1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright 2014-2018 Advanced Micro Devices, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 */ 23 #include <linux/dma-buf.h> 24 #include <linux/list.h> 25 #include <linux/pagemap.h> 26 #include <linux/sched/mm.h> 27 #include <linux/sched/task.h> 28 #include <linux/fdtable.h> 29 #include <drm/ttm/ttm_tt.h> 30 31 #include <drm/drm_exec.h> 32 33 #include "amdgpu_object.h" 34 #include "amdgpu_gem.h" 35 #include "amdgpu_vm.h" 36 #include "amdgpu_hmm.h" 37 #include "amdgpu_amdkfd.h" 38 #include "amdgpu_dma_buf.h" 39 #include <uapi/linux/kfd_ioctl.h> 40 #include "amdgpu_xgmi.h" 41 #include "kfd_priv.h" 42 #include "kfd_smi_events.h" 43 44 /* Userptr restore delay, just long enough to allow consecutive VM 45 * changes to accumulate 46 */ 47 #define AMDGPU_USERPTR_RESTORE_DELAY_MS 1 48 #define AMDGPU_RESERVE_MEM_LIMIT (3UL << 29) 49 50 /* 51 * Align VRAM availability to 2MB to avoid fragmentation caused by 4K allocations in the tail 2MB 52 * BO chunk 53 */ 54 #define VRAM_AVAILABLITY_ALIGN (1 << 21) 55 56 /* Impose limit on how much memory KFD can use */ 57 static struct { 58 uint64_t max_system_mem_limit; 59 uint64_t max_ttm_mem_limit; 60 int64_t system_mem_used; 61 int64_t ttm_mem_used; 62 spinlock_t mem_limit_lock; 63 } kfd_mem_limit; 64 65 static const char * const domain_bit_to_string[] = { 66 "CPU", 67 "GTT", 68 "VRAM", 69 "GDS", 70 "GWS", 71 "OA" 72 }; 73 74 #define domain_string(domain) domain_bit_to_string[ffs(domain)-1] 75 76 static void amdgpu_amdkfd_restore_userptr_worker(struct work_struct *work); 77 78 static bool kfd_mem_is_attached(struct amdgpu_vm *avm, 79 struct kgd_mem *mem) 80 { 81 struct kfd_mem_attachment *entry; 82 83 list_for_each_entry(entry, &mem->attachments, list) 84 if (entry->bo_va->base.vm == avm) 85 return true; 86 87 return false; 88 } 89 90 /** 91 * reuse_dmamap() - Check whether adev can share the original 92 * userptr BO 93 * 94 * If both adev and bo_adev are in direct mapping or 95 * in the same iommu group, they can share the original BO. 96 * 97 * @adev: Device to which can or cannot share the original BO 98 * @bo_adev: Device to which allocated BO belongs to 99 * 100 * Return: returns true if adev can share original userptr BO, 101 * false otherwise. 102 */ 103 static bool reuse_dmamap(struct amdgpu_device *adev, struct amdgpu_device *bo_adev) 104 { 105 return (adev->ram_is_direct_mapped && bo_adev->ram_is_direct_mapped) || 106 (adev->dev->iommu_group == bo_adev->dev->iommu_group); 107 } 108 109 /* Set memory usage limits. Current, limits are 110 * System (TTM + userptr) memory - 15/16th System RAM 111 * TTM memory - 3/8th System RAM 112 */ 113 void amdgpu_amdkfd_gpuvm_init_mem_limits(void) 114 { 115 struct sysinfo si; 116 uint64_t mem; 117 118 if (kfd_mem_limit.max_system_mem_limit) 119 return; 120 121 si_meminfo(&si); 122 mem = si.totalram - si.totalhigh; 123 mem *= si.mem_unit; 124 125 spin_lock_init(&kfd_mem_limit.mem_limit_lock); 126 kfd_mem_limit.max_system_mem_limit = mem - (mem >> 6); 127 if (kfd_mem_limit.max_system_mem_limit < 2 * AMDGPU_RESERVE_MEM_LIMIT) 128 kfd_mem_limit.max_system_mem_limit >>= 1; 129 else 130 kfd_mem_limit.max_system_mem_limit -= AMDGPU_RESERVE_MEM_LIMIT; 131 132 kfd_mem_limit.max_ttm_mem_limit = ttm_tt_pages_limit() << PAGE_SHIFT; 133 pr_debug("Kernel memory limit %lluM, TTM limit %lluM\n", 134 (kfd_mem_limit.max_system_mem_limit >> 20), 135 (kfd_mem_limit.max_ttm_mem_limit >> 20)); 136 } 137 138 void amdgpu_amdkfd_reserve_system_mem(uint64_t size) 139 { 140 kfd_mem_limit.system_mem_used += size; 141 } 142 143 /* Estimate page table size needed to represent a given memory size 144 * 145 * With 4KB pages, we need one 8 byte PTE for each 4KB of memory 146 * (factor 512, >> 9). With 2MB pages, we need one 8 byte PTE for 2MB 147 * of memory (factor 256K, >> 18). ROCm user mode tries to optimize 148 * for 2MB pages for TLB efficiency. However, small allocations and 149 * fragmented system memory still need some 4KB pages. We choose a 150 * compromise that should work in most cases without reserving too 151 * much memory for page tables unnecessarily (factor 16K, >> 14). 152 */ 153 154 #define ESTIMATE_PT_SIZE(mem_size) max(((mem_size) >> 14), AMDGPU_VM_RESERVED_VRAM) 155 156 /** 157 * amdgpu_amdkfd_reserve_mem_limit() - Decrease available memory by size 158 * of buffer. 159 * 160 * @adev: Device to which allocated BO belongs to 161 * @size: Size of buffer, in bytes, encapsulated by B0. This should be 162 * equivalent to amdgpu_bo_size(BO) 163 * @alloc_flag: Flag used in allocating a BO as noted above 164 * @xcp_id: xcp_id is used to get xcp from xcp manager, one xcp is 165 * managed as one compute node in driver for app 166 * 167 * Return: 168 * returns -ENOMEM in case of error, ZERO otherwise 169 */ 170 int amdgpu_amdkfd_reserve_mem_limit(struct amdgpu_device *adev, 171 uint64_t size, u32 alloc_flag, int8_t xcp_id) 172 { 173 uint64_t reserved_for_pt = 174 ESTIMATE_PT_SIZE(amdgpu_amdkfd_total_mem_size); 175 size_t system_mem_needed, ttm_mem_needed, vram_needed; 176 int ret = 0; 177 uint64_t vram_size = 0; 178 179 system_mem_needed = 0; 180 ttm_mem_needed = 0; 181 vram_needed = 0; 182 if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_GTT) { 183 system_mem_needed = size; 184 ttm_mem_needed = size; 185 } else if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) { 186 /* 187 * Conservatively round up the allocation requirement to 2 MB 188 * to avoid fragmentation caused by 4K allocations in the tail 189 * 2M BO chunk. 190 */ 191 vram_needed = size; 192 /* 193 * For GFX 9.4.3, get the VRAM size from XCP structs 194 */ 195 if (WARN_ONCE(xcp_id < 0, "invalid XCP ID %d", xcp_id)) 196 return -EINVAL; 197 198 vram_size = KFD_XCP_MEMORY_SIZE(adev, xcp_id); 199 if (adev->gmc.is_app_apu) { 200 system_mem_needed = size; 201 ttm_mem_needed = size; 202 } 203 } else if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) { 204 system_mem_needed = size; 205 } else if (!(alloc_flag & 206 (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL | 207 KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP))) { 208 pr_err("%s: Invalid BO type %#x\n", __func__, alloc_flag); 209 return -ENOMEM; 210 } 211 212 spin_lock(&kfd_mem_limit.mem_limit_lock); 213 214 if (kfd_mem_limit.system_mem_used + system_mem_needed > 215 kfd_mem_limit.max_system_mem_limit) 216 pr_debug("Set no_system_mem_limit=1 if using shared memory\n"); 217 218 if ((kfd_mem_limit.system_mem_used + system_mem_needed > 219 kfd_mem_limit.max_system_mem_limit && !no_system_mem_limit) || 220 (kfd_mem_limit.ttm_mem_used + ttm_mem_needed > 221 kfd_mem_limit.max_ttm_mem_limit) || 222 (adev && xcp_id >= 0 && adev->kfd.vram_used[xcp_id] + vram_needed > 223 vram_size - reserved_for_pt)) { 224 ret = -ENOMEM; 225 goto release; 226 } 227 228 /* Update memory accounting by decreasing available system 229 * memory, TTM memory and GPU memory as computed above 230 */ 231 WARN_ONCE(vram_needed && !adev, 232 "adev reference can't be null when vram is used"); 233 if (adev && xcp_id >= 0) { 234 adev->kfd.vram_used[xcp_id] += vram_needed; 235 adev->kfd.vram_used_aligned[xcp_id] += adev->gmc.is_app_apu ? 236 vram_needed : 237 ALIGN(vram_needed, VRAM_AVAILABLITY_ALIGN); 238 } 239 kfd_mem_limit.system_mem_used += system_mem_needed; 240 kfd_mem_limit.ttm_mem_used += ttm_mem_needed; 241 242 release: 243 spin_unlock(&kfd_mem_limit.mem_limit_lock); 244 return ret; 245 } 246 247 void amdgpu_amdkfd_unreserve_mem_limit(struct amdgpu_device *adev, 248 uint64_t size, u32 alloc_flag, int8_t xcp_id) 249 { 250 spin_lock(&kfd_mem_limit.mem_limit_lock); 251 252 if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_GTT) { 253 kfd_mem_limit.system_mem_used -= size; 254 kfd_mem_limit.ttm_mem_used -= size; 255 } else if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) { 256 WARN_ONCE(!adev, 257 "adev reference can't be null when alloc mem flags vram is set"); 258 if (WARN_ONCE(xcp_id < 0, "invalid XCP ID %d", xcp_id)) 259 goto release; 260 261 if (adev) { 262 adev->kfd.vram_used[xcp_id] -= size; 263 if (adev->gmc.is_app_apu) { 264 adev->kfd.vram_used_aligned[xcp_id] -= size; 265 kfd_mem_limit.system_mem_used -= size; 266 kfd_mem_limit.ttm_mem_used -= size; 267 } else { 268 adev->kfd.vram_used_aligned[xcp_id] -= 269 ALIGN(size, VRAM_AVAILABLITY_ALIGN); 270 } 271 } 272 } else if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) { 273 kfd_mem_limit.system_mem_used -= size; 274 } else if (!(alloc_flag & 275 (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL | 276 KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP))) { 277 pr_err("%s: Invalid BO type %#x\n", __func__, alloc_flag); 278 goto release; 279 } 280 WARN_ONCE(adev && xcp_id >= 0 && adev->kfd.vram_used[xcp_id] < 0, 281 "KFD VRAM memory accounting unbalanced for xcp: %d", xcp_id); 282 WARN_ONCE(kfd_mem_limit.ttm_mem_used < 0, 283 "KFD TTM memory accounting unbalanced"); 284 WARN_ONCE(kfd_mem_limit.system_mem_used < 0, 285 "KFD system memory accounting unbalanced"); 286 287 release: 288 spin_unlock(&kfd_mem_limit.mem_limit_lock); 289 } 290 291 void amdgpu_amdkfd_release_notify(struct amdgpu_bo *bo) 292 { 293 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 294 u32 alloc_flags = bo->kfd_bo->alloc_flags; 295 u64 size = amdgpu_bo_size(bo); 296 297 amdgpu_amdkfd_unreserve_mem_limit(adev, size, alloc_flags, 298 bo->xcp_id); 299 300 kfree(bo->kfd_bo); 301 } 302 303 /** 304 * create_dmamap_sg_bo() - Creates a amdgpu_bo object to reflect information 305 * about USERPTR or DOOREBELL or MMIO BO. 306 * 307 * @adev: Device for which dmamap BO is being created 308 * @mem: BO of peer device that is being DMA mapped. Provides parameters 309 * in building the dmamap BO 310 * @bo_out: Output parameter updated with handle of dmamap BO 311 */ 312 static int 313 create_dmamap_sg_bo(struct amdgpu_device *adev, 314 struct kgd_mem *mem, struct amdgpu_bo **bo_out) 315 { 316 struct drm_gem_object *gem_obj; 317 int ret; 318 uint64_t flags = 0; 319 320 ret = amdgpu_bo_reserve(mem->bo, false); 321 if (ret) 322 return ret; 323 324 if (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) 325 flags |= mem->bo->flags & (AMDGPU_GEM_CREATE_COHERENT | 326 AMDGPU_GEM_CREATE_UNCACHED); 327 328 ret = amdgpu_gem_object_create(adev, mem->bo->tbo.base.size, 1, 329 AMDGPU_GEM_DOMAIN_CPU, AMDGPU_GEM_CREATE_PREEMPTIBLE | flags, 330 ttm_bo_type_sg, mem->bo->tbo.base.resv, &gem_obj, 0); 331 332 amdgpu_bo_unreserve(mem->bo); 333 334 if (ret) { 335 pr_err("Error in creating DMA mappable SG BO on domain: %d\n", ret); 336 return -EINVAL; 337 } 338 339 *bo_out = gem_to_amdgpu_bo(gem_obj); 340 (*bo_out)->parent = amdgpu_bo_ref(mem->bo); 341 return ret; 342 } 343 344 /* amdgpu_amdkfd_remove_eviction_fence - Removes eviction fence from BO's 345 * reservation object. 346 * 347 * @bo: [IN] Remove eviction fence(s) from this BO 348 * @ef: [IN] This eviction fence is removed if it 349 * is present in the shared list. 350 * 351 * NOTE: Must be called with BO reserved i.e. bo->tbo.resv->lock held. 352 */ 353 static int amdgpu_amdkfd_remove_eviction_fence(struct amdgpu_bo *bo, 354 struct amdgpu_amdkfd_fence *ef) 355 { 356 struct dma_fence *replacement; 357 358 if (!ef) 359 return -EINVAL; 360 361 /* TODO: Instead of block before we should use the fence of the page 362 * table update and TLB flush here directly. 363 */ 364 replacement = dma_fence_get_stub(); 365 dma_resv_replace_fences(bo->tbo.base.resv, ef->base.context, 366 replacement, DMA_RESV_USAGE_BOOKKEEP); 367 dma_fence_put(replacement); 368 return 0; 369 } 370 371 int amdgpu_amdkfd_remove_fence_on_pt_pd_bos(struct amdgpu_bo *bo) 372 { 373 struct amdgpu_bo *root = bo; 374 struct amdgpu_vm_bo_base *vm_bo; 375 struct amdgpu_vm *vm; 376 struct amdkfd_process_info *info; 377 struct amdgpu_amdkfd_fence *ef; 378 int ret; 379 380 /* we can always get vm_bo from root PD bo.*/ 381 while (root->parent) 382 root = root->parent; 383 384 vm_bo = root->vm_bo; 385 if (!vm_bo) 386 return 0; 387 388 vm = vm_bo->vm; 389 if (!vm) 390 return 0; 391 392 info = vm->process_info; 393 if (!info || !info->eviction_fence) 394 return 0; 395 396 ef = container_of(dma_fence_get(&info->eviction_fence->base), 397 struct amdgpu_amdkfd_fence, base); 398 399 BUG_ON(!dma_resv_trylock(bo->tbo.base.resv)); 400 ret = amdgpu_amdkfd_remove_eviction_fence(bo, ef); 401 dma_resv_unlock(bo->tbo.base.resv); 402 403 dma_fence_put(&ef->base); 404 return ret; 405 } 406 407 static int amdgpu_amdkfd_bo_validate(struct amdgpu_bo *bo, uint32_t domain, 408 bool wait) 409 { 410 struct ttm_operation_ctx ctx = { false, false }; 411 int ret; 412 413 if (WARN(amdgpu_ttm_tt_get_usermm(bo->tbo.ttm), 414 "Called with userptr BO")) 415 return -EINVAL; 416 417 amdgpu_bo_placement_from_domain(bo, domain); 418 419 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 420 if (ret) 421 goto validate_fail; 422 if (wait) 423 amdgpu_bo_sync_wait(bo, AMDGPU_FENCE_OWNER_KFD, false); 424 425 validate_fail: 426 return ret; 427 } 428 429 int amdgpu_amdkfd_bo_validate_and_fence(struct amdgpu_bo *bo, 430 uint32_t domain, 431 struct dma_fence *fence) 432 { 433 int ret = amdgpu_bo_reserve(bo, false); 434 435 if (ret) 436 return ret; 437 438 ret = amdgpu_amdkfd_bo_validate(bo, domain, true); 439 if (ret) 440 goto unreserve_out; 441 442 ret = dma_resv_reserve_fences(bo->tbo.base.resv, 1); 443 if (ret) 444 goto unreserve_out; 445 446 dma_resv_add_fence(bo->tbo.base.resv, fence, 447 DMA_RESV_USAGE_BOOKKEEP); 448 449 unreserve_out: 450 amdgpu_bo_unreserve(bo); 451 452 return ret; 453 } 454 455 static int amdgpu_amdkfd_validate_vm_bo(void *_unused, struct amdgpu_bo *bo) 456 { 457 return amdgpu_amdkfd_bo_validate(bo, bo->allowed_domains, false); 458 } 459 460 /* vm_validate_pt_pd_bos - Validate page table and directory BOs 461 * 462 * Page directories are not updated here because huge page handling 463 * during page table updates can invalidate page directory entries 464 * again. Page directories are only updated after updating page 465 * tables. 466 */ 467 static int vm_validate_pt_pd_bos(struct amdgpu_vm *vm, 468 struct ww_acquire_ctx *ticket) 469 { 470 struct amdgpu_bo *pd = vm->root.bo; 471 struct amdgpu_device *adev = amdgpu_ttm_adev(pd->tbo.bdev); 472 int ret; 473 474 ret = amdgpu_vm_validate(adev, vm, ticket, 475 amdgpu_amdkfd_validate_vm_bo, NULL); 476 if (ret) { 477 pr_err("failed to validate PT BOs\n"); 478 return ret; 479 } 480 481 vm->pd_phys_addr = amdgpu_gmc_pd_addr(vm->root.bo); 482 483 return 0; 484 } 485 486 static int vm_update_pds(struct amdgpu_vm *vm, struct amdgpu_sync *sync) 487 { 488 struct amdgpu_bo *pd = vm->root.bo; 489 struct amdgpu_device *adev = amdgpu_ttm_adev(pd->tbo.bdev); 490 int ret; 491 492 ret = amdgpu_vm_update_pdes(adev, vm, false); 493 if (ret) 494 return ret; 495 496 return amdgpu_sync_fence(sync, vm->last_update); 497 } 498 499 static uint64_t get_pte_flags(struct amdgpu_device *adev, struct kgd_mem *mem) 500 { 501 uint32_t mapping_flags = AMDGPU_VM_PAGE_READABLE | 502 AMDGPU_VM_MTYPE_DEFAULT; 503 504 if (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE) 505 mapping_flags |= AMDGPU_VM_PAGE_WRITEABLE; 506 if (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE) 507 mapping_flags |= AMDGPU_VM_PAGE_EXECUTABLE; 508 509 return amdgpu_gem_va_map_flags(adev, mapping_flags); 510 } 511 512 /** 513 * create_sg_table() - Create an sg_table for a contiguous DMA addr range 514 * @addr: The starting address to point to 515 * @size: Size of memory area in bytes being pointed to 516 * 517 * Allocates an instance of sg_table and initializes it to point to memory 518 * area specified by input parameters. The address used to build is assumed 519 * to be DMA mapped, if needed. 520 * 521 * DOORBELL or MMIO BOs use only one scatterlist node in their sg_table 522 * because they are physically contiguous. 523 * 524 * Return: Initialized instance of SG Table or NULL 525 */ 526 static struct sg_table *create_sg_table(uint64_t addr, uint32_t size) 527 { 528 struct sg_table *sg = kmalloc(sizeof(*sg), GFP_KERNEL); 529 530 if (!sg) 531 return NULL; 532 if (sg_alloc_table(sg, 1, GFP_KERNEL)) { 533 kfree(sg); 534 return NULL; 535 } 536 sg_dma_address(sg->sgl) = addr; 537 sg->sgl->length = size; 538 #ifdef CONFIG_NEED_SG_DMA_LENGTH 539 sg->sgl->dma_length = size; 540 #endif 541 return sg; 542 } 543 544 static int 545 kfd_mem_dmamap_userptr(struct kgd_mem *mem, 546 struct kfd_mem_attachment *attachment) 547 { 548 enum dma_data_direction direction = 549 mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? 550 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 551 struct ttm_operation_ctx ctx = {.interruptible = true}; 552 struct amdgpu_bo *bo = attachment->bo_va->base.bo; 553 struct amdgpu_device *adev = attachment->adev; 554 struct ttm_tt *src_ttm = mem->bo->tbo.ttm; 555 struct ttm_tt *ttm = bo->tbo.ttm; 556 int ret; 557 558 if (WARN_ON(ttm->num_pages != src_ttm->num_pages)) 559 return -EINVAL; 560 561 ttm->sg = kmalloc(sizeof(*ttm->sg), GFP_KERNEL); 562 if (unlikely(!ttm->sg)) 563 return -ENOMEM; 564 565 /* Same sequence as in amdgpu_ttm_tt_pin_userptr */ 566 ret = sg_alloc_table_from_pages(ttm->sg, src_ttm->pages, 567 ttm->num_pages, 0, 568 (u64)ttm->num_pages << PAGE_SHIFT, 569 GFP_KERNEL); 570 if (unlikely(ret)) 571 goto free_sg; 572 573 ret = dma_map_sgtable(adev->dev, ttm->sg, direction, 0); 574 if (unlikely(ret)) 575 goto release_sg; 576 577 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_GTT); 578 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 579 if (ret) 580 goto unmap_sg; 581 582 return 0; 583 584 unmap_sg: 585 dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0); 586 release_sg: 587 pr_err("DMA map userptr failed: %d\n", ret); 588 sg_free_table(ttm->sg); 589 free_sg: 590 kfree(ttm->sg); 591 ttm->sg = NULL; 592 return ret; 593 } 594 595 static int 596 kfd_mem_dmamap_dmabuf(struct kfd_mem_attachment *attachment) 597 { 598 struct ttm_operation_ctx ctx = {.interruptible = true}; 599 struct amdgpu_bo *bo = attachment->bo_va->base.bo; 600 int ret; 601 602 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_CPU); 603 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 604 if (ret) 605 return ret; 606 607 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_GTT); 608 return ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 609 } 610 611 /** 612 * kfd_mem_dmamap_sg_bo() - Create DMA mapped sg_table to access DOORBELL or MMIO BO 613 * @mem: SG BO of the DOORBELL or MMIO resource on the owning device 614 * @attachment: Virtual address attachment of the BO on accessing device 615 * 616 * An access request from the device that owns DOORBELL does not require DMA mapping. 617 * This is because the request doesn't go through PCIe root complex i.e. it instead 618 * loops back. The need to DMA map arises only when accessing peer device's DOORBELL 619 * 620 * In contrast, all access requests for MMIO need to be DMA mapped without regard to 621 * device ownership. This is because access requests for MMIO go through PCIe root 622 * complex. 623 * 624 * This is accomplished in two steps: 625 * - Obtain DMA mapped address of DOORBELL or MMIO memory that could be used 626 * in updating requesting device's page table 627 * - Signal TTM to mark memory pointed to by requesting device's BO as GPU 628 * accessible. This allows an update of requesting device's page table 629 * with entries associated with DOOREBELL or MMIO memory 630 * 631 * This method is invoked in the following contexts: 632 * - Mapping of DOORBELL or MMIO BO of same or peer device 633 * - Validating an evicted DOOREBELL or MMIO BO on device seeking access 634 * 635 * Return: ZERO if successful, NON-ZERO otherwise 636 */ 637 static int 638 kfd_mem_dmamap_sg_bo(struct kgd_mem *mem, 639 struct kfd_mem_attachment *attachment) 640 { 641 struct ttm_operation_ctx ctx = {.interruptible = true}; 642 struct amdgpu_bo *bo = attachment->bo_va->base.bo; 643 struct amdgpu_device *adev = attachment->adev; 644 struct ttm_tt *ttm = bo->tbo.ttm; 645 enum dma_data_direction dir; 646 dma_addr_t dma_addr; 647 bool mmio; 648 int ret; 649 650 /* Expect SG Table of dmapmap BO to be NULL */ 651 mmio = (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP); 652 if (unlikely(ttm->sg)) { 653 pr_err("SG Table of %d BO for peer device is UNEXPECTEDLY NON-NULL", mmio); 654 return -EINVAL; 655 } 656 657 dir = mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? 658 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 659 dma_addr = mem->bo->tbo.sg->sgl->dma_address; 660 pr_debug("%d BO size: %d\n", mmio, mem->bo->tbo.sg->sgl->length); 661 pr_debug("%d BO address before DMA mapping: %llx\n", mmio, dma_addr); 662 dma_addr = dma_map_resource(adev->dev, dma_addr, 663 mem->bo->tbo.sg->sgl->length, dir, DMA_ATTR_SKIP_CPU_SYNC); 664 ret = dma_mapping_error(adev->dev, dma_addr); 665 if (unlikely(ret)) 666 return ret; 667 pr_debug("%d BO address after DMA mapping: %llx\n", mmio, dma_addr); 668 669 ttm->sg = create_sg_table(dma_addr, mem->bo->tbo.sg->sgl->length); 670 if (unlikely(!ttm->sg)) { 671 ret = -ENOMEM; 672 goto unmap_sg; 673 } 674 675 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_GTT); 676 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 677 if (unlikely(ret)) 678 goto free_sg; 679 680 return ret; 681 682 free_sg: 683 sg_free_table(ttm->sg); 684 kfree(ttm->sg); 685 ttm->sg = NULL; 686 unmap_sg: 687 dma_unmap_resource(adev->dev, dma_addr, mem->bo->tbo.sg->sgl->length, 688 dir, DMA_ATTR_SKIP_CPU_SYNC); 689 return ret; 690 } 691 692 static int 693 kfd_mem_dmamap_attachment(struct kgd_mem *mem, 694 struct kfd_mem_attachment *attachment) 695 { 696 switch (attachment->type) { 697 case KFD_MEM_ATT_SHARED: 698 return 0; 699 case KFD_MEM_ATT_USERPTR: 700 return kfd_mem_dmamap_userptr(mem, attachment); 701 case KFD_MEM_ATT_DMABUF: 702 return kfd_mem_dmamap_dmabuf(attachment); 703 case KFD_MEM_ATT_SG: 704 return kfd_mem_dmamap_sg_bo(mem, attachment); 705 default: 706 WARN_ON_ONCE(1); 707 } 708 return -EINVAL; 709 } 710 711 static void 712 kfd_mem_dmaunmap_userptr(struct kgd_mem *mem, 713 struct kfd_mem_attachment *attachment) 714 { 715 enum dma_data_direction direction = 716 mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? 717 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 718 struct ttm_operation_ctx ctx = {.interruptible = false}; 719 struct amdgpu_bo *bo = attachment->bo_va->base.bo; 720 struct amdgpu_device *adev = attachment->adev; 721 struct ttm_tt *ttm = bo->tbo.ttm; 722 723 if (unlikely(!ttm->sg)) 724 return; 725 726 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_CPU); 727 ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 728 729 dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0); 730 sg_free_table(ttm->sg); 731 kfree(ttm->sg); 732 ttm->sg = NULL; 733 } 734 735 static void 736 kfd_mem_dmaunmap_dmabuf(struct kfd_mem_attachment *attachment) 737 { 738 /* This is a no-op. We don't want to trigger eviction fences when 739 * unmapping DMABufs. Therefore the invalidation (moving to system 740 * domain) is done in kfd_mem_dmamap_dmabuf. 741 */ 742 } 743 744 /** 745 * kfd_mem_dmaunmap_sg_bo() - Free DMA mapped sg_table of DOORBELL or MMIO BO 746 * @mem: SG BO of the DOORBELL or MMIO resource on the owning device 747 * @attachment: Virtual address attachment of the BO on accessing device 748 * 749 * The method performs following steps: 750 * - Signal TTM to mark memory pointed to by BO as GPU inaccessible 751 * - Free SG Table that is used to encapsulate DMA mapped memory of 752 * peer device's DOORBELL or MMIO memory 753 * 754 * This method is invoked in the following contexts: 755 * UNMapping of DOORBELL or MMIO BO on a device having access to its memory 756 * Eviction of DOOREBELL or MMIO BO on device having access to its memory 757 * 758 * Return: void 759 */ 760 static void 761 kfd_mem_dmaunmap_sg_bo(struct kgd_mem *mem, 762 struct kfd_mem_attachment *attachment) 763 { 764 struct ttm_operation_ctx ctx = {.interruptible = true}; 765 struct amdgpu_bo *bo = attachment->bo_va->base.bo; 766 struct amdgpu_device *adev = attachment->adev; 767 struct ttm_tt *ttm = bo->tbo.ttm; 768 enum dma_data_direction dir; 769 770 if (unlikely(!ttm->sg)) { 771 pr_debug("SG Table of BO is NULL"); 772 return; 773 } 774 775 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_CPU); 776 ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 777 778 dir = mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? 779 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 780 dma_unmap_resource(adev->dev, ttm->sg->sgl->dma_address, 781 ttm->sg->sgl->length, dir, DMA_ATTR_SKIP_CPU_SYNC); 782 sg_free_table(ttm->sg); 783 kfree(ttm->sg); 784 ttm->sg = NULL; 785 bo->tbo.sg = NULL; 786 } 787 788 static void 789 kfd_mem_dmaunmap_attachment(struct kgd_mem *mem, 790 struct kfd_mem_attachment *attachment) 791 { 792 switch (attachment->type) { 793 case KFD_MEM_ATT_SHARED: 794 break; 795 case KFD_MEM_ATT_USERPTR: 796 kfd_mem_dmaunmap_userptr(mem, attachment); 797 break; 798 case KFD_MEM_ATT_DMABUF: 799 kfd_mem_dmaunmap_dmabuf(attachment); 800 break; 801 case KFD_MEM_ATT_SG: 802 kfd_mem_dmaunmap_sg_bo(mem, attachment); 803 break; 804 default: 805 WARN_ON_ONCE(1); 806 } 807 } 808 809 static int kfd_mem_export_dmabuf(struct kgd_mem *mem) 810 { 811 if (!mem->dmabuf) { 812 struct amdgpu_device *bo_adev; 813 struct dma_buf *dmabuf; 814 int r, fd; 815 816 bo_adev = amdgpu_ttm_adev(mem->bo->tbo.bdev); 817 r = drm_gem_prime_handle_to_fd(&bo_adev->ddev, bo_adev->kfd.client.file, 818 mem->gem_handle, 819 mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? 820 DRM_RDWR : 0, &fd); 821 if (r) 822 return r; 823 dmabuf = dma_buf_get(fd); 824 close_fd(fd); 825 if (WARN_ON_ONCE(IS_ERR(dmabuf))) 826 return PTR_ERR(dmabuf); 827 mem->dmabuf = dmabuf; 828 } 829 830 return 0; 831 } 832 833 static int 834 kfd_mem_attach_dmabuf(struct amdgpu_device *adev, struct kgd_mem *mem, 835 struct amdgpu_bo **bo) 836 { 837 struct drm_gem_object *gobj; 838 int ret; 839 840 ret = kfd_mem_export_dmabuf(mem); 841 if (ret) 842 return ret; 843 844 gobj = amdgpu_gem_prime_import(adev_to_drm(adev), mem->dmabuf); 845 if (IS_ERR(gobj)) 846 return PTR_ERR(gobj); 847 848 *bo = gem_to_amdgpu_bo(gobj); 849 (*bo)->flags |= AMDGPU_GEM_CREATE_PREEMPTIBLE; 850 851 return 0; 852 } 853 854 /* kfd_mem_attach - Add a BO to a VM 855 * 856 * Everything that needs to bo done only once when a BO is first added 857 * to a VM. It can later be mapped and unmapped many times without 858 * repeating these steps. 859 * 860 * 0. Create BO for DMA mapping, if needed 861 * 1. Allocate and initialize BO VA entry data structure 862 * 2. Add BO to the VM 863 * 3. Determine ASIC-specific PTE flags 864 * 4. Alloc page tables and directories if needed 865 * 4a. Validate new page tables and directories 866 */ 867 static int kfd_mem_attach(struct amdgpu_device *adev, struct kgd_mem *mem, 868 struct amdgpu_vm *vm, bool is_aql) 869 { 870 struct amdgpu_device *bo_adev = amdgpu_ttm_adev(mem->bo->tbo.bdev); 871 unsigned long bo_size = mem->bo->tbo.base.size; 872 uint64_t va = mem->va; 873 struct kfd_mem_attachment *attachment[2] = {NULL, NULL}; 874 struct amdgpu_bo *bo[2] = {NULL, NULL}; 875 struct amdgpu_bo_va *bo_va; 876 bool same_hive = false; 877 int i, ret; 878 879 if (!va) { 880 pr_err("Invalid VA when adding BO to VM\n"); 881 return -EINVAL; 882 } 883 884 /* Determine access to VRAM, MMIO and DOORBELL BOs of peer devices 885 * 886 * The access path of MMIO and DOORBELL BOs of is always over PCIe. 887 * In contrast the access path of VRAM BOs depens upon the type of 888 * link that connects the peer device. Access over PCIe is allowed 889 * if peer device has large BAR. In contrast, access over xGMI is 890 * allowed for both small and large BAR configurations of peer device 891 */ 892 if ((adev != bo_adev && !adev->gmc.is_app_apu) && 893 ((mem->domain == AMDGPU_GEM_DOMAIN_VRAM) || 894 (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) || 895 (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP))) { 896 if (mem->domain == AMDGPU_GEM_DOMAIN_VRAM) 897 same_hive = amdgpu_xgmi_same_hive(adev, bo_adev); 898 if (!same_hive && !amdgpu_device_is_peer_accessible(bo_adev, adev)) 899 return -EINVAL; 900 } 901 902 for (i = 0; i <= is_aql; i++) { 903 attachment[i] = kzalloc(sizeof(*attachment[i]), GFP_KERNEL); 904 if (unlikely(!attachment[i])) { 905 ret = -ENOMEM; 906 goto unwind; 907 } 908 909 pr_debug("\t add VA 0x%llx - 0x%llx to vm %p\n", va, 910 va + bo_size, vm); 911 912 if ((adev == bo_adev && !(mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) || 913 (amdgpu_ttm_tt_get_usermm(mem->bo->tbo.ttm) && reuse_dmamap(adev, bo_adev)) || 914 (mem->domain == AMDGPU_GEM_DOMAIN_GTT && reuse_dmamap(adev, bo_adev)) || 915 same_hive) { 916 /* Mappings on the local GPU, or VRAM mappings in the 917 * local hive, or userptr, or GTT mapping can reuse dma map 918 * address space share the original BO 919 */ 920 attachment[i]->type = KFD_MEM_ATT_SHARED; 921 bo[i] = mem->bo; 922 drm_gem_object_get(&bo[i]->tbo.base); 923 } else if (i > 0) { 924 /* Multiple mappings on the same GPU share the BO */ 925 attachment[i]->type = KFD_MEM_ATT_SHARED; 926 bo[i] = bo[0]; 927 drm_gem_object_get(&bo[i]->tbo.base); 928 } else if (amdgpu_ttm_tt_get_usermm(mem->bo->tbo.ttm)) { 929 /* Create an SG BO to DMA-map userptrs on other GPUs */ 930 attachment[i]->type = KFD_MEM_ATT_USERPTR; 931 ret = create_dmamap_sg_bo(adev, mem, &bo[i]); 932 if (ret) 933 goto unwind; 934 /* Handle DOORBELL BOs of peer devices and MMIO BOs of local and peer devices */ 935 } else if (mem->bo->tbo.type == ttm_bo_type_sg) { 936 WARN_ONCE(!(mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL || 937 mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP), 938 "Handing invalid SG BO in ATTACH request"); 939 attachment[i]->type = KFD_MEM_ATT_SG; 940 ret = create_dmamap_sg_bo(adev, mem, &bo[i]); 941 if (ret) 942 goto unwind; 943 /* Enable acces to GTT and VRAM BOs of peer devices */ 944 } else if (mem->domain == AMDGPU_GEM_DOMAIN_GTT || 945 mem->domain == AMDGPU_GEM_DOMAIN_VRAM) { 946 attachment[i]->type = KFD_MEM_ATT_DMABUF; 947 ret = kfd_mem_attach_dmabuf(adev, mem, &bo[i]); 948 if (ret) 949 goto unwind; 950 pr_debug("Employ DMABUF mechanism to enable peer GPU access\n"); 951 } else { 952 WARN_ONCE(true, "Handling invalid ATTACH request"); 953 ret = -EINVAL; 954 goto unwind; 955 } 956 957 /* Add BO to VM internal data structures */ 958 ret = amdgpu_bo_reserve(bo[i], false); 959 if (ret) { 960 pr_debug("Unable to reserve BO during memory attach"); 961 goto unwind; 962 } 963 bo_va = amdgpu_vm_bo_find(vm, bo[i]); 964 if (!bo_va) 965 bo_va = amdgpu_vm_bo_add(adev, vm, bo[i]); 966 else 967 ++bo_va->ref_count; 968 attachment[i]->bo_va = bo_va; 969 amdgpu_bo_unreserve(bo[i]); 970 if (unlikely(!attachment[i]->bo_va)) { 971 ret = -ENOMEM; 972 pr_err("Failed to add BO object to VM. ret == %d\n", 973 ret); 974 goto unwind; 975 } 976 attachment[i]->va = va; 977 attachment[i]->pte_flags = get_pte_flags(adev, mem); 978 attachment[i]->adev = adev; 979 list_add(&attachment[i]->list, &mem->attachments); 980 981 va += bo_size; 982 } 983 984 return 0; 985 986 unwind: 987 for (; i >= 0; i--) { 988 if (!attachment[i]) 989 continue; 990 if (attachment[i]->bo_va) { 991 amdgpu_bo_reserve(bo[i], true); 992 if (--attachment[i]->bo_va->ref_count == 0) 993 amdgpu_vm_bo_del(adev, attachment[i]->bo_va); 994 amdgpu_bo_unreserve(bo[i]); 995 list_del(&attachment[i]->list); 996 } 997 if (bo[i]) 998 drm_gem_object_put(&bo[i]->tbo.base); 999 kfree(attachment[i]); 1000 } 1001 return ret; 1002 } 1003 1004 static void kfd_mem_detach(struct kfd_mem_attachment *attachment) 1005 { 1006 struct amdgpu_bo *bo = attachment->bo_va->base.bo; 1007 1008 pr_debug("\t remove VA 0x%llx in entry %p\n", 1009 attachment->va, attachment); 1010 if (--attachment->bo_va->ref_count == 0) 1011 amdgpu_vm_bo_del(attachment->adev, attachment->bo_va); 1012 drm_gem_object_put(&bo->tbo.base); 1013 list_del(&attachment->list); 1014 kfree(attachment); 1015 } 1016 1017 static void add_kgd_mem_to_kfd_bo_list(struct kgd_mem *mem, 1018 struct amdkfd_process_info *process_info, 1019 bool userptr) 1020 { 1021 mutex_lock(&process_info->lock); 1022 if (userptr) 1023 list_add_tail(&mem->validate_list, 1024 &process_info->userptr_valid_list); 1025 else 1026 list_add_tail(&mem->validate_list, &process_info->kfd_bo_list); 1027 mutex_unlock(&process_info->lock); 1028 } 1029 1030 static void remove_kgd_mem_from_kfd_bo_list(struct kgd_mem *mem, 1031 struct amdkfd_process_info *process_info) 1032 { 1033 mutex_lock(&process_info->lock); 1034 list_del(&mem->validate_list); 1035 mutex_unlock(&process_info->lock); 1036 } 1037 1038 /* Initializes user pages. It registers the MMU notifier and validates 1039 * the userptr BO in the GTT domain. 1040 * 1041 * The BO must already be on the userptr_valid_list. Otherwise an 1042 * eviction and restore may happen that leaves the new BO unmapped 1043 * with the user mode queues running. 1044 * 1045 * Takes the process_info->lock to protect against concurrent restore 1046 * workers. 1047 * 1048 * Returns 0 for success, negative errno for errors. 1049 */ 1050 static int init_user_pages(struct kgd_mem *mem, uint64_t user_addr, 1051 bool criu_resume) 1052 { 1053 struct amdkfd_process_info *process_info = mem->process_info; 1054 struct amdgpu_bo *bo = mem->bo; 1055 struct ttm_operation_ctx ctx = { true, false }; 1056 struct hmm_range *range; 1057 int ret = 0; 1058 1059 mutex_lock(&process_info->lock); 1060 1061 ret = amdgpu_ttm_tt_set_userptr(&bo->tbo, user_addr, 0); 1062 if (ret) { 1063 pr_err("%s: Failed to set userptr: %d\n", __func__, ret); 1064 goto out; 1065 } 1066 1067 ret = amdgpu_hmm_register(bo, user_addr); 1068 if (ret) { 1069 pr_err("%s: Failed to register MMU notifier: %d\n", 1070 __func__, ret); 1071 goto out; 1072 } 1073 1074 if (criu_resume) { 1075 /* 1076 * During a CRIU restore operation, the userptr buffer objects 1077 * will be validated in the restore_userptr_work worker at a 1078 * later stage when it is scheduled by another ioctl called by 1079 * CRIU master process for the target pid for restore. 1080 */ 1081 mutex_lock(&process_info->notifier_lock); 1082 mem->invalid++; 1083 mutex_unlock(&process_info->notifier_lock); 1084 mutex_unlock(&process_info->lock); 1085 return 0; 1086 } 1087 1088 ret = amdgpu_ttm_tt_get_user_pages(bo, bo->tbo.ttm->pages, &range); 1089 if (ret) { 1090 pr_err("%s: Failed to get user pages: %d\n", __func__, ret); 1091 goto unregister_out; 1092 } 1093 1094 ret = amdgpu_bo_reserve(bo, true); 1095 if (ret) { 1096 pr_err("%s: Failed to reserve BO\n", __func__); 1097 goto release_out; 1098 } 1099 amdgpu_bo_placement_from_domain(bo, mem->domain); 1100 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 1101 if (ret) 1102 pr_err("%s: failed to validate BO\n", __func__); 1103 amdgpu_bo_unreserve(bo); 1104 1105 release_out: 1106 amdgpu_ttm_tt_get_user_pages_done(bo->tbo.ttm, range); 1107 unregister_out: 1108 if (ret) 1109 amdgpu_hmm_unregister(bo); 1110 out: 1111 mutex_unlock(&process_info->lock); 1112 return ret; 1113 } 1114 1115 /* Reserving a BO and its page table BOs must happen atomically to 1116 * avoid deadlocks. Some operations update multiple VMs at once. Track 1117 * all the reservation info in a context structure. Optionally a sync 1118 * object can track VM updates. 1119 */ 1120 struct bo_vm_reservation_context { 1121 /* DRM execution context for the reservation */ 1122 struct drm_exec exec; 1123 /* Number of VMs reserved */ 1124 unsigned int n_vms; 1125 /* Pointer to sync object */ 1126 struct amdgpu_sync *sync; 1127 }; 1128 1129 enum bo_vm_match { 1130 BO_VM_NOT_MAPPED = 0, /* Match VMs where a BO is not mapped */ 1131 BO_VM_MAPPED, /* Match VMs where a BO is mapped */ 1132 BO_VM_ALL, /* Match all VMs a BO was added to */ 1133 }; 1134 1135 /** 1136 * reserve_bo_and_vm - reserve a BO and a VM unconditionally. 1137 * @mem: KFD BO structure. 1138 * @vm: the VM to reserve. 1139 * @ctx: the struct that will be used in unreserve_bo_and_vms(). 1140 */ 1141 static int reserve_bo_and_vm(struct kgd_mem *mem, 1142 struct amdgpu_vm *vm, 1143 struct bo_vm_reservation_context *ctx) 1144 { 1145 struct amdgpu_bo *bo = mem->bo; 1146 int ret; 1147 1148 WARN_ON(!vm); 1149 1150 ctx->n_vms = 1; 1151 ctx->sync = &mem->sync; 1152 drm_exec_init(&ctx->exec, DRM_EXEC_INTERRUPTIBLE_WAIT, 0); 1153 drm_exec_until_all_locked(&ctx->exec) { 1154 ret = amdgpu_vm_lock_pd(vm, &ctx->exec, 2); 1155 drm_exec_retry_on_contention(&ctx->exec); 1156 if (unlikely(ret)) 1157 goto error; 1158 1159 ret = drm_exec_prepare_obj(&ctx->exec, &bo->tbo.base, 1); 1160 drm_exec_retry_on_contention(&ctx->exec); 1161 if (unlikely(ret)) 1162 goto error; 1163 } 1164 return 0; 1165 1166 error: 1167 pr_err("Failed to reserve buffers in ttm.\n"); 1168 drm_exec_fini(&ctx->exec); 1169 return ret; 1170 } 1171 1172 /** 1173 * reserve_bo_and_cond_vms - reserve a BO and some VMs conditionally 1174 * @mem: KFD BO structure. 1175 * @vm: the VM to reserve. If NULL, then all VMs associated with the BO 1176 * is used. Otherwise, a single VM associated with the BO. 1177 * @map_type: the mapping status that will be used to filter the VMs. 1178 * @ctx: the struct that will be used in unreserve_bo_and_vms(). 1179 * 1180 * Returns 0 for success, negative for failure. 1181 */ 1182 static int reserve_bo_and_cond_vms(struct kgd_mem *mem, 1183 struct amdgpu_vm *vm, enum bo_vm_match map_type, 1184 struct bo_vm_reservation_context *ctx) 1185 { 1186 struct kfd_mem_attachment *entry; 1187 struct amdgpu_bo *bo = mem->bo; 1188 int ret; 1189 1190 ctx->sync = &mem->sync; 1191 drm_exec_init(&ctx->exec, DRM_EXEC_INTERRUPTIBLE_WAIT, 0); 1192 drm_exec_until_all_locked(&ctx->exec) { 1193 ctx->n_vms = 0; 1194 list_for_each_entry(entry, &mem->attachments, list) { 1195 if ((vm && vm != entry->bo_va->base.vm) || 1196 (entry->is_mapped != map_type 1197 && map_type != BO_VM_ALL)) 1198 continue; 1199 1200 ret = amdgpu_vm_lock_pd(entry->bo_va->base.vm, 1201 &ctx->exec, 2); 1202 drm_exec_retry_on_contention(&ctx->exec); 1203 if (unlikely(ret)) 1204 goto error; 1205 ++ctx->n_vms; 1206 } 1207 1208 ret = drm_exec_prepare_obj(&ctx->exec, &bo->tbo.base, 1); 1209 drm_exec_retry_on_contention(&ctx->exec); 1210 if (unlikely(ret)) 1211 goto error; 1212 } 1213 return 0; 1214 1215 error: 1216 pr_err("Failed to reserve buffers in ttm.\n"); 1217 drm_exec_fini(&ctx->exec); 1218 return ret; 1219 } 1220 1221 /** 1222 * unreserve_bo_and_vms - Unreserve BO and VMs from a reservation context 1223 * @ctx: Reservation context to unreserve 1224 * @wait: Optionally wait for a sync object representing pending VM updates 1225 * @intr: Whether the wait is interruptible 1226 * 1227 * Also frees any resources allocated in 1228 * reserve_bo_and_(cond_)vm(s). Returns the status from 1229 * amdgpu_sync_wait. 1230 */ 1231 static int unreserve_bo_and_vms(struct bo_vm_reservation_context *ctx, 1232 bool wait, bool intr) 1233 { 1234 int ret = 0; 1235 1236 if (wait) 1237 ret = amdgpu_sync_wait(ctx->sync, intr); 1238 1239 drm_exec_fini(&ctx->exec); 1240 ctx->sync = NULL; 1241 return ret; 1242 } 1243 1244 static void unmap_bo_from_gpuvm(struct kgd_mem *mem, 1245 struct kfd_mem_attachment *entry, 1246 struct amdgpu_sync *sync) 1247 { 1248 struct amdgpu_bo_va *bo_va = entry->bo_va; 1249 struct amdgpu_device *adev = entry->adev; 1250 struct amdgpu_vm *vm = bo_va->base.vm; 1251 1252 amdgpu_vm_bo_unmap(adev, bo_va, entry->va); 1253 1254 amdgpu_vm_clear_freed(adev, vm, &bo_va->last_pt_update); 1255 1256 amdgpu_sync_fence(sync, bo_va->last_pt_update); 1257 } 1258 1259 static int update_gpuvm_pte(struct kgd_mem *mem, 1260 struct kfd_mem_attachment *entry, 1261 struct amdgpu_sync *sync) 1262 { 1263 struct amdgpu_bo_va *bo_va = entry->bo_va; 1264 struct amdgpu_device *adev = entry->adev; 1265 int ret; 1266 1267 ret = kfd_mem_dmamap_attachment(mem, entry); 1268 if (ret) 1269 return ret; 1270 1271 /* Update the page tables */ 1272 ret = amdgpu_vm_bo_update(adev, bo_va, false); 1273 if (ret) { 1274 pr_err("amdgpu_vm_bo_update failed\n"); 1275 return ret; 1276 } 1277 1278 return amdgpu_sync_fence(sync, bo_va->last_pt_update); 1279 } 1280 1281 static int map_bo_to_gpuvm(struct kgd_mem *mem, 1282 struct kfd_mem_attachment *entry, 1283 struct amdgpu_sync *sync, 1284 bool no_update_pte) 1285 { 1286 int ret; 1287 1288 /* Set virtual address for the allocation */ 1289 ret = amdgpu_vm_bo_map(entry->adev, entry->bo_va, entry->va, 0, 1290 amdgpu_bo_size(entry->bo_va->base.bo), 1291 entry->pte_flags); 1292 if (ret) { 1293 pr_err("Failed to map VA 0x%llx in vm. ret %d\n", 1294 entry->va, ret); 1295 return ret; 1296 } 1297 1298 if (no_update_pte) 1299 return 0; 1300 1301 ret = update_gpuvm_pte(mem, entry, sync); 1302 if (ret) { 1303 pr_err("update_gpuvm_pte() failed\n"); 1304 goto update_gpuvm_pte_failed; 1305 } 1306 1307 return 0; 1308 1309 update_gpuvm_pte_failed: 1310 unmap_bo_from_gpuvm(mem, entry, sync); 1311 kfd_mem_dmaunmap_attachment(mem, entry); 1312 return ret; 1313 } 1314 1315 static int process_validate_vms(struct amdkfd_process_info *process_info, 1316 struct ww_acquire_ctx *ticket) 1317 { 1318 struct amdgpu_vm *peer_vm; 1319 int ret; 1320 1321 list_for_each_entry(peer_vm, &process_info->vm_list_head, 1322 vm_list_node) { 1323 ret = vm_validate_pt_pd_bos(peer_vm, ticket); 1324 if (ret) 1325 return ret; 1326 } 1327 1328 return 0; 1329 } 1330 1331 static int process_sync_pds_resv(struct amdkfd_process_info *process_info, 1332 struct amdgpu_sync *sync) 1333 { 1334 struct amdgpu_vm *peer_vm; 1335 int ret; 1336 1337 list_for_each_entry(peer_vm, &process_info->vm_list_head, 1338 vm_list_node) { 1339 struct amdgpu_bo *pd = peer_vm->root.bo; 1340 1341 ret = amdgpu_sync_resv(NULL, sync, pd->tbo.base.resv, 1342 AMDGPU_SYNC_NE_OWNER, 1343 AMDGPU_FENCE_OWNER_KFD); 1344 if (ret) 1345 return ret; 1346 } 1347 1348 return 0; 1349 } 1350 1351 static int process_update_pds(struct amdkfd_process_info *process_info, 1352 struct amdgpu_sync *sync) 1353 { 1354 struct amdgpu_vm *peer_vm; 1355 int ret; 1356 1357 list_for_each_entry(peer_vm, &process_info->vm_list_head, 1358 vm_list_node) { 1359 ret = vm_update_pds(peer_vm, sync); 1360 if (ret) 1361 return ret; 1362 } 1363 1364 return 0; 1365 } 1366 1367 static int init_kfd_vm(struct amdgpu_vm *vm, void **process_info, 1368 struct dma_fence **ef) 1369 { 1370 struct amdkfd_process_info *info = NULL; 1371 int ret; 1372 1373 if (!*process_info) { 1374 info = kzalloc(sizeof(*info), GFP_KERNEL); 1375 if (!info) 1376 return -ENOMEM; 1377 1378 mutex_init(&info->lock); 1379 mutex_init(&info->notifier_lock); 1380 INIT_LIST_HEAD(&info->vm_list_head); 1381 INIT_LIST_HEAD(&info->kfd_bo_list); 1382 INIT_LIST_HEAD(&info->userptr_valid_list); 1383 INIT_LIST_HEAD(&info->userptr_inval_list); 1384 1385 info->eviction_fence = 1386 amdgpu_amdkfd_fence_create(dma_fence_context_alloc(1), 1387 current->mm, 1388 NULL); 1389 if (!info->eviction_fence) { 1390 pr_err("Failed to create eviction fence\n"); 1391 ret = -ENOMEM; 1392 goto create_evict_fence_fail; 1393 } 1394 1395 info->pid = get_task_pid(current->group_leader, PIDTYPE_PID); 1396 INIT_DELAYED_WORK(&info->restore_userptr_work, 1397 amdgpu_amdkfd_restore_userptr_worker); 1398 1399 *process_info = info; 1400 } 1401 1402 vm->process_info = *process_info; 1403 1404 /* Validate page directory and attach eviction fence */ 1405 ret = amdgpu_bo_reserve(vm->root.bo, true); 1406 if (ret) 1407 goto reserve_pd_fail; 1408 ret = vm_validate_pt_pd_bos(vm, NULL); 1409 if (ret) { 1410 pr_err("validate_pt_pd_bos() failed\n"); 1411 goto validate_pd_fail; 1412 } 1413 ret = amdgpu_bo_sync_wait(vm->root.bo, 1414 AMDGPU_FENCE_OWNER_KFD, false); 1415 if (ret) 1416 goto wait_pd_fail; 1417 ret = dma_resv_reserve_fences(vm->root.bo->tbo.base.resv, 1); 1418 if (ret) 1419 goto reserve_shared_fail; 1420 dma_resv_add_fence(vm->root.bo->tbo.base.resv, 1421 &vm->process_info->eviction_fence->base, 1422 DMA_RESV_USAGE_BOOKKEEP); 1423 amdgpu_bo_unreserve(vm->root.bo); 1424 1425 /* Update process info */ 1426 mutex_lock(&vm->process_info->lock); 1427 list_add_tail(&vm->vm_list_node, 1428 &(vm->process_info->vm_list_head)); 1429 vm->process_info->n_vms++; 1430 1431 *ef = dma_fence_get(&vm->process_info->eviction_fence->base); 1432 mutex_unlock(&vm->process_info->lock); 1433 1434 return 0; 1435 1436 reserve_shared_fail: 1437 wait_pd_fail: 1438 validate_pd_fail: 1439 amdgpu_bo_unreserve(vm->root.bo); 1440 reserve_pd_fail: 1441 vm->process_info = NULL; 1442 if (info) { 1443 dma_fence_put(&info->eviction_fence->base); 1444 *process_info = NULL; 1445 put_pid(info->pid); 1446 create_evict_fence_fail: 1447 mutex_destroy(&info->lock); 1448 mutex_destroy(&info->notifier_lock); 1449 kfree(info); 1450 } 1451 return ret; 1452 } 1453 1454 /** 1455 * amdgpu_amdkfd_gpuvm_pin_bo() - Pins a BO using following criteria 1456 * @bo: Handle of buffer object being pinned 1457 * @domain: Domain into which BO should be pinned 1458 * 1459 * - USERPTR BOs are UNPINNABLE and will return error 1460 * - All other BO types (GTT, VRAM, MMIO and DOORBELL) will have their 1461 * PIN count incremented. It is valid to PIN a BO multiple times 1462 * 1463 * Return: ZERO if successful in pinning, Non-Zero in case of error. 1464 */ 1465 static int amdgpu_amdkfd_gpuvm_pin_bo(struct amdgpu_bo *bo, u32 domain) 1466 { 1467 int ret = 0; 1468 1469 ret = amdgpu_bo_reserve(bo, false); 1470 if (unlikely(ret)) 1471 return ret; 1472 1473 ret = amdgpu_bo_pin_restricted(bo, domain, 0, 0); 1474 if (ret) 1475 pr_err("Error in Pinning BO to domain: %d\n", domain); 1476 1477 amdgpu_bo_sync_wait(bo, AMDGPU_FENCE_OWNER_KFD, false); 1478 amdgpu_bo_unreserve(bo); 1479 1480 return ret; 1481 } 1482 1483 /** 1484 * amdgpu_amdkfd_gpuvm_unpin_bo() - Unpins BO using following criteria 1485 * @bo: Handle of buffer object being unpinned 1486 * 1487 * - Is a illegal request for USERPTR BOs and is ignored 1488 * - All other BO types (GTT, VRAM, MMIO and DOORBELL) will have their 1489 * PIN count decremented. Calls to UNPIN must balance calls to PIN 1490 */ 1491 static void amdgpu_amdkfd_gpuvm_unpin_bo(struct amdgpu_bo *bo) 1492 { 1493 int ret = 0; 1494 1495 ret = amdgpu_bo_reserve(bo, false); 1496 if (unlikely(ret)) 1497 return; 1498 1499 amdgpu_bo_unpin(bo); 1500 amdgpu_bo_unreserve(bo); 1501 } 1502 1503 int amdgpu_amdkfd_gpuvm_set_vm_pasid(struct amdgpu_device *adev, 1504 struct amdgpu_vm *avm, u32 pasid) 1505 1506 { 1507 int ret; 1508 1509 /* Free the original amdgpu allocated pasid, 1510 * will be replaced with kfd allocated pasid. 1511 */ 1512 if (avm->pasid) { 1513 amdgpu_pasid_free(avm->pasid); 1514 amdgpu_vm_set_pasid(adev, avm, 0); 1515 } 1516 1517 ret = amdgpu_vm_set_pasid(adev, avm, pasid); 1518 if (ret) 1519 return ret; 1520 1521 return 0; 1522 } 1523 1524 int amdgpu_amdkfd_gpuvm_acquire_process_vm(struct amdgpu_device *adev, 1525 struct amdgpu_vm *avm, 1526 void **process_info, 1527 struct dma_fence **ef) 1528 { 1529 int ret; 1530 1531 /* Already a compute VM? */ 1532 if (avm->process_info) 1533 return -EINVAL; 1534 1535 /* Convert VM into a compute VM */ 1536 ret = amdgpu_vm_make_compute(adev, avm); 1537 if (ret) 1538 return ret; 1539 1540 /* Initialize KFD part of the VM and process info */ 1541 ret = init_kfd_vm(avm, process_info, ef); 1542 if (ret) 1543 return ret; 1544 1545 amdgpu_vm_set_task_info(avm); 1546 1547 return 0; 1548 } 1549 1550 void amdgpu_amdkfd_gpuvm_destroy_cb(struct amdgpu_device *adev, 1551 struct amdgpu_vm *vm) 1552 { 1553 struct amdkfd_process_info *process_info = vm->process_info; 1554 1555 if (!process_info) 1556 return; 1557 1558 /* Update process info */ 1559 mutex_lock(&process_info->lock); 1560 process_info->n_vms--; 1561 list_del(&vm->vm_list_node); 1562 mutex_unlock(&process_info->lock); 1563 1564 vm->process_info = NULL; 1565 1566 /* Release per-process resources when last compute VM is destroyed */ 1567 if (!process_info->n_vms) { 1568 WARN_ON(!list_empty(&process_info->kfd_bo_list)); 1569 WARN_ON(!list_empty(&process_info->userptr_valid_list)); 1570 WARN_ON(!list_empty(&process_info->userptr_inval_list)); 1571 1572 dma_fence_put(&process_info->eviction_fence->base); 1573 cancel_delayed_work_sync(&process_info->restore_userptr_work); 1574 put_pid(process_info->pid); 1575 mutex_destroy(&process_info->lock); 1576 mutex_destroy(&process_info->notifier_lock); 1577 kfree(process_info); 1578 } 1579 } 1580 1581 void amdgpu_amdkfd_gpuvm_release_process_vm(struct amdgpu_device *adev, 1582 void *drm_priv) 1583 { 1584 struct amdgpu_vm *avm; 1585 1586 if (WARN_ON(!adev || !drm_priv)) 1587 return; 1588 1589 avm = drm_priv_to_vm(drm_priv); 1590 1591 pr_debug("Releasing process vm %p\n", avm); 1592 1593 /* The original pasid of amdgpu vm has already been 1594 * released during making a amdgpu vm to a compute vm 1595 * The current pasid is managed by kfd and will be 1596 * released on kfd process destroy. Set amdgpu pasid 1597 * to 0 to avoid duplicate release. 1598 */ 1599 amdgpu_vm_release_compute(adev, avm); 1600 } 1601 1602 uint64_t amdgpu_amdkfd_gpuvm_get_process_page_dir(void *drm_priv) 1603 { 1604 struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv); 1605 struct amdgpu_bo *pd = avm->root.bo; 1606 struct amdgpu_device *adev = amdgpu_ttm_adev(pd->tbo.bdev); 1607 1608 if (adev->asic_type < CHIP_VEGA10) 1609 return avm->pd_phys_addr >> AMDGPU_GPU_PAGE_SHIFT; 1610 return avm->pd_phys_addr; 1611 } 1612 1613 void amdgpu_amdkfd_block_mmu_notifications(void *p) 1614 { 1615 struct amdkfd_process_info *pinfo = (struct amdkfd_process_info *)p; 1616 1617 mutex_lock(&pinfo->lock); 1618 WRITE_ONCE(pinfo->block_mmu_notifications, true); 1619 mutex_unlock(&pinfo->lock); 1620 } 1621 1622 int amdgpu_amdkfd_criu_resume(void *p) 1623 { 1624 int ret = 0; 1625 struct amdkfd_process_info *pinfo = (struct amdkfd_process_info *)p; 1626 1627 mutex_lock(&pinfo->lock); 1628 pr_debug("scheduling work\n"); 1629 mutex_lock(&pinfo->notifier_lock); 1630 pinfo->evicted_bos++; 1631 mutex_unlock(&pinfo->notifier_lock); 1632 if (!READ_ONCE(pinfo->block_mmu_notifications)) { 1633 ret = -EINVAL; 1634 goto out_unlock; 1635 } 1636 WRITE_ONCE(pinfo->block_mmu_notifications, false); 1637 queue_delayed_work(system_freezable_wq, 1638 &pinfo->restore_userptr_work, 0); 1639 1640 out_unlock: 1641 mutex_unlock(&pinfo->lock); 1642 return ret; 1643 } 1644 1645 size_t amdgpu_amdkfd_get_available_memory(struct amdgpu_device *adev, 1646 uint8_t xcp_id) 1647 { 1648 uint64_t reserved_for_pt = 1649 ESTIMATE_PT_SIZE(amdgpu_amdkfd_total_mem_size); 1650 ssize_t available; 1651 uint64_t vram_available, system_mem_available, ttm_mem_available; 1652 1653 spin_lock(&kfd_mem_limit.mem_limit_lock); 1654 vram_available = KFD_XCP_MEMORY_SIZE(adev, xcp_id) 1655 - adev->kfd.vram_used_aligned[xcp_id] 1656 - atomic64_read(&adev->vram_pin_size) 1657 - reserved_for_pt; 1658 1659 if (adev->gmc.is_app_apu) { 1660 system_mem_available = no_system_mem_limit ? 1661 kfd_mem_limit.max_system_mem_limit : 1662 kfd_mem_limit.max_system_mem_limit - 1663 kfd_mem_limit.system_mem_used; 1664 1665 ttm_mem_available = kfd_mem_limit.max_ttm_mem_limit - 1666 kfd_mem_limit.ttm_mem_used; 1667 1668 available = min3(system_mem_available, ttm_mem_available, 1669 vram_available); 1670 available = ALIGN_DOWN(available, PAGE_SIZE); 1671 } else { 1672 available = ALIGN_DOWN(vram_available, VRAM_AVAILABLITY_ALIGN); 1673 } 1674 1675 spin_unlock(&kfd_mem_limit.mem_limit_lock); 1676 1677 if (available < 0) 1678 available = 0; 1679 1680 return available; 1681 } 1682 1683 int amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu( 1684 struct amdgpu_device *adev, uint64_t va, uint64_t size, 1685 void *drm_priv, struct kgd_mem **mem, 1686 uint64_t *offset, uint32_t flags, bool criu_resume) 1687 { 1688 struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv); 1689 struct amdgpu_fpriv *fpriv = container_of(avm, struct amdgpu_fpriv, vm); 1690 enum ttm_bo_type bo_type = ttm_bo_type_device; 1691 struct sg_table *sg = NULL; 1692 uint64_t user_addr = 0; 1693 struct amdgpu_bo *bo; 1694 struct drm_gem_object *gobj = NULL; 1695 u32 domain, alloc_domain; 1696 uint64_t aligned_size; 1697 int8_t xcp_id = -1; 1698 u64 alloc_flags; 1699 int ret; 1700 1701 /* 1702 * Check on which domain to allocate BO 1703 */ 1704 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) { 1705 domain = alloc_domain = AMDGPU_GEM_DOMAIN_VRAM; 1706 1707 if (adev->gmc.is_app_apu) { 1708 domain = AMDGPU_GEM_DOMAIN_GTT; 1709 alloc_domain = AMDGPU_GEM_DOMAIN_GTT; 1710 alloc_flags = 0; 1711 } else { 1712 alloc_flags = AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE; 1713 alloc_flags |= (flags & KFD_IOC_ALLOC_MEM_FLAGS_PUBLIC) ? 1714 AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED : 0; 1715 } 1716 xcp_id = fpriv->xcp_id == AMDGPU_XCP_NO_PARTITION ? 1717 0 : fpriv->xcp_id; 1718 } else if (flags & KFD_IOC_ALLOC_MEM_FLAGS_GTT) { 1719 domain = alloc_domain = AMDGPU_GEM_DOMAIN_GTT; 1720 alloc_flags = 0; 1721 } else { 1722 domain = AMDGPU_GEM_DOMAIN_GTT; 1723 alloc_domain = AMDGPU_GEM_DOMAIN_CPU; 1724 alloc_flags = AMDGPU_GEM_CREATE_PREEMPTIBLE; 1725 1726 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) { 1727 if (!offset || !*offset) 1728 return -EINVAL; 1729 user_addr = untagged_addr(*offset); 1730 } else if (flags & (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL | 1731 KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) { 1732 bo_type = ttm_bo_type_sg; 1733 if (size > UINT_MAX) 1734 return -EINVAL; 1735 sg = create_sg_table(*offset, size); 1736 if (!sg) 1737 return -ENOMEM; 1738 } else { 1739 return -EINVAL; 1740 } 1741 } 1742 1743 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_COHERENT) 1744 alloc_flags |= AMDGPU_GEM_CREATE_COHERENT; 1745 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_EXT_COHERENT) 1746 alloc_flags |= AMDGPU_GEM_CREATE_EXT_COHERENT; 1747 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_UNCACHED) 1748 alloc_flags |= AMDGPU_GEM_CREATE_UNCACHED; 1749 1750 *mem = kzalloc(sizeof(struct kgd_mem), GFP_KERNEL); 1751 if (!*mem) { 1752 ret = -ENOMEM; 1753 goto err; 1754 } 1755 INIT_LIST_HEAD(&(*mem)->attachments); 1756 mutex_init(&(*mem)->lock); 1757 (*mem)->aql_queue = !!(flags & KFD_IOC_ALLOC_MEM_FLAGS_AQL_QUEUE_MEM); 1758 1759 /* Workaround for AQL queue wraparound bug. Map the same 1760 * memory twice. That means we only actually allocate half 1761 * the memory. 1762 */ 1763 if ((*mem)->aql_queue) 1764 size >>= 1; 1765 aligned_size = PAGE_ALIGN(size); 1766 1767 (*mem)->alloc_flags = flags; 1768 1769 amdgpu_sync_create(&(*mem)->sync); 1770 1771 ret = amdgpu_amdkfd_reserve_mem_limit(adev, aligned_size, flags, 1772 xcp_id); 1773 if (ret) { 1774 pr_debug("Insufficient memory\n"); 1775 goto err_reserve_limit; 1776 } 1777 1778 pr_debug("\tcreate BO VA 0x%llx size 0x%llx domain %s xcp_id %d\n", 1779 va, (*mem)->aql_queue ? size << 1 : size, 1780 domain_string(alloc_domain), xcp_id); 1781 1782 ret = amdgpu_gem_object_create(adev, aligned_size, 1, alloc_domain, alloc_flags, 1783 bo_type, NULL, &gobj, xcp_id + 1); 1784 if (ret) { 1785 pr_debug("Failed to create BO on domain %s. ret %d\n", 1786 domain_string(alloc_domain), ret); 1787 goto err_bo_create; 1788 } 1789 ret = drm_vma_node_allow(&gobj->vma_node, drm_priv); 1790 if (ret) { 1791 pr_debug("Failed to allow vma node access. ret %d\n", ret); 1792 goto err_node_allow; 1793 } 1794 ret = drm_gem_handle_create(adev->kfd.client.file, gobj, &(*mem)->gem_handle); 1795 if (ret) 1796 goto err_gem_handle_create; 1797 bo = gem_to_amdgpu_bo(gobj); 1798 if (bo_type == ttm_bo_type_sg) { 1799 bo->tbo.sg = sg; 1800 bo->tbo.ttm->sg = sg; 1801 } 1802 bo->kfd_bo = *mem; 1803 (*mem)->bo = bo; 1804 if (user_addr) 1805 bo->flags |= AMDGPU_AMDKFD_CREATE_USERPTR_BO; 1806 1807 (*mem)->va = va; 1808 (*mem)->domain = domain; 1809 (*mem)->mapped_to_gpu_memory = 0; 1810 (*mem)->process_info = avm->process_info; 1811 1812 add_kgd_mem_to_kfd_bo_list(*mem, avm->process_info, user_addr); 1813 1814 if (user_addr) { 1815 pr_debug("creating userptr BO for user_addr = %llx\n", user_addr); 1816 ret = init_user_pages(*mem, user_addr, criu_resume); 1817 if (ret) 1818 goto allocate_init_user_pages_failed; 1819 } else if (flags & (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL | 1820 KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) { 1821 ret = amdgpu_amdkfd_gpuvm_pin_bo(bo, AMDGPU_GEM_DOMAIN_GTT); 1822 if (ret) { 1823 pr_err("Pinning MMIO/DOORBELL BO during ALLOC FAILED\n"); 1824 goto err_pin_bo; 1825 } 1826 bo->allowed_domains = AMDGPU_GEM_DOMAIN_GTT; 1827 bo->preferred_domains = AMDGPU_GEM_DOMAIN_GTT; 1828 } else { 1829 mutex_lock(&avm->process_info->lock); 1830 if (avm->process_info->eviction_fence && 1831 !dma_fence_is_signaled(&avm->process_info->eviction_fence->base)) 1832 ret = amdgpu_amdkfd_bo_validate_and_fence(bo, domain, 1833 &avm->process_info->eviction_fence->base); 1834 mutex_unlock(&avm->process_info->lock); 1835 if (ret) 1836 goto err_validate_bo; 1837 } 1838 1839 if (offset) 1840 *offset = amdgpu_bo_mmap_offset(bo); 1841 1842 return 0; 1843 1844 allocate_init_user_pages_failed: 1845 err_pin_bo: 1846 err_validate_bo: 1847 remove_kgd_mem_from_kfd_bo_list(*mem, avm->process_info); 1848 drm_gem_handle_delete(adev->kfd.client.file, (*mem)->gem_handle); 1849 err_gem_handle_create: 1850 drm_vma_node_revoke(&gobj->vma_node, drm_priv); 1851 err_node_allow: 1852 /* Don't unreserve system mem limit twice */ 1853 goto err_reserve_limit; 1854 err_bo_create: 1855 amdgpu_amdkfd_unreserve_mem_limit(adev, aligned_size, flags, xcp_id); 1856 err_reserve_limit: 1857 mutex_destroy(&(*mem)->lock); 1858 if (gobj) 1859 drm_gem_object_put(gobj); 1860 else 1861 kfree(*mem); 1862 err: 1863 if (sg) { 1864 sg_free_table(sg); 1865 kfree(sg); 1866 } 1867 return ret; 1868 } 1869 1870 int amdgpu_amdkfd_gpuvm_free_memory_of_gpu( 1871 struct amdgpu_device *adev, struct kgd_mem *mem, void *drm_priv, 1872 uint64_t *size) 1873 { 1874 struct amdkfd_process_info *process_info = mem->process_info; 1875 unsigned long bo_size = mem->bo->tbo.base.size; 1876 bool use_release_notifier = (mem->bo->kfd_bo == mem); 1877 struct kfd_mem_attachment *entry, *tmp; 1878 struct bo_vm_reservation_context ctx; 1879 unsigned int mapped_to_gpu_memory; 1880 int ret; 1881 bool is_imported = false; 1882 1883 mutex_lock(&mem->lock); 1884 1885 /* Unpin MMIO/DOORBELL BO's that were pinned during allocation */ 1886 if (mem->alloc_flags & 1887 (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL | 1888 KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) { 1889 amdgpu_amdkfd_gpuvm_unpin_bo(mem->bo); 1890 } 1891 1892 mapped_to_gpu_memory = mem->mapped_to_gpu_memory; 1893 is_imported = mem->is_imported; 1894 mutex_unlock(&mem->lock); 1895 /* lock is not needed after this, since mem is unused and will 1896 * be freed anyway 1897 */ 1898 1899 if (mapped_to_gpu_memory > 0) { 1900 pr_debug("BO VA 0x%llx size 0x%lx is still mapped.\n", 1901 mem->va, bo_size); 1902 return -EBUSY; 1903 } 1904 1905 /* Make sure restore workers don't access the BO any more */ 1906 mutex_lock(&process_info->lock); 1907 list_del(&mem->validate_list); 1908 mutex_unlock(&process_info->lock); 1909 1910 /* Cleanup user pages and MMU notifiers */ 1911 if (amdgpu_ttm_tt_get_usermm(mem->bo->tbo.ttm)) { 1912 amdgpu_hmm_unregister(mem->bo); 1913 mutex_lock(&process_info->notifier_lock); 1914 amdgpu_ttm_tt_discard_user_pages(mem->bo->tbo.ttm, mem->range); 1915 mutex_unlock(&process_info->notifier_lock); 1916 } 1917 1918 ret = reserve_bo_and_cond_vms(mem, NULL, BO_VM_ALL, &ctx); 1919 if (unlikely(ret)) 1920 return ret; 1921 1922 amdgpu_amdkfd_remove_eviction_fence(mem->bo, 1923 process_info->eviction_fence); 1924 pr_debug("Release VA 0x%llx - 0x%llx\n", mem->va, 1925 mem->va + bo_size * (1 + mem->aql_queue)); 1926 1927 /* Remove from VM internal data structures */ 1928 list_for_each_entry_safe(entry, tmp, &mem->attachments, list) { 1929 kfd_mem_dmaunmap_attachment(mem, entry); 1930 kfd_mem_detach(entry); 1931 } 1932 1933 ret = unreserve_bo_and_vms(&ctx, false, false); 1934 1935 /* Free the sync object */ 1936 amdgpu_sync_free(&mem->sync); 1937 1938 /* If the SG is not NULL, it's one we created for a doorbell or mmio 1939 * remap BO. We need to free it. 1940 */ 1941 if (mem->bo->tbo.sg) { 1942 sg_free_table(mem->bo->tbo.sg); 1943 kfree(mem->bo->tbo.sg); 1944 } 1945 1946 /* Update the size of the BO being freed if it was allocated from 1947 * VRAM and is not imported. For APP APU VRAM allocations are done 1948 * in GTT domain 1949 */ 1950 if (size) { 1951 if (!is_imported && 1952 (mem->bo->preferred_domains == AMDGPU_GEM_DOMAIN_VRAM || 1953 (adev->gmc.is_app_apu && 1954 mem->bo->preferred_domains == AMDGPU_GEM_DOMAIN_GTT))) 1955 *size = bo_size; 1956 else 1957 *size = 0; 1958 } 1959 1960 /* Free the BO*/ 1961 drm_vma_node_revoke(&mem->bo->tbo.base.vma_node, drm_priv); 1962 drm_gem_handle_delete(adev->kfd.client.file, mem->gem_handle); 1963 if (mem->dmabuf) { 1964 dma_buf_put(mem->dmabuf); 1965 mem->dmabuf = NULL; 1966 } 1967 mutex_destroy(&mem->lock); 1968 1969 /* If this releases the last reference, it will end up calling 1970 * amdgpu_amdkfd_release_notify and kfree the mem struct. That's why 1971 * this needs to be the last call here. 1972 */ 1973 drm_gem_object_put(&mem->bo->tbo.base); 1974 1975 /* 1976 * For kgd_mem allocated in amdgpu_amdkfd_gpuvm_import_dmabuf(), 1977 * explicitly free it here. 1978 */ 1979 if (!use_release_notifier) 1980 kfree(mem); 1981 1982 return ret; 1983 } 1984 1985 int amdgpu_amdkfd_gpuvm_map_memory_to_gpu( 1986 struct amdgpu_device *adev, struct kgd_mem *mem, 1987 void *drm_priv) 1988 { 1989 struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv); 1990 int ret; 1991 struct amdgpu_bo *bo; 1992 uint32_t domain; 1993 struct kfd_mem_attachment *entry; 1994 struct bo_vm_reservation_context ctx; 1995 unsigned long bo_size; 1996 bool is_invalid_userptr = false; 1997 1998 bo = mem->bo; 1999 if (!bo) { 2000 pr_err("Invalid BO when mapping memory to GPU\n"); 2001 return -EINVAL; 2002 } 2003 2004 /* Make sure restore is not running concurrently. Since we 2005 * don't map invalid userptr BOs, we rely on the next restore 2006 * worker to do the mapping 2007 */ 2008 mutex_lock(&mem->process_info->lock); 2009 2010 /* Lock notifier lock. If we find an invalid userptr BO, we can be 2011 * sure that the MMU notifier is no longer running 2012 * concurrently and the queues are actually stopped 2013 */ 2014 if (amdgpu_ttm_tt_get_usermm(bo->tbo.ttm)) { 2015 mutex_lock(&mem->process_info->notifier_lock); 2016 is_invalid_userptr = !!mem->invalid; 2017 mutex_unlock(&mem->process_info->notifier_lock); 2018 } 2019 2020 mutex_lock(&mem->lock); 2021 2022 domain = mem->domain; 2023 bo_size = bo->tbo.base.size; 2024 2025 pr_debug("Map VA 0x%llx - 0x%llx to vm %p domain %s\n", 2026 mem->va, 2027 mem->va + bo_size * (1 + mem->aql_queue), 2028 avm, domain_string(domain)); 2029 2030 if (!kfd_mem_is_attached(avm, mem)) { 2031 ret = kfd_mem_attach(adev, mem, avm, mem->aql_queue); 2032 if (ret) 2033 goto out; 2034 } 2035 2036 ret = reserve_bo_and_vm(mem, avm, &ctx); 2037 if (unlikely(ret)) 2038 goto out; 2039 2040 /* Userptr can be marked as "not invalid", but not actually be 2041 * validated yet (still in the system domain). In that case 2042 * the queues are still stopped and we can leave mapping for 2043 * the next restore worker 2044 */ 2045 if (amdgpu_ttm_tt_get_usermm(bo->tbo.ttm) && 2046 bo->tbo.resource->mem_type == TTM_PL_SYSTEM) 2047 is_invalid_userptr = true; 2048 2049 ret = vm_validate_pt_pd_bos(avm, NULL); 2050 if (unlikely(ret)) 2051 goto out_unreserve; 2052 2053 list_for_each_entry(entry, &mem->attachments, list) { 2054 if (entry->bo_va->base.vm != avm || entry->is_mapped) 2055 continue; 2056 2057 pr_debug("\t map VA 0x%llx - 0x%llx in entry %p\n", 2058 entry->va, entry->va + bo_size, entry); 2059 2060 ret = map_bo_to_gpuvm(mem, entry, ctx.sync, 2061 is_invalid_userptr); 2062 if (ret) { 2063 pr_err("Failed to map bo to gpuvm\n"); 2064 goto out_unreserve; 2065 } 2066 2067 ret = vm_update_pds(avm, ctx.sync); 2068 if (ret) { 2069 pr_err("Failed to update page directories\n"); 2070 goto out_unreserve; 2071 } 2072 2073 entry->is_mapped = true; 2074 mem->mapped_to_gpu_memory++; 2075 pr_debug("\t INC mapping count %d\n", 2076 mem->mapped_to_gpu_memory); 2077 } 2078 2079 ret = unreserve_bo_and_vms(&ctx, false, false); 2080 2081 goto out; 2082 2083 out_unreserve: 2084 unreserve_bo_and_vms(&ctx, false, false); 2085 out: 2086 mutex_unlock(&mem->process_info->lock); 2087 mutex_unlock(&mem->lock); 2088 return ret; 2089 } 2090 2091 int amdgpu_amdkfd_gpuvm_dmaunmap_mem(struct kgd_mem *mem, void *drm_priv) 2092 { 2093 struct kfd_mem_attachment *entry; 2094 struct amdgpu_vm *vm; 2095 int ret; 2096 2097 vm = drm_priv_to_vm(drm_priv); 2098 2099 mutex_lock(&mem->lock); 2100 2101 ret = amdgpu_bo_reserve(mem->bo, true); 2102 if (ret) 2103 goto out; 2104 2105 list_for_each_entry(entry, &mem->attachments, list) { 2106 if (entry->bo_va->base.vm != vm) 2107 continue; 2108 if (entry->bo_va->base.bo->tbo.ttm && 2109 !entry->bo_va->base.bo->tbo.ttm->sg) 2110 continue; 2111 2112 kfd_mem_dmaunmap_attachment(mem, entry); 2113 } 2114 2115 amdgpu_bo_unreserve(mem->bo); 2116 out: 2117 mutex_unlock(&mem->lock); 2118 2119 return ret; 2120 } 2121 2122 int amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu( 2123 struct amdgpu_device *adev, struct kgd_mem *mem, void *drm_priv) 2124 { 2125 struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv); 2126 unsigned long bo_size = mem->bo->tbo.base.size; 2127 struct kfd_mem_attachment *entry; 2128 struct bo_vm_reservation_context ctx; 2129 int ret; 2130 2131 mutex_lock(&mem->lock); 2132 2133 ret = reserve_bo_and_cond_vms(mem, avm, BO_VM_MAPPED, &ctx); 2134 if (unlikely(ret)) 2135 goto out; 2136 /* If no VMs were reserved, it means the BO wasn't actually mapped */ 2137 if (ctx.n_vms == 0) { 2138 ret = -EINVAL; 2139 goto unreserve_out; 2140 } 2141 2142 ret = vm_validate_pt_pd_bos(avm, NULL); 2143 if (unlikely(ret)) 2144 goto unreserve_out; 2145 2146 pr_debug("Unmap VA 0x%llx - 0x%llx from vm %p\n", 2147 mem->va, 2148 mem->va + bo_size * (1 + mem->aql_queue), 2149 avm); 2150 2151 list_for_each_entry(entry, &mem->attachments, list) { 2152 if (entry->bo_va->base.vm != avm || !entry->is_mapped) 2153 continue; 2154 2155 pr_debug("\t unmap VA 0x%llx - 0x%llx from entry %p\n", 2156 entry->va, entry->va + bo_size, entry); 2157 2158 unmap_bo_from_gpuvm(mem, entry, ctx.sync); 2159 entry->is_mapped = false; 2160 2161 mem->mapped_to_gpu_memory--; 2162 pr_debug("\t DEC mapping count %d\n", 2163 mem->mapped_to_gpu_memory); 2164 } 2165 2166 unreserve_out: 2167 unreserve_bo_and_vms(&ctx, false, false); 2168 out: 2169 mutex_unlock(&mem->lock); 2170 return ret; 2171 } 2172 2173 int amdgpu_amdkfd_gpuvm_sync_memory( 2174 struct amdgpu_device *adev, struct kgd_mem *mem, bool intr) 2175 { 2176 struct amdgpu_sync sync; 2177 int ret; 2178 2179 amdgpu_sync_create(&sync); 2180 2181 mutex_lock(&mem->lock); 2182 amdgpu_sync_clone(&mem->sync, &sync); 2183 mutex_unlock(&mem->lock); 2184 2185 ret = amdgpu_sync_wait(&sync, intr); 2186 amdgpu_sync_free(&sync); 2187 return ret; 2188 } 2189 2190 /** 2191 * amdgpu_amdkfd_map_gtt_bo_to_gart - Map BO to GART and increment reference count 2192 * @bo: Buffer object to be mapped 2193 * 2194 * Before return, bo reference count is incremented. To release the reference and unpin/ 2195 * unmap the BO, call amdgpu_amdkfd_free_gtt_mem. 2196 */ 2197 int amdgpu_amdkfd_map_gtt_bo_to_gart(struct amdgpu_bo *bo) 2198 { 2199 int ret; 2200 2201 ret = amdgpu_bo_reserve(bo, true); 2202 if (ret) { 2203 pr_err("Failed to reserve bo. ret %d\n", ret); 2204 goto err_reserve_bo_failed; 2205 } 2206 2207 ret = amdgpu_bo_pin(bo, AMDGPU_GEM_DOMAIN_GTT); 2208 if (ret) { 2209 pr_err("Failed to pin bo. ret %d\n", ret); 2210 goto err_pin_bo_failed; 2211 } 2212 2213 ret = amdgpu_ttm_alloc_gart(&bo->tbo); 2214 if (ret) { 2215 pr_err("Failed to bind bo to GART. ret %d\n", ret); 2216 goto err_map_bo_gart_failed; 2217 } 2218 2219 amdgpu_amdkfd_remove_eviction_fence( 2220 bo, bo->vm_bo->vm->process_info->eviction_fence); 2221 2222 amdgpu_bo_unreserve(bo); 2223 2224 bo = amdgpu_bo_ref(bo); 2225 2226 return 0; 2227 2228 err_map_bo_gart_failed: 2229 amdgpu_bo_unpin(bo); 2230 err_pin_bo_failed: 2231 amdgpu_bo_unreserve(bo); 2232 err_reserve_bo_failed: 2233 2234 return ret; 2235 } 2236 2237 /** amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel() - Map a GTT BO for kernel CPU access 2238 * 2239 * @mem: Buffer object to be mapped for CPU access 2240 * @kptr[out]: pointer in kernel CPU address space 2241 * @size[out]: size of the buffer 2242 * 2243 * Pins the BO and maps it for kernel CPU access. The eviction fence is removed 2244 * from the BO, since pinned BOs cannot be evicted. The bo must remain on the 2245 * validate_list, so the GPU mapping can be restored after a page table was 2246 * evicted. 2247 * 2248 * Return: 0 on success, error code on failure 2249 */ 2250 int amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(struct kgd_mem *mem, 2251 void **kptr, uint64_t *size) 2252 { 2253 int ret; 2254 struct amdgpu_bo *bo = mem->bo; 2255 2256 if (amdgpu_ttm_tt_get_usermm(bo->tbo.ttm)) { 2257 pr_err("userptr can't be mapped to kernel\n"); 2258 return -EINVAL; 2259 } 2260 2261 mutex_lock(&mem->process_info->lock); 2262 2263 ret = amdgpu_bo_reserve(bo, true); 2264 if (ret) { 2265 pr_err("Failed to reserve bo. ret %d\n", ret); 2266 goto bo_reserve_failed; 2267 } 2268 2269 ret = amdgpu_bo_pin(bo, AMDGPU_GEM_DOMAIN_GTT); 2270 if (ret) { 2271 pr_err("Failed to pin bo. ret %d\n", ret); 2272 goto pin_failed; 2273 } 2274 2275 ret = amdgpu_bo_kmap(bo, kptr); 2276 if (ret) { 2277 pr_err("Failed to map bo to kernel. ret %d\n", ret); 2278 goto kmap_failed; 2279 } 2280 2281 amdgpu_amdkfd_remove_eviction_fence( 2282 bo, mem->process_info->eviction_fence); 2283 2284 if (size) 2285 *size = amdgpu_bo_size(bo); 2286 2287 amdgpu_bo_unreserve(bo); 2288 2289 mutex_unlock(&mem->process_info->lock); 2290 return 0; 2291 2292 kmap_failed: 2293 amdgpu_bo_unpin(bo); 2294 pin_failed: 2295 amdgpu_bo_unreserve(bo); 2296 bo_reserve_failed: 2297 mutex_unlock(&mem->process_info->lock); 2298 2299 return ret; 2300 } 2301 2302 /** amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel() - Unmap a GTT BO for kernel CPU access 2303 * 2304 * @mem: Buffer object to be unmapped for CPU access 2305 * 2306 * Removes the kernel CPU mapping and unpins the BO. It does not restore the 2307 * eviction fence, so this function should only be used for cleanup before the 2308 * BO is destroyed. 2309 */ 2310 void amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(struct kgd_mem *mem) 2311 { 2312 struct amdgpu_bo *bo = mem->bo; 2313 2314 amdgpu_bo_reserve(bo, true); 2315 amdgpu_bo_kunmap(bo); 2316 amdgpu_bo_unpin(bo); 2317 amdgpu_bo_unreserve(bo); 2318 } 2319 2320 int amdgpu_amdkfd_gpuvm_get_vm_fault_info(struct amdgpu_device *adev, 2321 struct kfd_vm_fault_info *mem) 2322 { 2323 if (atomic_read(&adev->gmc.vm_fault_info_updated) == 1) { 2324 *mem = *adev->gmc.vm_fault_info; 2325 mb(); /* make sure read happened */ 2326 atomic_set(&adev->gmc.vm_fault_info_updated, 0); 2327 } 2328 return 0; 2329 } 2330 2331 static int import_obj_create(struct amdgpu_device *adev, 2332 struct dma_buf *dma_buf, 2333 struct drm_gem_object *obj, 2334 uint64_t va, void *drm_priv, 2335 struct kgd_mem **mem, uint64_t *size, 2336 uint64_t *mmap_offset) 2337 { 2338 struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv); 2339 struct amdgpu_bo *bo; 2340 int ret; 2341 2342 bo = gem_to_amdgpu_bo(obj); 2343 if (!(bo->preferred_domains & (AMDGPU_GEM_DOMAIN_VRAM | 2344 AMDGPU_GEM_DOMAIN_GTT))) 2345 /* Only VRAM and GTT BOs are supported */ 2346 return -EINVAL; 2347 2348 *mem = kzalloc(sizeof(struct kgd_mem), GFP_KERNEL); 2349 if (!*mem) 2350 return -ENOMEM; 2351 2352 ret = drm_vma_node_allow(&obj->vma_node, drm_priv); 2353 if (ret) 2354 goto err_free_mem; 2355 2356 if (size) 2357 *size = amdgpu_bo_size(bo); 2358 2359 if (mmap_offset) 2360 *mmap_offset = amdgpu_bo_mmap_offset(bo); 2361 2362 INIT_LIST_HEAD(&(*mem)->attachments); 2363 mutex_init(&(*mem)->lock); 2364 2365 (*mem)->alloc_flags = 2366 ((bo->preferred_domains & AMDGPU_GEM_DOMAIN_VRAM) ? 2367 KFD_IOC_ALLOC_MEM_FLAGS_VRAM : KFD_IOC_ALLOC_MEM_FLAGS_GTT) 2368 | KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE 2369 | KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE; 2370 2371 get_dma_buf(dma_buf); 2372 (*mem)->dmabuf = dma_buf; 2373 (*mem)->bo = bo; 2374 (*mem)->va = va; 2375 (*mem)->domain = (bo->preferred_domains & AMDGPU_GEM_DOMAIN_VRAM) && !adev->gmc.is_app_apu ? 2376 AMDGPU_GEM_DOMAIN_VRAM : AMDGPU_GEM_DOMAIN_GTT; 2377 2378 (*mem)->mapped_to_gpu_memory = 0; 2379 (*mem)->process_info = avm->process_info; 2380 add_kgd_mem_to_kfd_bo_list(*mem, avm->process_info, false); 2381 amdgpu_sync_create(&(*mem)->sync); 2382 (*mem)->is_imported = true; 2383 2384 mutex_lock(&avm->process_info->lock); 2385 if (avm->process_info->eviction_fence && 2386 !dma_fence_is_signaled(&avm->process_info->eviction_fence->base)) 2387 ret = amdgpu_amdkfd_bo_validate_and_fence(bo, (*mem)->domain, 2388 &avm->process_info->eviction_fence->base); 2389 mutex_unlock(&avm->process_info->lock); 2390 if (ret) 2391 goto err_remove_mem; 2392 2393 return 0; 2394 2395 err_remove_mem: 2396 remove_kgd_mem_from_kfd_bo_list(*mem, avm->process_info); 2397 drm_vma_node_revoke(&obj->vma_node, drm_priv); 2398 err_free_mem: 2399 kfree(*mem); 2400 return ret; 2401 } 2402 2403 int amdgpu_amdkfd_gpuvm_import_dmabuf_fd(struct amdgpu_device *adev, int fd, 2404 uint64_t va, void *drm_priv, 2405 struct kgd_mem **mem, uint64_t *size, 2406 uint64_t *mmap_offset) 2407 { 2408 struct drm_gem_object *obj; 2409 uint32_t handle; 2410 int ret; 2411 2412 ret = drm_gem_prime_fd_to_handle(&adev->ddev, adev->kfd.client.file, fd, 2413 &handle); 2414 if (ret) 2415 return ret; 2416 obj = drm_gem_object_lookup(adev->kfd.client.file, handle); 2417 if (!obj) { 2418 ret = -EINVAL; 2419 goto err_release_handle; 2420 } 2421 2422 ret = import_obj_create(adev, obj->dma_buf, obj, va, drm_priv, mem, size, 2423 mmap_offset); 2424 if (ret) 2425 goto err_put_obj; 2426 2427 (*mem)->gem_handle = handle; 2428 2429 return 0; 2430 2431 err_put_obj: 2432 drm_gem_object_put(obj); 2433 err_release_handle: 2434 drm_gem_handle_delete(adev->kfd.client.file, handle); 2435 return ret; 2436 } 2437 2438 int amdgpu_amdkfd_gpuvm_export_dmabuf(struct kgd_mem *mem, 2439 struct dma_buf **dma_buf) 2440 { 2441 int ret; 2442 2443 mutex_lock(&mem->lock); 2444 ret = kfd_mem_export_dmabuf(mem); 2445 if (ret) 2446 goto out; 2447 2448 get_dma_buf(mem->dmabuf); 2449 *dma_buf = mem->dmabuf; 2450 out: 2451 mutex_unlock(&mem->lock); 2452 return ret; 2453 } 2454 2455 /* Evict a userptr BO by stopping the queues if necessary 2456 * 2457 * Runs in MMU notifier, may be in RECLAIM_FS context. This means it 2458 * cannot do any memory allocations, and cannot take any locks that 2459 * are held elsewhere while allocating memory. 2460 * 2461 * It doesn't do anything to the BO itself. The real work happens in 2462 * restore, where we get updated page addresses. This function only 2463 * ensures that GPU access to the BO is stopped. 2464 */ 2465 int amdgpu_amdkfd_evict_userptr(struct mmu_interval_notifier *mni, 2466 unsigned long cur_seq, struct kgd_mem *mem) 2467 { 2468 struct amdkfd_process_info *process_info = mem->process_info; 2469 int r = 0; 2470 2471 /* Do not process MMU notifications during CRIU restore until 2472 * KFD_CRIU_OP_RESUME IOCTL is received 2473 */ 2474 if (READ_ONCE(process_info->block_mmu_notifications)) 2475 return 0; 2476 2477 mutex_lock(&process_info->notifier_lock); 2478 mmu_interval_set_seq(mni, cur_seq); 2479 2480 mem->invalid++; 2481 if (++process_info->evicted_bos == 1) { 2482 /* First eviction, stop the queues */ 2483 r = kgd2kfd_quiesce_mm(mni->mm, 2484 KFD_QUEUE_EVICTION_TRIGGER_USERPTR); 2485 if (r) 2486 pr_err("Failed to quiesce KFD\n"); 2487 queue_delayed_work(system_freezable_wq, 2488 &process_info->restore_userptr_work, 2489 msecs_to_jiffies(AMDGPU_USERPTR_RESTORE_DELAY_MS)); 2490 } 2491 mutex_unlock(&process_info->notifier_lock); 2492 2493 return r; 2494 } 2495 2496 /* Update invalid userptr BOs 2497 * 2498 * Moves invalidated (evicted) userptr BOs from userptr_valid_list to 2499 * userptr_inval_list and updates user pages for all BOs that have 2500 * been invalidated since their last update. 2501 */ 2502 static int update_invalid_user_pages(struct amdkfd_process_info *process_info, 2503 struct mm_struct *mm) 2504 { 2505 struct kgd_mem *mem, *tmp_mem; 2506 struct amdgpu_bo *bo; 2507 struct ttm_operation_ctx ctx = { false, false }; 2508 uint32_t invalid; 2509 int ret = 0; 2510 2511 mutex_lock(&process_info->notifier_lock); 2512 2513 /* Move all invalidated BOs to the userptr_inval_list */ 2514 list_for_each_entry_safe(mem, tmp_mem, 2515 &process_info->userptr_valid_list, 2516 validate_list) 2517 if (mem->invalid) 2518 list_move_tail(&mem->validate_list, 2519 &process_info->userptr_inval_list); 2520 2521 /* Go through userptr_inval_list and update any invalid user_pages */ 2522 list_for_each_entry(mem, &process_info->userptr_inval_list, 2523 validate_list) { 2524 invalid = mem->invalid; 2525 if (!invalid) 2526 /* BO hasn't been invalidated since the last 2527 * revalidation attempt. Keep its page list. 2528 */ 2529 continue; 2530 2531 bo = mem->bo; 2532 2533 amdgpu_ttm_tt_discard_user_pages(bo->tbo.ttm, mem->range); 2534 mem->range = NULL; 2535 2536 /* BO reservations and getting user pages (hmm_range_fault) 2537 * must happen outside the notifier lock 2538 */ 2539 mutex_unlock(&process_info->notifier_lock); 2540 2541 /* Move the BO to system (CPU) domain if necessary to unmap 2542 * and free the SG table 2543 */ 2544 if (bo->tbo.resource->mem_type != TTM_PL_SYSTEM) { 2545 if (amdgpu_bo_reserve(bo, true)) 2546 return -EAGAIN; 2547 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_CPU); 2548 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 2549 amdgpu_bo_unreserve(bo); 2550 if (ret) { 2551 pr_err("%s: Failed to invalidate userptr BO\n", 2552 __func__); 2553 return -EAGAIN; 2554 } 2555 } 2556 2557 /* Get updated user pages */ 2558 ret = amdgpu_ttm_tt_get_user_pages(bo, bo->tbo.ttm->pages, 2559 &mem->range); 2560 if (ret) { 2561 pr_debug("Failed %d to get user pages\n", ret); 2562 2563 /* Return -EFAULT bad address error as success. It will 2564 * fail later with a VM fault if the GPU tries to access 2565 * it. Better than hanging indefinitely with stalled 2566 * user mode queues. 2567 * 2568 * Return other error -EBUSY or -ENOMEM to retry restore 2569 */ 2570 if (ret != -EFAULT) 2571 return ret; 2572 2573 ret = 0; 2574 } 2575 2576 mutex_lock(&process_info->notifier_lock); 2577 2578 /* Mark the BO as valid unless it was invalidated 2579 * again concurrently. 2580 */ 2581 if (mem->invalid != invalid) { 2582 ret = -EAGAIN; 2583 goto unlock_out; 2584 } 2585 /* set mem valid if mem has hmm range associated */ 2586 if (mem->range) 2587 mem->invalid = 0; 2588 } 2589 2590 unlock_out: 2591 mutex_unlock(&process_info->notifier_lock); 2592 2593 return ret; 2594 } 2595 2596 /* Validate invalid userptr BOs 2597 * 2598 * Validates BOs on the userptr_inval_list. Also updates GPUVM page tables 2599 * with new page addresses and waits for the page table updates to complete. 2600 */ 2601 static int validate_invalid_user_pages(struct amdkfd_process_info *process_info) 2602 { 2603 struct ttm_operation_ctx ctx = { false, false }; 2604 struct amdgpu_sync sync; 2605 struct drm_exec exec; 2606 2607 struct amdgpu_vm *peer_vm; 2608 struct kgd_mem *mem, *tmp_mem; 2609 struct amdgpu_bo *bo; 2610 int ret; 2611 2612 amdgpu_sync_create(&sync); 2613 2614 drm_exec_init(&exec, 0, 0); 2615 /* Reserve all BOs and page tables for validation */ 2616 drm_exec_until_all_locked(&exec) { 2617 /* Reserve all the page directories */ 2618 list_for_each_entry(peer_vm, &process_info->vm_list_head, 2619 vm_list_node) { 2620 ret = amdgpu_vm_lock_pd(peer_vm, &exec, 2); 2621 drm_exec_retry_on_contention(&exec); 2622 if (unlikely(ret)) 2623 goto unreserve_out; 2624 } 2625 2626 /* Reserve the userptr_inval_list entries to resv_list */ 2627 list_for_each_entry(mem, &process_info->userptr_inval_list, 2628 validate_list) { 2629 struct drm_gem_object *gobj; 2630 2631 gobj = &mem->bo->tbo.base; 2632 ret = drm_exec_prepare_obj(&exec, gobj, 1); 2633 drm_exec_retry_on_contention(&exec); 2634 if (unlikely(ret)) 2635 goto unreserve_out; 2636 } 2637 } 2638 2639 ret = process_validate_vms(process_info, NULL); 2640 if (ret) 2641 goto unreserve_out; 2642 2643 /* Validate BOs and update GPUVM page tables */ 2644 list_for_each_entry_safe(mem, tmp_mem, 2645 &process_info->userptr_inval_list, 2646 validate_list) { 2647 struct kfd_mem_attachment *attachment; 2648 2649 bo = mem->bo; 2650 2651 /* Validate the BO if we got user pages */ 2652 if (bo->tbo.ttm->pages[0]) { 2653 amdgpu_bo_placement_from_domain(bo, mem->domain); 2654 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 2655 if (ret) { 2656 pr_err("%s: failed to validate BO\n", __func__); 2657 goto unreserve_out; 2658 } 2659 } 2660 2661 /* Update mapping. If the BO was not validated 2662 * (because we couldn't get user pages), this will 2663 * clear the page table entries, which will result in 2664 * VM faults if the GPU tries to access the invalid 2665 * memory. 2666 */ 2667 list_for_each_entry(attachment, &mem->attachments, list) { 2668 if (!attachment->is_mapped) 2669 continue; 2670 2671 kfd_mem_dmaunmap_attachment(mem, attachment); 2672 ret = update_gpuvm_pte(mem, attachment, &sync); 2673 if (ret) { 2674 pr_err("%s: update PTE failed\n", __func__); 2675 /* make sure this gets validated again */ 2676 mutex_lock(&process_info->notifier_lock); 2677 mem->invalid++; 2678 mutex_unlock(&process_info->notifier_lock); 2679 goto unreserve_out; 2680 } 2681 } 2682 } 2683 2684 /* Update page directories */ 2685 ret = process_update_pds(process_info, &sync); 2686 2687 unreserve_out: 2688 drm_exec_fini(&exec); 2689 amdgpu_sync_wait(&sync, false); 2690 amdgpu_sync_free(&sync); 2691 2692 return ret; 2693 } 2694 2695 /* Confirm that all user pages are valid while holding the notifier lock 2696 * 2697 * Moves valid BOs from the userptr_inval_list back to userptr_val_list. 2698 */ 2699 static int confirm_valid_user_pages_locked(struct amdkfd_process_info *process_info) 2700 { 2701 struct kgd_mem *mem, *tmp_mem; 2702 int ret = 0; 2703 2704 list_for_each_entry_safe(mem, tmp_mem, 2705 &process_info->userptr_inval_list, 2706 validate_list) { 2707 bool valid; 2708 2709 /* keep mem without hmm range at userptr_inval_list */ 2710 if (!mem->range) 2711 continue; 2712 2713 /* Only check mem with hmm range associated */ 2714 valid = amdgpu_ttm_tt_get_user_pages_done( 2715 mem->bo->tbo.ttm, mem->range); 2716 2717 mem->range = NULL; 2718 if (!valid) { 2719 WARN(!mem->invalid, "Invalid BO not marked invalid"); 2720 ret = -EAGAIN; 2721 continue; 2722 } 2723 2724 if (mem->invalid) { 2725 WARN(1, "Valid BO is marked invalid"); 2726 ret = -EAGAIN; 2727 continue; 2728 } 2729 2730 list_move_tail(&mem->validate_list, 2731 &process_info->userptr_valid_list); 2732 } 2733 2734 return ret; 2735 } 2736 2737 /* Worker callback to restore evicted userptr BOs 2738 * 2739 * Tries to update and validate all userptr BOs. If successful and no 2740 * concurrent evictions happened, the queues are restarted. Otherwise, 2741 * reschedule for another attempt later. 2742 */ 2743 static void amdgpu_amdkfd_restore_userptr_worker(struct work_struct *work) 2744 { 2745 struct delayed_work *dwork = to_delayed_work(work); 2746 struct amdkfd_process_info *process_info = 2747 container_of(dwork, struct amdkfd_process_info, 2748 restore_userptr_work); 2749 struct task_struct *usertask; 2750 struct mm_struct *mm; 2751 uint32_t evicted_bos; 2752 2753 mutex_lock(&process_info->notifier_lock); 2754 evicted_bos = process_info->evicted_bos; 2755 mutex_unlock(&process_info->notifier_lock); 2756 if (!evicted_bos) 2757 return; 2758 2759 /* Reference task and mm in case of concurrent process termination */ 2760 usertask = get_pid_task(process_info->pid, PIDTYPE_PID); 2761 if (!usertask) 2762 return; 2763 mm = get_task_mm(usertask); 2764 if (!mm) { 2765 put_task_struct(usertask); 2766 return; 2767 } 2768 2769 mutex_lock(&process_info->lock); 2770 2771 if (update_invalid_user_pages(process_info, mm)) 2772 goto unlock_out; 2773 /* userptr_inval_list can be empty if all evicted userptr BOs 2774 * have been freed. In that case there is nothing to validate 2775 * and we can just restart the queues. 2776 */ 2777 if (!list_empty(&process_info->userptr_inval_list)) { 2778 if (validate_invalid_user_pages(process_info)) 2779 goto unlock_out; 2780 } 2781 /* Final check for concurrent evicton and atomic update. If 2782 * another eviction happens after successful update, it will 2783 * be a first eviction that calls quiesce_mm. The eviction 2784 * reference counting inside KFD will handle this case. 2785 */ 2786 mutex_lock(&process_info->notifier_lock); 2787 if (process_info->evicted_bos != evicted_bos) 2788 goto unlock_notifier_out; 2789 2790 if (confirm_valid_user_pages_locked(process_info)) { 2791 WARN(1, "User pages unexpectedly invalid"); 2792 goto unlock_notifier_out; 2793 } 2794 2795 process_info->evicted_bos = evicted_bos = 0; 2796 2797 if (kgd2kfd_resume_mm(mm)) { 2798 pr_err("%s: Failed to resume KFD\n", __func__); 2799 /* No recovery from this failure. Probably the CP is 2800 * hanging. No point trying again. 2801 */ 2802 } 2803 2804 unlock_notifier_out: 2805 mutex_unlock(&process_info->notifier_lock); 2806 unlock_out: 2807 mutex_unlock(&process_info->lock); 2808 2809 /* If validation failed, reschedule another attempt */ 2810 if (evicted_bos) { 2811 queue_delayed_work(system_freezable_wq, 2812 &process_info->restore_userptr_work, 2813 msecs_to_jiffies(AMDGPU_USERPTR_RESTORE_DELAY_MS)); 2814 2815 kfd_smi_event_queue_restore_rescheduled(mm); 2816 } 2817 mmput(mm); 2818 put_task_struct(usertask); 2819 } 2820 2821 static void replace_eviction_fence(struct dma_fence __rcu **ef, 2822 struct dma_fence *new_ef) 2823 { 2824 struct dma_fence *old_ef = rcu_replace_pointer(*ef, new_ef, true 2825 /* protected by process_info->lock */); 2826 2827 /* If we're replacing an unsignaled eviction fence, that fence will 2828 * never be signaled, and if anyone is still waiting on that fence, 2829 * they will hang forever. This should never happen. We should only 2830 * replace the fence in restore_work that only gets scheduled after 2831 * eviction work signaled the fence. 2832 */ 2833 WARN_ONCE(!dma_fence_is_signaled(old_ef), 2834 "Replacing unsignaled eviction fence"); 2835 dma_fence_put(old_ef); 2836 } 2837 2838 /** amdgpu_amdkfd_gpuvm_restore_process_bos - Restore all BOs for the given 2839 * KFD process identified by process_info 2840 * 2841 * @process_info: amdkfd_process_info of the KFD process 2842 * 2843 * After memory eviction, restore thread calls this function. The function 2844 * should be called when the Process is still valid. BO restore involves - 2845 * 2846 * 1. Release old eviction fence and create new one 2847 * 2. Get two copies of PD BO list from all the VMs. Keep one copy as pd_list. 2848 * 3 Use the second PD list and kfd_bo_list to create a list (ctx.list) of 2849 * BOs that need to be reserved. 2850 * 4. Reserve all the BOs 2851 * 5. Validate of PD and PT BOs. 2852 * 6. Validate all KFD BOs using kfd_bo_list and Map them and add new fence 2853 * 7. Add fence to all PD and PT BOs. 2854 * 8. Unreserve all BOs 2855 */ 2856 int amdgpu_amdkfd_gpuvm_restore_process_bos(void *info, struct dma_fence __rcu **ef) 2857 { 2858 struct amdkfd_process_info *process_info = info; 2859 struct amdgpu_vm *peer_vm; 2860 struct kgd_mem *mem; 2861 struct list_head duplicate_save; 2862 struct amdgpu_sync sync_obj; 2863 unsigned long failed_size = 0; 2864 unsigned long total_size = 0; 2865 struct drm_exec exec; 2866 int ret; 2867 2868 INIT_LIST_HEAD(&duplicate_save); 2869 2870 mutex_lock(&process_info->lock); 2871 2872 drm_exec_init(&exec, 0, 0); 2873 drm_exec_until_all_locked(&exec) { 2874 list_for_each_entry(peer_vm, &process_info->vm_list_head, 2875 vm_list_node) { 2876 ret = amdgpu_vm_lock_pd(peer_vm, &exec, 2); 2877 drm_exec_retry_on_contention(&exec); 2878 if (unlikely(ret)) 2879 goto ttm_reserve_fail; 2880 } 2881 2882 /* Reserve all BOs and page tables/directory. Add all BOs from 2883 * kfd_bo_list to ctx.list 2884 */ 2885 list_for_each_entry(mem, &process_info->kfd_bo_list, 2886 validate_list) { 2887 struct drm_gem_object *gobj; 2888 2889 gobj = &mem->bo->tbo.base; 2890 ret = drm_exec_prepare_obj(&exec, gobj, 1); 2891 drm_exec_retry_on_contention(&exec); 2892 if (unlikely(ret)) 2893 goto ttm_reserve_fail; 2894 } 2895 } 2896 2897 amdgpu_sync_create(&sync_obj); 2898 2899 /* Validate BOs and map them to GPUVM (update VM page tables). */ 2900 list_for_each_entry(mem, &process_info->kfd_bo_list, 2901 validate_list) { 2902 2903 struct amdgpu_bo *bo = mem->bo; 2904 uint32_t domain = mem->domain; 2905 struct kfd_mem_attachment *attachment; 2906 struct dma_resv_iter cursor; 2907 struct dma_fence *fence; 2908 2909 total_size += amdgpu_bo_size(bo); 2910 2911 ret = amdgpu_amdkfd_bo_validate(bo, domain, false); 2912 if (ret) { 2913 pr_debug("Memory eviction: Validate BOs failed\n"); 2914 failed_size += amdgpu_bo_size(bo); 2915 ret = amdgpu_amdkfd_bo_validate(bo, 2916 AMDGPU_GEM_DOMAIN_GTT, false); 2917 if (ret) { 2918 pr_debug("Memory eviction: Try again\n"); 2919 goto validate_map_fail; 2920 } 2921 } 2922 dma_resv_for_each_fence(&cursor, bo->tbo.base.resv, 2923 DMA_RESV_USAGE_KERNEL, fence) { 2924 ret = amdgpu_sync_fence(&sync_obj, fence); 2925 if (ret) { 2926 pr_debug("Memory eviction: Sync BO fence failed. Try again\n"); 2927 goto validate_map_fail; 2928 } 2929 } 2930 list_for_each_entry(attachment, &mem->attachments, list) { 2931 if (!attachment->is_mapped) 2932 continue; 2933 2934 if (attachment->bo_va->base.bo->tbo.pin_count) 2935 continue; 2936 2937 kfd_mem_dmaunmap_attachment(mem, attachment); 2938 ret = update_gpuvm_pte(mem, attachment, &sync_obj); 2939 if (ret) { 2940 pr_debug("Memory eviction: update PTE failed. Try again\n"); 2941 goto validate_map_fail; 2942 } 2943 } 2944 } 2945 2946 if (failed_size) 2947 pr_debug("0x%lx/0x%lx in system\n", failed_size, total_size); 2948 2949 /* Validate PDs, PTs and evicted DMABuf imports last. Otherwise BO 2950 * validations above would invalidate DMABuf imports again. 2951 */ 2952 ret = process_validate_vms(process_info, &exec.ticket); 2953 if (ret) 2954 goto validate_map_fail; 2955 2956 /* Update mappings not managed by KFD */ 2957 list_for_each_entry(peer_vm, &process_info->vm_list_head, 2958 vm_list_node) { 2959 struct amdgpu_device *adev = amdgpu_ttm_adev( 2960 peer_vm->root.bo->tbo.bdev); 2961 2962 ret = amdgpu_vm_handle_moved(adev, peer_vm, &exec.ticket); 2963 if (ret) { 2964 pr_debug("Memory eviction: handle moved failed. Try again\n"); 2965 goto validate_map_fail; 2966 } 2967 } 2968 2969 /* Update page directories */ 2970 ret = process_update_pds(process_info, &sync_obj); 2971 if (ret) { 2972 pr_debug("Memory eviction: update PDs failed. Try again\n"); 2973 goto validate_map_fail; 2974 } 2975 2976 /* Sync with fences on all the page tables. They implicitly depend on any 2977 * move fences from amdgpu_vm_handle_moved above. 2978 */ 2979 ret = process_sync_pds_resv(process_info, &sync_obj); 2980 if (ret) { 2981 pr_debug("Memory eviction: Failed to sync to PD BO moving fence. Try again\n"); 2982 goto validate_map_fail; 2983 } 2984 2985 /* Wait for validate and PT updates to finish */ 2986 amdgpu_sync_wait(&sync_obj, false); 2987 2988 /* The old eviction fence may be unsignaled if restore happens 2989 * after a GPU reset or suspend/resume. Keep the old fence in that 2990 * case. Otherwise release the old eviction fence and create new 2991 * one, because fence only goes from unsignaled to signaled once 2992 * and cannot be reused. Use context and mm from the old fence. 2993 * 2994 * If an old eviction fence signals after this check, that's OK. 2995 * Anyone signaling an eviction fence must stop the queues first 2996 * and schedule another restore worker. 2997 */ 2998 if (dma_fence_is_signaled(&process_info->eviction_fence->base)) { 2999 struct amdgpu_amdkfd_fence *new_fence = 3000 amdgpu_amdkfd_fence_create( 3001 process_info->eviction_fence->base.context, 3002 process_info->eviction_fence->mm, 3003 NULL); 3004 3005 if (!new_fence) { 3006 pr_err("Failed to create eviction fence\n"); 3007 ret = -ENOMEM; 3008 goto validate_map_fail; 3009 } 3010 dma_fence_put(&process_info->eviction_fence->base); 3011 process_info->eviction_fence = new_fence; 3012 replace_eviction_fence(ef, dma_fence_get(&new_fence->base)); 3013 } else { 3014 WARN_ONCE(*ef != &process_info->eviction_fence->base, 3015 "KFD eviction fence doesn't match KGD process_info"); 3016 } 3017 3018 /* Attach new eviction fence to all BOs except pinned ones */ 3019 list_for_each_entry(mem, &process_info->kfd_bo_list, validate_list) { 3020 if (mem->bo->tbo.pin_count) 3021 continue; 3022 3023 dma_resv_add_fence(mem->bo->tbo.base.resv, 3024 &process_info->eviction_fence->base, 3025 DMA_RESV_USAGE_BOOKKEEP); 3026 } 3027 /* Attach eviction fence to PD / PT BOs and DMABuf imports */ 3028 list_for_each_entry(peer_vm, &process_info->vm_list_head, 3029 vm_list_node) { 3030 struct amdgpu_bo *bo = peer_vm->root.bo; 3031 3032 dma_resv_add_fence(bo->tbo.base.resv, 3033 &process_info->eviction_fence->base, 3034 DMA_RESV_USAGE_BOOKKEEP); 3035 } 3036 3037 validate_map_fail: 3038 amdgpu_sync_free(&sync_obj); 3039 ttm_reserve_fail: 3040 drm_exec_fini(&exec); 3041 mutex_unlock(&process_info->lock); 3042 return ret; 3043 } 3044 3045 int amdgpu_amdkfd_add_gws_to_process(void *info, void *gws, struct kgd_mem **mem) 3046 { 3047 struct amdkfd_process_info *process_info = (struct amdkfd_process_info *)info; 3048 struct amdgpu_bo *gws_bo = (struct amdgpu_bo *)gws; 3049 int ret; 3050 3051 if (!info || !gws) 3052 return -EINVAL; 3053 3054 *mem = kzalloc(sizeof(struct kgd_mem), GFP_KERNEL); 3055 if (!*mem) 3056 return -ENOMEM; 3057 3058 mutex_init(&(*mem)->lock); 3059 INIT_LIST_HEAD(&(*mem)->attachments); 3060 (*mem)->bo = amdgpu_bo_ref(gws_bo); 3061 (*mem)->domain = AMDGPU_GEM_DOMAIN_GWS; 3062 (*mem)->process_info = process_info; 3063 add_kgd_mem_to_kfd_bo_list(*mem, process_info, false); 3064 amdgpu_sync_create(&(*mem)->sync); 3065 3066 3067 /* Validate gws bo the first time it is added to process */ 3068 mutex_lock(&(*mem)->process_info->lock); 3069 ret = amdgpu_bo_reserve(gws_bo, false); 3070 if (unlikely(ret)) { 3071 pr_err("Reserve gws bo failed %d\n", ret); 3072 goto bo_reservation_failure; 3073 } 3074 3075 ret = amdgpu_amdkfd_bo_validate(gws_bo, AMDGPU_GEM_DOMAIN_GWS, true); 3076 if (ret) { 3077 pr_err("GWS BO validate failed %d\n", ret); 3078 goto bo_validation_failure; 3079 } 3080 /* GWS resource is shared b/t amdgpu and amdkfd 3081 * Add process eviction fence to bo so they can 3082 * evict each other. 3083 */ 3084 ret = dma_resv_reserve_fences(gws_bo->tbo.base.resv, 1); 3085 if (ret) 3086 goto reserve_shared_fail; 3087 dma_resv_add_fence(gws_bo->tbo.base.resv, 3088 &process_info->eviction_fence->base, 3089 DMA_RESV_USAGE_BOOKKEEP); 3090 amdgpu_bo_unreserve(gws_bo); 3091 mutex_unlock(&(*mem)->process_info->lock); 3092 3093 return ret; 3094 3095 reserve_shared_fail: 3096 bo_validation_failure: 3097 amdgpu_bo_unreserve(gws_bo); 3098 bo_reservation_failure: 3099 mutex_unlock(&(*mem)->process_info->lock); 3100 amdgpu_sync_free(&(*mem)->sync); 3101 remove_kgd_mem_from_kfd_bo_list(*mem, process_info); 3102 amdgpu_bo_unref(&gws_bo); 3103 mutex_destroy(&(*mem)->lock); 3104 kfree(*mem); 3105 *mem = NULL; 3106 return ret; 3107 } 3108 3109 int amdgpu_amdkfd_remove_gws_from_process(void *info, void *mem) 3110 { 3111 int ret; 3112 struct amdkfd_process_info *process_info = (struct amdkfd_process_info *)info; 3113 struct kgd_mem *kgd_mem = (struct kgd_mem *)mem; 3114 struct amdgpu_bo *gws_bo = kgd_mem->bo; 3115 3116 /* Remove BO from process's validate list so restore worker won't touch 3117 * it anymore 3118 */ 3119 remove_kgd_mem_from_kfd_bo_list(kgd_mem, process_info); 3120 3121 ret = amdgpu_bo_reserve(gws_bo, false); 3122 if (unlikely(ret)) { 3123 pr_err("Reserve gws bo failed %d\n", ret); 3124 //TODO add BO back to validate_list? 3125 return ret; 3126 } 3127 amdgpu_amdkfd_remove_eviction_fence(gws_bo, 3128 process_info->eviction_fence); 3129 amdgpu_bo_unreserve(gws_bo); 3130 amdgpu_sync_free(&kgd_mem->sync); 3131 amdgpu_bo_unref(&gws_bo); 3132 mutex_destroy(&kgd_mem->lock); 3133 kfree(mem); 3134 return 0; 3135 } 3136 3137 /* Returns GPU-specific tiling mode information */ 3138 int amdgpu_amdkfd_get_tile_config(struct amdgpu_device *adev, 3139 struct tile_config *config) 3140 { 3141 config->gb_addr_config = adev->gfx.config.gb_addr_config; 3142 config->tile_config_ptr = adev->gfx.config.tile_mode_array; 3143 config->num_tile_configs = 3144 ARRAY_SIZE(adev->gfx.config.tile_mode_array); 3145 config->macro_tile_config_ptr = 3146 adev->gfx.config.macrotile_mode_array; 3147 config->num_macro_tile_configs = 3148 ARRAY_SIZE(adev->gfx.config.macrotile_mode_array); 3149 3150 /* Those values are not set from GFX9 onwards */ 3151 config->num_banks = adev->gfx.config.num_banks; 3152 config->num_ranks = adev->gfx.config.num_ranks; 3153 3154 return 0; 3155 } 3156 3157 bool amdgpu_amdkfd_bo_mapped_to_dev(struct amdgpu_device *adev, struct kgd_mem *mem) 3158 { 3159 struct kfd_mem_attachment *entry; 3160 3161 list_for_each_entry(entry, &mem->attachments, list) { 3162 if (entry->is_mapped && entry->adev == adev) 3163 return true; 3164 } 3165 return false; 3166 } 3167 3168 #if defined(CONFIG_DEBUG_FS) 3169 3170 int kfd_debugfs_kfd_mem_limits(struct seq_file *m, void *data) 3171 { 3172 3173 spin_lock(&kfd_mem_limit.mem_limit_lock); 3174 seq_printf(m, "System mem used %lldM out of %lluM\n", 3175 (kfd_mem_limit.system_mem_used >> 20), 3176 (kfd_mem_limit.max_system_mem_limit >> 20)); 3177 seq_printf(m, "TTM mem used %lldM out of %lluM\n", 3178 (kfd_mem_limit.ttm_mem_used >> 20), 3179 (kfd_mem_limit.max_ttm_mem_limit >> 20)); 3180 spin_unlock(&kfd_mem_limit.mem_limit_lock); 3181 3182 return 0; 3183 } 3184 3185 #endif 3186