 578 p->num_post_deps++; 579 } 580 581 return 0; 582 } 583 584 static int amdgpu_cs_p2_shadow(struct amdgpu_cs_parser *p, 585 struct amdgpu_cs_chunk *chunk) 586 { 587 struct drm_amdgpu_cs_chunk_cp_gfx_shadow *shadow = chunk->kdata; 588 int i; 589 590 if (shadow->flags & ~AMDGPU_CS_CHUNK_CP_GFX_SHADOW_FLAGS_INIT_SHADOW) 591 return -EINVAL; 592 593 for (i = 0; i < p->gang_size; ++i) { 594 p->jobs[i]->shadow_va = shadow->shadow_va; 595 p->jobs[i]->csa_va = shadow->csa_va; 596 p->jobs[i]->gds_va = shadow->gds_va; 597 p->jobs[i]->init_shadow = 598 shadow->flags & AMDGPU_CS_CHUNK_CP_GFX_SHADOW_FLAGS_INIT_SHADOW; 599 } 600 601 return 0; 602 } 603 604 static int amdgpu_cs_pass2(struct amdgpu_cs_parser *p) 605 { 606 unsigned int ce_preempt = 0, de_preempt = 0; 607 int i, r; 608 609 for (i = 0; i < p->nchunks; ++i) { 610 struct amdgpu_cs_chunk *chunk; 611 612 chunk = &p->chunks[i]; 613 614 switch (chunk->chunk_id) { 615 case AMDGPU_CHUNK_ID_IB: 616 r = amdgpu_cs_p2_ib(p, chunk, &ce_preempt, &de_preempt); 617 if (r) 618 return r; 619 break; 620 case AMDGPU_CHUNK_ID_DEPENDENCIES: 621 case AMDGPU_CHUNK_ID_SCHEDULED_DEPENDENCIES: 622 r = amdgpu_cs_p2_dependencies(p, chunk); 623 if (r) 624 return r; 625 break; 626 case AMDGPU_CHUNK_ID_SYNCOBJ_IN: 627 r = amdgpu_cs_p2_syncobj_in(p, chunk); 628 if (r) 629 return r; 630 break; 631 case AMDGPU_CHUNK_ID_SYNCOBJ_OUT: 632 r = amdgpu_cs_p2_syncobj_out(p, chunk); 633 if (r) 634 return r; 635 break; 636 case AMDGPU_CHUNK_ID_SYNCOBJ_TIMELINE_WAIT: 637 r = amdgpu_cs_p2_syncobj_timeline_wait(p, chunk); 638 if (r) 639 return r; 640 break; 641 case AMDGPU_CHUNK_ID_SYNCOBJ_TIMELINE_SIGNAL: 642 r = amdgpu_cs_p2_syncobj_timeline_signal(p, chunk); 643 if (r) 644 return r; 645 break; 646 case AMDGPU_CHUNK_ID_CP_GFX_SHADOW: 647 r = amdgpu_cs_p2_shadow(p, chunk); 648 if (r) 649 return r; 650 break; 651 } 652 } 653 654 return 0; 655 } 656 657 /* Convert microseconds to bytes. */ 658 static u64 us_to_bytes(struct amdgpu_device *adev, s64 us) 659 { 660 if (us <= 0 || !adev->mm_stats.log2_max_MBps) 661 return 0; 662 663 /* Since accum_us is incremented by a million per second, just 664 * multiply it by the number of MB/s to get the number of bytes. 665 */ 666 return us << adev->mm_stats.log2_max_MBps; 667 } 668 669 static s64 bytes_to_us(struct amdgpu_device *adev, u64 bytes) 670 { 671 if (!adev->mm_stats.log2_max_MBps) 672 return 0; 673 674 return bytes >> adev->mm_stats.log2_max_MBps; 675 } 676 677 /* Returns how many bytes TTM can move right now. If no bytes can be moved, 678 * it returns 0. If it returns non-zero, it's OK to move at least one buffer, 679 * which means it can go over the threshold once. If that happens, the driver 680 * will be in debt and no other buffer migrations can be done until that debt 681 * is repaid. 682 * 683 * This approach allows moving a buffer of any size (it's important to allow 684 * that). 685 * 686 * The currency is simply time in microseconds and it increases as the clock 687 * ticks. The accumulated microseconds (us) are converted to bytes and 688 * returned. 689 */ 690 static void amdgpu_cs_get_threshold_for_moves(struct amdgpu_device *adev, 691 u64 *max_bytes, 692 u64 *max_vis_bytes) 693 { 694 s64 time_us, increment_us; 695 u64 free_vram, total_vram, used_vram; 696 /* Allow a maximum of 200 accumulated ms. This is basically per-IB 697 * throttling. 698 * 699 * It means that in order to get full max MBps, at least 5 IBs per 700 * second must be submitted and not more than 200ms apart from each 701 * other. 702 */ 703 const s64 us_upper_bound = 200000; 704 705 if (!adev->mm_stats.log2_max_MBps) { 706 *max_bytes = 0; 707 *max_vis_bytes = 0; 708 return; 709 } 710 711 total_vram = adev->gmc.real_vram_size - atomic64_read(&adev->vram_pin_size); 712 used_vram = ttm_resource_manager_usage(&adev->mman.vram_mgr.manager); 713 free_vram = used_vram >= total_vram ? 0 : total_vram - used_vram; 714 715 spin_lock(&adev->mm_stats.lock); 716 717 /* Increase the amount of accumulated us. */ 718 time_us = ktime_to_us(ktime_get()); 719 increment_us = time_us - adev->mm_stats.last_update_us; 720 adev->mm_stats.last_update_us = time_us; 721 adev->mm_stats.accum_us = min(adev->mm_stats.accum_us + increment_us, 722 us_upper_bound); 723 724 /* This prevents the short period of low performance when the VRAM 725 * usage is low and the driver is in debt or doesn't have enough 726 * accumulated us to fill VRAM quickly. 727 * 728 * The situation can occur in these cases: 729 * - a lot of VRAM is freed by userspace 730 * - the presence of a big buffer causes a lot of evictions 731 * (solution: split buffers into smaller ones) 732 * 733 * If 128 MB or 1/8th of VRAM is free, start filling it now by setting 734 * accum_us to a positive number. 735 */ 736 if (free_vram >= 128 * 1024 * 1024 || free_vram >= total_vram / 8) { 737 s64 min_us; 738 739 /* Be more aggressive on dGPUs. Try to fill a portion of free 740 * VRAM now. 741 */ 742 if (!(adev->flags & AMD_IS_APU)) 743 min_us = bytes_to_us(adev, free_vram / 4); 744 else 745 min_us = 0; /* Reset accum_us on APUs. */ 746 747 adev->mm_stats.accum_us = max(min_us, adev->mm_stats.accum_us); 748 } 749 750 /* This is set to 0 if the driver is in debt to disallow (optional) 751 * buffer moves. 752 */ 753 *max_bytes = us_to_bytes(adev, adev->mm_stats.accum_us); 754 755 /* Do the same for visible VRAM if half of it is free */ 756 if (!amdgpu_gmc_vram_full_visible(&adev->gmc)) { 757 u64 total_vis_vram = adev->gmc.visible_vram_size; 758 u64 used_vis_vram = 759 amdgpu_vram_mgr_vis_usage(&adev->mman.vram_mgr); 760 761 if (used_vis_vram < total_vis_vram) { 762 u64 free_vis_vram = total_vis_vram - used_vis_vram; 763 764 adev->mm_stats.accum_us_vis = min(adev->mm_stats.accum_us_vis + 765 increment_us, us_upper_bound); 766 767 if (free_vis_vram >= total_vis_vram / 2) 768 adev->mm_stats.accum_us_vis = 769 max(bytes_to_us(adev, free_vis_vram / 2), 770 adev->mm_stats.accum_us_vis); 771 } 772 773 *max_vis_bytes = us_to_bytes(adev, adev->mm_stats.accum_us_vis); 774 } else { 775 *max_vis_bytes = 0; 776 } 777 778 spin_unlock(&adev->mm_stats.lock); 779 } 780 781 /* Report how many bytes have really been moved for the last command 782 * submission. This can result in a debt that can stop buffer migrations 783 * temporarily. 784 */ 785 void amdgpu_cs_report_moved_bytes(struct amdgpu_device *adev, u64 num_bytes, 786 u64 num_vis_bytes) 787 { 788 spin_lock(&adev->mm_stats.lock); 789 adev->mm_stats.accum_us -= bytes_to_us(adev, num_bytes); 790 adev->mm_stats.accum_us_vis -= bytes_to_us(adev, num_vis_bytes); 791 spin_unlock(&adev->mm_stats.lock); 792 } 793 794 static int amdgpu_cs_bo_validate(void *param, struct amdgpu_bo *bo) 795 { 796 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 797 struct amdgpu_cs_parser *p = param; 798 struct ttm_operation_ctx ctx = { 799 .interruptible = true, 800 .no_wait_gpu = false, 801 .resv = bo->tbo.base.resv 802 }; 803 uint32_t domain; 804 int r; 805 806 if (bo->tbo.pin_count) 807 return 0; 808 809 /* Don't move this buffer if we have depleted our allowance 810 * to move it. Don't move anything if the threshold is zero. 811 */ 812 if (p->bytes_moved < p->bytes_moved_threshold && 813 (!bo->tbo.base.dma_buf || 814 list_empty(&bo->tbo.base.dma_buf->attachments))) { 815 if (!amdgpu_gmc_vram_full_visible(&adev->gmc) && 816 (bo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED)) { 817 /* And don't move a CPU_ACCESS_REQUIRED BO to limited 818 * visible VRAM if we've depleted our allowance to do 819 * that. 820 */ 821 if (p->bytes_moved_vis < p->bytes_moved_vis_threshold) 822 domain = bo->preferred_domains; 823 else 824 domain = bo->allowed_domains; 825 } else { 826 domain = bo->preferred_domains; 827 } 828 } else { 829 domain = bo->allowed_domains; 830 } 831 832 retry: 833 amdgpu_bo_placement_from_domain(bo, domain); 834 r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 835 836 p->bytes_moved += ctx.bytes_moved; 837 if (!amdgpu_gmc_vram_full_visible(&adev->gmc) && 838 amdgpu_res_cpu_visible(adev, bo->tbo.resource)) 839 p->bytes_moved_vis += ctx.bytes_moved; 840 841 if (unlikely(r == -ENOMEM) && domain != bo->allowed_domains) { 842 domain = bo->allowed_domains; 843 goto retry; 844 } 845 846 return r; 847 } 848 849 static int amdgpu_cs_parser_bos(struct amdgpu_cs_parser *p, 850 union drm_amdgpu_cs *cs) 851 { 852 struct amdgpu_fpriv *fpriv = p->filp->driver_priv; 853 struct ttm_operation_ctx ctx = { true, false }; 854 struct amdgpu_vm *vm = &fpriv->vm; 855 struct amdgpu_bo_list_entry *e; 856 struct drm_gem_object *obj; 857 unsigned long index; 858 unsigned int i; 859 int r; 860 861 /* p->bo_list could already be assigned if AMDGPU_CHUNK_ID_BO_HANDLES is present */ 862 if (cs->in.bo_list_handle) { 863 if (p->bo_list) 864 return -EINVAL; 865 866 r = amdgpu_bo_list_get(fpriv, cs->in.bo_list_handle, 867 &p->bo_list); 868 if (r) 869 return r; 870 } else if (!p->bo_list) { 871 /* Create a empty bo_list when no handle is provided */ 872 r = amdgpu_bo_list_create(p->adev, p->filp, NULL, 0, 873 &p->bo_list); 874 if (r) 875 return r; 876 } 877 878 mutex_lock(&p->bo_list->bo_list_mutex); 879 880 /* Get userptr backing pages. If pages are updated after registered 881 * in amdgpu_gem_userptr_ioctl(), amdgpu_cs_list_validate() will do 882 * amdgpu_ttm_backend_bind() to flush and invalidate new pages 883 */ 884 amdgpu_bo_list_for_each_userptr_entry(e, p->bo_list) { 885 bool userpage_invalidated = false; 886 struct amdgpu_bo *bo = e->bo; 887 888 r = amdgpu_ttm_tt_get_user_pages(bo, &e->range); 889 if (r) 890 goto out_free_user_pages; 891 892 for (i = 0; i < bo->tbo.ttm->num_pages; i++) { 893 if (bo->tbo.ttm->pages[i] != hmm_pfn_to_page(e->range->hmm_pfns[i])) { 894 userpage_invalidated = true; 895 break; 896 } 897 } 898 e->user_invalidated = userpage_invalidated; 899 } 900 901 drm_exec_until_all_locked(&p->exec) { 902 r = amdgpu_vm_lock_pd(&fpriv->vm, &p->exec, 1 + p->gang_size); 903 drm_exec_retry_on_contention(&p->exec); 904 if (unlikely(r)) 905 goto out_free_user_pages; 906 907 amdgpu_bo_list_for_each_entry(e, p->bo_list) { 908 /* One fence for TTM and one for each CS job */ 909 r = drm_exec_prepare_obj(&p->exec, &e->bo->tbo.base, 910 1 + p->gang_size); 911 drm_exec_retry_on_contention(&p->exec); 912 if (unlikely(r)) 913 goto out_free_user_pages; 914 915 e->bo_va = amdgpu_vm_bo_find(vm, e->bo); 916 } 917 918 if (p->uf_bo) { 919 r = drm_exec_prepare_obj(&p->exec, &p->uf_bo->tbo.base, 920 1 + p->gang_size); 921 drm_exec_retry_on_contention(&p->exec); 922 if (unlikely(r)) 923 goto out_free_user_pages; 924 } 925 } 926 927 amdgpu_bo_list_for_each_userptr_entry(e, p->bo_list) { 928 struct mm_struct *usermm; 929 930 usermm = amdgpu_ttm_tt_get_usermm(e->bo->tbo.ttm); 931 if (usermm && usermm != current->mm) { 932 r = -EPERM; 933 goto out_free_user_pages; 934 } 935 936 if (amdgpu_ttm_tt_is_userptr(e->bo->tbo.ttm) && 937 e->user_invalidated) { 938 amdgpu_bo_placement_from_domain(e->bo, 939 AMDGPU_GEM_DOMAIN_CPU); 940 r = ttm_bo_validate(&e->bo->tbo, &e->bo->placement, 941 &ctx); 942 if (r) 943 goto out_free_user_pages; 944 945 amdgpu_ttm_tt_set_user_pages(e->bo->tbo.ttm, 946 e->range); 947 } 948 } 949 950 amdgpu_cs_get_threshold_for_moves(p->adev, &p->bytes_moved_threshold, 951 &p->bytes_moved_vis_threshold); 952 p->bytes_moved = 0; 953 p->bytes_moved_vis = 0; 954 955 r = amdgpu_vm_validate(p->adev, &fpriv->vm, NULL, 956 amdgpu_cs_bo_validate, p); 957 if (r) { 958 drm_err(adev_to_drm(p->adev), "amdgpu_vm_validate() failed.\n"); 959 goto out_free_user_pages; 960 } 961 962 drm_exec_for_each_locked_object(&p->exec, index, obj) { 963 r = amdgpu_cs_bo_validate(p, gem_to_amdgpu_bo(obj)); 964 if (unlikely(r)) 965 goto out_free_user_pages; 966 } 967 968 if (p->uf_bo) { 969 r = amdgpu_ttm_alloc_gart(&p->uf_bo->tbo); 970 if (unlikely(r)) 971 goto out_free_user_pages; 972 973 p->gang_leader->uf_addr += amdgpu_bo_gpu_offset(p->uf_bo); 974 } 975 976 amdgpu_cs_report_moved_bytes(p->adev, p->bytes_moved, 977 p->bytes_moved_vis); 978 979 for (i = 0; i < p->gang_size; ++i) 980 amdgpu_job_set_resources(p->jobs[i], p->bo_list->gds_obj, 981 p->bo_list->gws_obj, 982 p->bo_list->oa_obj); 983 return 0; 984 985 out_free_user_pages: 986 amdgpu_bo_list_for_each_userptr_entry(e, p->bo_list) { 987 struct amdgpu_bo *bo = e->bo; 988 989 amdgpu_ttm_tt_get_user_pages_done(bo->tbo.ttm, e->range); 990 e->range = NULL; 991 } 992 mutex_unlock(&p->bo_list->bo_list_mutex); 993 return r; 994 } 995 996 static void trace_amdgpu_cs_ibs(struct amdgpu_cs_parser *p) 997 { 998 int i, j; 999 1000 if (!trace_amdgpu_cs_enabled()) 1001 return; 1002 1003 for (i = 0; i < p->gang_size; ++i) { 1004 struct amdgpu_job *job = p->jobs[i]; 1005 1006 for (j = 0; j < job->num_ibs; ++j) 1007 trace_amdgpu_cs(p, job, &job->ibs[j]); 1008 } 1009 } 1010 1011 static int amdgpu_cs_patch_ibs(struct amdgpu_cs_parser *p, 1012 struct amdgpu_job *job) 1013 { 1014 struct amdgpu_ring *ring = amdgpu_job_ring(job); 1015 unsigned int i; 1016 int r; 1017 1018 /* Only for UVD/VCE VM emulation */ 1019 if (!ring->funcs->parse_cs && !ring->funcs->patch_cs_in_place) 1020 return 0; 1021 1022 for (i = 0; i < job->num_ibs; ++i) { 1023 struct amdgpu_ib *ib = &job->ibs[i]; 1024 struct amdgpu_bo_va_mapping *m; 1025 struct amdgpu_bo *aobj; 1026 uint64_t va_start; 1027 uint8_t *kptr; 1028 1029 va_start = ib->gpu_addr & AMDGPU_GMC_HOLE_MASK; 1030 r = amdgpu_cs_find_mapping(p, va_start, &aobj, &m); 1031 if (r) { 1032 drm_err(adev_to_drm(p->adev), "IB va_start is invalid\n"); 1033 return r; 1034 } 1035 1036 if ((va_start + ib->length_dw * 4) > 1037 (m->last + 1) * AMDGPU_GPU_PAGE_SIZE) { 1038 drm_err(adev_to_drm(p->adev), "IB va_start+ib_bytes is invalid\n"); 1039 return -EINVAL; 1040 } 1041 1042 /* the IB should be reserved at this point */ 1043 r = amdgpu_bo_kmap(aobj, (void **)&kptr); 1044 if (r) 1045 return r; 1046 1047 kptr += va_start - (m->start * AMDGPU_GPU_PAGE_SIZE); 1048 1049 if (ring->funcs->parse_cs) { 1050 memcpy(ib->ptr, kptr, ib->length_dw * 4); 1051 amdgpu_bo_kunmap(aobj); 1052 1053 r = amdgpu_ring_parse_cs(ring, p, job, ib); 1054 if (r) 1055 return r; 1056 1057 if (ib->sa_bo) 1058 ib->gpu_addr = amdgpu_sa_bo_gpu_addr(ib->sa_bo); 1059 } else { 1060 ib->ptr = (uint32_t *)kptr; 1061 r = amdgpu_ring_patch_cs_in_place(ring, p, job, ib); 1062 amdgpu_bo_kunmap(aobj); 1063 if (r) 1064 return r; 1065 } 1066 } 1067 1068 return 0; 1069 } 1070 1071 static int amdgpu_cs_patch_jobs(struct amdgpu_cs_parser *p) 1072 { 1073 unsigned int i; 1074 int r; 1075 1076 for (i = 0; i < p->gang_size; ++i) { 1077 r = amdgpu_cs_patch_ibs(p, p->jobs[i]); 1078 if (r) 1079 return r; 1080 } 1081 return 0; 1082 } 1083 1084 static int amdgpu_cs_vm_handling(struct amdgpu_cs_parser *p) 1085 { 1086 struct amdgpu_fpriv *fpriv = p->filp->driver_priv; 1087 struct amdgpu_job *job = p->gang_leader; 1088 struct amdgpu_device *adev = p->adev; 1089 struct amdgpu_vm *vm = &fpriv->vm; 1090 struct amdgpu_bo_list_entry *e; 1091 struct amdgpu_bo_va *bo_va; 1092 unsigned int i; 1093 int r; 1094 1095 /* 1096 * We can't use gang submit on with reserved VMIDs when the VM changes 1097 * can't be invalidated by more than one engine at the same time. 1098 */ 1099 if (p->gang_size > 1 && !adev->vm_manager.concurrent_flush) { 1100 for (i = 0; i < p->gang_size; ++i) { 1101 struct drm_sched_entity *entity = p->entities[i]; 1102 struct drm_gpu_scheduler *sched = entity->rq->sched; 1103 struct amdgpu_ring *ring = to_amdgpu_ring(sched); 1104 1105 if (amdgpu_vmid_uses_reserved(vm, ring->vm_hub)) 1106 return -EINVAL; 1107 } 1108 } 1109 1110 if (!amdgpu_vm_ready(vm)) 1111 return -EINVAL; 1112 1113 r = amdgpu_vm_clear_freed(adev, vm, NULL); 1114 if (r) 1115 return r; 1116 1117 r = amdgpu_vm_bo_update(adev, fpriv->prt_va, false); 1118 if (r) 1119 return r; 1120 1121 r = amdgpu_sync_fence(&p->sync, fpriv->prt_va->last_pt_update, 1122 GFP_KERNEL); 1123 if (r) 1124 return r; 1125 1126 if (fpriv->csa_va) { 1127 bo_va = fpriv->csa_va; 1128 BUG_ON(!bo_va); 1129 r = amdgpu_vm_bo_update(adev, bo_va, false); 1130 if (r) 1131 return r; 1132 1133 r = amdgpu_sync_fence(&p->sync, bo_va->last_pt_update, 1134 GFP_KERNEL); 1135 if (r) 1136 return r; 1137 } 1138 1139 /* FIXME: In theory this loop shouldn't be needed any more when 1140 * amdgpu_vm_handle_moved handles all moved BOs that are reserved 1141 * with p->ticket. But removing it caused test regressions, so I'm 1142 * leaving it here for now. 1143 */ 1144 amdgpu_bo_list_for_each_entry(e, p->bo_list) { 1145 bo_va = e->bo_va; 1146 if (bo_va == NULL) 1147 continue; 1148 1149 r = amdgpu_vm_bo_update(adev, bo_va, false); 1150 if (r) 1151 return r; 1152 1153 r = amdgpu_sync_fence(&p->sync, bo_va->last_pt_update, 1154 GFP_KERNEL); 1155 if (r) 1156 return r; 1157 } 1158 1159 r = amdgpu_vm_handle_moved(adev, vm, &p->exec.ticket); 1160 if (r) 1161 return r; 1162 1163 r = amdgpu_vm_update_pdes(adev, vm, false); 1164 if (r) 1165 return r; 1166 1167 r = amdgpu_sync_fence(&p->sync, vm->last_update, GFP_KERNEL); 1168 if (r) 1169 return r; 1170 1171 for (i = 0; i < p->gang_size; ++i) { 1172 job = p->jobs[i]; 1173 1174 if (!job->vm) 1175 continue; 1176 1177 job->vm_pd_addr = amdgpu_gmc_pd_addr(vm->root.bo); 1178 } 1179 1180 if (adev->debug_vm) { 1181 /* Invalidate all BOs to test for userspace bugs */ 1182 amdgpu_bo_list_for_each_entry(e, p->bo_list) { 1183 struct amdgpu_bo *bo = e->bo; 1184 1185 /* ignore duplicates */ 1186 if (!bo) 1187 continue; 1188 1189 amdgpu_vm_bo_invalidate(bo, false); 1190 } 1191 } 1192 1193 return 0; 1194 } 1195 1196 static int amdgpu_cs_sync_rings(struct amdgpu_cs_parser *p) 1197 { 1198 struct amdgpu_fpriv *fpriv = p->filp->driver_priv; 1199 struct drm_gpu_scheduler *sched; 1200 struct drm_gem_object *obj; 1201 struct dma_fence *fence; 1202 unsigned long index; 1203 unsigned int i; 1204 int r; 1205 1206 r = amdgpu_ctx_wait_prev_fence(p->ctx, p->entities[p->gang_leader_idx]); 1207 if (r) { 1208 if (r != -ERESTARTSYS) 1209 drm_err(adev_to_drm(p->adev), "amdgpu_ctx_wait_prev_fence failed.\n"); 1210 return r; 1211 } 1212 1213 drm_exec_for_each_locked_object(&p->exec, index, obj) { 1214 struct amdgpu_bo *bo = gem_to_amdgpu_bo(obj); 1215 1216 struct dma_resv *resv = bo->tbo.base.resv; 1217 enum amdgpu_sync_mode sync_mode; 1218 1219 sync_mode = amdgpu_bo_explicit_sync(bo) ? 1220 AMDGPU_SYNC_EXPLICIT : AMDGPU_SYNC_NE_OWNER; 1221 r = amdgpu_sync_resv(p->adev, &p->sync, resv, sync_mode, 1222 &fpriv->vm); 1223 if (r) 1224 return r; 1225 } 1226 1227 for (i = 0; i < p->gang_size; ++i) { 1228 r = amdgpu_sync_push_to_job(&p->sync, p->jobs[i]); 1229 if (r) 1230 return r; 1231 } 1232 1233 sched = p->gang_leader->base.entity->rq->sched; 1234 while ((fence = amdgpu_sync_get_fence(&p->sync))) { 1235 struct drm_sched_fence *s_fence = to_drm_sched_fence(fence); 1236 1237 /* 1238 * When we have an dependency it might be necessary to insert a 1239 * pipeline sync to make sure that all caches etc are flushed and the 1240 * next job actually sees the results from the previous one 1241 * before we start executing on the same scheduler ring. 1242 */ 1243 if (!s_fence || s_fence->sched != sched) { 1244 dma_fence_put(fence); 1245 continue; 1246 } 1247 1248 r = amdgpu_sync_fence(&p->gang_leader->explicit_sync, fence, 1249 GFP_KERNEL); 1250 dma_fence_put(fence); 1251 if (r) 1252 return r; 1253 } 1254 return 0; 1255 } 1256 1257 static void amdgpu_cs_post_dependencies(struct amdgpu_cs_parser *p) 1258 { 1259 int i; 1260 1261 for (i = 0; i < p->num_post_deps; ++i) { 1262 if (p->post_deps[i].chain && p->post_deps[i].point) { 1263 drm_syncobj_add_point(p->post_deps[i].syncobj, 1264 p->post_deps[i].chain, 1265 p->fence, p->post_deps[i].point); 1266 p->post_deps[i].chain = NULL; 1267 } else { 1268 drm_syncobj_replace_fence(p->post_deps[i].syncobj, 1269 p->fence); 1270 } 1271 } 1272 } 1273 1274 static int amdgpu_cs_submit(struct amdgpu_cs_parser *p, 1275 union drm_amdgpu_cs *cs) 1276 { 1277 struct amdgpu_fpriv *fpriv = p->filp->driver_priv; 1278 struct amdgpu_job *leader = p->gang_leader; 1279 struct amdgpu_bo_list_entry *e; 1280 struct drm_gem_object *gobj; 1281 unsigned long index; 1282 unsigned int i; 1283 uint64_t seq; 1284 int r; 1285 1286 for (i = 0; i < p->gang_size; ++i) 1287 drm_sched_job_arm(&p->jobs[i]->base); 1288 1289 for (i = 0; i < p->gang_size; ++i) { 1290 struct dma_fence *fence; 1291 1292 if (p->jobs[i] == leader) 1293 continue; 1294 1295 fence = &p->jobs[i]->base.s_fence->scheduled; 1296 dma_fence_get(fence); 1297 r = drm_sched_job_add_dependency(&leader->base, fence); 1298 if (r) { 1299 dma_fence_put(fence); 1300 return r; 1301 } 1302 } 1303 1304 if (p->gang_size > 1) { 1305 for (i = 0; i < p->gang_size; ++i) 1306 amdgpu_job_set_gang_leader(p->jobs[i], leader); 1307 } 1308 1309 /* No memory allocation is allowed while holding the notifier lock. 1310 * The lock is held until amdgpu_cs_submit is finished and fence is 1311 * added to BOs. 1312 */ 1313 mutex_lock(&p->adev->notifier_lock); 1314 1315 /* If userptr are invalidated after amdgpu_cs_parser_bos(), return 1316 * -EAGAIN, drmIoctl in libdrm will restart the amdgpu_cs_ioctl. 1317 */ 1318 r = 0; 1319 amdgpu_bo_list_for_each_userptr_entry(e, p->bo_list) { 1320 r |= !amdgpu_ttm_tt_get_user_pages_done(e->bo->tbo.ttm, 1321 e->range); 1322 e->range = NULL; 1323 } 1324 if (r) { 1325 r = -EAGAIN; 1326 mutex_unlock(&p->adev->notifier_lock); 1327 return r; 1328 } 1329 1330 p->fence = dma_fence_get(&leader->base.s_fence->finished); 1331 drm_exec_for_each_locked_object(&p->exec, index, gobj) { 1332 1333 ttm_bo_move_to_lru_tail_unlocked(&gem_to_amdgpu_bo(gobj)->tbo); 1334 1335 /* Everybody except for the gang leader uses READ */ 1336 for (i = 0; i < p->gang_size; ++i) { 1337 if (p->jobs[i] == leader) 1338 continue; 1339 1340 dma_resv_add_fence(gobj->resv, 1341 &p->jobs[i]->base.s_fence->finished, 1342 DMA_RESV_USAGE_READ); 1343 } 1344 1345 /* The gang leader as remembered as writer */ 1346 dma_resv_add_fence(gobj->resv, p->fence, DMA_RESV_USAGE_WRITE); 1347 } 1348 1349 seq = amdgpu_ctx_add_fence(p->ctx, p->entities[p->gang_leader_idx], 1350 p->fence); 1351 amdgpu_cs_post_dependencies(p); 1352 1353 if ((leader->preamble_status & AMDGPU_PREAMBLE_IB_PRESENT) && 1354 !p->ctx->preamble_presented) { 1355 leader->preamble_status |= AMDGPU_PREAMBLE_IB_PRESENT_FIRST; 1356 p->ctx->preamble_presented = true; 1357 } 1358 1359 cs->out.handle = seq; 1360 leader->uf_sequence = seq; 1361 1362 amdgpu_vm_bo_trace_cs(&fpriv->vm, &p->exec.ticket); 1363 for (i = 0; i < p->gang_size; ++i) { 1364 amdgpu_job_free_resources(p->jobs[i]); 1365 trace_amdgpu_cs_ioctl(p->jobs[i]); 1366 drm_sched_entity_push_job(&p->jobs[i]->base); 1367 p->jobs[i] = NULL; 1368 } 1369 1370 amdgpu_vm_move_to_lru_tail(p->adev, &fpriv->vm); 1371 1372 mutex_unlock(&p->adev->notifier_lock); 1373 mutex_unlock(&p->bo_list->bo_list_mutex); 1374 return 0; 1375 } 1376 1377 /* Cleanup the parser structure */ 1378 static void amdgpu_cs_parser_fini(struct amdgpu_cs_parser *parser) 1379 { 1380 unsigned int i; 1381 1382 amdgpu_sync_free(&parser->sync); 1383 drm_exec_fini(&parser->exec); 1384 1385 for (i = 0; i < parser->num_post_deps; i++) { 1386 drm_syncobj_put(parser->post_deps[i].syncobj); 1387 kfree(parser->post_deps[i].chain); 1388 } 1389 kfree(parser->post_deps); 1390 1391 dma_fence_put(parser->fence); 1392 1393 if (parser->ctx) 1394 amdgpu_ctx_put(parser->ctx); 1395 if (parser->bo_list) 1396 amdgpu_bo_list_put(parser->bo_list); 1397 1398 for (i = 0; i < parser->nchunks; i++) 1399 kvfree(parser->chunks[i].kdata); 1400 kvfree(parser->chunks); 1401 for (i = 0; i < parser->gang_size; ++i) { 1402 if (parser->jobs[i]) 1403 amdgpu_job_free(parser->jobs[i]); 1404 } 1405 amdgpu_bo_unref(&parser->uf_bo); 1406 } 1407 1408 int amdgpu_cs_ioctl(struct drm_device *dev, void *data, struct drm_file *filp) 1409 { 1410 struct amdgpu_device *adev = drm_to_adev(dev); 1411 struct amdgpu_cs_parser parser; 1412 int r; 1413 1414 if (amdgpu_ras_intr_triggered()) 1415 return -EHWPOISON; 1416 1417 if (!adev->accel_working) 1418 return -EBUSY; 1419 1420 r = amdgpu_cs_parser_init(&parser, adev, filp, data); 1421 if (r) { 1422 drm_err_ratelimited(dev, "Failed to initialize parser %d!\n", r); 1423 return r; 1424 } 1425 1426 r = amdgpu_cs_pass1(&parser, data); 1427 if (r) 1428 goto error_fini; 1429 1430 r = amdgpu_cs_pass2(&parser); 1431 if (r) 1432 goto error_fini; 1433 1434 r = amdgpu_cs_parser_bos(&parser, data); 1435 if (r) { 1436 if (r == -ENOMEM) 1437 drm_err(dev, "Not enough memory for command submission!\n"); 1438 else if (r != -ERESTARTSYS && r != -EAGAIN) 1439 drm_dbg(dev, "Failed to process the buffer list %d!\n", r); 1440 goto error_fini; 1441 } 1442 1443 r = amdgpu_cs_patch_jobs(&parser); 1444 if (r) 1445 goto error_backoff; 1446 1447 r = amdgpu_cs_vm_handling(&parser); 1448 if (r) 1449 goto error_backoff; 1450 1451 r = amdgpu_cs_sync_rings(&parser); 1452 if (r) 1453 goto error_backoff; 1454 1455 trace_amdgpu_cs_ibs(&parser); 1456 1457 r = amdgpu_cs_submit(&parser, data); 1458 if (r) 1459 goto error_backoff; 1460 1461 amdgpu_cs_parser_fini(&parser); 1462 return 0; 1463 1464 error_backoff: 1465 mutex_unlock(&parser.bo_list->bo_list_mutex); 1466 1467 error_fini: 1468 amdgpu_cs_parser_fini(&parser); 1469 return r; 1470 } 1471 1472 /** 1473 * amdgpu_cs_wait_ioctl - wait for a command submission to finish 1474 * 1475 * @dev: drm device 1476 * @data: data from userspace 1477 * @filp: file private 1478 * 1479 * Wait for the command submission identified by handle to finish. 1480 */ 1481 int amdgpu_cs_wait_ioctl(struct drm_device *dev, void *data, 1482 struct drm_file *filp) 1483 { 1484 union drm_amdgpu_wait_cs *wait = data; 1485 unsigned long timeout = amdgpu_gem_timeout(wait->in.timeout); 1486 struct drm_sched_entity *entity; 1487 struct amdgpu_ctx *ctx; 1488 struct dma_fence *fence; 1489 long r; 1490 1491 ctx = amdgpu_ctx_get(filp->driver_priv, wait->in.ctx_id); 1492 if (ctx == NULL) 1493 return -EINVAL; 1494 1495 r = amdgpu_ctx_get_entity(ctx, wait->in.ip_type, wait->in.ip_instance, 1496 wait->in.ring, &entity); 1497 if (r) { 1498 amdgpu_ctx_put(ctx); 1499 return r; 1500 } 1501 1502 fence = amdgpu_ctx_get_fence(ctx, entity, wait->in.handle); 1503 if (IS_ERR(fence)) 1504 r = PTR_ERR(fence); 1505 else if (fence) { 1506 r = dma_fence_wait_timeout(fence, true, timeout); 1507 if (r > 0 && fence->error) 1508 r = fence->error; 1509 dma_fence_put(fence); 1510 } else 1511 r = 1; 1512 1513 amdgpu_ctx_put(ctx); 1514 if (r < 0) 1515 return r; 1516 1517 memset(wait, 0, sizeof(*wait)); 1518 wait->out.status = (r == 0); 1519 1520 return 0; 1521 } 1522 1523 /** 1524 * amdgpu_cs_get_fence - helper to get fence from drm_amdgpu_fence 1525 * 1526 * @adev: amdgpu device 1527 * @filp: file private 1528 * @user: drm_amdgpu_fence copied from user space 1529 */ 1530 static struct dma_fence *amdgpu_cs_get_fence(struct amdgpu_device *adev, 1531 struct drm_file *filp, 1532 struct drm_amdgpu_fence *user) 1533 { 1534 struct drm_sched_entity *entity; 1535 struct amdgpu_ctx *ctx; 1536 struct dma_fence *fence; 1537 int r; 1538 1539 ctx = amdgpu_ctx_get(filp->driver_priv, user->ctx_id); 1540 if (ctx == NULL) 1541 return ERR_PTR(-EINVAL); 1542 1543 r = amdgpu_ctx_get_entity(ctx, user->ip_type, user->ip_instance, 1544 user->ring, &entity); 1545 if (r) { 1546 amdgpu_ctx_put(ctx); 1547 return ERR_PTR(r); 1548 } 1549 1550 fence = amdgpu_ctx_get_fence(ctx, entity, user->seq_no); 1551 amdgpu_ctx_put(ctx); 1552 1553 return fence; 1554 } 1555 1556 int amdgpu_cs_fence_to_handle_ioctl(struct drm_device *dev, void *data, 1557 struct drm_file *filp) 1558 { 1559 struct amdgpu_device *adev = drm_to_adev(dev); 1560 union drm_amdgpu_fence_to_handle *info = data; 1561 struct dma_fence *fence; 1562 struct drm_syncobj *syncobj; 1563 struct sync_file *sync_file; 1564 int fd, r; 1565 1566 fence = amdgpu_cs_get_fence(adev, filp, &info->in.fence); 1567 if (IS_ERR(fence)) 1568 return PTR_ERR(fence); 1569 1570 if (!fence) 1571 fence = dma_fence_get_stub(); 1572 1573 switch (info->in.what) { 1574 case AMDGPU_FENCE_TO_HANDLE_GET_SYNCOBJ: 1575 r = drm_syncobj_create(&syncobj, 0, fence); 1576 dma_fence_put(fence); 1577 if (r) 1578 return r; 1579 r = drm_syncobj_get_handle(filp, syncobj, &info->out.handle); 1580 drm_syncobj_put(syncobj); 1581 return r; 1582 1583 case AMDGPU_FENCE_TO_HANDLE_GET_SYNCOBJ_FD: 1584 r = drm_syncobj_create(&syncobj, 0, fence); 1585 dma_fence_put(fence); 1586 if (r) 1587 return r; 1588 r = drm_syncobj_get_fd(syncobj, (int *)&info->out.handle); 1589 drm_syncobj_put(syncobj); 1590 return r; 1591 1592 case AMDGPU_FENCE_TO_HANDLE_GET_SYNC_FILE_FD: 1593 fd = get_unused_fd_flags(O_CLOEXEC); 1594 if (fd < 0) { 1595 dma_fence_put(fence); 1596 return fd; 1597 } 1598 1599 sync_file = sync_file_create(fence); 1600 dma_fence_put(fence); 1601 if (!sync_file) { 1602 put_unused_fd(fd); 1603 return -ENOMEM; 1604 } 1605 1606 fd_install(fd, sync_file->file); 1607 info->out.handle = fd; 1608 return 0; 1609 1610 default: 1611 dma_fence_put(fence); 1612 return -EINVAL; 1613 } 1614 } 1615 1616 /** 1617 * amdgpu_cs_wait_all_fences - wait on all fences to signal 1618 * 1619 * @adev: amdgpu device 1620 * @filp: file private 1621 * @wait: wait parameters 1622 * @fences: array of drm_amdgpu_fence 1623 */ 1624 static int amdgpu_cs_wait_all_fences(struct amdgpu_device *adev, 1625 struct drm_file *filp, 1626 union drm_amdgpu_wait_fences *wait, 1627 struct drm_amdgpu_fence *fences) 1628 { 1629 uint32_t fence_count = wait->in.fence_count; 1630 unsigned int i; 1631 long r = 1; 1632 1633 for (i = 0; i < fence_count; i++) { 1634 struct dma_fence *fence; 1635 unsigned long timeout = amdgpu_gem_timeout(wait->in.timeout_ns); 1636 1637 fence = amdgpu_cs_get_fence(adev, filp, &fences[i]); 1638 if (IS_ERR(fence)) 1639 return PTR_ERR(fence); 1640 else if (!fence) 1641 continue; 1642 1643 r = dma_fence_wait_timeout(fence, true, timeout); 1644 if (r > 0 && fence->error) 1645 r = fence->error; 1646 1647 dma_fence_put(fence); 1648 if (r < 0) 1649 return r; 1650 1651 if (r == 0) 1652 break; 1653 } 1654 1655 memset(wait, 0, sizeof(*wait)); 1656 wait->out.status = (r > 0); 1657 1658 return 0; 1659 } 1660 1661 /** 1662 * amdgpu_cs_wait_any_fence - wait on any fence to signal 1663 * 1664 * @adev: amdgpu device 1665 * @filp: file private 1666 * @wait: wait parameters 1667 * @fences: array of drm_amdgpu_fence 1668 */ 1669 static int amdgpu_cs_wait_any_fence(struct amdgpu_device *adev, 1670 struct drm_file *filp, 1671 union drm_amdgpu_wait_fences *wait, 1672 struct drm_amdgpu_fence *fences) 1673 { 1674 unsigned long timeout = amdgpu_gem_timeout(wait->in.timeout_ns); 1675 uint32_t fence_count = wait->in.fence_count; 1676 uint32_t first = ~0; 1677 struct dma_fence **array; 1678 unsigned int i; 1679 long r; 1680 1681 /* Prepare the fence array */ 1682 array = kcalloc(fence_count, sizeof(struct dma_fence *), GFP_KERNEL); 1683 1684 if (array == NULL) 1685 return -ENOMEM; 1686 1687 for (i = 0; i < fence_count; i++) { 1688 struct dma_fence *fence; 1689 1690 fence = amdgpu_cs_get_fence(adev, filp, &fences[i]); 1691 if (IS_ERR(fence)) { 1692 r = PTR_ERR(fence); 1693 goto err_free_fence_array; 1694 } else if (fence) { 1695 array[i] = fence; 1696 } else { /* NULL, the fence has been already signaled */ 1697 r = 1; 1698 first = i; 1699 goto out; 1700 } 1701 } 1702 1703 r = dma_fence_wait_any_timeout(array, fence_count, true, timeout, 1704 &first); 1705 if (r < 0) 1706 goto err_free_fence_array; 1707 1708 out: 1709 memset(wait, 0, sizeof(*wait)); 1710 wait->out.status = (r > 0); 1711 wait->out.first_signaled = first; 1712 1713 if (first < fence_count && array[first]) 1714 r = array[first]->error; 1715 else 1716 r = 0; 1717 1718 err_free_fence_array: 1719 for (i = 0; i < fence_count; i++) 1720 dma_fence_put(array[i]); 1721 kfree(array); 1722 1723 return r; 1724 } 1725 1726 /** 1727 * amdgpu_cs_wait_fences_ioctl - wait for multiple command submissions to finish 1728 * 1729 * @dev: drm device 1730 * @data: data from userspace 1731 * @filp: file private 1732 */ 1733 int amdgpu_cs_wait_fences_ioctl(struct drm_device *dev, void *data, 1734 struct drm_file *filp) 1735 { 1736 struct amdgpu_device *adev = drm_to_adev(dev); 1737 union drm_amdgpu_wait_fences *wait = data; 1738 struct drm_amdgpu_fence *fences; 1739 int r; 1740 1741 /* Get the fences from userspace */ 1742 fences = memdup_array_user(u64_to_user_ptr(wait->in.fences), 1743 wait->in.fence_count, 1744 sizeof(struct drm_amdgpu_fence)); 1745 if (IS_ERR(fences)) 1746 return PTR_ERR(fences); 1747 1748 if (wait->in.wait_all) 1749 r = amdgpu_cs_wait_all_fences(adev, filp, wait, fences); 1750 else 1751 r = amdgpu_cs_wait_any_fence(adev, filp, wait, fences); 1752 1753 kfree(fences); 1754 1755 return r; 1756 } 1757 1758 /** 1759 * amdgpu_cs_find_mapping - find bo_va for VM address 1760 * 1761 * @parser: command submission parser context 1762 * @addr: VM address 1763 * @bo: resulting BO of the mapping found 1764 * @map: Placeholder to return found BO mapping 1765 * 1766 * Search the buffer objects in the command submission context for a certain 1767 * virtual memory address. Returns allocation structure when found, NULL 1768 * otherwise. 1769 */ 1770 int amdgpu_cs_find_mapping(struct amdgpu_cs_parser *parser, 1771 uint64_t addr, struct amdgpu_bo **bo, 1772 struct amdgpu_bo_va_mapping **map) 1773 { 1774 struct amdgpu_fpriv *fpriv = parser->filp->driver_priv; 1775 struct ttm_operation_ctx ctx = { false, false }; 1776 struct amdgpu_vm *vm = &fpriv->vm; 1777 struct amdgpu_bo_va_mapping *mapping; 1778 int i, r; 1779 1780 addr /= AMDGPU_GPU_PAGE_SIZE; 1781 1782 mapping = amdgpu_vm_bo_lookup_mapping(vm, addr); 1783 if (!mapping || !mapping->bo_va || !mapping->bo_va->base.bo) 1784 return -EINVAL; 1785 1786 *bo = mapping->bo_va->base.bo; 1787 *map = mapping; 1788 1789 /* Double check that the BO is reserved by this CS */ 1790 if (dma_resv_locking_ctx((*bo)->tbo.base.resv) != &parser->exec.ticket) 1791 return -EINVAL; 1792 1793 /* Make sure VRAM is allocated contigiously */ 1794 (*bo)->flags |= AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS; 1795 if ((*bo)->tbo.resource->mem_type == TTM_PL_VRAM && 1796 !((*bo)->tbo.resource->placement & TTM_PL_FLAG_CONTIGUOUS)) { 1797 1798 amdgpu_bo_placement_from_domain(*bo, (*bo)->allowed_domains); 1799 for (i = 0; i < (*bo)->placement.num_placement; i++) 1800 (*bo)->placements[i].flags |= TTM_PL_FLAG_CONTIGUOUS; 1801 r = ttm_bo_validate(&(*bo)->tbo, &(*bo)->placement, &ctx); 1802 if (r) 1803 return r; 1804 } 1805 1806 return amdgpu_ttm_alloc_gart(&(*bo)->tbo); 1807 } 1808