1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright 2014-2018 Advanced Micro Devices, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 */ 23 #include <linux/dma-buf.h> 24 #include <linux/list.h> 25 #include <linux/pagemap.h> 26 #include <linux/sched/mm.h> 27 #include <linux/sched/task.h> 28 #include <drm/ttm/ttm_tt.h> 29 30 #include <drm/drm_exec.h> 31 32 #include "amdgpu_object.h" 33 #include "amdgpu_gem.h" 34 #include "amdgpu_vm.h" 35 #include "amdgpu_hmm.h" 36 #include "amdgpu_amdkfd.h" 37 #include "amdgpu_dma_buf.h" 38 #include <uapi/linux/kfd_ioctl.h> 39 #include "amdgpu_xgmi.h" 40 #include "kfd_priv.h" 41 #include "kfd_smi_events.h" 42 43 /* Userptr restore delay, just long enough to allow consecutive VM 44 * changes to accumulate 45 */ 46 #define AMDGPU_USERPTR_RESTORE_DELAY_MS 1 47 #define AMDGPU_RESERVE_MEM_LIMIT (3UL << 29) 48 49 /* 50 * Align VRAM availability to 2MB to avoid fragmentation caused by 4K allocations in the tail 2MB 51 * BO chunk 52 */ 53 #define VRAM_AVAILABLITY_ALIGN (1 << 21) 54 55 /* Impose limit on how much memory KFD can use */ 56 static struct { 57 uint64_t max_system_mem_limit; 58 uint64_t max_ttm_mem_limit; 59 int64_t system_mem_used; 60 int64_t ttm_mem_used; 61 spinlock_t mem_limit_lock; 62 } kfd_mem_limit; 63 64 static const char * const domain_bit_to_string[] = { 65 "CPU", 66 "GTT", 67 "VRAM", 68 "GDS", 69 "GWS", 70 "OA" 71 }; 72 73 #define domain_string(domain) domain_bit_to_string[ffs(domain)-1] 74 75 static void amdgpu_amdkfd_restore_userptr_worker(struct work_struct *work); 76 77 static bool kfd_mem_is_attached(struct amdgpu_vm *avm, 78 struct kgd_mem *mem) 79 { 80 struct kfd_mem_attachment *entry; 81 82 list_for_each_entry(entry, &mem->attachments, list) 83 if (entry->bo_va->base.vm == avm) 84 return true; 85 86 return false; 87 } 88 89 /** 90 * reuse_dmamap() - Check whether adev can share the original 91 * userptr BO 92 * 93 * If both adev and bo_adev are in direct mapping or 94 * in the same iommu group, they can share the original BO. 95 * 96 * @adev: Device to which can or cannot share the original BO 97 * @bo_adev: Device to which allocated BO belongs to 98 * 99 * Return: returns true if adev can share original userptr BO, 100 * false otherwise. 101 */ 102 static bool reuse_dmamap(struct amdgpu_device *adev, struct amdgpu_device *bo_adev) 103 { 104 return (adev->ram_is_direct_mapped && bo_adev->ram_is_direct_mapped) || 105 (adev->dev->iommu_group == bo_adev->dev->iommu_group); 106 } 107 108 /* Set memory usage limits. Current, limits are 109 * System (TTM + userptr) memory - 15/16th System RAM 110 * TTM memory - 3/8th System RAM 111 */ 112 void amdgpu_amdkfd_gpuvm_init_mem_limits(void) 113 { 114 struct sysinfo si; 115 uint64_t mem; 116 117 if (kfd_mem_limit.max_system_mem_limit) 118 return; 119 120 si_meminfo(&si); 121 mem = si.totalram - si.totalhigh; 122 mem *= si.mem_unit; 123 124 spin_lock_init(&kfd_mem_limit.mem_limit_lock); 125 kfd_mem_limit.max_system_mem_limit = mem - (mem >> 6); 126 if (kfd_mem_limit.max_system_mem_limit < 2 * AMDGPU_RESERVE_MEM_LIMIT) 127 kfd_mem_limit.max_system_mem_limit >>= 1; 128 else 129 kfd_mem_limit.max_system_mem_limit -= AMDGPU_RESERVE_MEM_LIMIT; 130 131 kfd_mem_limit.max_ttm_mem_limit = ttm_tt_pages_limit() << PAGE_SHIFT; 132 pr_debug("Kernel memory limit %lluM, TTM limit %lluM\n", 133 (kfd_mem_limit.max_system_mem_limit >> 20), 134 (kfd_mem_limit.max_ttm_mem_limit >> 20)); 135 } 136 137 void amdgpu_amdkfd_reserve_system_mem(uint64_t size) 138 { 139 kfd_mem_limit.system_mem_used += size; 140 } 141 142 /* Estimate page table size needed to represent a given memory size 143 * 144 * With 4KB pages, we need one 8 byte PTE for each 4KB of memory 145 * (factor 512, >> 9). With 2MB pages, we need one 8 byte PTE for 2MB 146 * of memory (factor 256K, >> 18). ROCm user mode tries to optimize 147 * for 2MB pages for TLB efficiency. However, small allocations and 148 * fragmented system memory still need some 4KB pages. We choose a 149 * compromise that should work in most cases without reserving too 150 * much memory for page tables unnecessarily (factor 16K, >> 14). 151 */ 152 153 #define ESTIMATE_PT_SIZE(mem_size) max(((mem_size) >> 14), AMDGPU_VM_RESERVED_VRAM) 154 155 /** 156 * amdgpu_amdkfd_reserve_mem_limit() - Decrease available memory by size 157 * of buffer. 158 * 159 * @adev: Device to which allocated BO belongs to 160 * @size: Size of buffer, in bytes, encapsulated by B0. This should be 161 * equivalent to amdgpu_bo_size(BO) 162 * @alloc_flag: Flag used in allocating a BO as noted above 163 * @xcp_id: xcp_id is used to get xcp from xcp manager, one xcp is 164 * managed as one compute node in driver for app 165 * 166 * Return: 167 * returns -ENOMEM in case of error, ZERO otherwise 168 */ 169 int amdgpu_amdkfd_reserve_mem_limit(struct amdgpu_device *adev, 170 uint64_t size, u32 alloc_flag, int8_t xcp_id) 171 { 172 uint64_t reserved_for_pt = 173 ESTIMATE_PT_SIZE(amdgpu_amdkfd_total_mem_size); 174 size_t system_mem_needed, ttm_mem_needed, vram_needed; 175 int ret = 0; 176 uint64_t vram_size = 0; 177 178 system_mem_needed = 0; 179 ttm_mem_needed = 0; 180 vram_needed = 0; 181 if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_GTT) { 182 system_mem_needed = size; 183 ttm_mem_needed = size; 184 } else if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) { 185 /* 186 * Conservatively round up the allocation requirement to 2 MB 187 * to avoid fragmentation caused by 4K allocations in the tail 188 * 2M BO chunk. 189 */ 190 vram_needed = size; 191 /* 192 * For GFX 9.4.3, get the VRAM size from XCP structs 193 */ 194 if (WARN_ONCE(xcp_id < 0, "invalid XCP ID %d", xcp_id)) 195 return -EINVAL; 196 197 vram_size = KFD_XCP_MEMORY_SIZE(adev, xcp_id); 198 if (adev->gmc.is_app_apu) { 199 system_mem_needed = size; 200 ttm_mem_needed = size; 201 } 202 } else if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) { 203 system_mem_needed = size; 204 } else if (!(alloc_flag & 205 (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL | 206 KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP))) { 207 pr_err("%s: Invalid BO type %#x\n", __func__, alloc_flag); 208 return -ENOMEM; 209 } 210 211 spin_lock(&kfd_mem_limit.mem_limit_lock); 212 213 if (kfd_mem_limit.system_mem_used + system_mem_needed > 214 kfd_mem_limit.max_system_mem_limit) 215 pr_debug("Set no_system_mem_limit=1 if using shared memory\n"); 216 217 if ((kfd_mem_limit.system_mem_used + system_mem_needed > 218 kfd_mem_limit.max_system_mem_limit && !no_system_mem_limit) || 219 (kfd_mem_limit.ttm_mem_used + ttm_mem_needed > 220 kfd_mem_limit.max_ttm_mem_limit) || 221 (adev && xcp_id >= 0 && adev->kfd.vram_used[xcp_id] + vram_needed > 222 vram_size - reserved_for_pt)) { 223 ret = -ENOMEM; 224 goto release; 225 } 226 227 /* Update memory accounting by decreasing available system 228 * memory, TTM memory and GPU memory as computed above 229 */ 230 WARN_ONCE(vram_needed && !adev, 231 "adev reference can't be null when vram is used"); 232 if (adev && xcp_id >= 0) { 233 adev->kfd.vram_used[xcp_id] += vram_needed; 234 adev->kfd.vram_used_aligned[xcp_id] += adev->gmc.is_app_apu ? 235 vram_needed : 236 ALIGN(vram_needed, VRAM_AVAILABLITY_ALIGN); 237 } 238 kfd_mem_limit.system_mem_used += system_mem_needed; 239 kfd_mem_limit.ttm_mem_used += ttm_mem_needed; 240 241 release: 242 spin_unlock(&kfd_mem_limit.mem_limit_lock); 243 return ret; 244 } 245 246 void amdgpu_amdkfd_unreserve_mem_limit(struct amdgpu_device *adev, 247 uint64_t size, u32 alloc_flag, int8_t xcp_id) 248 { 249 spin_lock(&kfd_mem_limit.mem_limit_lock); 250 251 if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_GTT) { 252 kfd_mem_limit.system_mem_used -= size; 253 kfd_mem_limit.ttm_mem_used -= size; 254 } else if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) { 255 WARN_ONCE(!adev, 256 "adev reference can't be null when alloc mem flags vram is set"); 257 if (WARN_ONCE(xcp_id < 0, "invalid XCP ID %d", xcp_id)) 258 goto release; 259 260 if (adev) { 261 adev->kfd.vram_used[xcp_id] -= size; 262 if (adev->gmc.is_app_apu) { 263 adev->kfd.vram_used_aligned[xcp_id] -= size; 264 kfd_mem_limit.system_mem_used -= size; 265 kfd_mem_limit.ttm_mem_used -= size; 266 } else { 267 adev->kfd.vram_used_aligned[xcp_id] -= 268 ALIGN(size, VRAM_AVAILABLITY_ALIGN); 269 } 270 } 271 } else if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) { 272 kfd_mem_limit.system_mem_used -= size; 273 } else if (!(alloc_flag & 274 (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL | 275 KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP))) { 276 pr_err("%s: Invalid BO type %#x\n", __func__, alloc_flag); 277 goto release; 278 } 279 WARN_ONCE(adev && xcp_id >= 0 && adev->kfd.vram_used[xcp_id] < 0, 280 "KFD VRAM memory accounting unbalanced for xcp: %d", xcp_id); 281 WARN_ONCE(kfd_mem_limit.ttm_mem_used < 0, 282 "KFD TTM memory accounting unbalanced"); 283 WARN_ONCE(kfd_mem_limit.system_mem_used < 0, 284 "KFD system memory accounting unbalanced"); 285 286 release: 287 spin_unlock(&kfd_mem_limit.mem_limit_lock); 288 } 289 290 void amdgpu_amdkfd_release_notify(struct amdgpu_bo *bo) 291 { 292 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 293 u32 alloc_flags = bo->kfd_bo->alloc_flags; 294 u64 size = amdgpu_bo_size(bo); 295 296 amdgpu_amdkfd_unreserve_mem_limit(adev, size, alloc_flags, 297 bo->xcp_id); 298 299 kfree(bo->kfd_bo); 300 } 301 302 /** 303 * create_dmamap_sg_bo() - Creates a amdgpu_bo object to reflect information 304 * about USERPTR or DOOREBELL or MMIO BO. 305 * 306 * @adev: Device for which dmamap BO is being created 307 * @mem: BO of peer device that is being DMA mapped. Provides parameters 308 * in building the dmamap BO 309 * @bo_out: Output parameter updated with handle of dmamap BO 310 */ 311 static int 312 create_dmamap_sg_bo(struct amdgpu_device *adev, 313 struct kgd_mem *mem, struct amdgpu_bo **bo_out) 314 { 315 struct drm_gem_object *gem_obj; 316 int ret; 317 uint64_t flags = 0; 318 319 ret = amdgpu_bo_reserve(mem->bo, false); 320 if (ret) 321 return ret; 322 323 if (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) 324 flags |= mem->bo->flags & (AMDGPU_GEM_CREATE_COHERENT | 325 AMDGPU_GEM_CREATE_UNCACHED); 326 327 ret = amdgpu_gem_object_create(adev, mem->bo->tbo.base.size, 1, 328 AMDGPU_GEM_DOMAIN_CPU, AMDGPU_GEM_CREATE_PREEMPTIBLE | flags, 329 ttm_bo_type_sg, mem->bo->tbo.base.resv, &gem_obj, 0); 330 331 amdgpu_bo_unreserve(mem->bo); 332 333 if (ret) { 334 pr_err("Error in creating DMA mappable SG BO on domain: %d\n", ret); 335 return -EINVAL; 336 } 337 338 *bo_out = gem_to_amdgpu_bo(gem_obj); 339 (*bo_out)->parent = amdgpu_bo_ref(mem->bo); 340 return ret; 341 } 342 343 /* amdgpu_amdkfd_remove_eviction_fence - Removes eviction fence from BO's 344 * reservation object. 345 * 346 * @bo: [IN] Remove eviction fence(s) from this BO 347 * @ef: [IN] This eviction fence is removed if it 348 * is present in the shared list. 349 * 350 * NOTE: Must be called with BO reserved i.e. bo->tbo.resv->lock held. 351 */ 352 static int amdgpu_amdkfd_remove_eviction_fence(struct amdgpu_bo *bo, 353 struct amdgpu_amdkfd_fence *ef) 354 { 355 struct dma_fence *replacement; 356 357 if (!ef) 358 return -EINVAL; 359 360 /* TODO: Instead of block before we should use the fence of the page 361 * table update and TLB flush here directly. 362 */ 363 replacement = dma_fence_get_stub(); 364 dma_resv_replace_fences(bo->tbo.base.resv, ef->base.context, 365 replacement, DMA_RESV_USAGE_BOOKKEEP); 366 dma_fence_put(replacement); 367 return 0; 368 } 369 370 int amdgpu_amdkfd_remove_fence_on_pt_pd_bos(struct amdgpu_bo *bo) 371 { 372 struct amdgpu_bo *root = bo; 373 struct amdgpu_vm_bo_base *vm_bo; 374 struct amdgpu_vm *vm; 375 struct amdkfd_process_info *info; 376 struct amdgpu_amdkfd_fence *ef; 377 int ret; 378 379 /* we can always get vm_bo from root PD bo.*/ 380 while (root->parent) 381 root = root->parent; 382 383 vm_bo = root->vm_bo; 384 if (!vm_bo) 385 return 0; 386 387 vm = vm_bo->vm; 388 if (!vm) 389 return 0; 390 391 info = vm->process_info; 392 if (!info || !info->eviction_fence) 393 return 0; 394 395 ef = container_of(dma_fence_get(&info->eviction_fence->base), 396 struct amdgpu_amdkfd_fence, base); 397 398 BUG_ON(!dma_resv_trylock(bo->tbo.base.resv)); 399 ret = amdgpu_amdkfd_remove_eviction_fence(bo, ef); 400 dma_resv_unlock(bo->tbo.base.resv); 401 402 dma_fence_put(&ef->base); 403 return ret; 404 } 405 406 static int amdgpu_amdkfd_bo_validate(struct amdgpu_bo *bo, uint32_t domain, 407 bool wait) 408 { 409 struct ttm_operation_ctx ctx = { false, false }; 410 int ret; 411 412 if (WARN(amdgpu_ttm_tt_get_usermm(bo->tbo.ttm), 413 "Called with userptr BO")) 414 return -EINVAL; 415 416 amdgpu_bo_placement_from_domain(bo, domain); 417 418 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 419 if (ret) 420 goto validate_fail; 421 if (wait) 422 amdgpu_bo_sync_wait(bo, AMDGPU_FENCE_OWNER_KFD, false); 423 424 validate_fail: 425 return ret; 426 } 427 428 static int amdgpu_amdkfd_validate_vm_bo(void *_unused, struct amdgpu_bo *bo) 429 { 430 return amdgpu_amdkfd_bo_validate(bo, bo->allowed_domains, false); 431 } 432 433 /* vm_validate_pt_pd_bos - Validate page table and directory BOs 434 * 435 * Page directories are not updated here because huge page handling 436 * during page table updates can invalidate page directory entries 437 * again. Page directories are only updated after updating page 438 * tables. 439 */ 440 static int vm_validate_pt_pd_bos(struct amdgpu_vm *vm) 441 { 442 struct amdgpu_bo *pd = vm->root.bo; 443 struct amdgpu_device *adev = amdgpu_ttm_adev(pd->tbo.bdev); 444 int ret; 445 446 ret = amdgpu_vm_validate_pt_bos(adev, vm, amdgpu_amdkfd_validate_vm_bo, NULL); 447 if (ret) { 448 pr_err("failed to validate PT BOs\n"); 449 return ret; 450 } 451 452 vm->pd_phys_addr = amdgpu_gmc_pd_addr(vm->root.bo); 453 454 return 0; 455 } 456 457 static int vm_update_pds(struct amdgpu_vm *vm, struct amdgpu_sync *sync) 458 { 459 struct amdgpu_bo *pd = vm->root.bo; 460 struct amdgpu_device *adev = amdgpu_ttm_adev(pd->tbo.bdev); 461 int ret; 462 463 ret = amdgpu_vm_update_pdes(adev, vm, false); 464 if (ret) 465 return ret; 466 467 return amdgpu_sync_fence(sync, vm->last_update); 468 } 469 470 static uint64_t get_pte_flags(struct amdgpu_device *adev, struct kgd_mem *mem) 471 { 472 uint32_t mapping_flags = AMDGPU_VM_PAGE_READABLE | 473 AMDGPU_VM_MTYPE_DEFAULT; 474 475 if (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE) 476 mapping_flags |= AMDGPU_VM_PAGE_WRITEABLE; 477 if (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE) 478 mapping_flags |= AMDGPU_VM_PAGE_EXECUTABLE; 479 480 return amdgpu_gem_va_map_flags(adev, mapping_flags); 481 } 482 483 /** 484 * create_sg_table() - Create an sg_table for a contiguous DMA addr range 485 * @addr: The starting address to point to 486 * @size: Size of memory area in bytes being pointed to 487 * 488 * Allocates an instance of sg_table and initializes it to point to memory 489 * area specified by input parameters. The address used to build is assumed 490 * to be DMA mapped, if needed. 491 * 492 * DOORBELL or MMIO BOs use only one scatterlist node in their sg_table 493 * because they are physically contiguous. 494 * 495 * Return: Initialized instance of SG Table or NULL 496 */ 497 static struct sg_table *create_sg_table(uint64_t addr, uint32_t size) 498 { 499 struct sg_table *sg = kmalloc(sizeof(*sg), GFP_KERNEL); 500 501 if (!sg) 502 return NULL; 503 if (sg_alloc_table(sg, 1, GFP_KERNEL)) { 504 kfree(sg); 505 return NULL; 506 } 507 sg_dma_address(sg->sgl) = addr; 508 sg->sgl->length = size; 509 #ifdef CONFIG_NEED_SG_DMA_LENGTH 510 sg->sgl->dma_length = size; 511 #endif 512 return sg; 513 } 514 515 static int 516 kfd_mem_dmamap_userptr(struct kgd_mem *mem, 517 struct kfd_mem_attachment *attachment) 518 { 519 enum dma_data_direction direction = 520 mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? 521 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 522 struct ttm_operation_ctx ctx = {.interruptible = true}; 523 struct amdgpu_bo *bo = attachment->bo_va->base.bo; 524 struct amdgpu_device *adev = attachment->adev; 525 struct ttm_tt *src_ttm = mem->bo->tbo.ttm; 526 struct ttm_tt *ttm = bo->tbo.ttm; 527 int ret; 528 529 if (WARN_ON(ttm->num_pages != src_ttm->num_pages)) 530 return -EINVAL; 531 532 ttm->sg = kmalloc(sizeof(*ttm->sg), GFP_KERNEL); 533 if (unlikely(!ttm->sg)) 534 return -ENOMEM; 535 536 /* Same sequence as in amdgpu_ttm_tt_pin_userptr */ 537 ret = sg_alloc_table_from_pages(ttm->sg, src_ttm->pages, 538 ttm->num_pages, 0, 539 (u64)ttm->num_pages << PAGE_SHIFT, 540 GFP_KERNEL); 541 if (unlikely(ret)) 542 goto free_sg; 543 544 ret = dma_map_sgtable(adev->dev, ttm->sg, direction, 0); 545 if (unlikely(ret)) 546 goto release_sg; 547 548 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_GTT); 549 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 550 if (ret) 551 goto unmap_sg; 552 553 return 0; 554 555 unmap_sg: 556 dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0); 557 release_sg: 558 pr_err("DMA map userptr failed: %d\n", ret); 559 sg_free_table(ttm->sg); 560 free_sg: 561 kfree(ttm->sg); 562 ttm->sg = NULL; 563 return ret; 564 } 565 566 static int 567 kfd_mem_dmamap_dmabuf(struct kfd_mem_attachment *attachment) 568 { 569 struct ttm_operation_ctx ctx = {.interruptible = true}; 570 struct amdgpu_bo *bo = attachment->bo_va->base.bo; 571 int ret; 572 573 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_CPU); 574 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 575 if (ret) 576 return ret; 577 578 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_GTT); 579 return ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 580 } 581 582 /** 583 * kfd_mem_dmamap_sg_bo() - Create DMA mapped sg_table to access DOORBELL or MMIO BO 584 * @mem: SG BO of the DOORBELL or MMIO resource on the owning device 585 * @attachment: Virtual address attachment of the BO on accessing device 586 * 587 * An access request from the device that owns DOORBELL does not require DMA mapping. 588 * This is because the request doesn't go through PCIe root complex i.e. it instead 589 * loops back. The need to DMA map arises only when accessing peer device's DOORBELL 590 * 591 * In contrast, all access requests for MMIO need to be DMA mapped without regard to 592 * device ownership. This is because access requests for MMIO go through PCIe root 593 * complex. 594 * 595 * This is accomplished in two steps: 596 * - Obtain DMA mapped address of DOORBELL or MMIO memory that could be used 597 * in updating requesting device's page table 598 * - Signal TTM to mark memory pointed to by requesting device's BO as GPU 599 * accessible. This allows an update of requesting device's page table 600 * with entries associated with DOOREBELL or MMIO memory 601 * 602 * This method is invoked in the following contexts: 603 * - Mapping of DOORBELL or MMIO BO of same or peer device 604 * - Validating an evicted DOOREBELL or MMIO BO on device seeking access 605 * 606 * Return: ZERO if successful, NON-ZERO otherwise 607 */ 608 static int 609 kfd_mem_dmamap_sg_bo(struct kgd_mem *mem, 610 struct kfd_mem_attachment *attachment) 611 { 612 struct ttm_operation_ctx ctx = {.interruptible = true}; 613 struct amdgpu_bo *bo = attachment->bo_va->base.bo; 614 struct amdgpu_device *adev = attachment->adev; 615 struct ttm_tt *ttm = bo->tbo.ttm; 616 enum dma_data_direction dir; 617 dma_addr_t dma_addr; 618 bool mmio; 619 int ret; 620 621 /* Expect SG Table of dmapmap BO to be NULL */ 622 mmio = (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP); 623 if (unlikely(ttm->sg)) { 624 pr_err("SG Table of %d BO for peer device is UNEXPECTEDLY NON-NULL", mmio); 625 return -EINVAL; 626 } 627 628 dir = mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? 629 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 630 dma_addr = mem->bo->tbo.sg->sgl->dma_address; 631 pr_debug("%d BO size: %d\n", mmio, mem->bo->tbo.sg->sgl->length); 632 pr_debug("%d BO address before DMA mapping: %llx\n", mmio, dma_addr); 633 dma_addr = dma_map_resource(adev->dev, dma_addr, 634 mem->bo->tbo.sg->sgl->length, dir, DMA_ATTR_SKIP_CPU_SYNC); 635 ret = dma_mapping_error(adev->dev, dma_addr); 636 if (unlikely(ret)) 637 return ret; 638 pr_debug("%d BO address after DMA mapping: %llx\n", mmio, dma_addr); 639 640 ttm->sg = create_sg_table(dma_addr, mem->bo->tbo.sg->sgl->length); 641 if (unlikely(!ttm->sg)) { 642 ret = -ENOMEM; 643 goto unmap_sg; 644 } 645 646 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_GTT); 647 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 648 if (unlikely(ret)) 649 goto free_sg; 650 651 return ret; 652 653 free_sg: 654 sg_free_table(ttm->sg); 655 kfree(ttm->sg); 656 ttm->sg = NULL; 657 unmap_sg: 658 dma_unmap_resource(adev->dev, dma_addr, mem->bo->tbo.sg->sgl->length, 659 dir, DMA_ATTR_SKIP_CPU_SYNC); 660 return ret; 661 } 662 663 static int 664 kfd_mem_dmamap_attachment(struct kgd_mem *mem, 665 struct kfd_mem_attachment *attachment) 666 { 667 switch (attachment->type) { 668 case KFD_MEM_ATT_SHARED: 669 return 0; 670 case KFD_MEM_ATT_USERPTR: 671 return kfd_mem_dmamap_userptr(mem, attachment); 672 case KFD_MEM_ATT_DMABUF: 673 return kfd_mem_dmamap_dmabuf(attachment); 674 case KFD_MEM_ATT_SG: 675 return kfd_mem_dmamap_sg_bo(mem, attachment); 676 default: 677 WARN_ON_ONCE(1); 678 } 679 return -EINVAL; 680 } 681 682 static void 683 kfd_mem_dmaunmap_userptr(struct kgd_mem *mem, 684 struct kfd_mem_attachment *attachment) 685 { 686 enum dma_data_direction direction = 687 mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? 688 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 689 struct ttm_operation_ctx ctx = {.interruptible = false}; 690 struct amdgpu_bo *bo = attachment->bo_va->base.bo; 691 struct amdgpu_device *adev = attachment->adev; 692 struct ttm_tt *ttm = bo->tbo.ttm; 693 694 if (unlikely(!ttm->sg)) 695 return; 696 697 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_CPU); 698 ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 699 700 dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0); 701 sg_free_table(ttm->sg); 702 kfree(ttm->sg); 703 ttm->sg = NULL; 704 } 705 706 static void 707 kfd_mem_dmaunmap_dmabuf(struct kfd_mem_attachment *attachment) 708 { 709 /* This is a no-op. We don't want to trigger eviction fences when 710 * unmapping DMABufs. Therefore the invalidation (moving to system 711 * domain) is done in kfd_mem_dmamap_dmabuf. 712 */ 713 } 714 715 /** 716 * kfd_mem_dmaunmap_sg_bo() - Free DMA mapped sg_table of DOORBELL or MMIO BO 717 * @mem: SG BO of the DOORBELL or MMIO resource on the owning device 718 * @attachment: Virtual address attachment of the BO on accessing device 719 * 720 * The method performs following steps: 721 * - Signal TTM to mark memory pointed to by BO as GPU inaccessible 722 * - Free SG Table that is used to encapsulate DMA mapped memory of 723 * peer device's DOORBELL or MMIO memory 724 * 725 * This method is invoked in the following contexts: 726 * UNMapping of DOORBELL or MMIO BO on a device having access to its memory 727 * Eviction of DOOREBELL or MMIO BO on device having access to its memory 728 * 729 * Return: void 730 */ 731 static void 732 kfd_mem_dmaunmap_sg_bo(struct kgd_mem *mem, 733 struct kfd_mem_attachment *attachment) 734 { 735 struct ttm_operation_ctx ctx = {.interruptible = true}; 736 struct amdgpu_bo *bo = attachment->bo_va->base.bo; 737 struct amdgpu_device *adev = attachment->adev; 738 struct ttm_tt *ttm = bo->tbo.ttm; 739 enum dma_data_direction dir; 740 741 if (unlikely(!ttm->sg)) { 742 pr_debug("SG Table of BO is NULL"); 743 return; 744 } 745 746 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_CPU); 747 ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 748 749 dir = mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? 750 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 751 dma_unmap_resource(adev->dev, ttm->sg->sgl->dma_address, 752 ttm->sg->sgl->length, dir, DMA_ATTR_SKIP_CPU_SYNC); 753 sg_free_table(ttm->sg); 754 kfree(ttm->sg); 755 ttm->sg = NULL; 756 bo->tbo.sg = NULL; 757 } 758 759 static void 760 kfd_mem_dmaunmap_attachment(struct kgd_mem *mem, 761 struct kfd_mem_attachment *attachment) 762 { 763 switch (attachment->type) { 764 case KFD_MEM_ATT_SHARED: 765 break; 766 case KFD_MEM_ATT_USERPTR: 767 kfd_mem_dmaunmap_userptr(mem, attachment); 768 break; 769 case KFD_MEM_ATT_DMABUF: 770 kfd_mem_dmaunmap_dmabuf(attachment); 771 break; 772 case KFD_MEM_ATT_SG: 773 kfd_mem_dmaunmap_sg_bo(mem, attachment); 774 break; 775 default: 776 WARN_ON_ONCE(1); 777 } 778 } 779 780 static int kfd_mem_export_dmabuf(struct kgd_mem *mem) 781 { 782 if (!mem->dmabuf) { 783 struct dma_buf *ret = amdgpu_gem_prime_export( 784 &mem->bo->tbo.base, 785 mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? 786 DRM_RDWR : 0); 787 if (IS_ERR(ret)) 788 return PTR_ERR(ret); 789 mem->dmabuf = ret; 790 } 791 792 return 0; 793 } 794 795 static int 796 kfd_mem_attach_dmabuf(struct amdgpu_device *adev, struct kgd_mem *mem, 797 struct amdgpu_bo **bo) 798 { 799 struct drm_gem_object *gobj; 800 int ret; 801 802 ret = kfd_mem_export_dmabuf(mem); 803 if (ret) 804 return ret; 805 806 gobj = amdgpu_gem_prime_import(adev_to_drm(adev), mem->dmabuf); 807 if (IS_ERR(gobj)) 808 return PTR_ERR(gobj); 809 810 *bo = gem_to_amdgpu_bo(gobj); 811 (*bo)->flags |= AMDGPU_GEM_CREATE_PREEMPTIBLE; 812 813 return 0; 814 } 815 816 /* kfd_mem_attach - Add a BO to a VM 817 * 818 * Everything that needs to bo done only once when a BO is first added 819 * to a VM. It can later be mapped and unmapped many times without 820 * repeating these steps. 821 * 822 * 0. Create BO for DMA mapping, if needed 823 * 1. Allocate and initialize BO VA entry data structure 824 * 2. Add BO to the VM 825 * 3. Determine ASIC-specific PTE flags 826 * 4. Alloc page tables and directories if needed 827 * 4a. Validate new page tables and directories 828 */ 829 static int kfd_mem_attach(struct amdgpu_device *adev, struct kgd_mem *mem, 830 struct amdgpu_vm *vm, bool is_aql) 831 { 832 struct amdgpu_device *bo_adev = amdgpu_ttm_adev(mem->bo->tbo.bdev); 833 unsigned long bo_size = mem->bo->tbo.base.size; 834 uint64_t va = mem->va; 835 struct kfd_mem_attachment *attachment[2] = {NULL, NULL}; 836 struct amdgpu_bo *bo[2] = {NULL, NULL}; 837 struct amdgpu_bo_va *bo_va; 838 bool same_hive = false; 839 int i, ret; 840 841 if (!va) { 842 pr_err("Invalid VA when adding BO to VM\n"); 843 return -EINVAL; 844 } 845 846 /* Determine access to VRAM, MMIO and DOORBELL BOs of peer devices 847 * 848 * The access path of MMIO and DOORBELL BOs of is always over PCIe. 849 * In contrast the access path of VRAM BOs depens upon the type of 850 * link that connects the peer device. Access over PCIe is allowed 851 * if peer device has large BAR. In contrast, access over xGMI is 852 * allowed for both small and large BAR configurations of peer device 853 */ 854 if ((adev != bo_adev && !adev->gmc.is_app_apu) && 855 ((mem->domain == AMDGPU_GEM_DOMAIN_VRAM) || 856 (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) || 857 (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP))) { 858 if (mem->domain == AMDGPU_GEM_DOMAIN_VRAM) 859 same_hive = amdgpu_xgmi_same_hive(adev, bo_adev); 860 if (!same_hive && !amdgpu_device_is_peer_accessible(bo_adev, adev)) 861 return -EINVAL; 862 } 863 864 for (i = 0; i <= is_aql; i++) { 865 attachment[i] = kzalloc(sizeof(*attachment[i]), GFP_KERNEL); 866 if (unlikely(!attachment[i])) { 867 ret = -ENOMEM; 868 goto unwind; 869 } 870 871 pr_debug("\t add VA 0x%llx - 0x%llx to vm %p\n", va, 872 va + bo_size, vm); 873 874 if ((adev == bo_adev && !(mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) || 875 (amdgpu_ttm_tt_get_usermm(mem->bo->tbo.ttm) && reuse_dmamap(adev, bo_adev)) || 876 (mem->domain == AMDGPU_GEM_DOMAIN_GTT && reuse_dmamap(adev, bo_adev)) || 877 same_hive) { 878 /* Mappings on the local GPU, or VRAM mappings in the 879 * local hive, or userptr, or GTT mapping can reuse dma map 880 * address space share the original BO 881 */ 882 attachment[i]->type = KFD_MEM_ATT_SHARED; 883 bo[i] = mem->bo; 884 drm_gem_object_get(&bo[i]->tbo.base); 885 } else if (i > 0) { 886 /* Multiple mappings on the same GPU share the BO */ 887 attachment[i]->type = KFD_MEM_ATT_SHARED; 888 bo[i] = bo[0]; 889 drm_gem_object_get(&bo[i]->tbo.base); 890 } else if (amdgpu_ttm_tt_get_usermm(mem->bo->tbo.ttm)) { 891 /* Create an SG BO to DMA-map userptrs on other GPUs */ 892 attachment[i]->type = KFD_MEM_ATT_USERPTR; 893 ret = create_dmamap_sg_bo(adev, mem, &bo[i]); 894 if (ret) 895 goto unwind; 896 /* Handle DOORBELL BOs of peer devices and MMIO BOs of local and peer devices */ 897 } else if (mem->bo->tbo.type == ttm_bo_type_sg) { 898 WARN_ONCE(!(mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL || 899 mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP), 900 "Handing invalid SG BO in ATTACH request"); 901 attachment[i]->type = KFD_MEM_ATT_SG; 902 ret = create_dmamap_sg_bo(adev, mem, &bo[i]); 903 if (ret) 904 goto unwind; 905 /* Enable acces to GTT and VRAM BOs of peer devices */ 906 } else if (mem->domain == AMDGPU_GEM_DOMAIN_GTT || 907 mem->domain == AMDGPU_GEM_DOMAIN_VRAM) { 908 attachment[i]->type = KFD_MEM_ATT_DMABUF; 909 ret = kfd_mem_attach_dmabuf(adev, mem, &bo[i]); 910 if (ret) 911 goto unwind; 912 pr_debug("Employ DMABUF mechanism to enable peer GPU access\n"); 913 } else { 914 WARN_ONCE(true, "Handling invalid ATTACH request"); 915 ret = -EINVAL; 916 goto unwind; 917 } 918 919 /* Add BO to VM internal data structures */ 920 ret = amdgpu_bo_reserve(bo[i], false); 921 if (ret) { 922 pr_debug("Unable to reserve BO during memory attach"); 923 goto unwind; 924 } 925 bo_va = amdgpu_vm_bo_find(vm, bo[i]); 926 if (!bo_va) 927 bo_va = amdgpu_vm_bo_add(adev, vm, bo[i]); 928 else 929 ++bo_va->ref_count; 930 attachment[i]->bo_va = bo_va; 931 amdgpu_bo_unreserve(bo[i]); 932 if (unlikely(!attachment[i]->bo_va)) { 933 ret = -ENOMEM; 934 pr_err("Failed to add BO object to VM. ret == %d\n", 935 ret); 936 goto unwind; 937 } 938 attachment[i]->va = va; 939 attachment[i]->pte_flags = get_pte_flags(adev, mem); 940 attachment[i]->adev = adev; 941 list_add(&attachment[i]->list, &mem->attachments); 942 943 va += bo_size; 944 } 945 946 return 0; 947 948 unwind: 949 for (; i >= 0; i--) { 950 if (!attachment[i]) 951 continue; 952 if (attachment[i]->bo_va) { 953 amdgpu_bo_reserve(bo[i], true); 954 if (--attachment[i]->bo_va->ref_count == 0) 955 amdgpu_vm_bo_del(adev, attachment[i]->bo_va); 956 amdgpu_bo_unreserve(bo[i]); 957 list_del(&attachment[i]->list); 958 } 959 if (bo[i]) 960 drm_gem_object_put(&bo[i]->tbo.base); 961 kfree(attachment[i]); 962 } 963 return ret; 964 } 965 966 static void kfd_mem_detach(struct kfd_mem_attachment *attachment) 967 { 968 struct amdgpu_bo *bo = attachment->bo_va->base.bo; 969 970 pr_debug("\t remove VA 0x%llx in entry %p\n", 971 attachment->va, attachment); 972 if (--attachment->bo_va->ref_count == 0) 973 amdgpu_vm_bo_del(attachment->adev, attachment->bo_va); 974 drm_gem_object_put(&bo->tbo.base); 975 list_del(&attachment->list); 976 kfree(attachment); 977 } 978 979 static void add_kgd_mem_to_kfd_bo_list(struct kgd_mem *mem, 980 struct amdkfd_process_info *process_info, 981 bool userptr) 982 { 983 mutex_lock(&process_info->lock); 984 if (userptr) 985 list_add_tail(&mem->validate_list, 986 &process_info->userptr_valid_list); 987 else 988 list_add_tail(&mem->validate_list, &process_info->kfd_bo_list); 989 mutex_unlock(&process_info->lock); 990 } 991 992 static void remove_kgd_mem_from_kfd_bo_list(struct kgd_mem *mem, 993 struct amdkfd_process_info *process_info) 994 { 995 mutex_lock(&process_info->lock); 996 list_del(&mem->validate_list); 997 mutex_unlock(&process_info->lock); 998 } 999 1000 /* Initializes user pages. It registers the MMU notifier and validates 1001 * the userptr BO in the GTT domain. 1002 * 1003 * The BO must already be on the userptr_valid_list. Otherwise an 1004 * eviction and restore may happen that leaves the new BO unmapped 1005 * with the user mode queues running. 1006 * 1007 * Takes the process_info->lock to protect against concurrent restore 1008 * workers. 1009 * 1010 * Returns 0 for success, negative errno for errors. 1011 */ 1012 static int init_user_pages(struct kgd_mem *mem, uint64_t user_addr, 1013 bool criu_resume) 1014 { 1015 struct amdkfd_process_info *process_info = mem->process_info; 1016 struct amdgpu_bo *bo = mem->bo; 1017 struct ttm_operation_ctx ctx = { true, false }; 1018 struct hmm_range *range; 1019 int ret = 0; 1020 1021 mutex_lock(&process_info->lock); 1022 1023 ret = amdgpu_ttm_tt_set_userptr(&bo->tbo, user_addr, 0); 1024 if (ret) { 1025 pr_err("%s: Failed to set userptr: %d\n", __func__, ret); 1026 goto out; 1027 } 1028 1029 ret = amdgpu_hmm_register(bo, user_addr); 1030 if (ret) { 1031 pr_err("%s: Failed to register MMU notifier: %d\n", 1032 __func__, ret); 1033 goto out; 1034 } 1035 1036 if (criu_resume) { 1037 /* 1038 * During a CRIU restore operation, the userptr buffer objects 1039 * will be validated in the restore_userptr_work worker at a 1040 * later stage when it is scheduled by another ioctl called by 1041 * CRIU master process for the target pid for restore. 1042 */ 1043 mutex_lock(&process_info->notifier_lock); 1044 mem->invalid++; 1045 mutex_unlock(&process_info->notifier_lock); 1046 mutex_unlock(&process_info->lock); 1047 return 0; 1048 } 1049 1050 ret = amdgpu_ttm_tt_get_user_pages(bo, bo->tbo.ttm->pages, &range); 1051 if (ret) { 1052 pr_err("%s: Failed to get user pages: %d\n", __func__, ret); 1053 goto unregister_out; 1054 } 1055 1056 ret = amdgpu_bo_reserve(bo, true); 1057 if (ret) { 1058 pr_err("%s: Failed to reserve BO\n", __func__); 1059 goto release_out; 1060 } 1061 amdgpu_bo_placement_from_domain(bo, mem->domain); 1062 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 1063 if (ret) 1064 pr_err("%s: failed to validate BO\n", __func__); 1065 amdgpu_bo_unreserve(bo); 1066 1067 release_out: 1068 amdgpu_ttm_tt_get_user_pages_done(bo->tbo.ttm, range); 1069 unregister_out: 1070 if (ret) 1071 amdgpu_hmm_unregister(bo); 1072 out: 1073 mutex_unlock(&process_info->lock); 1074 return ret; 1075 } 1076 1077 /* Reserving a BO and its page table BOs must happen atomically to 1078 * avoid deadlocks. Some operations update multiple VMs at once. Track 1079 * all the reservation info in a context structure. Optionally a sync 1080 * object can track VM updates. 1081 */ 1082 struct bo_vm_reservation_context { 1083 /* DRM execution context for the reservation */ 1084 struct drm_exec exec; 1085 /* Number of VMs reserved */ 1086 unsigned int n_vms; 1087 /* Pointer to sync object */ 1088 struct amdgpu_sync *sync; 1089 }; 1090 1091 enum bo_vm_match { 1092 BO_VM_NOT_MAPPED = 0, /* Match VMs where a BO is not mapped */ 1093 BO_VM_MAPPED, /* Match VMs where a BO is mapped */ 1094 BO_VM_ALL, /* Match all VMs a BO was added to */ 1095 }; 1096 1097 /** 1098 * reserve_bo_and_vm - reserve a BO and a VM unconditionally. 1099 * @mem: KFD BO structure. 1100 * @vm: the VM to reserve. 1101 * @ctx: the struct that will be used in unreserve_bo_and_vms(). 1102 */ 1103 static int reserve_bo_and_vm(struct kgd_mem *mem, 1104 struct amdgpu_vm *vm, 1105 struct bo_vm_reservation_context *ctx) 1106 { 1107 struct amdgpu_bo *bo = mem->bo; 1108 int ret; 1109 1110 WARN_ON(!vm); 1111 1112 ctx->n_vms = 1; 1113 ctx->sync = &mem->sync; 1114 drm_exec_init(&ctx->exec, DRM_EXEC_INTERRUPTIBLE_WAIT); 1115 drm_exec_until_all_locked(&ctx->exec) { 1116 ret = amdgpu_vm_lock_pd(vm, &ctx->exec, 2); 1117 drm_exec_retry_on_contention(&ctx->exec); 1118 if (unlikely(ret)) 1119 goto error; 1120 1121 ret = drm_exec_lock_obj(&ctx->exec, &bo->tbo.base); 1122 drm_exec_retry_on_contention(&ctx->exec); 1123 if (unlikely(ret)) 1124 goto error; 1125 } 1126 return 0; 1127 1128 error: 1129 pr_err("Failed to reserve buffers in ttm.\n"); 1130 drm_exec_fini(&ctx->exec); 1131 return ret; 1132 } 1133 1134 /** 1135 * reserve_bo_and_cond_vms - reserve a BO and some VMs conditionally 1136 * @mem: KFD BO structure. 1137 * @vm: the VM to reserve. If NULL, then all VMs associated with the BO 1138 * is used. Otherwise, a single VM associated with the BO. 1139 * @map_type: the mapping status that will be used to filter the VMs. 1140 * @ctx: the struct that will be used in unreserve_bo_and_vms(). 1141 * 1142 * Returns 0 for success, negative for failure. 1143 */ 1144 static int reserve_bo_and_cond_vms(struct kgd_mem *mem, 1145 struct amdgpu_vm *vm, enum bo_vm_match map_type, 1146 struct bo_vm_reservation_context *ctx) 1147 { 1148 struct kfd_mem_attachment *entry; 1149 struct amdgpu_bo *bo = mem->bo; 1150 int ret; 1151 1152 ctx->sync = &mem->sync; 1153 drm_exec_init(&ctx->exec, DRM_EXEC_INTERRUPTIBLE_WAIT); 1154 drm_exec_until_all_locked(&ctx->exec) { 1155 ctx->n_vms = 0; 1156 list_for_each_entry(entry, &mem->attachments, list) { 1157 if ((vm && vm != entry->bo_va->base.vm) || 1158 (entry->is_mapped != map_type 1159 && map_type != BO_VM_ALL)) 1160 continue; 1161 1162 ret = amdgpu_vm_lock_pd(entry->bo_va->base.vm, 1163 &ctx->exec, 2); 1164 drm_exec_retry_on_contention(&ctx->exec); 1165 if (unlikely(ret)) 1166 goto error; 1167 ++ctx->n_vms; 1168 } 1169 1170 ret = drm_exec_prepare_obj(&ctx->exec, &bo->tbo.base, 1); 1171 drm_exec_retry_on_contention(&ctx->exec); 1172 if (unlikely(ret)) 1173 goto error; 1174 } 1175 return 0; 1176 1177 error: 1178 pr_err("Failed to reserve buffers in ttm.\n"); 1179 drm_exec_fini(&ctx->exec); 1180 return ret; 1181 } 1182 1183 /** 1184 * unreserve_bo_and_vms - Unreserve BO and VMs from a reservation context 1185 * @ctx: Reservation context to unreserve 1186 * @wait: Optionally wait for a sync object representing pending VM updates 1187 * @intr: Whether the wait is interruptible 1188 * 1189 * Also frees any resources allocated in 1190 * reserve_bo_and_(cond_)vm(s). Returns the status from 1191 * amdgpu_sync_wait. 1192 */ 1193 static int unreserve_bo_and_vms(struct bo_vm_reservation_context *ctx, 1194 bool wait, bool intr) 1195 { 1196 int ret = 0; 1197 1198 if (wait) 1199 ret = amdgpu_sync_wait(ctx->sync, intr); 1200 1201 drm_exec_fini(&ctx->exec); 1202 ctx->sync = NULL; 1203 return ret; 1204 } 1205 1206 static void unmap_bo_from_gpuvm(struct kgd_mem *mem, 1207 struct kfd_mem_attachment *entry, 1208 struct amdgpu_sync *sync) 1209 { 1210 struct amdgpu_bo_va *bo_va = entry->bo_va; 1211 struct amdgpu_device *adev = entry->adev; 1212 struct amdgpu_vm *vm = bo_va->base.vm; 1213 1214 amdgpu_vm_bo_unmap(adev, bo_va, entry->va); 1215 1216 amdgpu_vm_clear_freed(adev, vm, &bo_va->last_pt_update); 1217 1218 amdgpu_sync_fence(sync, bo_va->last_pt_update); 1219 } 1220 1221 static int update_gpuvm_pte(struct kgd_mem *mem, 1222 struct kfd_mem_attachment *entry, 1223 struct amdgpu_sync *sync) 1224 { 1225 struct amdgpu_bo_va *bo_va = entry->bo_va; 1226 struct amdgpu_device *adev = entry->adev; 1227 int ret; 1228 1229 ret = kfd_mem_dmamap_attachment(mem, entry); 1230 if (ret) 1231 return ret; 1232 1233 /* Update the page tables */ 1234 ret = amdgpu_vm_bo_update(adev, bo_va, false); 1235 if (ret) { 1236 pr_err("amdgpu_vm_bo_update failed\n"); 1237 return ret; 1238 } 1239 1240 return amdgpu_sync_fence(sync, bo_va->last_pt_update); 1241 } 1242 1243 static int map_bo_to_gpuvm(struct kgd_mem *mem, 1244 struct kfd_mem_attachment *entry, 1245 struct amdgpu_sync *sync, 1246 bool no_update_pte) 1247 { 1248 int ret; 1249 1250 /* Set virtual address for the allocation */ 1251 ret = amdgpu_vm_bo_map(entry->adev, entry->bo_va, entry->va, 0, 1252 amdgpu_bo_size(entry->bo_va->base.bo), 1253 entry->pte_flags); 1254 if (ret) { 1255 pr_err("Failed to map VA 0x%llx in vm. ret %d\n", 1256 entry->va, ret); 1257 return ret; 1258 } 1259 1260 if (no_update_pte) 1261 return 0; 1262 1263 ret = update_gpuvm_pte(mem, entry, sync); 1264 if (ret) { 1265 pr_err("update_gpuvm_pte() failed\n"); 1266 goto update_gpuvm_pte_failed; 1267 } 1268 1269 return 0; 1270 1271 update_gpuvm_pte_failed: 1272 unmap_bo_from_gpuvm(mem, entry, sync); 1273 kfd_mem_dmaunmap_attachment(mem, entry); 1274 return ret; 1275 } 1276 1277 static int process_validate_vms(struct amdkfd_process_info *process_info) 1278 { 1279 struct amdgpu_vm *peer_vm; 1280 int ret; 1281 1282 list_for_each_entry(peer_vm, &process_info->vm_list_head, 1283 vm_list_node) { 1284 ret = vm_validate_pt_pd_bos(peer_vm); 1285 if (ret) 1286 return ret; 1287 } 1288 1289 return 0; 1290 } 1291 1292 static int process_sync_pds_resv(struct amdkfd_process_info *process_info, 1293 struct amdgpu_sync *sync) 1294 { 1295 struct amdgpu_vm *peer_vm; 1296 int ret; 1297 1298 list_for_each_entry(peer_vm, &process_info->vm_list_head, 1299 vm_list_node) { 1300 struct amdgpu_bo *pd = peer_vm->root.bo; 1301 1302 ret = amdgpu_sync_resv(NULL, sync, pd->tbo.base.resv, 1303 AMDGPU_SYNC_NE_OWNER, 1304 AMDGPU_FENCE_OWNER_KFD); 1305 if (ret) 1306 return ret; 1307 } 1308 1309 return 0; 1310 } 1311 1312 static int process_update_pds(struct amdkfd_process_info *process_info, 1313 struct amdgpu_sync *sync) 1314 { 1315 struct amdgpu_vm *peer_vm; 1316 int ret; 1317 1318 list_for_each_entry(peer_vm, &process_info->vm_list_head, 1319 vm_list_node) { 1320 ret = vm_update_pds(peer_vm, sync); 1321 if (ret) 1322 return ret; 1323 } 1324 1325 return 0; 1326 } 1327 1328 static int init_kfd_vm(struct amdgpu_vm *vm, void **process_info, 1329 struct dma_fence **ef) 1330 { 1331 struct amdkfd_process_info *info = NULL; 1332 int ret; 1333 1334 if (!*process_info) { 1335 info = kzalloc(sizeof(*info), GFP_KERNEL); 1336 if (!info) 1337 return -ENOMEM; 1338 1339 mutex_init(&info->lock); 1340 mutex_init(&info->notifier_lock); 1341 INIT_LIST_HEAD(&info->vm_list_head); 1342 INIT_LIST_HEAD(&info->kfd_bo_list); 1343 INIT_LIST_HEAD(&info->userptr_valid_list); 1344 INIT_LIST_HEAD(&info->userptr_inval_list); 1345 1346 info->eviction_fence = 1347 amdgpu_amdkfd_fence_create(dma_fence_context_alloc(1), 1348 current->mm, 1349 NULL); 1350 if (!info->eviction_fence) { 1351 pr_err("Failed to create eviction fence\n"); 1352 ret = -ENOMEM; 1353 goto create_evict_fence_fail; 1354 } 1355 1356 info->pid = get_task_pid(current->group_leader, PIDTYPE_PID); 1357 INIT_DELAYED_WORK(&info->restore_userptr_work, 1358 amdgpu_amdkfd_restore_userptr_worker); 1359 1360 *process_info = info; 1361 *ef = dma_fence_get(&info->eviction_fence->base); 1362 } 1363 1364 vm->process_info = *process_info; 1365 1366 /* Validate page directory and attach eviction fence */ 1367 ret = amdgpu_bo_reserve(vm->root.bo, true); 1368 if (ret) 1369 goto reserve_pd_fail; 1370 ret = vm_validate_pt_pd_bos(vm); 1371 if (ret) { 1372 pr_err("validate_pt_pd_bos() failed\n"); 1373 goto validate_pd_fail; 1374 } 1375 ret = amdgpu_bo_sync_wait(vm->root.bo, 1376 AMDGPU_FENCE_OWNER_KFD, false); 1377 if (ret) 1378 goto wait_pd_fail; 1379 ret = dma_resv_reserve_fences(vm->root.bo->tbo.base.resv, 1); 1380 if (ret) 1381 goto reserve_shared_fail; 1382 dma_resv_add_fence(vm->root.bo->tbo.base.resv, 1383 &vm->process_info->eviction_fence->base, 1384 DMA_RESV_USAGE_BOOKKEEP); 1385 amdgpu_bo_unreserve(vm->root.bo); 1386 1387 /* Update process info */ 1388 mutex_lock(&vm->process_info->lock); 1389 list_add_tail(&vm->vm_list_node, 1390 &(vm->process_info->vm_list_head)); 1391 vm->process_info->n_vms++; 1392 mutex_unlock(&vm->process_info->lock); 1393 1394 return 0; 1395 1396 reserve_shared_fail: 1397 wait_pd_fail: 1398 validate_pd_fail: 1399 amdgpu_bo_unreserve(vm->root.bo); 1400 reserve_pd_fail: 1401 vm->process_info = NULL; 1402 if (info) { 1403 /* Two fence references: one in info and one in *ef */ 1404 dma_fence_put(&info->eviction_fence->base); 1405 dma_fence_put(*ef); 1406 *ef = NULL; 1407 *process_info = NULL; 1408 put_pid(info->pid); 1409 create_evict_fence_fail: 1410 mutex_destroy(&info->lock); 1411 mutex_destroy(&info->notifier_lock); 1412 kfree(info); 1413 } 1414 return ret; 1415 } 1416 1417 /** 1418 * amdgpu_amdkfd_gpuvm_pin_bo() - Pins a BO using following criteria 1419 * @bo: Handle of buffer object being pinned 1420 * @domain: Domain into which BO should be pinned 1421 * 1422 * - USERPTR BOs are UNPINNABLE and will return error 1423 * - All other BO types (GTT, VRAM, MMIO and DOORBELL) will have their 1424 * PIN count incremented. It is valid to PIN a BO multiple times 1425 * 1426 * Return: ZERO if successful in pinning, Non-Zero in case of error. 1427 */ 1428 static int amdgpu_amdkfd_gpuvm_pin_bo(struct amdgpu_bo *bo, u32 domain) 1429 { 1430 int ret = 0; 1431 1432 ret = amdgpu_bo_reserve(bo, false); 1433 if (unlikely(ret)) 1434 return ret; 1435 1436 ret = amdgpu_bo_pin_restricted(bo, domain, 0, 0); 1437 if (ret) 1438 pr_err("Error in Pinning BO to domain: %d\n", domain); 1439 1440 amdgpu_bo_sync_wait(bo, AMDGPU_FENCE_OWNER_KFD, false); 1441 amdgpu_bo_unreserve(bo); 1442 1443 return ret; 1444 } 1445 1446 /** 1447 * amdgpu_amdkfd_gpuvm_unpin_bo() - Unpins BO using following criteria 1448 * @bo: Handle of buffer object being unpinned 1449 * 1450 * - Is a illegal request for USERPTR BOs and is ignored 1451 * - All other BO types (GTT, VRAM, MMIO and DOORBELL) will have their 1452 * PIN count decremented. Calls to UNPIN must balance calls to PIN 1453 */ 1454 static void amdgpu_amdkfd_gpuvm_unpin_bo(struct amdgpu_bo *bo) 1455 { 1456 int ret = 0; 1457 1458 ret = amdgpu_bo_reserve(bo, false); 1459 if (unlikely(ret)) 1460 return; 1461 1462 amdgpu_bo_unpin(bo); 1463 amdgpu_bo_unreserve(bo); 1464 } 1465 1466 int amdgpu_amdkfd_gpuvm_set_vm_pasid(struct amdgpu_device *adev, 1467 struct amdgpu_vm *avm, u32 pasid) 1468 1469 { 1470 int ret; 1471 1472 /* Free the original amdgpu allocated pasid, 1473 * will be replaced with kfd allocated pasid. 1474 */ 1475 if (avm->pasid) { 1476 amdgpu_pasid_free(avm->pasid); 1477 amdgpu_vm_set_pasid(adev, avm, 0); 1478 } 1479 1480 ret = amdgpu_vm_set_pasid(adev, avm, pasid); 1481 if (ret) 1482 return ret; 1483 1484 return 0; 1485 } 1486 1487 int amdgpu_amdkfd_gpuvm_acquire_process_vm(struct amdgpu_device *adev, 1488 struct amdgpu_vm *avm, 1489 void **process_info, 1490 struct dma_fence **ef) 1491 { 1492 int ret; 1493 1494 /* Already a compute VM? */ 1495 if (avm->process_info) 1496 return -EINVAL; 1497 1498 /* Convert VM into a compute VM */ 1499 ret = amdgpu_vm_make_compute(adev, avm); 1500 if (ret) 1501 return ret; 1502 1503 /* Initialize KFD part of the VM and process info */ 1504 ret = init_kfd_vm(avm, process_info, ef); 1505 if (ret) 1506 return ret; 1507 1508 amdgpu_vm_set_task_info(avm); 1509 1510 return 0; 1511 } 1512 1513 void amdgpu_amdkfd_gpuvm_destroy_cb(struct amdgpu_device *adev, 1514 struct amdgpu_vm *vm) 1515 { 1516 struct amdkfd_process_info *process_info = vm->process_info; 1517 1518 if (!process_info) 1519 return; 1520 1521 /* Update process info */ 1522 mutex_lock(&process_info->lock); 1523 process_info->n_vms--; 1524 list_del(&vm->vm_list_node); 1525 mutex_unlock(&process_info->lock); 1526 1527 vm->process_info = NULL; 1528 1529 /* Release per-process resources when last compute VM is destroyed */ 1530 if (!process_info->n_vms) { 1531 WARN_ON(!list_empty(&process_info->kfd_bo_list)); 1532 WARN_ON(!list_empty(&process_info->userptr_valid_list)); 1533 WARN_ON(!list_empty(&process_info->userptr_inval_list)); 1534 1535 dma_fence_put(&process_info->eviction_fence->base); 1536 cancel_delayed_work_sync(&process_info->restore_userptr_work); 1537 put_pid(process_info->pid); 1538 mutex_destroy(&process_info->lock); 1539 mutex_destroy(&process_info->notifier_lock); 1540 kfree(process_info); 1541 } 1542 } 1543 1544 void amdgpu_amdkfd_gpuvm_release_process_vm(struct amdgpu_device *adev, 1545 void *drm_priv) 1546 { 1547 struct amdgpu_vm *avm; 1548 1549 if (WARN_ON(!adev || !drm_priv)) 1550 return; 1551 1552 avm = drm_priv_to_vm(drm_priv); 1553 1554 pr_debug("Releasing process vm %p\n", avm); 1555 1556 /* The original pasid of amdgpu vm has already been 1557 * released during making a amdgpu vm to a compute vm 1558 * The current pasid is managed by kfd and will be 1559 * released on kfd process destroy. Set amdgpu pasid 1560 * to 0 to avoid duplicate release. 1561 */ 1562 amdgpu_vm_release_compute(adev, avm); 1563 } 1564 1565 uint64_t amdgpu_amdkfd_gpuvm_get_process_page_dir(void *drm_priv) 1566 { 1567 struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv); 1568 struct amdgpu_bo *pd = avm->root.bo; 1569 struct amdgpu_device *adev = amdgpu_ttm_adev(pd->tbo.bdev); 1570 1571 if (adev->asic_type < CHIP_VEGA10) 1572 return avm->pd_phys_addr >> AMDGPU_GPU_PAGE_SHIFT; 1573 return avm->pd_phys_addr; 1574 } 1575 1576 void amdgpu_amdkfd_block_mmu_notifications(void *p) 1577 { 1578 struct amdkfd_process_info *pinfo = (struct amdkfd_process_info *)p; 1579 1580 mutex_lock(&pinfo->lock); 1581 WRITE_ONCE(pinfo->block_mmu_notifications, true); 1582 mutex_unlock(&pinfo->lock); 1583 } 1584 1585 int amdgpu_amdkfd_criu_resume(void *p) 1586 { 1587 int ret = 0; 1588 struct amdkfd_process_info *pinfo = (struct amdkfd_process_info *)p; 1589 1590 mutex_lock(&pinfo->lock); 1591 pr_debug("scheduling work\n"); 1592 mutex_lock(&pinfo->notifier_lock); 1593 pinfo->evicted_bos++; 1594 mutex_unlock(&pinfo->notifier_lock); 1595 if (!READ_ONCE(pinfo->block_mmu_notifications)) { 1596 ret = -EINVAL; 1597 goto out_unlock; 1598 } 1599 WRITE_ONCE(pinfo->block_mmu_notifications, false); 1600 schedule_delayed_work(&pinfo->restore_userptr_work, 0); 1601 1602 out_unlock: 1603 mutex_unlock(&pinfo->lock); 1604 return ret; 1605 } 1606 1607 size_t amdgpu_amdkfd_get_available_memory(struct amdgpu_device *adev, 1608 uint8_t xcp_id) 1609 { 1610 uint64_t reserved_for_pt = 1611 ESTIMATE_PT_SIZE(amdgpu_amdkfd_total_mem_size); 1612 ssize_t available; 1613 uint64_t vram_available, system_mem_available, ttm_mem_available; 1614 1615 spin_lock(&kfd_mem_limit.mem_limit_lock); 1616 vram_available = KFD_XCP_MEMORY_SIZE(adev, xcp_id) 1617 - adev->kfd.vram_used_aligned[xcp_id] 1618 - atomic64_read(&adev->vram_pin_size) 1619 - reserved_for_pt; 1620 1621 if (adev->gmc.is_app_apu) { 1622 system_mem_available = no_system_mem_limit ? 1623 kfd_mem_limit.max_system_mem_limit : 1624 kfd_mem_limit.max_system_mem_limit - 1625 kfd_mem_limit.system_mem_used; 1626 1627 ttm_mem_available = kfd_mem_limit.max_ttm_mem_limit - 1628 kfd_mem_limit.ttm_mem_used; 1629 1630 available = min3(system_mem_available, ttm_mem_available, 1631 vram_available); 1632 available = ALIGN_DOWN(available, PAGE_SIZE); 1633 } else { 1634 available = ALIGN_DOWN(vram_available, VRAM_AVAILABLITY_ALIGN); 1635 } 1636 1637 spin_unlock(&kfd_mem_limit.mem_limit_lock); 1638 1639 if (available < 0) 1640 available = 0; 1641 1642 return available; 1643 } 1644 1645 int amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu( 1646 struct amdgpu_device *adev, uint64_t va, uint64_t size, 1647 void *drm_priv, struct kgd_mem **mem, 1648 uint64_t *offset, uint32_t flags, bool criu_resume) 1649 { 1650 struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv); 1651 struct amdgpu_fpriv *fpriv = container_of(avm, struct amdgpu_fpriv, vm); 1652 enum ttm_bo_type bo_type = ttm_bo_type_device; 1653 struct sg_table *sg = NULL; 1654 uint64_t user_addr = 0; 1655 struct amdgpu_bo *bo; 1656 struct drm_gem_object *gobj = NULL; 1657 u32 domain, alloc_domain; 1658 uint64_t aligned_size; 1659 int8_t xcp_id = -1; 1660 u64 alloc_flags; 1661 int ret; 1662 1663 /* 1664 * Check on which domain to allocate BO 1665 */ 1666 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) { 1667 domain = alloc_domain = AMDGPU_GEM_DOMAIN_VRAM; 1668 1669 if (adev->gmc.is_app_apu) { 1670 domain = AMDGPU_GEM_DOMAIN_GTT; 1671 alloc_domain = AMDGPU_GEM_DOMAIN_GTT; 1672 alloc_flags = 0; 1673 } else { 1674 alloc_flags = AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE; 1675 alloc_flags |= (flags & KFD_IOC_ALLOC_MEM_FLAGS_PUBLIC) ? 1676 AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED : 0; 1677 } 1678 xcp_id = fpriv->xcp_id == AMDGPU_XCP_NO_PARTITION ? 1679 0 : fpriv->xcp_id; 1680 } else if (flags & KFD_IOC_ALLOC_MEM_FLAGS_GTT) { 1681 domain = alloc_domain = AMDGPU_GEM_DOMAIN_GTT; 1682 alloc_flags = 0; 1683 } else { 1684 domain = AMDGPU_GEM_DOMAIN_GTT; 1685 alloc_domain = AMDGPU_GEM_DOMAIN_CPU; 1686 alloc_flags = AMDGPU_GEM_CREATE_PREEMPTIBLE; 1687 1688 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) { 1689 if (!offset || !*offset) 1690 return -EINVAL; 1691 user_addr = untagged_addr(*offset); 1692 } else if (flags & (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL | 1693 KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) { 1694 bo_type = ttm_bo_type_sg; 1695 if (size > UINT_MAX) 1696 return -EINVAL; 1697 sg = create_sg_table(*offset, size); 1698 if (!sg) 1699 return -ENOMEM; 1700 } else { 1701 return -EINVAL; 1702 } 1703 } 1704 1705 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_COHERENT) 1706 alloc_flags |= AMDGPU_GEM_CREATE_COHERENT; 1707 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_EXT_COHERENT) 1708 alloc_flags |= AMDGPU_GEM_CREATE_EXT_COHERENT; 1709 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_UNCACHED) 1710 alloc_flags |= AMDGPU_GEM_CREATE_UNCACHED; 1711 1712 *mem = kzalloc(sizeof(struct kgd_mem), GFP_KERNEL); 1713 if (!*mem) { 1714 ret = -ENOMEM; 1715 goto err; 1716 } 1717 INIT_LIST_HEAD(&(*mem)->attachments); 1718 mutex_init(&(*mem)->lock); 1719 (*mem)->aql_queue = !!(flags & KFD_IOC_ALLOC_MEM_FLAGS_AQL_QUEUE_MEM); 1720 1721 /* Workaround for AQL queue wraparound bug. Map the same 1722 * memory twice. That means we only actually allocate half 1723 * the memory. 1724 */ 1725 if ((*mem)->aql_queue) 1726 size >>= 1; 1727 aligned_size = PAGE_ALIGN(size); 1728 1729 (*mem)->alloc_flags = flags; 1730 1731 amdgpu_sync_create(&(*mem)->sync); 1732 1733 ret = amdgpu_amdkfd_reserve_mem_limit(adev, aligned_size, flags, 1734 xcp_id); 1735 if (ret) { 1736 pr_debug("Insufficient memory\n"); 1737 goto err_reserve_limit; 1738 } 1739 1740 pr_debug("\tcreate BO VA 0x%llx size 0x%llx domain %s xcp_id %d\n", 1741 va, (*mem)->aql_queue ? size << 1 : size, 1742 domain_string(alloc_domain), xcp_id); 1743 1744 ret = amdgpu_gem_object_create(adev, aligned_size, 1, alloc_domain, alloc_flags, 1745 bo_type, NULL, &gobj, xcp_id + 1); 1746 if (ret) { 1747 pr_debug("Failed to create BO on domain %s. ret %d\n", 1748 domain_string(alloc_domain), ret); 1749 goto err_bo_create; 1750 } 1751 ret = drm_vma_node_allow(&gobj->vma_node, drm_priv); 1752 if (ret) { 1753 pr_debug("Failed to allow vma node access. ret %d\n", ret); 1754 goto err_node_allow; 1755 } 1756 bo = gem_to_amdgpu_bo(gobj); 1757 if (bo_type == ttm_bo_type_sg) { 1758 bo->tbo.sg = sg; 1759 bo->tbo.ttm->sg = sg; 1760 } 1761 bo->kfd_bo = *mem; 1762 (*mem)->bo = bo; 1763 if (user_addr) 1764 bo->flags |= AMDGPU_AMDKFD_CREATE_USERPTR_BO; 1765 1766 (*mem)->va = va; 1767 (*mem)->domain = domain; 1768 (*mem)->mapped_to_gpu_memory = 0; 1769 (*mem)->process_info = avm->process_info; 1770 1771 add_kgd_mem_to_kfd_bo_list(*mem, avm->process_info, user_addr); 1772 1773 if (user_addr) { 1774 pr_debug("creating userptr BO for user_addr = %llx\n", user_addr); 1775 ret = init_user_pages(*mem, user_addr, criu_resume); 1776 if (ret) 1777 goto allocate_init_user_pages_failed; 1778 } else if (flags & (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL | 1779 KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) { 1780 ret = amdgpu_amdkfd_gpuvm_pin_bo(bo, AMDGPU_GEM_DOMAIN_GTT); 1781 if (ret) { 1782 pr_err("Pinning MMIO/DOORBELL BO during ALLOC FAILED\n"); 1783 goto err_pin_bo; 1784 } 1785 bo->allowed_domains = AMDGPU_GEM_DOMAIN_GTT; 1786 bo->preferred_domains = AMDGPU_GEM_DOMAIN_GTT; 1787 } 1788 1789 if (offset) 1790 *offset = amdgpu_bo_mmap_offset(bo); 1791 1792 return 0; 1793 1794 allocate_init_user_pages_failed: 1795 err_pin_bo: 1796 remove_kgd_mem_from_kfd_bo_list(*mem, avm->process_info); 1797 drm_vma_node_revoke(&gobj->vma_node, drm_priv); 1798 err_node_allow: 1799 /* Don't unreserve system mem limit twice */ 1800 goto err_reserve_limit; 1801 err_bo_create: 1802 amdgpu_amdkfd_unreserve_mem_limit(adev, aligned_size, flags, xcp_id); 1803 err_reserve_limit: 1804 mutex_destroy(&(*mem)->lock); 1805 if (gobj) 1806 drm_gem_object_put(gobj); 1807 else 1808 kfree(*mem); 1809 err: 1810 if (sg) { 1811 sg_free_table(sg); 1812 kfree(sg); 1813 } 1814 return ret; 1815 } 1816 1817 int amdgpu_amdkfd_gpuvm_free_memory_of_gpu( 1818 struct amdgpu_device *adev, struct kgd_mem *mem, void *drm_priv, 1819 uint64_t *size) 1820 { 1821 struct amdkfd_process_info *process_info = mem->process_info; 1822 unsigned long bo_size = mem->bo->tbo.base.size; 1823 bool use_release_notifier = (mem->bo->kfd_bo == mem); 1824 struct kfd_mem_attachment *entry, *tmp; 1825 struct bo_vm_reservation_context ctx; 1826 unsigned int mapped_to_gpu_memory; 1827 int ret; 1828 bool is_imported = false; 1829 1830 mutex_lock(&mem->lock); 1831 1832 /* Unpin MMIO/DOORBELL BO's that were pinned during allocation */ 1833 if (mem->alloc_flags & 1834 (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL | 1835 KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) { 1836 amdgpu_amdkfd_gpuvm_unpin_bo(mem->bo); 1837 } 1838 1839 mapped_to_gpu_memory = mem->mapped_to_gpu_memory; 1840 is_imported = mem->is_imported; 1841 mutex_unlock(&mem->lock); 1842 /* lock is not needed after this, since mem is unused and will 1843 * be freed anyway 1844 */ 1845 1846 if (mapped_to_gpu_memory > 0) { 1847 pr_debug("BO VA 0x%llx size 0x%lx is still mapped.\n", 1848 mem->va, bo_size); 1849 return -EBUSY; 1850 } 1851 1852 /* Make sure restore workers don't access the BO any more */ 1853 mutex_lock(&process_info->lock); 1854 list_del(&mem->validate_list); 1855 mutex_unlock(&process_info->lock); 1856 1857 /* Cleanup user pages and MMU notifiers */ 1858 if (amdgpu_ttm_tt_get_usermm(mem->bo->tbo.ttm)) { 1859 amdgpu_hmm_unregister(mem->bo); 1860 mutex_lock(&process_info->notifier_lock); 1861 amdgpu_ttm_tt_discard_user_pages(mem->bo->tbo.ttm, mem->range); 1862 mutex_unlock(&process_info->notifier_lock); 1863 } 1864 1865 ret = reserve_bo_and_cond_vms(mem, NULL, BO_VM_ALL, &ctx); 1866 if (unlikely(ret)) 1867 return ret; 1868 1869 /* The eviction fence should be removed by the last unmap. 1870 * TODO: Log an error condition if the bo still has the eviction fence 1871 * attached 1872 */ 1873 amdgpu_amdkfd_remove_eviction_fence(mem->bo, 1874 process_info->eviction_fence); 1875 pr_debug("Release VA 0x%llx - 0x%llx\n", mem->va, 1876 mem->va + bo_size * (1 + mem->aql_queue)); 1877 1878 /* Remove from VM internal data structures */ 1879 list_for_each_entry_safe(entry, tmp, &mem->attachments, list) { 1880 kfd_mem_dmaunmap_attachment(mem, entry); 1881 kfd_mem_detach(entry); 1882 } 1883 1884 ret = unreserve_bo_and_vms(&ctx, false, false); 1885 1886 /* Free the sync object */ 1887 amdgpu_sync_free(&mem->sync); 1888 1889 /* If the SG is not NULL, it's one we created for a doorbell or mmio 1890 * remap BO. We need to free it. 1891 */ 1892 if (mem->bo->tbo.sg) { 1893 sg_free_table(mem->bo->tbo.sg); 1894 kfree(mem->bo->tbo.sg); 1895 } 1896 1897 /* Update the size of the BO being freed if it was allocated from 1898 * VRAM and is not imported. For APP APU VRAM allocations are done 1899 * in GTT domain 1900 */ 1901 if (size) { 1902 if (!is_imported && 1903 (mem->bo->preferred_domains == AMDGPU_GEM_DOMAIN_VRAM || 1904 (adev->gmc.is_app_apu && 1905 mem->bo->preferred_domains == AMDGPU_GEM_DOMAIN_GTT))) 1906 *size = bo_size; 1907 else 1908 *size = 0; 1909 } 1910 1911 /* Free the BO*/ 1912 drm_vma_node_revoke(&mem->bo->tbo.base.vma_node, drm_priv); 1913 if (mem->dmabuf) 1914 dma_buf_put(mem->dmabuf); 1915 mutex_destroy(&mem->lock); 1916 1917 /* If this releases the last reference, it will end up calling 1918 * amdgpu_amdkfd_release_notify and kfree the mem struct. That's why 1919 * this needs to be the last call here. 1920 */ 1921 drm_gem_object_put(&mem->bo->tbo.base); 1922 1923 /* 1924 * For kgd_mem allocated in amdgpu_amdkfd_gpuvm_import_dmabuf(), 1925 * explicitly free it here. 1926 */ 1927 if (!use_release_notifier) 1928 kfree(mem); 1929 1930 return ret; 1931 } 1932 1933 int amdgpu_amdkfd_gpuvm_map_memory_to_gpu( 1934 struct amdgpu_device *adev, struct kgd_mem *mem, 1935 void *drm_priv) 1936 { 1937 struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv); 1938 int ret; 1939 struct amdgpu_bo *bo; 1940 uint32_t domain; 1941 struct kfd_mem_attachment *entry; 1942 struct bo_vm_reservation_context ctx; 1943 unsigned long bo_size; 1944 bool is_invalid_userptr = false; 1945 1946 bo = mem->bo; 1947 if (!bo) { 1948 pr_err("Invalid BO when mapping memory to GPU\n"); 1949 return -EINVAL; 1950 } 1951 1952 /* Make sure restore is not running concurrently. Since we 1953 * don't map invalid userptr BOs, we rely on the next restore 1954 * worker to do the mapping 1955 */ 1956 mutex_lock(&mem->process_info->lock); 1957 1958 /* Lock notifier lock. If we find an invalid userptr BO, we can be 1959 * sure that the MMU notifier is no longer running 1960 * concurrently and the queues are actually stopped 1961 */ 1962 if (amdgpu_ttm_tt_get_usermm(bo->tbo.ttm)) { 1963 mutex_lock(&mem->process_info->notifier_lock); 1964 is_invalid_userptr = !!mem->invalid; 1965 mutex_unlock(&mem->process_info->notifier_lock); 1966 } 1967 1968 mutex_lock(&mem->lock); 1969 1970 domain = mem->domain; 1971 bo_size = bo->tbo.base.size; 1972 1973 pr_debug("Map VA 0x%llx - 0x%llx to vm %p domain %s\n", 1974 mem->va, 1975 mem->va + bo_size * (1 + mem->aql_queue), 1976 avm, domain_string(domain)); 1977 1978 if (!kfd_mem_is_attached(avm, mem)) { 1979 ret = kfd_mem_attach(adev, mem, avm, mem->aql_queue); 1980 if (ret) 1981 goto out; 1982 } 1983 1984 ret = reserve_bo_and_vm(mem, avm, &ctx); 1985 if (unlikely(ret)) 1986 goto out; 1987 1988 /* Userptr can be marked as "not invalid", but not actually be 1989 * validated yet (still in the system domain). In that case 1990 * the queues are still stopped and we can leave mapping for 1991 * the next restore worker 1992 */ 1993 if (amdgpu_ttm_tt_get_usermm(bo->tbo.ttm) && 1994 bo->tbo.resource->mem_type == TTM_PL_SYSTEM) 1995 is_invalid_userptr = true; 1996 1997 ret = vm_validate_pt_pd_bos(avm); 1998 if (unlikely(ret)) 1999 goto out_unreserve; 2000 2001 if (mem->mapped_to_gpu_memory == 0 && 2002 !amdgpu_ttm_tt_get_usermm(bo->tbo.ttm)) { 2003 /* Validate BO only once. The eviction fence gets added to BO 2004 * the first time it is mapped. Validate will wait for all 2005 * background evictions to complete. 2006 */ 2007 ret = amdgpu_amdkfd_bo_validate(bo, domain, true); 2008 if (ret) { 2009 pr_debug("Validate failed\n"); 2010 goto out_unreserve; 2011 } 2012 } 2013 2014 list_for_each_entry(entry, &mem->attachments, list) { 2015 if (entry->bo_va->base.vm != avm || entry->is_mapped) 2016 continue; 2017 2018 pr_debug("\t map VA 0x%llx - 0x%llx in entry %p\n", 2019 entry->va, entry->va + bo_size, entry); 2020 2021 ret = map_bo_to_gpuvm(mem, entry, ctx.sync, 2022 is_invalid_userptr); 2023 if (ret) { 2024 pr_err("Failed to map bo to gpuvm\n"); 2025 goto out_unreserve; 2026 } 2027 2028 ret = vm_update_pds(avm, ctx.sync); 2029 if (ret) { 2030 pr_err("Failed to update page directories\n"); 2031 goto out_unreserve; 2032 } 2033 2034 entry->is_mapped = true; 2035 mem->mapped_to_gpu_memory++; 2036 pr_debug("\t INC mapping count %d\n", 2037 mem->mapped_to_gpu_memory); 2038 } 2039 2040 if (!amdgpu_ttm_tt_get_usermm(bo->tbo.ttm) && !bo->tbo.pin_count) 2041 dma_resv_add_fence(bo->tbo.base.resv, 2042 &avm->process_info->eviction_fence->base, 2043 DMA_RESV_USAGE_BOOKKEEP); 2044 ret = unreserve_bo_and_vms(&ctx, false, false); 2045 2046 goto out; 2047 2048 out_unreserve: 2049 unreserve_bo_and_vms(&ctx, false, false); 2050 out: 2051 mutex_unlock(&mem->process_info->lock); 2052 mutex_unlock(&mem->lock); 2053 return ret; 2054 } 2055 2056 void amdgpu_amdkfd_gpuvm_dmaunmap_mem(struct kgd_mem *mem, void *drm_priv) 2057 { 2058 struct kfd_mem_attachment *entry; 2059 struct amdgpu_vm *vm; 2060 2061 vm = drm_priv_to_vm(drm_priv); 2062 2063 mutex_lock(&mem->lock); 2064 2065 list_for_each_entry(entry, &mem->attachments, list) { 2066 if (entry->bo_va->base.vm == vm) 2067 kfd_mem_dmaunmap_attachment(mem, entry); 2068 } 2069 2070 mutex_unlock(&mem->lock); 2071 } 2072 2073 int amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu( 2074 struct amdgpu_device *adev, struct kgd_mem *mem, void *drm_priv) 2075 { 2076 struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv); 2077 struct amdkfd_process_info *process_info = avm->process_info; 2078 unsigned long bo_size = mem->bo->tbo.base.size; 2079 struct kfd_mem_attachment *entry; 2080 struct bo_vm_reservation_context ctx; 2081 int ret; 2082 2083 mutex_lock(&mem->lock); 2084 2085 ret = reserve_bo_and_cond_vms(mem, avm, BO_VM_MAPPED, &ctx); 2086 if (unlikely(ret)) 2087 goto out; 2088 /* If no VMs were reserved, it means the BO wasn't actually mapped */ 2089 if (ctx.n_vms == 0) { 2090 ret = -EINVAL; 2091 goto unreserve_out; 2092 } 2093 2094 ret = vm_validate_pt_pd_bos(avm); 2095 if (unlikely(ret)) 2096 goto unreserve_out; 2097 2098 pr_debug("Unmap VA 0x%llx - 0x%llx from vm %p\n", 2099 mem->va, 2100 mem->va + bo_size * (1 + mem->aql_queue), 2101 avm); 2102 2103 list_for_each_entry(entry, &mem->attachments, list) { 2104 if (entry->bo_va->base.vm != avm || !entry->is_mapped) 2105 continue; 2106 2107 pr_debug("\t unmap VA 0x%llx - 0x%llx from entry %p\n", 2108 entry->va, entry->va + bo_size, entry); 2109 2110 unmap_bo_from_gpuvm(mem, entry, ctx.sync); 2111 entry->is_mapped = false; 2112 2113 mem->mapped_to_gpu_memory--; 2114 pr_debug("\t DEC mapping count %d\n", 2115 mem->mapped_to_gpu_memory); 2116 } 2117 2118 /* If BO is unmapped from all VMs, unfence it. It can be evicted if 2119 * required. 2120 */ 2121 if (mem->mapped_to_gpu_memory == 0 && 2122 !amdgpu_ttm_tt_get_usermm(mem->bo->tbo.ttm) && 2123 !mem->bo->tbo.pin_count) 2124 amdgpu_amdkfd_remove_eviction_fence(mem->bo, 2125 process_info->eviction_fence); 2126 2127 unreserve_out: 2128 unreserve_bo_and_vms(&ctx, false, false); 2129 out: 2130 mutex_unlock(&mem->lock); 2131 return ret; 2132 } 2133 2134 int amdgpu_amdkfd_gpuvm_sync_memory( 2135 struct amdgpu_device *adev, struct kgd_mem *mem, bool intr) 2136 { 2137 struct amdgpu_sync sync; 2138 int ret; 2139 2140 amdgpu_sync_create(&sync); 2141 2142 mutex_lock(&mem->lock); 2143 amdgpu_sync_clone(&mem->sync, &sync); 2144 mutex_unlock(&mem->lock); 2145 2146 ret = amdgpu_sync_wait(&sync, intr); 2147 amdgpu_sync_free(&sync); 2148 return ret; 2149 } 2150 2151 /** 2152 * amdgpu_amdkfd_map_gtt_bo_to_gart - Map BO to GART and increment reference count 2153 * @adev: Device to which allocated BO belongs 2154 * @bo: Buffer object to be mapped 2155 * 2156 * Before return, bo reference count is incremented. To release the reference and unpin/ 2157 * unmap the BO, call amdgpu_amdkfd_free_gtt_mem. 2158 */ 2159 int amdgpu_amdkfd_map_gtt_bo_to_gart(struct amdgpu_device *adev, struct amdgpu_bo *bo) 2160 { 2161 int ret; 2162 2163 ret = amdgpu_bo_reserve(bo, true); 2164 if (ret) { 2165 pr_err("Failed to reserve bo. ret %d\n", ret); 2166 goto err_reserve_bo_failed; 2167 } 2168 2169 ret = amdgpu_bo_pin(bo, AMDGPU_GEM_DOMAIN_GTT); 2170 if (ret) { 2171 pr_err("Failed to pin bo. ret %d\n", ret); 2172 goto err_pin_bo_failed; 2173 } 2174 2175 ret = amdgpu_ttm_alloc_gart(&bo->tbo); 2176 if (ret) { 2177 pr_err("Failed to bind bo to GART. ret %d\n", ret); 2178 goto err_map_bo_gart_failed; 2179 } 2180 2181 amdgpu_amdkfd_remove_eviction_fence( 2182 bo, bo->vm_bo->vm->process_info->eviction_fence); 2183 2184 amdgpu_bo_unreserve(bo); 2185 2186 bo = amdgpu_bo_ref(bo); 2187 2188 return 0; 2189 2190 err_map_bo_gart_failed: 2191 amdgpu_bo_unpin(bo); 2192 err_pin_bo_failed: 2193 amdgpu_bo_unreserve(bo); 2194 err_reserve_bo_failed: 2195 2196 return ret; 2197 } 2198 2199 /** amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel() - Map a GTT BO for kernel CPU access 2200 * 2201 * @mem: Buffer object to be mapped for CPU access 2202 * @kptr[out]: pointer in kernel CPU address space 2203 * @size[out]: size of the buffer 2204 * 2205 * Pins the BO and maps it for kernel CPU access. The eviction fence is removed 2206 * from the BO, since pinned BOs cannot be evicted. The bo must remain on the 2207 * validate_list, so the GPU mapping can be restored after a page table was 2208 * evicted. 2209 * 2210 * Return: 0 on success, error code on failure 2211 */ 2212 int amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(struct kgd_mem *mem, 2213 void **kptr, uint64_t *size) 2214 { 2215 int ret; 2216 struct amdgpu_bo *bo = mem->bo; 2217 2218 if (amdgpu_ttm_tt_get_usermm(bo->tbo.ttm)) { 2219 pr_err("userptr can't be mapped to kernel\n"); 2220 return -EINVAL; 2221 } 2222 2223 mutex_lock(&mem->process_info->lock); 2224 2225 ret = amdgpu_bo_reserve(bo, true); 2226 if (ret) { 2227 pr_err("Failed to reserve bo. ret %d\n", ret); 2228 goto bo_reserve_failed; 2229 } 2230 2231 ret = amdgpu_bo_pin(bo, AMDGPU_GEM_DOMAIN_GTT); 2232 if (ret) { 2233 pr_err("Failed to pin bo. ret %d\n", ret); 2234 goto pin_failed; 2235 } 2236 2237 ret = amdgpu_bo_kmap(bo, kptr); 2238 if (ret) { 2239 pr_err("Failed to map bo to kernel. ret %d\n", ret); 2240 goto kmap_failed; 2241 } 2242 2243 amdgpu_amdkfd_remove_eviction_fence( 2244 bo, mem->process_info->eviction_fence); 2245 2246 if (size) 2247 *size = amdgpu_bo_size(bo); 2248 2249 amdgpu_bo_unreserve(bo); 2250 2251 mutex_unlock(&mem->process_info->lock); 2252 return 0; 2253 2254 kmap_failed: 2255 amdgpu_bo_unpin(bo); 2256 pin_failed: 2257 amdgpu_bo_unreserve(bo); 2258 bo_reserve_failed: 2259 mutex_unlock(&mem->process_info->lock); 2260 2261 return ret; 2262 } 2263 2264 /** amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel() - Unmap a GTT BO for kernel CPU access 2265 * 2266 * @mem: Buffer object to be unmapped for CPU access 2267 * 2268 * Removes the kernel CPU mapping and unpins the BO. It does not restore the 2269 * eviction fence, so this function should only be used for cleanup before the 2270 * BO is destroyed. 2271 */ 2272 void amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(struct kgd_mem *mem) 2273 { 2274 struct amdgpu_bo *bo = mem->bo; 2275 2276 amdgpu_bo_reserve(bo, true); 2277 amdgpu_bo_kunmap(bo); 2278 amdgpu_bo_unpin(bo); 2279 amdgpu_bo_unreserve(bo); 2280 } 2281 2282 int amdgpu_amdkfd_gpuvm_get_vm_fault_info(struct amdgpu_device *adev, 2283 struct kfd_vm_fault_info *mem) 2284 { 2285 if (atomic_read(&adev->gmc.vm_fault_info_updated) == 1) { 2286 *mem = *adev->gmc.vm_fault_info; 2287 mb(); /* make sure read happened */ 2288 atomic_set(&adev->gmc.vm_fault_info_updated, 0); 2289 } 2290 return 0; 2291 } 2292 2293 int amdgpu_amdkfd_gpuvm_import_dmabuf(struct amdgpu_device *adev, 2294 struct dma_buf *dma_buf, 2295 uint64_t va, void *drm_priv, 2296 struct kgd_mem **mem, uint64_t *size, 2297 uint64_t *mmap_offset) 2298 { 2299 struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv); 2300 struct drm_gem_object *obj; 2301 struct amdgpu_bo *bo; 2302 int ret; 2303 2304 obj = amdgpu_gem_prime_import(adev_to_drm(adev), dma_buf); 2305 if (IS_ERR(obj)) 2306 return PTR_ERR(obj); 2307 2308 bo = gem_to_amdgpu_bo(obj); 2309 if (!(bo->preferred_domains & (AMDGPU_GEM_DOMAIN_VRAM | 2310 AMDGPU_GEM_DOMAIN_GTT))) { 2311 /* Only VRAM and GTT BOs are supported */ 2312 ret = -EINVAL; 2313 goto err_put_obj; 2314 } 2315 2316 *mem = kzalloc(sizeof(struct kgd_mem), GFP_KERNEL); 2317 if (!*mem) { 2318 ret = -ENOMEM; 2319 goto err_put_obj; 2320 } 2321 2322 ret = drm_vma_node_allow(&obj->vma_node, drm_priv); 2323 if (ret) 2324 goto err_free_mem; 2325 2326 if (size) 2327 *size = amdgpu_bo_size(bo); 2328 2329 if (mmap_offset) 2330 *mmap_offset = amdgpu_bo_mmap_offset(bo); 2331 2332 INIT_LIST_HEAD(&(*mem)->attachments); 2333 mutex_init(&(*mem)->lock); 2334 2335 (*mem)->alloc_flags = 2336 ((bo->preferred_domains & AMDGPU_GEM_DOMAIN_VRAM) ? 2337 KFD_IOC_ALLOC_MEM_FLAGS_VRAM : KFD_IOC_ALLOC_MEM_FLAGS_GTT) 2338 | KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE 2339 | KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE; 2340 2341 get_dma_buf(dma_buf); 2342 (*mem)->dmabuf = dma_buf; 2343 (*mem)->bo = bo; 2344 (*mem)->va = va; 2345 (*mem)->domain = (bo->preferred_domains & AMDGPU_GEM_DOMAIN_VRAM) && !adev->gmc.is_app_apu ? 2346 AMDGPU_GEM_DOMAIN_VRAM : AMDGPU_GEM_DOMAIN_GTT; 2347 2348 (*mem)->mapped_to_gpu_memory = 0; 2349 (*mem)->process_info = avm->process_info; 2350 add_kgd_mem_to_kfd_bo_list(*mem, avm->process_info, false); 2351 amdgpu_sync_create(&(*mem)->sync); 2352 (*mem)->is_imported = true; 2353 2354 return 0; 2355 2356 err_free_mem: 2357 kfree(*mem); 2358 err_put_obj: 2359 drm_gem_object_put(obj); 2360 return ret; 2361 } 2362 2363 int amdgpu_amdkfd_gpuvm_export_dmabuf(struct kgd_mem *mem, 2364 struct dma_buf **dma_buf) 2365 { 2366 int ret; 2367 2368 mutex_lock(&mem->lock); 2369 ret = kfd_mem_export_dmabuf(mem); 2370 if (ret) 2371 goto out; 2372 2373 get_dma_buf(mem->dmabuf); 2374 *dma_buf = mem->dmabuf; 2375 out: 2376 mutex_unlock(&mem->lock); 2377 return ret; 2378 } 2379 2380 /* Evict a userptr BO by stopping the queues if necessary 2381 * 2382 * Runs in MMU notifier, may be in RECLAIM_FS context. This means it 2383 * cannot do any memory allocations, and cannot take any locks that 2384 * are held elsewhere while allocating memory. 2385 * 2386 * It doesn't do anything to the BO itself. The real work happens in 2387 * restore, where we get updated page addresses. This function only 2388 * ensures that GPU access to the BO is stopped. 2389 */ 2390 int amdgpu_amdkfd_evict_userptr(struct mmu_interval_notifier *mni, 2391 unsigned long cur_seq, struct kgd_mem *mem) 2392 { 2393 struct amdkfd_process_info *process_info = mem->process_info; 2394 int r = 0; 2395 2396 /* Do not process MMU notifications during CRIU restore until 2397 * KFD_CRIU_OP_RESUME IOCTL is received 2398 */ 2399 if (READ_ONCE(process_info->block_mmu_notifications)) 2400 return 0; 2401 2402 mutex_lock(&process_info->notifier_lock); 2403 mmu_interval_set_seq(mni, cur_seq); 2404 2405 mem->invalid++; 2406 if (++process_info->evicted_bos == 1) { 2407 /* First eviction, stop the queues */ 2408 r = kgd2kfd_quiesce_mm(mni->mm, 2409 KFD_QUEUE_EVICTION_TRIGGER_USERPTR); 2410 if (r) 2411 pr_err("Failed to quiesce KFD\n"); 2412 schedule_delayed_work(&process_info->restore_userptr_work, 2413 msecs_to_jiffies(AMDGPU_USERPTR_RESTORE_DELAY_MS)); 2414 } 2415 mutex_unlock(&process_info->notifier_lock); 2416 2417 return r; 2418 } 2419 2420 /* Update invalid userptr BOs 2421 * 2422 * Moves invalidated (evicted) userptr BOs from userptr_valid_list to 2423 * userptr_inval_list and updates user pages for all BOs that have 2424 * been invalidated since their last update. 2425 */ 2426 static int update_invalid_user_pages(struct amdkfd_process_info *process_info, 2427 struct mm_struct *mm) 2428 { 2429 struct kgd_mem *mem, *tmp_mem; 2430 struct amdgpu_bo *bo; 2431 struct ttm_operation_ctx ctx = { false, false }; 2432 uint32_t invalid; 2433 int ret = 0; 2434 2435 mutex_lock(&process_info->notifier_lock); 2436 2437 /* Move all invalidated BOs to the userptr_inval_list */ 2438 list_for_each_entry_safe(mem, tmp_mem, 2439 &process_info->userptr_valid_list, 2440 validate_list) 2441 if (mem->invalid) 2442 list_move_tail(&mem->validate_list, 2443 &process_info->userptr_inval_list); 2444 2445 /* Go through userptr_inval_list and update any invalid user_pages */ 2446 list_for_each_entry(mem, &process_info->userptr_inval_list, 2447 validate_list) { 2448 invalid = mem->invalid; 2449 if (!invalid) 2450 /* BO hasn't been invalidated since the last 2451 * revalidation attempt. Keep its page list. 2452 */ 2453 continue; 2454 2455 bo = mem->bo; 2456 2457 amdgpu_ttm_tt_discard_user_pages(bo->tbo.ttm, mem->range); 2458 mem->range = NULL; 2459 2460 /* BO reservations and getting user pages (hmm_range_fault) 2461 * must happen outside the notifier lock 2462 */ 2463 mutex_unlock(&process_info->notifier_lock); 2464 2465 /* Move the BO to system (CPU) domain if necessary to unmap 2466 * and free the SG table 2467 */ 2468 if (bo->tbo.resource->mem_type != TTM_PL_SYSTEM) { 2469 if (amdgpu_bo_reserve(bo, true)) 2470 return -EAGAIN; 2471 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_CPU); 2472 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 2473 amdgpu_bo_unreserve(bo); 2474 if (ret) { 2475 pr_err("%s: Failed to invalidate userptr BO\n", 2476 __func__); 2477 return -EAGAIN; 2478 } 2479 } 2480 2481 /* Get updated user pages */ 2482 ret = amdgpu_ttm_tt_get_user_pages(bo, bo->tbo.ttm->pages, 2483 &mem->range); 2484 if (ret) { 2485 pr_debug("Failed %d to get user pages\n", ret); 2486 2487 /* Return -EFAULT bad address error as success. It will 2488 * fail later with a VM fault if the GPU tries to access 2489 * it. Better than hanging indefinitely with stalled 2490 * user mode queues. 2491 * 2492 * Return other error -EBUSY or -ENOMEM to retry restore 2493 */ 2494 if (ret != -EFAULT) 2495 return ret; 2496 2497 ret = 0; 2498 } 2499 2500 mutex_lock(&process_info->notifier_lock); 2501 2502 /* Mark the BO as valid unless it was invalidated 2503 * again concurrently. 2504 */ 2505 if (mem->invalid != invalid) { 2506 ret = -EAGAIN; 2507 goto unlock_out; 2508 } 2509 /* set mem valid if mem has hmm range associated */ 2510 if (mem->range) 2511 mem->invalid = 0; 2512 } 2513 2514 unlock_out: 2515 mutex_unlock(&process_info->notifier_lock); 2516 2517 return ret; 2518 } 2519 2520 /* Validate invalid userptr BOs 2521 * 2522 * Validates BOs on the userptr_inval_list. Also updates GPUVM page tables 2523 * with new page addresses and waits for the page table updates to complete. 2524 */ 2525 static int validate_invalid_user_pages(struct amdkfd_process_info *process_info) 2526 { 2527 struct ttm_operation_ctx ctx = { false, false }; 2528 struct amdgpu_sync sync; 2529 struct drm_exec exec; 2530 2531 struct amdgpu_vm *peer_vm; 2532 struct kgd_mem *mem, *tmp_mem; 2533 struct amdgpu_bo *bo; 2534 int ret; 2535 2536 amdgpu_sync_create(&sync); 2537 2538 drm_exec_init(&exec, 0); 2539 /* Reserve all BOs and page tables for validation */ 2540 drm_exec_until_all_locked(&exec) { 2541 /* Reserve all the page directories */ 2542 list_for_each_entry(peer_vm, &process_info->vm_list_head, 2543 vm_list_node) { 2544 ret = amdgpu_vm_lock_pd(peer_vm, &exec, 2); 2545 drm_exec_retry_on_contention(&exec); 2546 if (unlikely(ret)) 2547 goto unreserve_out; 2548 } 2549 2550 /* Reserve the userptr_inval_list entries to resv_list */ 2551 list_for_each_entry(mem, &process_info->userptr_inval_list, 2552 validate_list) { 2553 struct drm_gem_object *gobj; 2554 2555 gobj = &mem->bo->tbo.base; 2556 ret = drm_exec_prepare_obj(&exec, gobj, 1); 2557 drm_exec_retry_on_contention(&exec); 2558 if (unlikely(ret)) 2559 goto unreserve_out; 2560 } 2561 } 2562 2563 ret = process_validate_vms(process_info); 2564 if (ret) 2565 goto unreserve_out; 2566 2567 /* Validate BOs and update GPUVM page tables */ 2568 list_for_each_entry_safe(mem, tmp_mem, 2569 &process_info->userptr_inval_list, 2570 validate_list) { 2571 struct kfd_mem_attachment *attachment; 2572 2573 bo = mem->bo; 2574 2575 /* Validate the BO if we got user pages */ 2576 if (bo->tbo.ttm->pages[0]) { 2577 amdgpu_bo_placement_from_domain(bo, mem->domain); 2578 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 2579 if (ret) { 2580 pr_err("%s: failed to validate BO\n", __func__); 2581 goto unreserve_out; 2582 } 2583 } 2584 2585 /* Update mapping. If the BO was not validated 2586 * (because we couldn't get user pages), this will 2587 * clear the page table entries, which will result in 2588 * VM faults if the GPU tries to access the invalid 2589 * memory. 2590 */ 2591 list_for_each_entry(attachment, &mem->attachments, list) { 2592 if (!attachment->is_mapped) 2593 continue; 2594 2595 kfd_mem_dmaunmap_attachment(mem, attachment); 2596 ret = update_gpuvm_pte(mem, attachment, &sync); 2597 if (ret) { 2598 pr_err("%s: update PTE failed\n", __func__); 2599 /* make sure this gets validated again */ 2600 mutex_lock(&process_info->notifier_lock); 2601 mem->invalid++; 2602 mutex_unlock(&process_info->notifier_lock); 2603 goto unreserve_out; 2604 } 2605 } 2606 } 2607 2608 /* Update page directories */ 2609 ret = process_update_pds(process_info, &sync); 2610 2611 unreserve_out: 2612 drm_exec_fini(&exec); 2613 amdgpu_sync_wait(&sync, false); 2614 amdgpu_sync_free(&sync); 2615 2616 return ret; 2617 } 2618 2619 /* Confirm that all user pages are valid while holding the notifier lock 2620 * 2621 * Moves valid BOs from the userptr_inval_list back to userptr_val_list. 2622 */ 2623 static int confirm_valid_user_pages_locked(struct amdkfd_process_info *process_info) 2624 { 2625 struct kgd_mem *mem, *tmp_mem; 2626 int ret = 0; 2627 2628 list_for_each_entry_safe(mem, tmp_mem, 2629 &process_info->userptr_inval_list, 2630 validate_list) { 2631 bool valid; 2632 2633 /* keep mem without hmm range at userptr_inval_list */ 2634 if (!mem->range) 2635 continue; 2636 2637 /* Only check mem with hmm range associated */ 2638 valid = amdgpu_ttm_tt_get_user_pages_done( 2639 mem->bo->tbo.ttm, mem->range); 2640 2641 mem->range = NULL; 2642 if (!valid) { 2643 WARN(!mem->invalid, "Invalid BO not marked invalid"); 2644 ret = -EAGAIN; 2645 continue; 2646 } 2647 2648 if (mem->invalid) { 2649 WARN(1, "Valid BO is marked invalid"); 2650 ret = -EAGAIN; 2651 continue; 2652 } 2653 2654 list_move_tail(&mem->validate_list, 2655 &process_info->userptr_valid_list); 2656 } 2657 2658 return ret; 2659 } 2660 2661 /* Worker callback to restore evicted userptr BOs 2662 * 2663 * Tries to update and validate all userptr BOs. If successful and no 2664 * concurrent evictions happened, the queues are restarted. Otherwise, 2665 * reschedule for another attempt later. 2666 */ 2667 static void amdgpu_amdkfd_restore_userptr_worker(struct work_struct *work) 2668 { 2669 struct delayed_work *dwork = to_delayed_work(work); 2670 struct amdkfd_process_info *process_info = 2671 container_of(dwork, struct amdkfd_process_info, 2672 restore_userptr_work); 2673 struct task_struct *usertask; 2674 struct mm_struct *mm; 2675 uint32_t evicted_bos; 2676 2677 mutex_lock(&process_info->notifier_lock); 2678 evicted_bos = process_info->evicted_bos; 2679 mutex_unlock(&process_info->notifier_lock); 2680 if (!evicted_bos) 2681 return; 2682 2683 /* Reference task and mm in case of concurrent process termination */ 2684 usertask = get_pid_task(process_info->pid, PIDTYPE_PID); 2685 if (!usertask) 2686 return; 2687 mm = get_task_mm(usertask); 2688 if (!mm) { 2689 put_task_struct(usertask); 2690 return; 2691 } 2692 2693 mutex_lock(&process_info->lock); 2694 2695 if (update_invalid_user_pages(process_info, mm)) 2696 goto unlock_out; 2697 /* userptr_inval_list can be empty if all evicted userptr BOs 2698 * have been freed. In that case there is nothing to validate 2699 * and we can just restart the queues. 2700 */ 2701 if (!list_empty(&process_info->userptr_inval_list)) { 2702 if (validate_invalid_user_pages(process_info)) 2703 goto unlock_out; 2704 } 2705 /* Final check for concurrent evicton and atomic update. If 2706 * another eviction happens after successful update, it will 2707 * be a first eviction that calls quiesce_mm. The eviction 2708 * reference counting inside KFD will handle this case. 2709 */ 2710 mutex_lock(&process_info->notifier_lock); 2711 if (process_info->evicted_bos != evicted_bos) 2712 goto unlock_notifier_out; 2713 2714 if (confirm_valid_user_pages_locked(process_info)) { 2715 WARN(1, "User pages unexpectedly invalid"); 2716 goto unlock_notifier_out; 2717 } 2718 2719 process_info->evicted_bos = evicted_bos = 0; 2720 2721 if (kgd2kfd_resume_mm(mm)) { 2722 pr_err("%s: Failed to resume KFD\n", __func__); 2723 /* No recovery from this failure. Probably the CP is 2724 * hanging. No point trying again. 2725 */ 2726 } 2727 2728 unlock_notifier_out: 2729 mutex_unlock(&process_info->notifier_lock); 2730 unlock_out: 2731 mutex_unlock(&process_info->lock); 2732 2733 /* If validation failed, reschedule another attempt */ 2734 if (evicted_bos) { 2735 schedule_delayed_work(&process_info->restore_userptr_work, 2736 msecs_to_jiffies(AMDGPU_USERPTR_RESTORE_DELAY_MS)); 2737 2738 kfd_smi_event_queue_restore_rescheduled(mm); 2739 } 2740 mmput(mm); 2741 put_task_struct(usertask); 2742 } 2743 2744 /** amdgpu_amdkfd_gpuvm_restore_process_bos - Restore all BOs for the given 2745 * KFD process identified by process_info 2746 * 2747 * @process_info: amdkfd_process_info of the KFD process 2748 * 2749 * After memory eviction, restore thread calls this function. The function 2750 * should be called when the Process is still valid. BO restore involves - 2751 * 2752 * 1. Release old eviction fence and create new one 2753 * 2. Get two copies of PD BO list from all the VMs. Keep one copy as pd_list. 2754 * 3 Use the second PD list and kfd_bo_list to create a list (ctx.list) of 2755 * BOs that need to be reserved. 2756 * 4. Reserve all the BOs 2757 * 5. Validate of PD and PT BOs. 2758 * 6. Validate all KFD BOs using kfd_bo_list and Map them and add new fence 2759 * 7. Add fence to all PD and PT BOs. 2760 * 8. Unreserve all BOs 2761 */ 2762 int amdgpu_amdkfd_gpuvm_restore_process_bos(void *info, struct dma_fence **ef) 2763 { 2764 struct amdkfd_process_info *process_info = info; 2765 struct amdgpu_vm *peer_vm; 2766 struct kgd_mem *mem; 2767 struct amdgpu_amdkfd_fence *new_fence; 2768 struct list_head duplicate_save; 2769 struct amdgpu_sync sync_obj; 2770 unsigned long failed_size = 0; 2771 unsigned long total_size = 0; 2772 struct drm_exec exec; 2773 int ret; 2774 2775 INIT_LIST_HEAD(&duplicate_save); 2776 2777 mutex_lock(&process_info->lock); 2778 2779 drm_exec_init(&exec, 0); 2780 drm_exec_until_all_locked(&exec) { 2781 list_for_each_entry(peer_vm, &process_info->vm_list_head, 2782 vm_list_node) { 2783 ret = amdgpu_vm_lock_pd(peer_vm, &exec, 2); 2784 drm_exec_retry_on_contention(&exec); 2785 if (unlikely(ret)) 2786 goto ttm_reserve_fail; 2787 } 2788 2789 /* Reserve all BOs and page tables/directory. Add all BOs from 2790 * kfd_bo_list to ctx.list 2791 */ 2792 list_for_each_entry(mem, &process_info->kfd_bo_list, 2793 validate_list) { 2794 struct drm_gem_object *gobj; 2795 2796 gobj = &mem->bo->tbo.base; 2797 ret = drm_exec_prepare_obj(&exec, gobj, 1); 2798 drm_exec_retry_on_contention(&exec); 2799 if (unlikely(ret)) 2800 goto ttm_reserve_fail; 2801 } 2802 } 2803 2804 amdgpu_sync_create(&sync_obj); 2805 2806 /* Validate PDs and PTs */ 2807 ret = process_validate_vms(process_info); 2808 if (ret) 2809 goto validate_map_fail; 2810 2811 ret = process_sync_pds_resv(process_info, &sync_obj); 2812 if (ret) { 2813 pr_debug("Memory eviction: Failed to sync to PD BO moving fence. Try again\n"); 2814 goto validate_map_fail; 2815 } 2816 2817 /* Validate BOs and map them to GPUVM (update VM page tables). */ 2818 list_for_each_entry(mem, &process_info->kfd_bo_list, 2819 validate_list) { 2820 2821 struct amdgpu_bo *bo = mem->bo; 2822 uint32_t domain = mem->domain; 2823 struct kfd_mem_attachment *attachment; 2824 struct dma_resv_iter cursor; 2825 struct dma_fence *fence; 2826 2827 total_size += amdgpu_bo_size(bo); 2828 2829 ret = amdgpu_amdkfd_bo_validate(bo, domain, false); 2830 if (ret) { 2831 pr_debug("Memory eviction: Validate BOs failed\n"); 2832 failed_size += amdgpu_bo_size(bo); 2833 ret = amdgpu_amdkfd_bo_validate(bo, 2834 AMDGPU_GEM_DOMAIN_GTT, false); 2835 if (ret) { 2836 pr_debug("Memory eviction: Try again\n"); 2837 goto validate_map_fail; 2838 } 2839 } 2840 dma_resv_for_each_fence(&cursor, bo->tbo.base.resv, 2841 DMA_RESV_USAGE_KERNEL, fence) { 2842 ret = amdgpu_sync_fence(&sync_obj, fence); 2843 if (ret) { 2844 pr_debug("Memory eviction: Sync BO fence failed. Try again\n"); 2845 goto validate_map_fail; 2846 } 2847 } 2848 list_for_each_entry(attachment, &mem->attachments, list) { 2849 if (!attachment->is_mapped) 2850 continue; 2851 2852 if (attachment->bo_va->base.bo->tbo.pin_count) 2853 continue; 2854 2855 kfd_mem_dmaunmap_attachment(mem, attachment); 2856 ret = update_gpuvm_pte(mem, attachment, &sync_obj); 2857 if (ret) { 2858 pr_debug("Memory eviction: update PTE failed. Try again\n"); 2859 goto validate_map_fail; 2860 } 2861 } 2862 } 2863 2864 if (failed_size) 2865 pr_debug("0x%lx/0x%lx in system\n", failed_size, total_size); 2866 2867 /* Update page directories */ 2868 ret = process_update_pds(process_info, &sync_obj); 2869 if (ret) { 2870 pr_debug("Memory eviction: update PDs failed. Try again\n"); 2871 goto validate_map_fail; 2872 } 2873 2874 /* Wait for validate and PT updates to finish */ 2875 amdgpu_sync_wait(&sync_obj, false); 2876 2877 /* Release old eviction fence and create new one, because fence only 2878 * goes from unsignaled to signaled, fence cannot be reused. 2879 * Use context and mm from the old fence. 2880 */ 2881 new_fence = amdgpu_amdkfd_fence_create( 2882 process_info->eviction_fence->base.context, 2883 process_info->eviction_fence->mm, 2884 NULL); 2885 if (!new_fence) { 2886 pr_err("Failed to create eviction fence\n"); 2887 ret = -ENOMEM; 2888 goto validate_map_fail; 2889 } 2890 dma_fence_put(&process_info->eviction_fence->base); 2891 process_info->eviction_fence = new_fence; 2892 *ef = dma_fence_get(&new_fence->base); 2893 2894 /* Attach new eviction fence to all BOs except pinned ones */ 2895 list_for_each_entry(mem, &process_info->kfd_bo_list, validate_list) { 2896 if (mem->bo->tbo.pin_count) 2897 continue; 2898 2899 dma_resv_add_fence(mem->bo->tbo.base.resv, 2900 &process_info->eviction_fence->base, 2901 DMA_RESV_USAGE_BOOKKEEP); 2902 } 2903 /* Attach eviction fence to PD / PT BOs */ 2904 list_for_each_entry(peer_vm, &process_info->vm_list_head, 2905 vm_list_node) { 2906 struct amdgpu_bo *bo = peer_vm->root.bo; 2907 2908 dma_resv_add_fence(bo->tbo.base.resv, 2909 &process_info->eviction_fence->base, 2910 DMA_RESV_USAGE_BOOKKEEP); 2911 } 2912 2913 validate_map_fail: 2914 amdgpu_sync_free(&sync_obj); 2915 ttm_reserve_fail: 2916 drm_exec_fini(&exec); 2917 mutex_unlock(&process_info->lock); 2918 return ret; 2919 } 2920 2921 int amdgpu_amdkfd_add_gws_to_process(void *info, void *gws, struct kgd_mem **mem) 2922 { 2923 struct amdkfd_process_info *process_info = (struct amdkfd_process_info *)info; 2924 struct amdgpu_bo *gws_bo = (struct amdgpu_bo *)gws; 2925 int ret; 2926 2927 if (!info || !gws) 2928 return -EINVAL; 2929 2930 *mem = kzalloc(sizeof(struct kgd_mem), GFP_KERNEL); 2931 if (!*mem) 2932 return -ENOMEM; 2933 2934 mutex_init(&(*mem)->lock); 2935 INIT_LIST_HEAD(&(*mem)->attachments); 2936 (*mem)->bo = amdgpu_bo_ref(gws_bo); 2937 (*mem)->domain = AMDGPU_GEM_DOMAIN_GWS; 2938 (*mem)->process_info = process_info; 2939 add_kgd_mem_to_kfd_bo_list(*mem, process_info, false); 2940 amdgpu_sync_create(&(*mem)->sync); 2941 2942 2943 /* Validate gws bo the first time it is added to process */ 2944 mutex_lock(&(*mem)->process_info->lock); 2945 ret = amdgpu_bo_reserve(gws_bo, false); 2946 if (unlikely(ret)) { 2947 pr_err("Reserve gws bo failed %d\n", ret); 2948 goto bo_reservation_failure; 2949 } 2950 2951 ret = amdgpu_amdkfd_bo_validate(gws_bo, AMDGPU_GEM_DOMAIN_GWS, true); 2952 if (ret) { 2953 pr_err("GWS BO validate failed %d\n", ret); 2954 goto bo_validation_failure; 2955 } 2956 /* GWS resource is shared b/t amdgpu and amdkfd 2957 * Add process eviction fence to bo so they can 2958 * evict each other. 2959 */ 2960 ret = dma_resv_reserve_fences(gws_bo->tbo.base.resv, 1); 2961 if (ret) 2962 goto reserve_shared_fail; 2963 dma_resv_add_fence(gws_bo->tbo.base.resv, 2964 &process_info->eviction_fence->base, 2965 DMA_RESV_USAGE_BOOKKEEP); 2966 amdgpu_bo_unreserve(gws_bo); 2967 mutex_unlock(&(*mem)->process_info->lock); 2968 2969 return ret; 2970 2971 reserve_shared_fail: 2972 bo_validation_failure: 2973 amdgpu_bo_unreserve(gws_bo); 2974 bo_reservation_failure: 2975 mutex_unlock(&(*mem)->process_info->lock); 2976 amdgpu_sync_free(&(*mem)->sync); 2977 remove_kgd_mem_from_kfd_bo_list(*mem, process_info); 2978 amdgpu_bo_unref(&gws_bo); 2979 mutex_destroy(&(*mem)->lock); 2980 kfree(*mem); 2981 *mem = NULL; 2982 return ret; 2983 } 2984 2985 int amdgpu_amdkfd_remove_gws_from_process(void *info, void *mem) 2986 { 2987 int ret; 2988 struct amdkfd_process_info *process_info = (struct amdkfd_process_info *)info; 2989 struct kgd_mem *kgd_mem = (struct kgd_mem *)mem; 2990 struct amdgpu_bo *gws_bo = kgd_mem->bo; 2991 2992 /* Remove BO from process's validate list so restore worker won't touch 2993 * it anymore 2994 */ 2995 remove_kgd_mem_from_kfd_bo_list(kgd_mem, process_info); 2996 2997 ret = amdgpu_bo_reserve(gws_bo, false); 2998 if (unlikely(ret)) { 2999 pr_err("Reserve gws bo failed %d\n", ret); 3000 //TODO add BO back to validate_list? 3001 return ret; 3002 } 3003 amdgpu_amdkfd_remove_eviction_fence(gws_bo, 3004 process_info->eviction_fence); 3005 amdgpu_bo_unreserve(gws_bo); 3006 amdgpu_sync_free(&kgd_mem->sync); 3007 amdgpu_bo_unref(&gws_bo); 3008 mutex_destroy(&kgd_mem->lock); 3009 kfree(mem); 3010 return 0; 3011 } 3012 3013 /* Returns GPU-specific tiling mode information */ 3014 int amdgpu_amdkfd_get_tile_config(struct amdgpu_device *adev, 3015 struct tile_config *config) 3016 { 3017 config->gb_addr_config = adev->gfx.config.gb_addr_config; 3018 config->tile_config_ptr = adev->gfx.config.tile_mode_array; 3019 config->num_tile_configs = 3020 ARRAY_SIZE(adev->gfx.config.tile_mode_array); 3021 config->macro_tile_config_ptr = 3022 adev->gfx.config.macrotile_mode_array; 3023 config->num_macro_tile_configs = 3024 ARRAY_SIZE(adev->gfx.config.macrotile_mode_array); 3025 3026 /* Those values are not set from GFX9 onwards */ 3027 config->num_banks = adev->gfx.config.num_banks; 3028 config->num_ranks = adev->gfx.config.num_ranks; 3029 3030 return 0; 3031 } 3032 3033 bool amdgpu_amdkfd_bo_mapped_to_dev(struct amdgpu_device *adev, struct kgd_mem *mem) 3034 { 3035 struct kfd_mem_attachment *entry; 3036 3037 list_for_each_entry(entry, &mem->attachments, list) { 3038 if (entry->is_mapped && entry->adev == adev) 3039 return true; 3040 } 3041 return false; 3042 } 3043 3044 #if defined(CONFIG_DEBUG_FS) 3045 3046 int kfd_debugfs_kfd_mem_limits(struct seq_file *m, void *data) 3047 { 3048 3049 spin_lock(&kfd_mem_limit.mem_limit_lock); 3050 seq_printf(m, "System mem used %lldM out of %lluM\n", 3051 (kfd_mem_limit.system_mem_used >> 20), 3052 (kfd_mem_limit.max_system_mem_limit >> 20)); 3053 seq_printf(m, "TTM mem used %lldM out of %lluM\n", 3054 (kfd_mem_limit.ttm_mem_used >> 20), 3055 (kfd_mem_limit.max_ttm_mem_limit >> 20)); 3056 spin_unlock(&kfd_mem_limit.mem_limit_lock); 3057 3058 return 0; 3059 } 3060 3061 #endif 3062