1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright 2014-2018 Advanced Micro Devices, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 */ 23 #include <linux/dma-buf.h> 24 #include <linux/list.h> 25 #include <linux/pagemap.h> 26 #include <linux/sched/mm.h> 27 #include <linux/sched/task.h> 28 #include <drm/ttm/ttm_tt.h> 29 30 #include <drm/drm_exec.h> 31 32 #include "amdgpu_object.h" 33 #include "amdgpu_gem.h" 34 #include "amdgpu_vm.h" 35 #include "amdgpu_hmm.h" 36 #include "amdgpu_amdkfd.h" 37 #include "amdgpu_dma_buf.h" 38 #include <uapi/linux/kfd_ioctl.h> 39 #include "amdgpu_xgmi.h" 40 #include "kfd_priv.h" 41 #include "kfd_smi_events.h" 42 43 /* Userptr restore delay, just long enough to allow consecutive VM 44 * changes to accumulate 45 */ 46 #define AMDGPU_USERPTR_RESTORE_DELAY_MS 1 47 #define AMDGPU_RESERVE_MEM_LIMIT (3UL << 29) 48 49 /* 50 * Align VRAM availability to 2MB to avoid fragmentation caused by 4K allocations in the tail 2MB 51 * BO chunk 52 */ 53 #define VRAM_AVAILABLITY_ALIGN (1 << 21) 54 55 /* Impose limit on how much memory KFD can use */ 56 static struct { 57 uint64_t max_system_mem_limit; 58 uint64_t max_ttm_mem_limit; 59 int64_t system_mem_used; 60 int64_t ttm_mem_used; 61 spinlock_t mem_limit_lock; 62 } kfd_mem_limit; 63 64 static const char * const domain_bit_to_string[] = { 65 "CPU", 66 "GTT", 67 "VRAM", 68 "GDS", 69 "GWS", 70 "OA" 71 }; 72 73 #define domain_string(domain) domain_bit_to_string[ffs(domain)-1] 74 75 static void amdgpu_amdkfd_restore_userptr_worker(struct work_struct *work); 76 77 static bool kfd_mem_is_attached(struct amdgpu_vm *avm, 78 struct kgd_mem *mem) 79 { 80 struct kfd_mem_attachment *entry; 81 82 list_for_each_entry(entry, &mem->attachments, list) 83 if (entry->bo_va->base.vm == avm) 84 return true; 85 86 return false; 87 } 88 89 /** 90 * reuse_dmamap() - Check whether adev can share the original 91 * userptr BO 92 * 93 * If both adev and bo_adev are in direct mapping or 94 * in the same iommu group, they can share the original BO. 95 * 96 * @adev: Device to which can or cannot share the original BO 97 * @bo_adev: Device to which allocated BO belongs to 98 * 99 * Return: returns true if adev can share original userptr BO, 100 * false otherwise. 101 */ 102 static bool reuse_dmamap(struct amdgpu_device *adev, struct amdgpu_device *bo_adev) 103 { 104 return (adev->ram_is_direct_mapped && bo_adev->ram_is_direct_mapped) || 105 (adev->dev->iommu_group == bo_adev->dev->iommu_group); 106 } 107 108 /* Set memory usage limits. Current, limits are 109 * System (TTM + userptr) memory - 15/16th System RAM 110 * TTM memory - 3/8th System RAM 111 */ 112 void amdgpu_amdkfd_gpuvm_init_mem_limits(void) 113 { 114 struct sysinfo si; 115 uint64_t mem; 116 117 if (kfd_mem_limit.max_system_mem_limit) 118 return; 119 120 si_meminfo(&si); 121 mem = si.totalram - si.totalhigh; 122 mem *= si.mem_unit; 123 124 spin_lock_init(&kfd_mem_limit.mem_limit_lock); 125 kfd_mem_limit.max_system_mem_limit = mem - (mem >> 6); 126 if (kfd_mem_limit.max_system_mem_limit < 2 * AMDGPU_RESERVE_MEM_LIMIT) 127 kfd_mem_limit.max_system_mem_limit >>= 1; 128 else 129 kfd_mem_limit.max_system_mem_limit -= AMDGPU_RESERVE_MEM_LIMIT; 130 131 kfd_mem_limit.max_ttm_mem_limit = ttm_tt_pages_limit() << PAGE_SHIFT; 132 pr_debug("Kernel memory limit %lluM, TTM limit %lluM\n", 133 (kfd_mem_limit.max_system_mem_limit >> 20), 134 (kfd_mem_limit.max_ttm_mem_limit >> 20)); 135 } 136 137 void amdgpu_amdkfd_reserve_system_mem(uint64_t size) 138 { 139 kfd_mem_limit.system_mem_used += size; 140 } 141 142 /* Estimate page table size needed to represent a given memory size 143 * 144 * With 4KB pages, we need one 8 byte PTE for each 4KB of memory 145 * (factor 512, >> 9). With 2MB pages, we need one 8 byte PTE for 2MB 146 * of memory (factor 256K, >> 18). ROCm user mode tries to optimize 147 * for 2MB pages for TLB efficiency. However, small allocations and 148 * fragmented system memory still need some 4KB pages. We choose a 149 * compromise that should work in most cases without reserving too 150 * much memory for page tables unnecessarily (factor 16K, >> 14). 151 */ 152 153 #define ESTIMATE_PT_SIZE(mem_size) max(((mem_size) >> 14), AMDGPU_VM_RESERVED_VRAM) 154 155 /** 156 * amdgpu_amdkfd_reserve_mem_limit() - Decrease available memory by size 157 * of buffer. 158 * 159 * @adev: Device to which allocated BO belongs to 160 * @size: Size of buffer, in bytes, encapsulated by B0. This should be 161 * equivalent to amdgpu_bo_size(BO) 162 * @alloc_flag: Flag used in allocating a BO as noted above 163 * @xcp_id: xcp_id is used to get xcp from xcp manager, one xcp is 164 * managed as one compute node in driver for app 165 * 166 * Return: 167 * returns -ENOMEM in case of error, ZERO otherwise 168 */ 169 int amdgpu_amdkfd_reserve_mem_limit(struct amdgpu_device *adev, 170 uint64_t size, u32 alloc_flag, int8_t xcp_id) 171 { 172 uint64_t reserved_for_pt = 173 ESTIMATE_PT_SIZE(amdgpu_amdkfd_total_mem_size); 174 size_t system_mem_needed, ttm_mem_needed, vram_needed; 175 int ret = 0; 176 uint64_t vram_size = 0; 177 178 system_mem_needed = 0; 179 ttm_mem_needed = 0; 180 vram_needed = 0; 181 if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_GTT) { 182 system_mem_needed = size; 183 ttm_mem_needed = size; 184 } else if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) { 185 /* 186 * Conservatively round up the allocation requirement to 2 MB 187 * to avoid fragmentation caused by 4K allocations in the tail 188 * 2M BO chunk. 189 */ 190 vram_needed = size; 191 /* 192 * For GFX 9.4.3, get the VRAM size from XCP structs 193 */ 194 if (WARN_ONCE(xcp_id < 0, "invalid XCP ID %d", xcp_id)) 195 return -EINVAL; 196 197 vram_size = KFD_XCP_MEMORY_SIZE(adev, xcp_id); 198 if (adev->gmc.is_app_apu) { 199 system_mem_needed = size; 200 ttm_mem_needed = size; 201 } 202 } else if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) { 203 system_mem_needed = size; 204 } else if (!(alloc_flag & 205 (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL | 206 KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP))) { 207 pr_err("%s: Invalid BO type %#x\n", __func__, alloc_flag); 208 return -ENOMEM; 209 } 210 211 spin_lock(&kfd_mem_limit.mem_limit_lock); 212 213 if (kfd_mem_limit.system_mem_used + system_mem_needed > 214 kfd_mem_limit.max_system_mem_limit) 215 pr_debug("Set no_system_mem_limit=1 if using shared memory\n"); 216 217 if ((kfd_mem_limit.system_mem_used + system_mem_needed > 218 kfd_mem_limit.max_system_mem_limit && !no_system_mem_limit) || 219 (kfd_mem_limit.ttm_mem_used + ttm_mem_needed > 220 kfd_mem_limit.max_ttm_mem_limit) || 221 (adev && xcp_id >= 0 && adev->kfd.vram_used[xcp_id] + vram_needed > 222 vram_size - reserved_for_pt)) { 223 ret = -ENOMEM; 224 goto release; 225 } 226 227 /* Update memory accounting by decreasing available system 228 * memory, TTM memory and GPU memory as computed above 229 */ 230 WARN_ONCE(vram_needed && !adev, 231 "adev reference can't be null when vram is used"); 232 if (adev && xcp_id >= 0) { 233 adev->kfd.vram_used[xcp_id] += vram_needed; 234 adev->kfd.vram_used_aligned[xcp_id] += adev->gmc.is_app_apu ? 235 vram_needed : 236 ALIGN(vram_needed, VRAM_AVAILABLITY_ALIGN); 237 } 238 kfd_mem_limit.system_mem_used += system_mem_needed; 239 kfd_mem_limit.ttm_mem_used += ttm_mem_needed; 240 241 release: 242 spin_unlock(&kfd_mem_limit.mem_limit_lock); 243 return ret; 244 } 245 246 void amdgpu_amdkfd_unreserve_mem_limit(struct amdgpu_device *adev, 247 uint64_t size, u32 alloc_flag, int8_t xcp_id) 248 { 249 spin_lock(&kfd_mem_limit.mem_limit_lock); 250 251 if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_GTT) { 252 kfd_mem_limit.system_mem_used -= size; 253 kfd_mem_limit.ttm_mem_used -= size; 254 } else if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) { 255 WARN_ONCE(!adev, 256 "adev reference can't be null when alloc mem flags vram is set"); 257 if (WARN_ONCE(xcp_id < 0, "invalid XCP ID %d", xcp_id)) 258 goto release; 259 260 if (adev) { 261 adev->kfd.vram_used[xcp_id] -= size; 262 if (adev->gmc.is_app_apu) { 263 adev->kfd.vram_used_aligned[xcp_id] -= size; 264 kfd_mem_limit.system_mem_used -= size; 265 kfd_mem_limit.ttm_mem_used -= size; 266 } else { 267 adev->kfd.vram_used_aligned[xcp_id] -= 268 ALIGN(size, VRAM_AVAILABLITY_ALIGN); 269 } 270 } 271 } else if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) { 272 kfd_mem_limit.system_mem_used -= size; 273 } else if (!(alloc_flag & 274 (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL | 275 KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP))) { 276 pr_err("%s: Invalid BO type %#x\n", __func__, alloc_flag); 277 goto release; 278 } 279 WARN_ONCE(adev && xcp_id >= 0 && adev->kfd.vram_used[xcp_id] < 0, 280 "KFD VRAM memory accounting unbalanced for xcp: %d", xcp_id); 281 WARN_ONCE(kfd_mem_limit.ttm_mem_used < 0, 282 "KFD TTM memory accounting unbalanced"); 283 WARN_ONCE(kfd_mem_limit.system_mem_used < 0, 284 "KFD system memory accounting unbalanced"); 285 286 release: 287 spin_unlock(&kfd_mem_limit.mem_limit_lock); 288 } 289 290 void amdgpu_amdkfd_release_notify(struct amdgpu_bo *bo) 291 { 292 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 293 u32 alloc_flags = bo->kfd_bo->alloc_flags; 294 u64 size = amdgpu_bo_size(bo); 295 296 amdgpu_amdkfd_unreserve_mem_limit(adev, size, alloc_flags, 297 bo->xcp_id); 298 299 kfree(bo->kfd_bo); 300 } 301 302 /** 303 * create_dmamap_sg_bo() - Creates a amdgpu_bo object to reflect information 304 * about USERPTR or DOOREBELL or MMIO BO. 305 * 306 * @adev: Device for which dmamap BO is being created 307 * @mem: BO of peer device that is being DMA mapped. Provides parameters 308 * in building the dmamap BO 309 * @bo_out: Output parameter updated with handle of dmamap BO 310 */ 311 static int 312 create_dmamap_sg_bo(struct amdgpu_device *adev, 313 struct kgd_mem *mem, struct amdgpu_bo **bo_out) 314 { 315 struct drm_gem_object *gem_obj; 316 int ret; 317 uint64_t flags = 0; 318 319 ret = amdgpu_bo_reserve(mem->bo, false); 320 if (ret) 321 return ret; 322 323 if (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) 324 flags |= mem->bo->flags & (AMDGPU_GEM_CREATE_COHERENT | 325 AMDGPU_GEM_CREATE_UNCACHED); 326 327 ret = amdgpu_gem_object_create(adev, mem->bo->tbo.base.size, 1, 328 AMDGPU_GEM_DOMAIN_CPU, AMDGPU_GEM_CREATE_PREEMPTIBLE | flags, 329 ttm_bo_type_sg, mem->bo->tbo.base.resv, &gem_obj, 0); 330 331 amdgpu_bo_unreserve(mem->bo); 332 333 if (ret) { 334 pr_err("Error in creating DMA mappable SG BO on domain: %d\n", ret); 335 return -EINVAL; 336 } 337 338 *bo_out = gem_to_amdgpu_bo(gem_obj); 339 (*bo_out)->parent = amdgpu_bo_ref(mem->bo); 340 return ret; 341 } 342 343 /* amdgpu_amdkfd_remove_eviction_fence - Removes eviction fence from BO's 344 * reservation object. 345 * 346 * @bo: [IN] Remove eviction fence(s) from this BO 347 * @ef: [IN] This eviction fence is removed if it 348 * is present in the shared list. 349 * 350 * NOTE: Must be called with BO reserved i.e. bo->tbo.resv->lock held. 351 */ 352 static int amdgpu_amdkfd_remove_eviction_fence(struct amdgpu_bo *bo, 353 struct amdgpu_amdkfd_fence *ef) 354 { 355 struct dma_fence *replacement; 356 357 if (!ef) 358 return -EINVAL; 359 360 /* TODO: Instead of block before we should use the fence of the page 361 * table update and TLB flush here directly. 362 */ 363 replacement = dma_fence_get_stub(); 364 dma_resv_replace_fences(bo->tbo.base.resv, ef->base.context, 365 replacement, DMA_RESV_USAGE_BOOKKEEP); 366 dma_fence_put(replacement); 367 return 0; 368 } 369 370 int amdgpu_amdkfd_remove_fence_on_pt_pd_bos(struct amdgpu_bo *bo) 371 { 372 struct amdgpu_bo *root = bo; 373 struct amdgpu_vm_bo_base *vm_bo; 374 struct amdgpu_vm *vm; 375 struct amdkfd_process_info *info; 376 struct amdgpu_amdkfd_fence *ef; 377 int ret; 378 379 /* we can always get vm_bo from root PD bo.*/ 380 while (root->parent) 381 root = root->parent; 382 383 vm_bo = root->vm_bo; 384 if (!vm_bo) 385 return 0; 386 387 vm = vm_bo->vm; 388 if (!vm) 389 return 0; 390 391 info = vm->process_info; 392 if (!info || !info->eviction_fence) 393 return 0; 394 395 ef = container_of(dma_fence_get(&info->eviction_fence->base), 396 struct amdgpu_amdkfd_fence, base); 397 398 BUG_ON(!dma_resv_trylock(bo->tbo.base.resv)); 399 ret = amdgpu_amdkfd_remove_eviction_fence(bo, ef); 400 dma_resv_unlock(bo->tbo.base.resv); 401 402 dma_fence_put(&ef->base); 403 return ret; 404 } 405 406 static int amdgpu_amdkfd_bo_validate(struct amdgpu_bo *bo, uint32_t domain, 407 bool wait) 408 { 409 struct ttm_operation_ctx ctx = { false, false }; 410 int ret; 411 412 if (WARN(amdgpu_ttm_tt_get_usermm(bo->tbo.ttm), 413 "Called with userptr BO")) 414 return -EINVAL; 415 416 amdgpu_bo_placement_from_domain(bo, domain); 417 418 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 419 if (ret) 420 goto validate_fail; 421 if (wait) 422 amdgpu_bo_sync_wait(bo, AMDGPU_FENCE_OWNER_KFD, false); 423 424 validate_fail: 425 return ret; 426 } 427 428 static int amdgpu_amdkfd_bo_validate_and_fence(struct amdgpu_bo *bo, 429 uint32_t domain, 430 struct dma_fence *fence) 431 { 432 int ret = amdgpu_bo_reserve(bo, false); 433 434 if (ret) 435 return ret; 436 437 ret = amdgpu_amdkfd_bo_validate(bo, domain, true); 438 if (ret) 439 goto unreserve_out; 440 441 ret = dma_resv_reserve_fences(bo->tbo.base.resv, 1); 442 if (ret) 443 goto unreserve_out; 444 445 dma_resv_add_fence(bo->tbo.base.resv, fence, 446 DMA_RESV_USAGE_BOOKKEEP); 447 448 unreserve_out: 449 amdgpu_bo_unreserve(bo); 450 451 return ret; 452 } 453 454 static int amdgpu_amdkfd_validate_vm_bo(void *_unused, struct amdgpu_bo *bo) 455 { 456 return amdgpu_amdkfd_bo_validate(bo, bo->allowed_domains, false); 457 } 458 459 /* vm_validate_pt_pd_bos - Validate page table and directory BOs 460 * 461 * Page directories are not updated here because huge page handling 462 * during page table updates can invalidate page directory entries 463 * again. Page directories are only updated after updating page 464 * tables. 465 */ 466 static int vm_validate_pt_pd_bos(struct amdgpu_vm *vm) 467 { 468 struct amdgpu_bo *pd = vm->root.bo; 469 struct amdgpu_device *adev = amdgpu_ttm_adev(pd->tbo.bdev); 470 int ret; 471 472 ret = amdgpu_vm_validate_pt_bos(adev, vm, amdgpu_amdkfd_validate_vm_bo, NULL); 473 if (ret) { 474 pr_err("failed to validate PT BOs\n"); 475 return ret; 476 } 477 478 vm->pd_phys_addr = amdgpu_gmc_pd_addr(vm->root.bo); 479 480 return 0; 481 } 482 483 static int vm_update_pds(struct amdgpu_vm *vm, struct amdgpu_sync *sync) 484 { 485 struct amdgpu_bo *pd = vm->root.bo; 486 struct amdgpu_device *adev = amdgpu_ttm_adev(pd->tbo.bdev); 487 int ret; 488 489 ret = amdgpu_vm_update_pdes(adev, vm, false); 490 if (ret) 491 return ret; 492 493 return amdgpu_sync_fence(sync, vm->last_update); 494 } 495 496 static uint64_t get_pte_flags(struct amdgpu_device *adev, struct kgd_mem *mem) 497 { 498 uint32_t mapping_flags = AMDGPU_VM_PAGE_READABLE | 499 AMDGPU_VM_MTYPE_DEFAULT; 500 501 if (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE) 502 mapping_flags |= AMDGPU_VM_PAGE_WRITEABLE; 503 if (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE) 504 mapping_flags |= AMDGPU_VM_PAGE_EXECUTABLE; 505 506 return amdgpu_gem_va_map_flags(adev, mapping_flags); 507 } 508 509 /** 510 * create_sg_table() - Create an sg_table for a contiguous DMA addr range 511 * @addr: The starting address to point to 512 * @size: Size of memory area in bytes being pointed to 513 * 514 * Allocates an instance of sg_table and initializes it to point to memory 515 * area specified by input parameters. The address used to build is assumed 516 * to be DMA mapped, if needed. 517 * 518 * DOORBELL or MMIO BOs use only one scatterlist node in their sg_table 519 * because they are physically contiguous. 520 * 521 * Return: Initialized instance of SG Table or NULL 522 */ 523 static struct sg_table *create_sg_table(uint64_t addr, uint32_t size) 524 { 525 struct sg_table *sg = kmalloc(sizeof(*sg), GFP_KERNEL); 526 527 if (!sg) 528 return NULL; 529 if (sg_alloc_table(sg, 1, GFP_KERNEL)) { 530 kfree(sg); 531 return NULL; 532 } 533 sg_dma_address(sg->sgl) = addr; 534 sg->sgl->length = size; 535 #ifdef CONFIG_NEED_SG_DMA_LENGTH 536 sg->sgl->dma_length = size; 537 #endif 538 return sg; 539 } 540 541 static int 542 kfd_mem_dmamap_userptr(struct kgd_mem *mem, 543 struct kfd_mem_attachment *attachment) 544 { 545 enum dma_data_direction direction = 546 mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? 547 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 548 struct ttm_operation_ctx ctx = {.interruptible = true}; 549 struct amdgpu_bo *bo = attachment->bo_va->base.bo; 550 struct amdgpu_device *adev = attachment->adev; 551 struct ttm_tt *src_ttm = mem->bo->tbo.ttm; 552 struct ttm_tt *ttm = bo->tbo.ttm; 553 int ret; 554 555 if (WARN_ON(ttm->num_pages != src_ttm->num_pages)) 556 return -EINVAL; 557 558 ttm->sg = kmalloc(sizeof(*ttm->sg), GFP_KERNEL); 559 if (unlikely(!ttm->sg)) 560 return -ENOMEM; 561 562 /* Same sequence as in amdgpu_ttm_tt_pin_userptr */ 563 ret = sg_alloc_table_from_pages(ttm->sg, src_ttm->pages, 564 ttm->num_pages, 0, 565 (u64)ttm->num_pages << PAGE_SHIFT, 566 GFP_KERNEL); 567 if (unlikely(ret)) 568 goto free_sg; 569 570 ret = dma_map_sgtable(adev->dev, ttm->sg, direction, 0); 571 if (unlikely(ret)) 572 goto release_sg; 573 574 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_GTT); 575 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 576 if (ret) 577 goto unmap_sg; 578 579 return 0; 580 581 unmap_sg: 582 dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0); 583 release_sg: 584 pr_err("DMA map userptr failed: %d\n", ret); 585 sg_free_table(ttm->sg); 586 free_sg: 587 kfree(ttm->sg); 588 ttm->sg = NULL; 589 return ret; 590 } 591 592 static int 593 kfd_mem_dmamap_dmabuf(struct kfd_mem_attachment *attachment) 594 { 595 struct ttm_operation_ctx ctx = {.interruptible = true}; 596 struct amdgpu_bo *bo = attachment->bo_va->base.bo; 597 int ret; 598 599 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_CPU); 600 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 601 if (ret) 602 return ret; 603 604 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_GTT); 605 return ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 606 } 607 608 /** 609 * kfd_mem_dmamap_sg_bo() - Create DMA mapped sg_table to access DOORBELL or MMIO BO 610 * @mem: SG BO of the DOORBELL or MMIO resource on the owning device 611 * @attachment: Virtual address attachment of the BO on accessing device 612 * 613 * An access request from the device that owns DOORBELL does not require DMA mapping. 614 * This is because the request doesn't go through PCIe root complex i.e. it instead 615 * loops back. The need to DMA map arises only when accessing peer device's DOORBELL 616 * 617 * In contrast, all access requests for MMIO need to be DMA mapped without regard to 618 * device ownership. This is because access requests for MMIO go through PCIe root 619 * complex. 620 * 621 * This is accomplished in two steps: 622 * - Obtain DMA mapped address of DOORBELL or MMIO memory that could be used 623 * in updating requesting device's page table 624 * - Signal TTM to mark memory pointed to by requesting device's BO as GPU 625 * accessible. This allows an update of requesting device's page table 626 * with entries associated with DOOREBELL or MMIO memory 627 * 628 * This method is invoked in the following contexts: 629 * - Mapping of DOORBELL or MMIO BO of same or peer device 630 * - Validating an evicted DOOREBELL or MMIO BO on device seeking access 631 * 632 * Return: ZERO if successful, NON-ZERO otherwise 633 */ 634 static int 635 kfd_mem_dmamap_sg_bo(struct kgd_mem *mem, 636 struct kfd_mem_attachment *attachment) 637 { 638 struct ttm_operation_ctx ctx = {.interruptible = true}; 639 struct amdgpu_bo *bo = attachment->bo_va->base.bo; 640 struct amdgpu_device *adev = attachment->adev; 641 struct ttm_tt *ttm = bo->tbo.ttm; 642 enum dma_data_direction dir; 643 dma_addr_t dma_addr; 644 bool mmio; 645 int ret; 646 647 /* Expect SG Table of dmapmap BO to be NULL */ 648 mmio = (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP); 649 if (unlikely(ttm->sg)) { 650 pr_err("SG Table of %d BO for peer device is UNEXPECTEDLY NON-NULL", mmio); 651 return -EINVAL; 652 } 653 654 dir = mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? 655 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 656 dma_addr = mem->bo->tbo.sg->sgl->dma_address; 657 pr_debug("%d BO size: %d\n", mmio, mem->bo->tbo.sg->sgl->length); 658 pr_debug("%d BO address before DMA mapping: %llx\n", mmio, dma_addr); 659 dma_addr = dma_map_resource(adev->dev, dma_addr, 660 mem->bo->tbo.sg->sgl->length, dir, DMA_ATTR_SKIP_CPU_SYNC); 661 ret = dma_mapping_error(adev->dev, dma_addr); 662 if (unlikely(ret)) 663 return ret; 664 pr_debug("%d BO address after DMA mapping: %llx\n", mmio, dma_addr); 665 666 ttm->sg = create_sg_table(dma_addr, mem->bo->tbo.sg->sgl->length); 667 if (unlikely(!ttm->sg)) { 668 ret = -ENOMEM; 669 goto unmap_sg; 670 } 671 672 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_GTT); 673 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 674 if (unlikely(ret)) 675 goto free_sg; 676 677 return ret; 678 679 free_sg: 680 sg_free_table(ttm->sg); 681 kfree(ttm->sg); 682 ttm->sg = NULL; 683 unmap_sg: 684 dma_unmap_resource(adev->dev, dma_addr, mem->bo->tbo.sg->sgl->length, 685 dir, DMA_ATTR_SKIP_CPU_SYNC); 686 return ret; 687 } 688 689 static int 690 kfd_mem_dmamap_attachment(struct kgd_mem *mem, 691 struct kfd_mem_attachment *attachment) 692 { 693 switch (attachment->type) { 694 case KFD_MEM_ATT_SHARED: 695 return 0; 696 case KFD_MEM_ATT_USERPTR: 697 return kfd_mem_dmamap_userptr(mem, attachment); 698 case KFD_MEM_ATT_DMABUF: 699 return kfd_mem_dmamap_dmabuf(attachment); 700 case KFD_MEM_ATT_SG: 701 return kfd_mem_dmamap_sg_bo(mem, attachment); 702 default: 703 WARN_ON_ONCE(1); 704 } 705 return -EINVAL; 706 } 707 708 static void 709 kfd_mem_dmaunmap_userptr(struct kgd_mem *mem, 710 struct kfd_mem_attachment *attachment) 711 { 712 enum dma_data_direction direction = 713 mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? 714 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 715 struct ttm_operation_ctx ctx = {.interruptible = false}; 716 struct amdgpu_bo *bo = attachment->bo_va->base.bo; 717 struct amdgpu_device *adev = attachment->adev; 718 struct ttm_tt *ttm = bo->tbo.ttm; 719 720 if (unlikely(!ttm->sg)) 721 return; 722 723 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_CPU); 724 ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 725 726 dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0); 727 sg_free_table(ttm->sg); 728 kfree(ttm->sg); 729 ttm->sg = NULL; 730 } 731 732 static void 733 kfd_mem_dmaunmap_dmabuf(struct kfd_mem_attachment *attachment) 734 { 735 /* This is a no-op. We don't want to trigger eviction fences when 736 * unmapping DMABufs. Therefore the invalidation (moving to system 737 * domain) is done in kfd_mem_dmamap_dmabuf. 738 */ 739 } 740 741 /** 742 * kfd_mem_dmaunmap_sg_bo() - Free DMA mapped sg_table of DOORBELL or MMIO BO 743 * @mem: SG BO of the DOORBELL or MMIO resource on the owning device 744 * @attachment: Virtual address attachment of the BO on accessing device 745 * 746 * The method performs following steps: 747 * - Signal TTM to mark memory pointed to by BO as GPU inaccessible 748 * - Free SG Table that is used to encapsulate DMA mapped memory of 749 * peer device's DOORBELL or MMIO memory 750 * 751 * This method is invoked in the following contexts: 752 * UNMapping of DOORBELL or MMIO BO on a device having access to its memory 753 * Eviction of DOOREBELL or MMIO BO on device having access to its memory 754 * 755 * Return: void 756 */ 757 static void 758 kfd_mem_dmaunmap_sg_bo(struct kgd_mem *mem, 759 struct kfd_mem_attachment *attachment) 760 { 761 struct ttm_operation_ctx ctx = {.interruptible = true}; 762 struct amdgpu_bo *bo = attachment->bo_va->base.bo; 763 struct amdgpu_device *adev = attachment->adev; 764 struct ttm_tt *ttm = bo->tbo.ttm; 765 enum dma_data_direction dir; 766 767 if (unlikely(!ttm->sg)) { 768 pr_debug("SG Table of BO is NULL"); 769 return; 770 } 771 772 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_CPU); 773 ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 774 775 dir = mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? 776 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 777 dma_unmap_resource(adev->dev, ttm->sg->sgl->dma_address, 778 ttm->sg->sgl->length, dir, DMA_ATTR_SKIP_CPU_SYNC); 779 sg_free_table(ttm->sg); 780 kfree(ttm->sg); 781 ttm->sg = NULL; 782 bo->tbo.sg = NULL; 783 } 784 785 static void 786 kfd_mem_dmaunmap_attachment(struct kgd_mem *mem, 787 struct kfd_mem_attachment *attachment) 788 { 789 switch (attachment->type) { 790 case KFD_MEM_ATT_SHARED: 791 break; 792 case KFD_MEM_ATT_USERPTR: 793 kfd_mem_dmaunmap_userptr(mem, attachment); 794 break; 795 case KFD_MEM_ATT_DMABUF: 796 kfd_mem_dmaunmap_dmabuf(attachment); 797 break; 798 case KFD_MEM_ATT_SG: 799 kfd_mem_dmaunmap_sg_bo(mem, attachment); 800 break; 801 default: 802 WARN_ON_ONCE(1); 803 } 804 } 805 806 static int kfd_mem_export_dmabuf(struct kgd_mem *mem) 807 { 808 if (!mem->dmabuf) { 809 struct dma_buf *ret = amdgpu_gem_prime_export( 810 &mem->bo->tbo.base, 811 mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? 812 DRM_RDWR : 0); 813 if (IS_ERR(ret)) 814 return PTR_ERR(ret); 815 mem->dmabuf = ret; 816 } 817 818 return 0; 819 } 820 821 static int 822 kfd_mem_attach_dmabuf(struct amdgpu_device *adev, struct kgd_mem *mem, 823 struct amdgpu_bo **bo) 824 { 825 struct drm_gem_object *gobj; 826 int ret; 827 828 ret = kfd_mem_export_dmabuf(mem); 829 if (ret) 830 return ret; 831 832 gobj = amdgpu_gem_prime_import(adev_to_drm(adev), mem->dmabuf); 833 if (IS_ERR(gobj)) 834 return PTR_ERR(gobj); 835 836 *bo = gem_to_amdgpu_bo(gobj); 837 (*bo)->flags |= AMDGPU_GEM_CREATE_PREEMPTIBLE; 838 839 return 0; 840 } 841 842 /* kfd_mem_attach - Add a BO to a VM 843 * 844 * Everything that needs to bo done only once when a BO is first added 845 * to a VM. It can later be mapped and unmapped many times without 846 * repeating these steps. 847 * 848 * 0. Create BO for DMA mapping, if needed 849 * 1. Allocate and initialize BO VA entry data structure 850 * 2. Add BO to the VM 851 * 3. Determine ASIC-specific PTE flags 852 * 4. Alloc page tables and directories if needed 853 * 4a. Validate new page tables and directories 854 */ 855 static int kfd_mem_attach(struct amdgpu_device *adev, struct kgd_mem *mem, 856 struct amdgpu_vm *vm, bool is_aql) 857 { 858 struct amdgpu_device *bo_adev = amdgpu_ttm_adev(mem->bo->tbo.bdev); 859 unsigned long bo_size = mem->bo->tbo.base.size; 860 uint64_t va = mem->va; 861 struct kfd_mem_attachment *attachment[2] = {NULL, NULL}; 862 struct amdgpu_bo *bo[2] = {NULL, NULL}; 863 struct amdgpu_bo_va *bo_va; 864 bool same_hive = false; 865 int i, ret; 866 867 if (!va) { 868 pr_err("Invalid VA when adding BO to VM\n"); 869 return -EINVAL; 870 } 871 872 /* Determine access to VRAM, MMIO and DOORBELL BOs of peer devices 873 * 874 * The access path of MMIO and DOORBELL BOs of is always over PCIe. 875 * In contrast the access path of VRAM BOs depens upon the type of 876 * link that connects the peer device. Access over PCIe is allowed 877 * if peer device has large BAR. In contrast, access over xGMI is 878 * allowed for both small and large BAR configurations of peer device 879 */ 880 if ((adev != bo_adev && !adev->gmc.is_app_apu) && 881 ((mem->domain == AMDGPU_GEM_DOMAIN_VRAM) || 882 (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) || 883 (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP))) { 884 if (mem->domain == AMDGPU_GEM_DOMAIN_VRAM) 885 same_hive = amdgpu_xgmi_same_hive(adev, bo_adev); 886 if (!same_hive && !amdgpu_device_is_peer_accessible(bo_adev, adev)) 887 return -EINVAL; 888 } 889 890 for (i = 0; i <= is_aql; i++) { 891 attachment[i] = kzalloc(sizeof(*attachment[i]), GFP_KERNEL); 892 if (unlikely(!attachment[i])) { 893 ret = -ENOMEM; 894 goto unwind; 895 } 896 897 pr_debug("\t add VA 0x%llx - 0x%llx to vm %p\n", va, 898 va + bo_size, vm); 899 900 if ((adev == bo_adev && !(mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) || 901 (amdgpu_ttm_tt_get_usermm(mem->bo->tbo.ttm) && reuse_dmamap(adev, bo_adev)) || 902 (mem->domain == AMDGPU_GEM_DOMAIN_GTT && reuse_dmamap(adev, bo_adev)) || 903 same_hive) { 904 /* Mappings on the local GPU, or VRAM mappings in the 905 * local hive, or userptr, or GTT mapping can reuse dma map 906 * address space share the original BO 907 */ 908 attachment[i]->type = KFD_MEM_ATT_SHARED; 909 bo[i] = mem->bo; 910 drm_gem_object_get(&bo[i]->tbo.base); 911 } else if (i > 0) { 912 /* Multiple mappings on the same GPU share the BO */ 913 attachment[i]->type = KFD_MEM_ATT_SHARED; 914 bo[i] = bo[0]; 915 drm_gem_object_get(&bo[i]->tbo.base); 916 } else if (amdgpu_ttm_tt_get_usermm(mem->bo->tbo.ttm)) { 917 /* Create an SG BO to DMA-map userptrs on other GPUs */ 918 attachment[i]->type = KFD_MEM_ATT_USERPTR; 919 ret = create_dmamap_sg_bo(adev, mem, &bo[i]); 920 if (ret) 921 goto unwind; 922 /* Handle DOORBELL BOs of peer devices and MMIO BOs of local and peer devices */ 923 } else if (mem->bo->tbo.type == ttm_bo_type_sg) { 924 WARN_ONCE(!(mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL || 925 mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP), 926 "Handing invalid SG BO in ATTACH request"); 927 attachment[i]->type = KFD_MEM_ATT_SG; 928 ret = create_dmamap_sg_bo(adev, mem, &bo[i]); 929 if (ret) 930 goto unwind; 931 /* Enable acces to GTT and VRAM BOs of peer devices */ 932 } else if (mem->domain == AMDGPU_GEM_DOMAIN_GTT || 933 mem->domain == AMDGPU_GEM_DOMAIN_VRAM) { 934 attachment[i]->type = KFD_MEM_ATT_DMABUF; 935 ret = kfd_mem_attach_dmabuf(adev, mem, &bo[i]); 936 if (ret) 937 goto unwind; 938 pr_debug("Employ DMABUF mechanism to enable peer GPU access\n"); 939 } else { 940 WARN_ONCE(true, "Handling invalid ATTACH request"); 941 ret = -EINVAL; 942 goto unwind; 943 } 944 945 /* Add BO to VM internal data structures */ 946 ret = amdgpu_bo_reserve(bo[i], false); 947 if (ret) { 948 pr_debug("Unable to reserve BO during memory attach"); 949 goto unwind; 950 } 951 bo_va = amdgpu_vm_bo_find(vm, bo[i]); 952 if (!bo_va) 953 bo_va = amdgpu_vm_bo_add(adev, vm, bo[i]); 954 else 955 ++bo_va->ref_count; 956 attachment[i]->bo_va = bo_va; 957 amdgpu_bo_unreserve(bo[i]); 958 if (unlikely(!attachment[i]->bo_va)) { 959 ret = -ENOMEM; 960 pr_err("Failed to add BO object to VM. ret == %d\n", 961 ret); 962 goto unwind; 963 } 964 attachment[i]->va = va; 965 attachment[i]->pte_flags = get_pte_flags(adev, mem); 966 attachment[i]->adev = adev; 967 list_add(&attachment[i]->list, &mem->attachments); 968 969 va += bo_size; 970 } 971 972 return 0; 973 974 unwind: 975 for (; i >= 0; i--) { 976 if (!attachment[i]) 977 continue; 978 if (attachment[i]->bo_va) { 979 amdgpu_bo_reserve(bo[i], true); 980 if (--attachment[i]->bo_va->ref_count == 0) 981 amdgpu_vm_bo_del(adev, attachment[i]->bo_va); 982 amdgpu_bo_unreserve(bo[i]); 983 list_del(&attachment[i]->list); 984 } 985 if (bo[i]) 986 drm_gem_object_put(&bo[i]->tbo.base); 987 kfree(attachment[i]); 988 } 989 return ret; 990 } 991 992 static void kfd_mem_detach(struct kfd_mem_attachment *attachment) 993 { 994 struct amdgpu_bo *bo = attachment->bo_va->base.bo; 995 996 pr_debug("\t remove VA 0x%llx in entry %p\n", 997 attachment->va, attachment); 998 if (--attachment->bo_va->ref_count == 0) 999 amdgpu_vm_bo_del(attachment->adev, attachment->bo_va); 1000 drm_gem_object_put(&bo->tbo.base); 1001 list_del(&attachment->list); 1002 kfree(attachment); 1003 } 1004 1005 static void add_kgd_mem_to_kfd_bo_list(struct kgd_mem *mem, 1006 struct amdkfd_process_info *process_info, 1007 bool userptr) 1008 { 1009 mutex_lock(&process_info->lock); 1010 if (userptr) 1011 list_add_tail(&mem->validate_list, 1012 &process_info->userptr_valid_list); 1013 else 1014 list_add_tail(&mem->validate_list, &process_info->kfd_bo_list); 1015 mutex_unlock(&process_info->lock); 1016 } 1017 1018 static void remove_kgd_mem_from_kfd_bo_list(struct kgd_mem *mem, 1019 struct amdkfd_process_info *process_info) 1020 { 1021 mutex_lock(&process_info->lock); 1022 list_del(&mem->validate_list); 1023 mutex_unlock(&process_info->lock); 1024 } 1025 1026 /* Initializes user pages. It registers the MMU notifier and validates 1027 * the userptr BO in the GTT domain. 1028 * 1029 * The BO must already be on the userptr_valid_list. Otherwise an 1030 * eviction and restore may happen that leaves the new BO unmapped 1031 * with the user mode queues running. 1032 * 1033 * Takes the process_info->lock to protect against concurrent restore 1034 * workers. 1035 * 1036 * Returns 0 for success, negative errno for errors. 1037 */ 1038 static int init_user_pages(struct kgd_mem *mem, uint64_t user_addr, 1039 bool criu_resume) 1040 { 1041 struct amdkfd_process_info *process_info = mem->process_info; 1042 struct amdgpu_bo *bo = mem->bo; 1043 struct ttm_operation_ctx ctx = { true, false }; 1044 struct hmm_range *range; 1045 int ret = 0; 1046 1047 mutex_lock(&process_info->lock); 1048 1049 ret = amdgpu_ttm_tt_set_userptr(&bo->tbo, user_addr, 0); 1050 if (ret) { 1051 pr_err("%s: Failed to set userptr: %d\n", __func__, ret); 1052 goto out; 1053 } 1054 1055 ret = amdgpu_hmm_register(bo, user_addr); 1056 if (ret) { 1057 pr_err("%s: Failed to register MMU notifier: %d\n", 1058 __func__, ret); 1059 goto out; 1060 } 1061 1062 if (criu_resume) { 1063 /* 1064 * During a CRIU restore operation, the userptr buffer objects 1065 * will be validated in the restore_userptr_work worker at a 1066 * later stage when it is scheduled by another ioctl called by 1067 * CRIU master process for the target pid for restore. 1068 */ 1069 mutex_lock(&process_info->notifier_lock); 1070 mem->invalid++; 1071 mutex_unlock(&process_info->notifier_lock); 1072 mutex_unlock(&process_info->lock); 1073 return 0; 1074 } 1075 1076 ret = amdgpu_ttm_tt_get_user_pages(bo, bo->tbo.ttm->pages, &range); 1077 if (ret) { 1078 pr_err("%s: Failed to get user pages: %d\n", __func__, ret); 1079 goto unregister_out; 1080 } 1081 1082 ret = amdgpu_bo_reserve(bo, true); 1083 if (ret) { 1084 pr_err("%s: Failed to reserve BO\n", __func__); 1085 goto release_out; 1086 } 1087 amdgpu_bo_placement_from_domain(bo, mem->domain); 1088 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 1089 if (ret) 1090 pr_err("%s: failed to validate BO\n", __func__); 1091 amdgpu_bo_unreserve(bo); 1092 1093 release_out: 1094 amdgpu_ttm_tt_get_user_pages_done(bo->tbo.ttm, range); 1095 unregister_out: 1096 if (ret) 1097 amdgpu_hmm_unregister(bo); 1098 out: 1099 mutex_unlock(&process_info->lock); 1100 return ret; 1101 } 1102 1103 /* Reserving a BO and its page table BOs must happen atomically to 1104 * avoid deadlocks. Some operations update multiple VMs at once. Track 1105 * all the reservation info in a context structure. Optionally a sync 1106 * object can track VM updates. 1107 */ 1108 struct bo_vm_reservation_context { 1109 /* DRM execution context for the reservation */ 1110 struct drm_exec exec; 1111 /* Number of VMs reserved */ 1112 unsigned int n_vms; 1113 /* Pointer to sync object */ 1114 struct amdgpu_sync *sync; 1115 }; 1116 1117 enum bo_vm_match { 1118 BO_VM_NOT_MAPPED = 0, /* Match VMs where a BO is not mapped */ 1119 BO_VM_MAPPED, /* Match VMs where a BO is mapped */ 1120 BO_VM_ALL, /* Match all VMs a BO was added to */ 1121 }; 1122 1123 /** 1124 * reserve_bo_and_vm - reserve a BO and a VM unconditionally. 1125 * @mem: KFD BO structure. 1126 * @vm: the VM to reserve. 1127 * @ctx: the struct that will be used in unreserve_bo_and_vms(). 1128 */ 1129 static int reserve_bo_and_vm(struct kgd_mem *mem, 1130 struct amdgpu_vm *vm, 1131 struct bo_vm_reservation_context *ctx) 1132 { 1133 struct amdgpu_bo *bo = mem->bo; 1134 int ret; 1135 1136 WARN_ON(!vm); 1137 1138 ctx->n_vms = 1; 1139 ctx->sync = &mem->sync; 1140 drm_exec_init(&ctx->exec, DRM_EXEC_INTERRUPTIBLE_WAIT); 1141 drm_exec_until_all_locked(&ctx->exec) { 1142 ret = amdgpu_vm_lock_pd(vm, &ctx->exec, 2); 1143 drm_exec_retry_on_contention(&ctx->exec); 1144 if (unlikely(ret)) 1145 goto error; 1146 1147 ret = drm_exec_prepare_obj(&ctx->exec, &bo->tbo.base, 1); 1148 drm_exec_retry_on_contention(&ctx->exec); 1149 if (unlikely(ret)) 1150 goto error; 1151 } 1152 return 0; 1153 1154 error: 1155 pr_err("Failed to reserve buffers in ttm.\n"); 1156 drm_exec_fini(&ctx->exec); 1157 return ret; 1158 } 1159 1160 /** 1161 * reserve_bo_and_cond_vms - reserve a BO and some VMs conditionally 1162 * @mem: KFD BO structure. 1163 * @vm: the VM to reserve. If NULL, then all VMs associated with the BO 1164 * is used. Otherwise, a single VM associated with the BO. 1165 * @map_type: the mapping status that will be used to filter the VMs. 1166 * @ctx: the struct that will be used in unreserve_bo_and_vms(). 1167 * 1168 * Returns 0 for success, negative for failure. 1169 */ 1170 static int reserve_bo_and_cond_vms(struct kgd_mem *mem, 1171 struct amdgpu_vm *vm, enum bo_vm_match map_type, 1172 struct bo_vm_reservation_context *ctx) 1173 { 1174 struct kfd_mem_attachment *entry; 1175 struct amdgpu_bo *bo = mem->bo; 1176 int ret; 1177 1178 ctx->sync = &mem->sync; 1179 drm_exec_init(&ctx->exec, DRM_EXEC_INTERRUPTIBLE_WAIT); 1180 drm_exec_until_all_locked(&ctx->exec) { 1181 ctx->n_vms = 0; 1182 list_for_each_entry(entry, &mem->attachments, list) { 1183 if ((vm && vm != entry->bo_va->base.vm) || 1184 (entry->is_mapped != map_type 1185 && map_type != BO_VM_ALL)) 1186 continue; 1187 1188 ret = amdgpu_vm_lock_pd(entry->bo_va->base.vm, 1189 &ctx->exec, 2); 1190 drm_exec_retry_on_contention(&ctx->exec); 1191 if (unlikely(ret)) 1192 goto error; 1193 ++ctx->n_vms; 1194 } 1195 1196 ret = drm_exec_prepare_obj(&ctx->exec, &bo->tbo.base, 1); 1197 drm_exec_retry_on_contention(&ctx->exec); 1198 if (unlikely(ret)) 1199 goto error; 1200 } 1201 return 0; 1202 1203 error: 1204 pr_err("Failed to reserve buffers in ttm.\n"); 1205 drm_exec_fini(&ctx->exec); 1206 return ret; 1207 } 1208 1209 /** 1210 * unreserve_bo_and_vms - Unreserve BO and VMs from a reservation context 1211 * @ctx: Reservation context to unreserve 1212 * @wait: Optionally wait for a sync object representing pending VM updates 1213 * @intr: Whether the wait is interruptible 1214 * 1215 * Also frees any resources allocated in 1216 * reserve_bo_and_(cond_)vm(s). Returns the status from 1217 * amdgpu_sync_wait. 1218 */ 1219 static int unreserve_bo_and_vms(struct bo_vm_reservation_context *ctx, 1220 bool wait, bool intr) 1221 { 1222 int ret = 0; 1223 1224 if (wait) 1225 ret = amdgpu_sync_wait(ctx->sync, intr); 1226 1227 drm_exec_fini(&ctx->exec); 1228 ctx->sync = NULL; 1229 return ret; 1230 } 1231 1232 static void unmap_bo_from_gpuvm(struct kgd_mem *mem, 1233 struct kfd_mem_attachment *entry, 1234 struct amdgpu_sync *sync) 1235 { 1236 struct amdgpu_bo_va *bo_va = entry->bo_va; 1237 struct amdgpu_device *adev = entry->adev; 1238 struct amdgpu_vm *vm = bo_va->base.vm; 1239 1240 amdgpu_vm_bo_unmap(adev, bo_va, entry->va); 1241 1242 amdgpu_vm_clear_freed(adev, vm, &bo_va->last_pt_update); 1243 1244 amdgpu_sync_fence(sync, bo_va->last_pt_update); 1245 } 1246 1247 static int update_gpuvm_pte(struct kgd_mem *mem, 1248 struct kfd_mem_attachment *entry, 1249 struct amdgpu_sync *sync) 1250 { 1251 struct amdgpu_bo_va *bo_va = entry->bo_va; 1252 struct amdgpu_device *adev = entry->adev; 1253 int ret; 1254 1255 ret = kfd_mem_dmamap_attachment(mem, entry); 1256 if (ret) 1257 return ret; 1258 1259 /* Update the page tables */ 1260 ret = amdgpu_vm_bo_update(adev, bo_va, false); 1261 if (ret) { 1262 pr_err("amdgpu_vm_bo_update failed\n"); 1263 return ret; 1264 } 1265 1266 return amdgpu_sync_fence(sync, bo_va->last_pt_update); 1267 } 1268 1269 static int map_bo_to_gpuvm(struct kgd_mem *mem, 1270 struct kfd_mem_attachment *entry, 1271 struct amdgpu_sync *sync, 1272 bool no_update_pte) 1273 { 1274 int ret; 1275 1276 /* Set virtual address for the allocation */ 1277 ret = amdgpu_vm_bo_map(entry->adev, entry->bo_va, entry->va, 0, 1278 amdgpu_bo_size(entry->bo_va->base.bo), 1279 entry->pte_flags); 1280 if (ret) { 1281 pr_err("Failed to map VA 0x%llx in vm. ret %d\n", 1282 entry->va, ret); 1283 return ret; 1284 } 1285 1286 if (no_update_pte) 1287 return 0; 1288 1289 ret = update_gpuvm_pte(mem, entry, sync); 1290 if (ret) { 1291 pr_err("update_gpuvm_pte() failed\n"); 1292 goto update_gpuvm_pte_failed; 1293 } 1294 1295 return 0; 1296 1297 update_gpuvm_pte_failed: 1298 unmap_bo_from_gpuvm(mem, entry, sync); 1299 kfd_mem_dmaunmap_attachment(mem, entry); 1300 return ret; 1301 } 1302 1303 static int process_validate_vms(struct amdkfd_process_info *process_info) 1304 { 1305 struct amdgpu_vm *peer_vm; 1306 int ret; 1307 1308 list_for_each_entry(peer_vm, &process_info->vm_list_head, 1309 vm_list_node) { 1310 ret = vm_validate_pt_pd_bos(peer_vm); 1311 if (ret) 1312 return ret; 1313 } 1314 1315 return 0; 1316 } 1317 1318 static int process_sync_pds_resv(struct amdkfd_process_info *process_info, 1319 struct amdgpu_sync *sync) 1320 { 1321 struct amdgpu_vm *peer_vm; 1322 int ret; 1323 1324 list_for_each_entry(peer_vm, &process_info->vm_list_head, 1325 vm_list_node) { 1326 struct amdgpu_bo *pd = peer_vm->root.bo; 1327 1328 ret = amdgpu_sync_resv(NULL, sync, pd->tbo.base.resv, 1329 AMDGPU_SYNC_NE_OWNER, 1330 AMDGPU_FENCE_OWNER_KFD); 1331 if (ret) 1332 return ret; 1333 } 1334 1335 return 0; 1336 } 1337 1338 static int process_update_pds(struct amdkfd_process_info *process_info, 1339 struct amdgpu_sync *sync) 1340 { 1341 struct amdgpu_vm *peer_vm; 1342 int ret; 1343 1344 list_for_each_entry(peer_vm, &process_info->vm_list_head, 1345 vm_list_node) { 1346 ret = vm_update_pds(peer_vm, sync); 1347 if (ret) 1348 return ret; 1349 } 1350 1351 return 0; 1352 } 1353 1354 static int init_kfd_vm(struct amdgpu_vm *vm, void **process_info, 1355 struct dma_fence **ef) 1356 { 1357 struct amdkfd_process_info *info = NULL; 1358 int ret; 1359 1360 if (!*process_info) { 1361 info = kzalloc(sizeof(*info), GFP_KERNEL); 1362 if (!info) 1363 return -ENOMEM; 1364 1365 mutex_init(&info->lock); 1366 mutex_init(&info->notifier_lock); 1367 INIT_LIST_HEAD(&info->vm_list_head); 1368 INIT_LIST_HEAD(&info->kfd_bo_list); 1369 INIT_LIST_HEAD(&info->userptr_valid_list); 1370 INIT_LIST_HEAD(&info->userptr_inval_list); 1371 1372 info->eviction_fence = 1373 amdgpu_amdkfd_fence_create(dma_fence_context_alloc(1), 1374 current->mm, 1375 NULL); 1376 if (!info->eviction_fence) { 1377 pr_err("Failed to create eviction fence\n"); 1378 ret = -ENOMEM; 1379 goto create_evict_fence_fail; 1380 } 1381 1382 info->pid = get_task_pid(current->group_leader, PIDTYPE_PID); 1383 INIT_DELAYED_WORK(&info->restore_userptr_work, 1384 amdgpu_amdkfd_restore_userptr_worker); 1385 1386 *process_info = info; 1387 } 1388 1389 vm->process_info = *process_info; 1390 1391 /* Validate page directory and attach eviction fence */ 1392 ret = amdgpu_bo_reserve(vm->root.bo, true); 1393 if (ret) 1394 goto reserve_pd_fail; 1395 ret = vm_validate_pt_pd_bos(vm); 1396 if (ret) { 1397 pr_err("validate_pt_pd_bos() failed\n"); 1398 goto validate_pd_fail; 1399 } 1400 ret = amdgpu_bo_sync_wait(vm->root.bo, 1401 AMDGPU_FENCE_OWNER_KFD, false); 1402 if (ret) 1403 goto wait_pd_fail; 1404 ret = dma_resv_reserve_fences(vm->root.bo->tbo.base.resv, 1); 1405 if (ret) 1406 goto reserve_shared_fail; 1407 dma_resv_add_fence(vm->root.bo->tbo.base.resv, 1408 &vm->process_info->eviction_fence->base, 1409 DMA_RESV_USAGE_BOOKKEEP); 1410 amdgpu_bo_unreserve(vm->root.bo); 1411 1412 /* Update process info */ 1413 mutex_lock(&vm->process_info->lock); 1414 list_add_tail(&vm->vm_list_node, 1415 &(vm->process_info->vm_list_head)); 1416 vm->process_info->n_vms++; 1417 1418 *ef = dma_fence_get(&vm->process_info->eviction_fence->base); 1419 mutex_unlock(&vm->process_info->lock); 1420 1421 return 0; 1422 1423 reserve_shared_fail: 1424 wait_pd_fail: 1425 validate_pd_fail: 1426 amdgpu_bo_unreserve(vm->root.bo); 1427 reserve_pd_fail: 1428 vm->process_info = NULL; 1429 if (info) { 1430 dma_fence_put(&info->eviction_fence->base); 1431 *process_info = NULL; 1432 put_pid(info->pid); 1433 create_evict_fence_fail: 1434 mutex_destroy(&info->lock); 1435 mutex_destroy(&info->notifier_lock); 1436 kfree(info); 1437 } 1438 return ret; 1439 } 1440 1441 /** 1442 * amdgpu_amdkfd_gpuvm_pin_bo() - Pins a BO using following criteria 1443 * @bo: Handle of buffer object being pinned 1444 * @domain: Domain into which BO should be pinned 1445 * 1446 * - USERPTR BOs are UNPINNABLE and will return error 1447 * - All other BO types (GTT, VRAM, MMIO and DOORBELL) will have their 1448 * PIN count incremented. It is valid to PIN a BO multiple times 1449 * 1450 * Return: ZERO if successful in pinning, Non-Zero in case of error. 1451 */ 1452 static int amdgpu_amdkfd_gpuvm_pin_bo(struct amdgpu_bo *bo, u32 domain) 1453 { 1454 int ret = 0; 1455 1456 ret = amdgpu_bo_reserve(bo, false); 1457 if (unlikely(ret)) 1458 return ret; 1459 1460 ret = amdgpu_bo_pin_restricted(bo, domain, 0, 0); 1461 if (ret) 1462 pr_err("Error in Pinning BO to domain: %d\n", domain); 1463 1464 amdgpu_bo_sync_wait(bo, AMDGPU_FENCE_OWNER_KFD, false); 1465 amdgpu_bo_unreserve(bo); 1466 1467 return ret; 1468 } 1469 1470 /** 1471 * amdgpu_amdkfd_gpuvm_unpin_bo() - Unpins BO using following criteria 1472 * @bo: Handle of buffer object being unpinned 1473 * 1474 * - Is a illegal request for USERPTR BOs and is ignored 1475 * - All other BO types (GTT, VRAM, MMIO and DOORBELL) will have their 1476 * PIN count decremented. Calls to UNPIN must balance calls to PIN 1477 */ 1478 static void amdgpu_amdkfd_gpuvm_unpin_bo(struct amdgpu_bo *bo) 1479 { 1480 int ret = 0; 1481 1482 ret = amdgpu_bo_reserve(bo, false); 1483 if (unlikely(ret)) 1484 return; 1485 1486 amdgpu_bo_unpin(bo); 1487 amdgpu_bo_unreserve(bo); 1488 } 1489 1490 int amdgpu_amdkfd_gpuvm_set_vm_pasid(struct amdgpu_device *adev, 1491 struct amdgpu_vm *avm, u32 pasid) 1492 1493 { 1494 int ret; 1495 1496 /* Free the original amdgpu allocated pasid, 1497 * will be replaced with kfd allocated pasid. 1498 */ 1499 if (avm->pasid) { 1500 amdgpu_pasid_free(avm->pasid); 1501 amdgpu_vm_set_pasid(adev, avm, 0); 1502 } 1503 1504 ret = amdgpu_vm_set_pasid(adev, avm, pasid); 1505 if (ret) 1506 return ret; 1507 1508 return 0; 1509 } 1510 1511 int amdgpu_amdkfd_gpuvm_acquire_process_vm(struct amdgpu_device *adev, 1512 struct amdgpu_vm *avm, 1513 void **process_info, 1514 struct dma_fence **ef) 1515 { 1516 int ret; 1517 1518 /* Already a compute VM? */ 1519 if (avm->process_info) 1520 return -EINVAL; 1521 1522 /* Convert VM into a compute VM */ 1523 ret = amdgpu_vm_make_compute(adev, avm); 1524 if (ret) 1525 return ret; 1526 1527 /* Initialize KFD part of the VM and process info */ 1528 ret = init_kfd_vm(avm, process_info, ef); 1529 if (ret) 1530 return ret; 1531 1532 amdgpu_vm_set_task_info(avm); 1533 1534 return 0; 1535 } 1536 1537 void amdgpu_amdkfd_gpuvm_destroy_cb(struct amdgpu_device *adev, 1538 struct amdgpu_vm *vm) 1539 { 1540 struct amdkfd_process_info *process_info = vm->process_info; 1541 1542 if (!process_info) 1543 return; 1544 1545 /* Update process info */ 1546 mutex_lock(&process_info->lock); 1547 process_info->n_vms--; 1548 list_del(&vm->vm_list_node); 1549 mutex_unlock(&process_info->lock); 1550 1551 vm->process_info = NULL; 1552 1553 /* Release per-process resources when last compute VM is destroyed */ 1554 if (!process_info->n_vms) { 1555 WARN_ON(!list_empty(&process_info->kfd_bo_list)); 1556 WARN_ON(!list_empty(&process_info->userptr_valid_list)); 1557 WARN_ON(!list_empty(&process_info->userptr_inval_list)); 1558 1559 dma_fence_put(&process_info->eviction_fence->base); 1560 cancel_delayed_work_sync(&process_info->restore_userptr_work); 1561 put_pid(process_info->pid); 1562 mutex_destroy(&process_info->lock); 1563 mutex_destroy(&process_info->notifier_lock); 1564 kfree(process_info); 1565 } 1566 } 1567 1568 void amdgpu_amdkfd_gpuvm_release_process_vm(struct amdgpu_device *adev, 1569 void *drm_priv) 1570 { 1571 struct amdgpu_vm *avm; 1572 1573 if (WARN_ON(!adev || !drm_priv)) 1574 return; 1575 1576 avm = drm_priv_to_vm(drm_priv); 1577 1578 pr_debug("Releasing process vm %p\n", avm); 1579 1580 /* The original pasid of amdgpu vm has already been 1581 * released during making a amdgpu vm to a compute vm 1582 * The current pasid is managed by kfd and will be 1583 * released on kfd process destroy. Set amdgpu pasid 1584 * to 0 to avoid duplicate release. 1585 */ 1586 amdgpu_vm_release_compute(adev, avm); 1587 } 1588 1589 uint64_t amdgpu_amdkfd_gpuvm_get_process_page_dir(void *drm_priv) 1590 { 1591 struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv); 1592 struct amdgpu_bo *pd = avm->root.bo; 1593 struct amdgpu_device *adev = amdgpu_ttm_adev(pd->tbo.bdev); 1594 1595 if (adev->asic_type < CHIP_VEGA10) 1596 return avm->pd_phys_addr >> AMDGPU_GPU_PAGE_SHIFT; 1597 return avm->pd_phys_addr; 1598 } 1599 1600 void amdgpu_amdkfd_block_mmu_notifications(void *p) 1601 { 1602 struct amdkfd_process_info *pinfo = (struct amdkfd_process_info *)p; 1603 1604 mutex_lock(&pinfo->lock); 1605 WRITE_ONCE(pinfo->block_mmu_notifications, true); 1606 mutex_unlock(&pinfo->lock); 1607 } 1608 1609 int amdgpu_amdkfd_criu_resume(void *p) 1610 { 1611 int ret = 0; 1612 struct amdkfd_process_info *pinfo = (struct amdkfd_process_info *)p; 1613 1614 mutex_lock(&pinfo->lock); 1615 pr_debug("scheduling work\n"); 1616 mutex_lock(&pinfo->notifier_lock); 1617 pinfo->evicted_bos++; 1618 mutex_unlock(&pinfo->notifier_lock); 1619 if (!READ_ONCE(pinfo->block_mmu_notifications)) { 1620 ret = -EINVAL; 1621 goto out_unlock; 1622 } 1623 WRITE_ONCE(pinfo->block_mmu_notifications, false); 1624 queue_delayed_work(system_freezable_wq, 1625 &pinfo->restore_userptr_work, 0); 1626 1627 out_unlock: 1628 mutex_unlock(&pinfo->lock); 1629 return ret; 1630 } 1631 1632 size_t amdgpu_amdkfd_get_available_memory(struct amdgpu_device *adev, 1633 uint8_t xcp_id) 1634 { 1635 uint64_t reserved_for_pt = 1636 ESTIMATE_PT_SIZE(amdgpu_amdkfd_total_mem_size); 1637 ssize_t available; 1638 uint64_t vram_available, system_mem_available, ttm_mem_available; 1639 1640 spin_lock(&kfd_mem_limit.mem_limit_lock); 1641 vram_available = KFD_XCP_MEMORY_SIZE(adev, xcp_id) 1642 - adev->kfd.vram_used_aligned[xcp_id] 1643 - atomic64_read(&adev->vram_pin_size) 1644 - reserved_for_pt; 1645 1646 if (adev->gmc.is_app_apu) { 1647 system_mem_available = no_system_mem_limit ? 1648 kfd_mem_limit.max_system_mem_limit : 1649 kfd_mem_limit.max_system_mem_limit - 1650 kfd_mem_limit.system_mem_used; 1651 1652 ttm_mem_available = kfd_mem_limit.max_ttm_mem_limit - 1653 kfd_mem_limit.ttm_mem_used; 1654 1655 available = min3(system_mem_available, ttm_mem_available, 1656 vram_available); 1657 available = ALIGN_DOWN(available, PAGE_SIZE); 1658 } else { 1659 available = ALIGN_DOWN(vram_available, VRAM_AVAILABLITY_ALIGN); 1660 } 1661 1662 spin_unlock(&kfd_mem_limit.mem_limit_lock); 1663 1664 if (available < 0) 1665 available = 0; 1666 1667 return available; 1668 } 1669 1670 int amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu( 1671 struct amdgpu_device *adev, uint64_t va, uint64_t size, 1672 void *drm_priv, struct kgd_mem **mem, 1673 uint64_t *offset, uint32_t flags, bool criu_resume) 1674 { 1675 struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv); 1676 struct amdgpu_fpriv *fpriv = container_of(avm, struct amdgpu_fpriv, vm); 1677 enum ttm_bo_type bo_type = ttm_bo_type_device; 1678 struct sg_table *sg = NULL; 1679 uint64_t user_addr = 0; 1680 struct amdgpu_bo *bo; 1681 struct drm_gem_object *gobj = NULL; 1682 u32 domain, alloc_domain; 1683 uint64_t aligned_size; 1684 int8_t xcp_id = -1; 1685 u64 alloc_flags; 1686 int ret; 1687 1688 /* 1689 * Check on which domain to allocate BO 1690 */ 1691 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) { 1692 domain = alloc_domain = AMDGPU_GEM_DOMAIN_VRAM; 1693 1694 if (adev->gmc.is_app_apu) { 1695 domain = AMDGPU_GEM_DOMAIN_GTT; 1696 alloc_domain = AMDGPU_GEM_DOMAIN_GTT; 1697 alloc_flags = 0; 1698 } else { 1699 alloc_flags = AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE; 1700 alloc_flags |= (flags & KFD_IOC_ALLOC_MEM_FLAGS_PUBLIC) ? 1701 AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED : 0; 1702 } 1703 xcp_id = fpriv->xcp_id == AMDGPU_XCP_NO_PARTITION ? 1704 0 : fpriv->xcp_id; 1705 } else if (flags & KFD_IOC_ALLOC_MEM_FLAGS_GTT) { 1706 domain = alloc_domain = AMDGPU_GEM_DOMAIN_GTT; 1707 alloc_flags = 0; 1708 } else { 1709 domain = AMDGPU_GEM_DOMAIN_GTT; 1710 alloc_domain = AMDGPU_GEM_DOMAIN_CPU; 1711 alloc_flags = AMDGPU_GEM_CREATE_PREEMPTIBLE; 1712 1713 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) { 1714 if (!offset || !*offset) 1715 return -EINVAL; 1716 user_addr = untagged_addr(*offset); 1717 } else if (flags & (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL | 1718 KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) { 1719 bo_type = ttm_bo_type_sg; 1720 if (size > UINT_MAX) 1721 return -EINVAL; 1722 sg = create_sg_table(*offset, size); 1723 if (!sg) 1724 return -ENOMEM; 1725 } else { 1726 return -EINVAL; 1727 } 1728 } 1729 1730 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_COHERENT) 1731 alloc_flags |= AMDGPU_GEM_CREATE_COHERENT; 1732 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_EXT_COHERENT) 1733 alloc_flags |= AMDGPU_GEM_CREATE_EXT_COHERENT; 1734 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_UNCACHED) 1735 alloc_flags |= AMDGPU_GEM_CREATE_UNCACHED; 1736 1737 *mem = kzalloc(sizeof(struct kgd_mem), GFP_KERNEL); 1738 if (!*mem) { 1739 ret = -ENOMEM; 1740 goto err; 1741 } 1742 INIT_LIST_HEAD(&(*mem)->attachments); 1743 mutex_init(&(*mem)->lock); 1744 (*mem)->aql_queue = !!(flags & KFD_IOC_ALLOC_MEM_FLAGS_AQL_QUEUE_MEM); 1745 1746 /* Workaround for AQL queue wraparound bug. Map the same 1747 * memory twice. That means we only actually allocate half 1748 * the memory. 1749 */ 1750 if ((*mem)->aql_queue) 1751 size >>= 1; 1752 aligned_size = PAGE_ALIGN(size); 1753 1754 (*mem)->alloc_flags = flags; 1755 1756 amdgpu_sync_create(&(*mem)->sync); 1757 1758 ret = amdgpu_amdkfd_reserve_mem_limit(adev, aligned_size, flags, 1759 xcp_id); 1760 if (ret) { 1761 pr_debug("Insufficient memory\n"); 1762 goto err_reserve_limit; 1763 } 1764 1765 pr_debug("\tcreate BO VA 0x%llx size 0x%llx domain %s xcp_id %d\n", 1766 va, (*mem)->aql_queue ? size << 1 : size, 1767 domain_string(alloc_domain), xcp_id); 1768 1769 ret = amdgpu_gem_object_create(adev, aligned_size, 1, alloc_domain, alloc_flags, 1770 bo_type, NULL, &gobj, xcp_id + 1); 1771 if (ret) { 1772 pr_debug("Failed to create BO on domain %s. ret %d\n", 1773 domain_string(alloc_domain), ret); 1774 goto err_bo_create; 1775 } 1776 ret = drm_vma_node_allow(&gobj->vma_node, drm_priv); 1777 if (ret) { 1778 pr_debug("Failed to allow vma node access. ret %d\n", ret); 1779 goto err_node_allow; 1780 } 1781 bo = gem_to_amdgpu_bo(gobj); 1782 if (bo_type == ttm_bo_type_sg) { 1783 bo->tbo.sg = sg; 1784 bo->tbo.ttm->sg = sg; 1785 } 1786 bo->kfd_bo = *mem; 1787 (*mem)->bo = bo; 1788 if (user_addr) 1789 bo->flags |= AMDGPU_AMDKFD_CREATE_USERPTR_BO; 1790 1791 (*mem)->va = va; 1792 (*mem)->domain = domain; 1793 (*mem)->mapped_to_gpu_memory = 0; 1794 (*mem)->process_info = avm->process_info; 1795 1796 add_kgd_mem_to_kfd_bo_list(*mem, avm->process_info, user_addr); 1797 1798 if (user_addr) { 1799 pr_debug("creating userptr BO for user_addr = %llx\n", user_addr); 1800 ret = init_user_pages(*mem, user_addr, criu_resume); 1801 if (ret) 1802 goto allocate_init_user_pages_failed; 1803 } else if (flags & (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL | 1804 KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) { 1805 ret = amdgpu_amdkfd_gpuvm_pin_bo(bo, AMDGPU_GEM_DOMAIN_GTT); 1806 if (ret) { 1807 pr_err("Pinning MMIO/DOORBELL BO during ALLOC FAILED\n"); 1808 goto err_pin_bo; 1809 } 1810 bo->allowed_domains = AMDGPU_GEM_DOMAIN_GTT; 1811 bo->preferred_domains = AMDGPU_GEM_DOMAIN_GTT; 1812 } else { 1813 mutex_lock(&avm->process_info->lock); 1814 if (avm->process_info->eviction_fence && 1815 !dma_fence_is_signaled(&avm->process_info->eviction_fence->base)) 1816 ret = amdgpu_amdkfd_bo_validate_and_fence(bo, domain, 1817 &avm->process_info->eviction_fence->base); 1818 mutex_unlock(&avm->process_info->lock); 1819 if (ret) 1820 goto err_validate_bo; 1821 } 1822 1823 if (offset) 1824 *offset = amdgpu_bo_mmap_offset(bo); 1825 1826 return 0; 1827 1828 allocate_init_user_pages_failed: 1829 err_pin_bo: 1830 err_validate_bo: 1831 remove_kgd_mem_from_kfd_bo_list(*mem, avm->process_info); 1832 drm_vma_node_revoke(&gobj->vma_node, drm_priv); 1833 err_node_allow: 1834 /* Don't unreserve system mem limit twice */ 1835 goto err_reserve_limit; 1836 err_bo_create: 1837 amdgpu_amdkfd_unreserve_mem_limit(adev, aligned_size, flags, xcp_id); 1838 err_reserve_limit: 1839 mutex_destroy(&(*mem)->lock); 1840 if (gobj) 1841 drm_gem_object_put(gobj); 1842 else 1843 kfree(*mem); 1844 err: 1845 if (sg) { 1846 sg_free_table(sg); 1847 kfree(sg); 1848 } 1849 return ret; 1850 } 1851 1852 int amdgpu_amdkfd_gpuvm_free_memory_of_gpu( 1853 struct amdgpu_device *adev, struct kgd_mem *mem, void *drm_priv, 1854 uint64_t *size) 1855 { 1856 struct amdkfd_process_info *process_info = mem->process_info; 1857 unsigned long bo_size = mem->bo->tbo.base.size; 1858 bool use_release_notifier = (mem->bo->kfd_bo == mem); 1859 struct kfd_mem_attachment *entry, *tmp; 1860 struct bo_vm_reservation_context ctx; 1861 unsigned int mapped_to_gpu_memory; 1862 int ret; 1863 bool is_imported = false; 1864 1865 mutex_lock(&mem->lock); 1866 1867 /* Unpin MMIO/DOORBELL BO's that were pinned during allocation */ 1868 if (mem->alloc_flags & 1869 (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL | 1870 KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) { 1871 amdgpu_amdkfd_gpuvm_unpin_bo(mem->bo); 1872 } 1873 1874 mapped_to_gpu_memory = mem->mapped_to_gpu_memory; 1875 is_imported = mem->is_imported; 1876 mutex_unlock(&mem->lock); 1877 /* lock is not needed after this, since mem is unused and will 1878 * be freed anyway 1879 */ 1880 1881 if (mapped_to_gpu_memory > 0) { 1882 pr_debug("BO VA 0x%llx size 0x%lx is still mapped.\n", 1883 mem->va, bo_size); 1884 return -EBUSY; 1885 } 1886 1887 /* Make sure restore workers don't access the BO any more */ 1888 mutex_lock(&process_info->lock); 1889 list_del(&mem->validate_list); 1890 mutex_unlock(&process_info->lock); 1891 1892 /* Cleanup user pages and MMU notifiers */ 1893 if (amdgpu_ttm_tt_get_usermm(mem->bo->tbo.ttm)) { 1894 amdgpu_hmm_unregister(mem->bo); 1895 mutex_lock(&process_info->notifier_lock); 1896 amdgpu_ttm_tt_discard_user_pages(mem->bo->tbo.ttm, mem->range); 1897 mutex_unlock(&process_info->notifier_lock); 1898 } 1899 1900 ret = reserve_bo_and_cond_vms(mem, NULL, BO_VM_ALL, &ctx); 1901 if (unlikely(ret)) 1902 return ret; 1903 1904 amdgpu_amdkfd_remove_eviction_fence(mem->bo, 1905 process_info->eviction_fence); 1906 pr_debug("Release VA 0x%llx - 0x%llx\n", mem->va, 1907 mem->va + bo_size * (1 + mem->aql_queue)); 1908 1909 /* Remove from VM internal data structures */ 1910 list_for_each_entry_safe(entry, tmp, &mem->attachments, list) { 1911 kfd_mem_dmaunmap_attachment(mem, entry); 1912 kfd_mem_detach(entry); 1913 } 1914 1915 ret = unreserve_bo_and_vms(&ctx, false, false); 1916 1917 /* Free the sync object */ 1918 amdgpu_sync_free(&mem->sync); 1919 1920 /* If the SG is not NULL, it's one we created for a doorbell or mmio 1921 * remap BO. We need to free it. 1922 */ 1923 if (mem->bo->tbo.sg) { 1924 sg_free_table(mem->bo->tbo.sg); 1925 kfree(mem->bo->tbo.sg); 1926 } 1927 1928 /* Update the size of the BO being freed if it was allocated from 1929 * VRAM and is not imported. For APP APU VRAM allocations are done 1930 * in GTT domain 1931 */ 1932 if (size) { 1933 if (!is_imported && 1934 (mem->bo->preferred_domains == AMDGPU_GEM_DOMAIN_VRAM || 1935 (adev->gmc.is_app_apu && 1936 mem->bo->preferred_domains == AMDGPU_GEM_DOMAIN_GTT))) 1937 *size = bo_size; 1938 else 1939 *size = 0; 1940 } 1941 1942 /* Free the BO*/ 1943 drm_vma_node_revoke(&mem->bo->tbo.base.vma_node, drm_priv); 1944 if (mem->dmabuf) 1945 dma_buf_put(mem->dmabuf); 1946 mutex_destroy(&mem->lock); 1947 1948 /* If this releases the last reference, it will end up calling 1949 * amdgpu_amdkfd_release_notify and kfree the mem struct. That's why 1950 * this needs to be the last call here. 1951 */ 1952 drm_gem_object_put(&mem->bo->tbo.base); 1953 1954 /* 1955 * For kgd_mem allocated in amdgpu_amdkfd_gpuvm_import_dmabuf(), 1956 * explicitly free it here. 1957 */ 1958 if (!use_release_notifier) 1959 kfree(mem); 1960 1961 return ret; 1962 } 1963 1964 int amdgpu_amdkfd_gpuvm_map_memory_to_gpu( 1965 struct amdgpu_device *adev, struct kgd_mem *mem, 1966 void *drm_priv) 1967 { 1968 struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv); 1969 int ret; 1970 struct amdgpu_bo *bo; 1971 uint32_t domain; 1972 struct kfd_mem_attachment *entry; 1973 struct bo_vm_reservation_context ctx; 1974 unsigned long bo_size; 1975 bool is_invalid_userptr = false; 1976 1977 bo = mem->bo; 1978 if (!bo) { 1979 pr_err("Invalid BO when mapping memory to GPU\n"); 1980 return -EINVAL; 1981 } 1982 1983 /* Make sure restore is not running concurrently. Since we 1984 * don't map invalid userptr BOs, we rely on the next restore 1985 * worker to do the mapping 1986 */ 1987 mutex_lock(&mem->process_info->lock); 1988 1989 /* Lock notifier lock. If we find an invalid userptr BO, we can be 1990 * sure that the MMU notifier is no longer running 1991 * concurrently and the queues are actually stopped 1992 */ 1993 if (amdgpu_ttm_tt_get_usermm(bo->tbo.ttm)) { 1994 mutex_lock(&mem->process_info->notifier_lock); 1995 is_invalid_userptr = !!mem->invalid; 1996 mutex_unlock(&mem->process_info->notifier_lock); 1997 } 1998 1999 mutex_lock(&mem->lock); 2000 2001 domain = mem->domain; 2002 bo_size = bo->tbo.base.size; 2003 2004 pr_debug("Map VA 0x%llx - 0x%llx to vm %p domain %s\n", 2005 mem->va, 2006 mem->va + bo_size * (1 + mem->aql_queue), 2007 avm, domain_string(domain)); 2008 2009 if (!kfd_mem_is_attached(avm, mem)) { 2010 ret = kfd_mem_attach(adev, mem, avm, mem->aql_queue); 2011 if (ret) 2012 goto out; 2013 } 2014 2015 ret = reserve_bo_and_vm(mem, avm, &ctx); 2016 if (unlikely(ret)) 2017 goto out; 2018 2019 /* Userptr can be marked as "not invalid", but not actually be 2020 * validated yet (still in the system domain). In that case 2021 * the queues are still stopped and we can leave mapping for 2022 * the next restore worker 2023 */ 2024 if (amdgpu_ttm_tt_get_usermm(bo->tbo.ttm) && 2025 bo->tbo.resource->mem_type == TTM_PL_SYSTEM) 2026 is_invalid_userptr = true; 2027 2028 ret = vm_validate_pt_pd_bos(avm); 2029 if (unlikely(ret)) 2030 goto out_unreserve; 2031 2032 list_for_each_entry(entry, &mem->attachments, list) { 2033 if (entry->bo_va->base.vm != avm || entry->is_mapped) 2034 continue; 2035 2036 pr_debug("\t map VA 0x%llx - 0x%llx in entry %p\n", 2037 entry->va, entry->va + bo_size, entry); 2038 2039 ret = map_bo_to_gpuvm(mem, entry, ctx.sync, 2040 is_invalid_userptr); 2041 if (ret) { 2042 pr_err("Failed to map bo to gpuvm\n"); 2043 goto out_unreserve; 2044 } 2045 2046 ret = vm_update_pds(avm, ctx.sync); 2047 if (ret) { 2048 pr_err("Failed to update page directories\n"); 2049 goto out_unreserve; 2050 } 2051 2052 entry->is_mapped = true; 2053 mem->mapped_to_gpu_memory++; 2054 pr_debug("\t INC mapping count %d\n", 2055 mem->mapped_to_gpu_memory); 2056 } 2057 2058 ret = unreserve_bo_and_vms(&ctx, false, false); 2059 2060 goto out; 2061 2062 out_unreserve: 2063 unreserve_bo_and_vms(&ctx, false, false); 2064 out: 2065 mutex_unlock(&mem->process_info->lock); 2066 mutex_unlock(&mem->lock); 2067 return ret; 2068 } 2069 2070 void amdgpu_amdkfd_gpuvm_dmaunmap_mem(struct kgd_mem *mem, void *drm_priv) 2071 { 2072 struct kfd_mem_attachment *entry; 2073 struct amdgpu_vm *vm; 2074 2075 vm = drm_priv_to_vm(drm_priv); 2076 2077 mutex_lock(&mem->lock); 2078 2079 list_for_each_entry(entry, &mem->attachments, list) { 2080 if (entry->bo_va->base.vm == vm) 2081 kfd_mem_dmaunmap_attachment(mem, entry); 2082 } 2083 2084 mutex_unlock(&mem->lock); 2085 } 2086 2087 int amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu( 2088 struct amdgpu_device *adev, struct kgd_mem *mem, void *drm_priv) 2089 { 2090 struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv); 2091 unsigned long bo_size = mem->bo->tbo.base.size; 2092 struct kfd_mem_attachment *entry; 2093 struct bo_vm_reservation_context ctx; 2094 int ret; 2095 2096 mutex_lock(&mem->lock); 2097 2098 ret = reserve_bo_and_cond_vms(mem, avm, BO_VM_MAPPED, &ctx); 2099 if (unlikely(ret)) 2100 goto out; 2101 /* If no VMs were reserved, it means the BO wasn't actually mapped */ 2102 if (ctx.n_vms == 0) { 2103 ret = -EINVAL; 2104 goto unreserve_out; 2105 } 2106 2107 ret = vm_validate_pt_pd_bos(avm); 2108 if (unlikely(ret)) 2109 goto unreserve_out; 2110 2111 pr_debug("Unmap VA 0x%llx - 0x%llx from vm %p\n", 2112 mem->va, 2113 mem->va + bo_size * (1 + mem->aql_queue), 2114 avm); 2115 2116 list_for_each_entry(entry, &mem->attachments, list) { 2117 if (entry->bo_va->base.vm != avm || !entry->is_mapped) 2118 continue; 2119 2120 pr_debug("\t unmap VA 0x%llx - 0x%llx from entry %p\n", 2121 entry->va, entry->va + bo_size, entry); 2122 2123 unmap_bo_from_gpuvm(mem, entry, ctx.sync); 2124 entry->is_mapped = false; 2125 2126 mem->mapped_to_gpu_memory--; 2127 pr_debug("\t DEC mapping count %d\n", 2128 mem->mapped_to_gpu_memory); 2129 } 2130 2131 unreserve_out: 2132 unreserve_bo_and_vms(&ctx, false, false); 2133 out: 2134 mutex_unlock(&mem->lock); 2135 return ret; 2136 } 2137 2138 int amdgpu_amdkfd_gpuvm_sync_memory( 2139 struct amdgpu_device *adev, struct kgd_mem *mem, bool intr) 2140 { 2141 struct amdgpu_sync sync; 2142 int ret; 2143 2144 amdgpu_sync_create(&sync); 2145 2146 mutex_lock(&mem->lock); 2147 amdgpu_sync_clone(&mem->sync, &sync); 2148 mutex_unlock(&mem->lock); 2149 2150 ret = amdgpu_sync_wait(&sync, intr); 2151 amdgpu_sync_free(&sync); 2152 return ret; 2153 } 2154 2155 /** 2156 * amdgpu_amdkfd_map_gtt_bo_to_gart - Map BO to GART and increment reference count 2157 * @adev: Device to which allocated BO belongs 2158 * @bo: Buffer object to be mapped 2159 * 2160 * Before return, bo reference count is incremented. To release the reference and unpin/ 2161 * unmap the BO, call amdgpu_amdkfd_free_gtt_mem. 2162 */ 2163 int amdgpu_amdkfd_map_gtt_bo_to_gart(struct amdgpu_device *adev, struct amdgpu_bo *bo) 2164 { 2165 int ret; 2166 2167 ret = amdgpu_bo_reserve(bo, true); 2168 if (ret) { 2169 pr_err("Failed to reserve bo. ret %d\n", ret); 2170 goto err_reserve_bo_failed; 2171 } 2172 2173 ret = amdgpu_bo_pin(bo, AMDGPU_GEM_DOMAIN_GTT); 2174 if (ret) { 2175 pr_err("Failed to pin bo. ret %d\n", ret); 2176 goto err_pin_bo_failed; 2177 } 2178 2179 ret = amdgpu_ttm_alloc_gart(&bo->tbo); 2180 if (ret) { 2181 pr_err("Failed to bind bo to GART. ret %d\n", ret); 2182 goto err_map_bo_gart_failed; 2183 } 2184 2185 amdgpu_amdkfd_remove_eviction_fence( 2186 bo, bo->vm_bo->vm->process_info->eviction_fence); 2187 2188 amdgpu_bo_unreserve(bo); 2189 2190 bo = amdgpu_bo_ref(bo); 2191 2192 return 0; 2193 2194 err_map_bo_gart_failed: 2195 amdgpu_bo_unpin(bo); 2196 err_pin_bo_failed: 2197 amdgpu_bo_unreserve(bo); 2198 err_reserve_bo_failed: 2199 2200 return ret; 2201 } 2202 2203 /** amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel() - Map a GTT BO for kernel CPU access 2204 * 2205 * @mem: Buffer object to be mapped for CPU access 2206 * @kptr[out]: pointer in kernel CPU address space 2207 * @size[out]: size of the buffer 2208 * 2209 * Pins the BO and maps it for kernel CPU access. The eviction fence is removed 2210 * from the BO, since pinned BOs cannot be evicted. The bo must remain on the 2211 * validate_list, so the GPU mapping can be restored after a page table was 2212 * evicted. 2213 * 2214 * Return: 0 on success, error code on failure 2215 */ 2216 int amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(struct kgd_mem *mem, 2217 void **kptr, uint64_t *size) 2218 { 2219 int ret; 2220 struct amdgpu_bo *bo = mem->bo; 2221 2222 if (amdgpu_ttm_tt_get_usermm(bo->tbo.ttm)) { 2223 pr_err("userptr can't be mapped to kernel\n"); 2224 return -EINVAL; 2225 } 2226 2227 mutex_lock(&mem->process_info->lock); 2228 2229 ret = amdgpu_bo_reserve(bo, true); 2230 if (ret) { 2231 pr_err("Failed to reserve bo. ret %d\n", ret); 2232 goto bo_reserve_failed; 2233 } 2234 2235 ret = amdgpu_bo_pin(bo, AMDGPU_GEM_DOMAIN_GTT); 2236 if (ret) { 2237 pr_err("Failed to pin bo. ret %d\n", ret); 2238 goto pin_failed; 2239 } 2240 2241 ret = amdgpu_bo_kmap(bo, kptr); 2242 if (ret) { 2243 pr_err("Failed to map bo to kernel. ret %d\n", ret); 2244 goto kmap_failed; 2245 } 2246 2247 amdgpu_amdkfd_remove_eviction_fence( 2248 bo, mem->process_info->eviction_fence); 2249 2250 if (size) 2251 *size = amdgpu_bo_size(bo); 2252 2253 amdgpu_bo_unreserve(bo); 2254 2255 mutex_unlock(&mem->process_info->lock); 2256 return 0; 2257 2258 kmap_failed: 2259 amdgpu_bo_unpin(bo); 2260 pin_failed: 2261 amdgpu_bo_unreserve(bo); 2262 bo_reserve_failed: 2263 mutex_unlock(&mem->process_info->lock); 2264 2265 return ret; 2266 } 2267 2268 /** amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel() - Unmap a GTT BO for kernel CPU access 2269 * 2270 * @mem: Buffer object to be unmapped for CPU access 2271 * 2272 * Removes the kernel CPU mapping and unpins the BO. It does not restore the 2273 * eviction fence, so this function should only be used for cleanup before the 2274 * BO is destroyed. 2275 */ 2276 void amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(struct kgd_mem *mem) 2277 { 2278 struct amdgpu_bo *bo = mem->bo; 2279 2280 amdgpu_bo_reserve(bo, true); 2281 amdgpu_bo_kunmap(bo); 2282 amdgpu_bo_unpin(bo); 2283 amdgpu_bo_unreserve(bo); 2284 } 2285 2286 int amdgpu_amdkfd_gpuvm_get_vm_fault_info(struct amdgpu_device *adev, 2287 struct kfd_vm_fault_info *mem) 2288 { 2289 if (atomic_read(&adev->gmc.vm_fault_info_updated) == 1) { 2290 *mem = *adev->gmc.vm_fault_info; 2291 mb(); /* make sure read happened */ 2292 atomic_set(&adev->gmc.vm_fault_info_updated, 0); 2293 } 2294 return 0; 2295 } 2296 2297 int amdgpu_amdkfd_gpuvm_import_dmabuf(struct amdgpu_device *adev, 2298 struct dma_buf *dma_buf, 2299 uint64_t va, void *drm_priv, 2300 struct kgd_mem **mem, uint64_t *size, 2301 uint64_t *mmap_offset) 2302 { 2303 struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv); 2304 struct drm_gem_object *obj; 2305 struct amdgpu_bo *bo; 2306 int ret; 2307 2308 obj = amdgpu_gem_prime_import(adev_to_drm(adev), dma_buf); 2309 if (IS_ERR(obj)) 2310 return PTR_ERR(obj); 2311 2312 bo = gem_to_amdgpu_bo(obj); 2313 if (!(bo->preferred_domains & (AMDGPU_GEM_DOMAIN_VRAM | 2314 AMDGPU_GEM_DOMAIN_GTT))) { 2315 /* Only VRAM and GTT BOs are supported */ 2316 ret = -EINVAL; 2317 goto err_put_obj; 2318 } 2319 2320 *mem = kzalloc(sizeof(struct kgd_mem), GFP_KERNEL); 2321 if (!*mem) { 2322 ret = -ENOMEM; 2323 goto err_put_obj; 2324 } 2325 2326 ret = drm_vma_node_allow(&obj->vma_node, drm_priv); 2327 if (ret) 2328 goto err_free_mem; 2329 2330 if (size) 2331 *size = amdgpu_bo_size(bo); 2332 2333 if (mmap_offset) 2334 *mmap_offset = amdgpu_bo_mmap_offset(bo); 2335 2336 INIT_LIST_HEAD(&(*mem)->attachments); 2337 mutex_init(&(*mem)->lock); 2338 2339 (*mem)->alloc_flags = 2340 ((bo->preferred_domains & AMDGPU_GEM_DOMAIN_VRAM) ? 2341 KFD_IOC_ALLOC_MEM_FLAGS_VRAM : KFD_IOC_ALLOC_MEM_FLAGS_GTT) 2342 | KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE 2343 | KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE; 2344 2345 get_dma_buf(dma_buf); 2346 (*mem)->dmabuf = dma_buf; 2347 (*mem)->bo = bo; 2348 (*mem)->va = va; 2349 (*mem)->domain = (bo->preferred_domains & AMDGPU_GEM_DOMAIN_VRAM) && !adev->gmc.is_app_apu ? 2350 AMDGPU_GEM_DOMAIN_VRAM : AMDGPU_GEM_DOMAIN_GTT; 2351 2352 (*mem)->mapped_to_gpu_memory = 0; 2353 (*mem)->process_info = avm->process_info; 2354 add_kgd_mem_to_kfd_bo_list(*mem, avm->process_info, false); 2355 amdgpu_sync_create(&(*mem)->sync); 2356 (*mem)->is_imported = true; 2357 2358 mutex_lock(&avm->process_info->lock); 2359 if (avm->process_info->eviction_fence && 2360 !dma_fence_is_signaled(&avm->process_info->eviction_fence->base)) 2361 ret = amdgpu_amdkfd_bo_validate_and_fence(bo, (*mem)->domain, 2362 &avm->process_info->eviction_fence->base); 2363 mutex_unlock(&avm->process_info->lock); 2364 if (ret) 2365 goto err_remove_mem; 2366 2367 return 0; 2368 2369 err_remove_mem: 2370 remove_kgd_mem_from_kfd_bo_list(*mem, avm->process_info); 2371 drm_vma_node_revoke(&obj->vma_node, drm_priv); 2372 err_free_mem: 2373 kfree(*mem); 2374 err_put_obj: 2375 drm_gem_object_put(obj); 2376 return ret; 2377 } 2378 2379 int amdgpu_amdkfd_gpuvm_export_dmabuf(struct kgd_mem *mem, 2380 struct dma_buf **dma_buf) 2381 { 2382 int ret; 2383 2384 mutex_lock(&mem->lock); 2385 ret = kfd_mem_export_dmabuf(mem); 2386 if (ret) 2387 goto out; 2388 2389 get_dma_buf(mem->dmabuf); 2390 *dma_buf = mem->dmabuf; 2391 out: 2392 mutex_unlock(&mem->lock); 2393 return ret; 2394 } 2395 2396 /* Evict a userptr BO by stopping the queues if necessary 2397 * 2398 * Runs in MMU notifier, may be in RECLAIM_FS context. This means it 2399 * cannot do any memory allocations, and cannot take any locks that 2400 * are held elsewhere while allocating memory. 2401 * 2402 * It doesn't do anything to the BO itself. The real work happens in 2403 * restore, where we get updated page addresses. This function only 2404 * ensures that GPU access to the BO is stopped. 2405 */ 2406 int amdgpu_amdkfd_evict_userptr(struct mmu_interval_notifier *mni, 2407 unsigned long cur_seq, struct kgd_mem *mem) 2408 { 2409 struct amdkfd_process_info *process_info = mem->process_info; 2410 int r = 0; 2411 2412 /* Do not process MMU notifications during CRIU restore until 2413 * KFD_CRIU_OP_RESUME IOCTL is received 2414 */ 2415 if (READ_ONCE(process_info->block_mmu_notifications)) 2416 return 0; 2417 2418 mutex_lock(&process_info->notifier_lock); 2419 mmu_interval_set_seq(mni, cur_seq); 2420 2421 mem->invalid++; 2422 if (++process_info->evicted_bos == 1) { 2423 /* First eviction, stop the queues */ 2424 r = kgd2kfd_quiesce_mm(mni->mm, 2425 KFD_QUEUE_EVICTION_TRIGGER_USERPTR); 2426 if (r) 2427 pr_err("Failed to quiesce KFD\n"); 2428 queue_delayed_work(system_freezable_wq, 2429 &process_info->restore_userptr_work, 2430 msecs_to_jiffies(AMDGPU_USERPTR_RESTORE_DELAY_MS)); 2431 } 2432 mutex_unlock(&process_info->notifier_lock); 2433 2434 return r; 2435 } 2436 2437 /* Update invalid userptr BOs 2438 * 2439 * Moves invalidated (evicted) userptr BOs from userptr_valid_list to 2440 * userptr_inval_list and updates user pages for all BOs that have 2441 * been invalidated since their last update. 2442 */ 2443 static int update_invalid_user_pages(struct amdkfd_process_info *process_info, 2444 struct mm_struct *mm) 2445 { 2446 struct kgd_mem *mem, *tmp_mem; 2447 struct amdgpu_bo *bo; 2448 struct ttm_operation_ctx ctx = { false, false }; 2449 uint32_t invalid; 2450 int ret = 0; 2451 2452 mutex_lock(&process_info->notifier_lock); 2453 2454 /* Move all invalidated BOs to the userptr_inval_list */ 2455 list_for_each_entry_safe(mem, tmp_mem, 2456 &process_info->userptr_valid_list, 2457 validate_list) 2458 if (mem->invalid) 2459 list_move_tail(&mem->validate_list, 2460 &process_info->userptr_inval_list); 2461 2462 /* Go through userptr_inval_list and update any invalid user_pages */ 2463 list_for_each_entry(mem, &process_info->userptr_inval_list, 2464 validate_list) { 2465 invalid = mem->invalid; 2466 if (!invalid) 2467 /* BO hasn't been invalidated since the last 2468 * revalidation attempt. Keep its page list. 2469 */ 2470 continue; 2471 2472 bo = mem->bo; 2473 2474 amdgpu_ttm_tt_discard_user_pages(bo->tbo.ttm, mem->range); 2475 mem->range = NULL; 2476 2477 /* BO reservations and getting user pages (hmm_range_fault) 2478 * must happen outside the notifier lock 2479 */ 2480 mutex_unlock(&process_info->notifier_lock); 2481 2482 /* Move the BO to system (CPU) domain if necessary to unmap 2483 * and free the SG table 2484 */ 2485 if (bo->tbo.resource->mem_type != TTM_PL_SYSTEM) { 2486 if (amdgpu_bo_reserve(bo, true)) 2487 return -EAGAIN; 2488 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_CPU); 2489 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 2490 amdgpu_bo_unreserve(bo); 2491 if (ret) { 2492 pr_err("%s: Failed to invalidate userptr BO\n", 2493 __func__); 2494 return -EAGAIN; 2495 } 2496 } 2497 2498 /* Get updated user pages */ 2499 ret = amdgpu_ttm_tt_get_user_pages(bo, bo->tbo.ttm->pages, 2500 &mem->range); 2501 if (ret) { 2502 pr_debug("Failed %d to get user pages\n", ret); 2503 2504 /* Return -EFAULT bad address error as success. It will 2505 * fail later with a VM fault if the GPU tries to access 2506 * it. Better than hanging indefinitely with stalled 2507 * user mode queues. 2508 * 2509 * Return other error -EBUSY or -ENOMEM to retry restore 2510 */ 2511 if (ret != -EFAULT) 2512 return ret; 2513 2514 ret = 0; 2515 } 2516 2517 mutex_lock(&process_info->notifier_lock); 2518 2519 /* Mark the BO as valid unless it was invalidated 2520 * again concurrently. 2521 */ 2522 if (mem->invalid != invalid) { 2523 ret = -EAGAIN; 2524 goto unlock_out; 2525 } 2526 /* set mem valid if mem has hmm range associated */ 2527 if (mem->range) 2528 mem->invalid = 0; 2529 } 2530 2531 unlock_out: 2532 mutex_unlock(&process_info->notifier_lock); 2533 2534 return ret; 2535 } 2536 2537 /* Validate invalid userptr BOs 2538 * 2539 * Validates BOs on the userptr_inval_list. Also updates GPUVM page tables 2540 * with new page addresses and waits for the page table updates to complete. 2541 */ 2542 static int validate_invalid_user_pages(struct amdkfd_process_info *process_info) 2543 { 2544 struct ttm_operation_ctx ctx = { false, false }; 2545 struct amdgpu_sync sync; 2546 struct drm_exec exec; 2547 2548 struct amdgpu_vm *peer_vm; 2549 struct kgd_mem *mem, *tmp_mem; 2550 struct amdgpu_bo *bo; 2551 int ret; 2552 2553 amdgpu_sync_create(&sync); 2554 2555 drm_exec_init(&exec, 0); 2556 /* Reserve all BOs and page tables for validation */ 2557 drm_exec_until_all_locked(&exec) { 2558 /* Reserve all the page directories */ 2559 list_for_each_entry(peer_vm, &process_info->vm_list_head, 2560 vm_list_node) { 2561 ret = amdgpu_vm_lock_pd(peer_vm, &exec, 2); 2562 drm_exec_retry_on_contention(&exec); 2563 if (unlikely(ret)) 2564 goto unreserve_out; 2565 } 2566 2567 /* Reserve the userptr_inval_list entries to resv_list */ 2568 list_for_each_entry(mem, &process_info->userptr_inval_list, 2569 validate_list) { 2570 struct drm_gem_object *gobj; 2571 2572 gobj = &mem->bo->tbo.base; 2573 ret = drm_exec_prepare_obj(&exec, gobj, 1); 2574 drm_exec_retry_on_contention(&exec); 2575 if (unlikely(ret)) 2576 goto unreserve_out; 2577 } 2578 } 2579 2580 ret = process_validate_vms(process_info); 2581 if (ret) 2582 goto unreserve_out; 2583 2584 /* Validate BOs and update GPUVM page tables */ 2585 list_for_each_entry_safe(mem, tmp_mem, 2586 &process_info->userptr_inval_list, 2587 validate_list) { 2588 struct kfd_mem_attachment *attachment; 2589 2590 bo = mem->bo; 2591 2592 /* Validate the BO if we got user pages */ 2593 if (bo->tbo.ttm->pages[0]) { 2594 amdgpu_bo_placement_from_domain(bo, mem->domain); 2595 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 2596 if (ret) { 2597 pr_err("%s: failed to validate BO\n", __func__); 2598 goto unreserve_out; 2599 } 2600 } 2601 2602 /* Update mapping. If the BO was not validated 2603 * (because we couldn't get user pages), this will 2604 * clear the page table entries, which will result in 2605 * VM faults if the GPU tries to access the invalid 2606 * memory. 2607 */ 2608 list_for_each_entry(attachment, &mem->attachments, list) { 2609 if (!attachment->is_mapped) 2610 continue; 2611 2612 kfd_mem_dmaunmap_attachment(mem, attachment); 2613 ret = update_gpuvm_pte(mem, attachment, &sync); 2614 if (ret) { 2615 pr_err("%s: update PTE failed\n", __func__); 2616 /* make sure this gets validated again */ 2617 mutex_lock(&process_info->notifier_lock); 2618 mem->invalid++; 2619 mutex_unlock(&process_info->notifier_lock); 2620 goto unreserve_out; 2621 } 2622 } 2623 } 2624 2625 /* Update page directories */ 2626 ret = process_update_pds(process_info, &sync); 2627 2628 unreserve_out: 2629 drm_exec_fini(&exec); 2630 amdgpu_sync_wait(&sync, false); 2631 amdgpu_sync_free(&sync); 2632 2633 return ret; 2634 } 2635 2636 /* Confirm that all user pages are valid while holding the notifier lock 2637 * 2638 * Moves valid BOs from the userptr_inval_list back to userptr_val_list. 2639 */ 2640 static int confirm_valid_user_pages_locked(struct amdkfd_process_info *process_info) 2641 { 2642 struct kgd_mem *mem, *tmp_mem; 2643 int ret = 0; 2644 2645 list_for_each_entry_safe(mem, tmp_mem, 2646 &process_info->userptr_inval_list, 2647 validate_list) { 2648 bool valid; 2649 2650 /* keep mem without hmm range at userptr_inval_list */ 2651 if (!mem->range) 2652 continue; 2653 2654 /* Only check mem with hmm range associated */ 2655 valid = amdgpu_ttm_tt_get_user_pages_done( 2656 mem->bo->tbo.ttm, mem->range); 2657 2658 mem->range = NULL; 2659 if (!valid) { 2660 WARN(!mem->invalid, "Invalid BO not marked invalid"); 2661 ret = -EAGAIN; 2662 continue; 2663 } 2664 2665 if (mem->invalid) { 2666 WARN(1, "Valid BO is marked invalid"); 2667 ret = -EAGAIN; 2668 continue; 2669 } 2670 2671 list_move_tail(&mem->validate_list, 2672 &process_info->userptr_valid_list); 2673 } 2674 2675 return ret; 2676 } 2677 2678 /* Worker callback to restore evicted userptr BOs 2679 * 2680 * Tries to update and validate all userptr BOs. If successful and no 2681 * concurrent evictions happened, the queues are restarted. Otherwise, 2682 * reschedule for another attempt later. 2683 */ 2684 static void amdgpu_amdkfd_restore_userptr_worker(struct work_struct *work) 2685 { 2686 struct delayed_work *dwork = to_delayed_work(work); 2687 struct amdkfd_process_info *process_info = 2688 container_of(dwork, struct amdkfd_process_info, 2689 restore_userptr_work); 2690 struct task_struct *usertask; 2691 struct mm_struct *mm; 2692 uint32_t evicted_bos; 2693 2694 mutex_lock(&process_info->notifier_lock); 2695 evicted_bos = process_info->evicted_bos; 2696 mutex_unlock(&process_info->notifier_lock); 2697 if (!evicted_bos) 2698 return; 2699 2700 /* Reference task and mm in case of concurrent process termination */ 2701 usertask = get_pid_task(process_info->pid, PIDTYPE_PID); 2702 if (!usertask) 2703 return; 2704 mm = get_task_mm(usertask); 2705 if (!mm) { 2706 put_task_struct(usertask); 2707 return; 2708 } 2709 2710 mutex_lock(&process_info->lock); 2711 2712 if (update_invalid_user_pages(process_info, mm)) 2713 goto unlock_out; 2714 /* userptr_inval_list can be empty if all evicted userptr BOs 2715 * have been freed. In that case there is nothing to validate 2716 * and we can just restart the queues. 2717 */ 2718 if (!list_empty(&process_info->userptr_inval_list)) { 2719 if (validate_invalid_user_pages(process_info)) 2720 goto unlock_out; 2721 } 2722 /* Final check for concurrent evicton and atomic update. If 2723 * another eviction happens after successful update, it will 2724 * be a first eviction that calls quiesce_mm. The eviction 2725 * reference counting inside KFD will handle this case. 2726 */ 2727 mutex_lock(&process_info->notifier_lock); 2728 if (process_info->evicted_bos != evicted_bos) 2729 goto unlock_notifier_out; 2730 2731 if (confirm_valid_user_pages_locked(process_info)) { 2732 WARN(1, "User pages unexpectedly invalid"); 2733 goto unlock_notifier_out; 2734 } 2735 2736 process_info->evicted_bos = evicted_bos = 0; 2737 2738 if (kgd2kfd_resume_mm(mm)) { 2739 pr_err("%s: Failed to resume KFD\n", __func__); 2740 /* No recovery from this failure. Probably the CP is 2741 * hanging. No point trying again. 2742 */ 2743 } 2744 2745 unlock_notifier_out: 2746 mutex_unlock(&process_info->notifier_lock); 2747 unlock_out: 2748 mutex_unlock(&process_info->lock); 2749 2750 /* If validation failed, reschedule another attempt */ 2751 if (evicted_bos) { 2752 queue_delayed_work(system_freezable_wq, 2753 &process_info->restore_userptr_work, 2754 msecs_to_jiffies(AMDGPU_USERPTR_RESTORE_DELAY_MS)); 2755 2756 kfd_smi_event_queue_restore_rescheduled(mm); 2757 } 2758 mmput(mm); 2759 put_task_struct(usertask); 2760 } 2761 2762 static void replace_eviction_fence(struct dma_fence **ef, 2763 struct dma_fence *new_ef) 2764 { 2765 struct dma_fence *old_ef = rcu_replace_pointer(*ef, new_ef, true 2766 /* protected by process_info->lock */); 2767 2768 /* If we're replacing an unsignaled eviction fence, that fence will 2769 * never be signaled, and if anyone is still waiting on that fence, 2770 * they will hang forever. This should never happen. We should only 2771 * replace the fence in restore_work that only gets scheduled after 2772 * eviction work signaled the fence. 2773 */ 2774 WARN_ONCE(!dma_fence_is_signaled(old_ef), 2775 "Replacing unsignaled eviction fence"); 2776 dma_fence_put(old_ef); 2777 } 2778 2779 /** amdgpu_amdkfd_gpuvm_restore_process_bos - Restore all BOs for the given 2780 * KFD process identified by process_info 2781 * 2782 * @process_info: amdkfd_process_info of the KFD process 2783 * 2784 * After memory eviction, restore thread calls this function. The function 2785 * should be called when the Process is still valid. BO restore involves - 2786 * 2787 * 1. Release old eviction fence and create new one 2788 * 2. Get two copies of PD BO list from all the VMs. Keep one copy as pd_list. 2789 * 3 Use the second PD list and kfd_bo_list to create a list (ctx.list) of 2790 * BOs that need to be reserved. 2791 * 4. Reserve all the BOs 2792 * 5. Validate of PD and PT BOs. 2793 * 6. Validate all KFD BOs using kfd_bo_list and Map them and add new fence 2794 * 7. Add fence to all PD and PT BOs. 2795 * 8. Unreserve all BOs 2796 */ 2797 int amdgpu_amdkfd_gpuvm_restore_process_bos(void *info, struct dma_fence **ef) 2798 { 2799 struct amdkfd_process_info *process_info = info; 2800 struct amdgpu_vm *peer_vm; 2801 struct kgd_mem *mem; 2802 struct list_head duplicate_save; 2803 struct amdgpu_sync sync_obj; 2804 unsigned long failed_size = 0; 2805 unsigned long total_size = 0; 2806 struct drm_exec exec; 2807 int ret; 2808 2809 INIT_LIST_HEAD(&duplicate_save); 2810 2811 mutex_lock(&process_info->lock); 2812 2813 drm_exec_init(&exec, 0); 2814 drm_exec_until_all_locked(&exec) { 2815 list_for_each_entry(peer_vm, &process_info->vm_list_head, 2816 vm_list_node) { 2817 ret = amdgpu_vm_lock_pd(peer_vm, &exec, 2); 2818 drm_exec_retry_on_contention(&exec); 2819 if (unlikely(ret)) 2820 goto ttm_reserve_fail; 2821 } 2822 2823 /* Reserve all BOs and page tables/directory. Add all BOs from 2824 * kfd_bo_list to ctx.list 2825 */ 2826 list_for_each_entry(mem, &process_info->kfd_bo_list, 2827 validate_list) { 2828 struct drm_gem_object *gobj; 2829 2830 gobj = &mem->bo->tbo.base; 2831 ret = drm_exec_prepare_obj(&exec, gobj, 1); 2832 drm_exec_retry_on_contention(&exec); 2833 if (unlikely(ret)) 2834 goto ttm_reserve_fail; 2835 } 2836 } 2837 2838 amdgpu_sync_create(&sync_obj); 2839 2840 /* Validate PDs and PTs */ 2841 ret = process_validate_vms(process_info); 2842 if (ret) 2843 goto validate_map_fail; 2844 2845 /* Validate BOs and map them to GPUVM (update VM page tables). */ 2846 list_for_each_entry(mem, &process_info->kfd_bo_list, 2847 validate_list) { 2848 2849 struct amdgpu_bo *bo = mem->bo; 2850 uint32_t domain = mem->domain; 2851 struct kfd_mem_attachment *attachment; 2852 struct dma_resv_iter cursor; 2853 struct dma_fence *fence; 2854 2855 total_size += amdgpu_bo_size(bo); 2856 2857 ret = amdgpu_amdkfd_bo_validate(bo, domain, false); 2858 if (ret) { 2859 pr_debug("Memory eviction: Validate BOs failed\n"); 2860 failed_size += amdgpu_bo_size(bo); 2861 ret = amdgpu_amdkfd_bo_validate(bo, 2862 AMDGPU_GEM_DOMAIN_GTT, false); 2863 if (ret) { 2864 pr_debug("Memory eviction: Try again\n"); 2865 goto validate_map_fail; 2866 } 2867 } 2868 dma_resv_for_each_fence(&cursor, bo->tbo.base.resv, 2869 DMA_RESV_USAGE_KERNEL, fence) { 2870 ret = amdgpu_sync_fence(&sync_obj, fence); 2871 if (ret) { 2872 pr_debug("Memory eviction: Sync BO fence failed. Try again\n"); 2873 goto validate_map_fail; 2874 } 2875 } 2876 list_for_each_entry(attachment, &mem->attachments, list) { 2877 if (!attachment->is_mapped) 2878 continue; 2879 2880 if (attachment->bo_va->base.bo->tbo.pin_count) 2881 continue; 2882 2883 kfd_mem_dmaunmap_attachment(mem, attachment); 2884 ret = update_gpuvm_pte(mem, attachment, &sync_obj); 2885 if (ret) { 2886 pr_debug("Memory eviction: update PTE failed. Try again\n"); 2887 goto validate_map_fail; 2888 } 2889 } 2890 } 2891 2892 if (failed_size) 2893 pr_debug("0x%lx/0x%lx in system\n", failed_size, total_size); 2894 2895 /* Update mappings not managed by KFD */ 2896 list_for_each_entry(peer_vm, &process_info->vm_list_head, 2897 vm_list_node) { 2898 struct amdgpu_device *adev = amdgpu_ttm_adev( 2899 peer_vm->root.bo->tbo.bdev); 2900 2901 ret = amdgpu_vm_handle_moved(adev, peer_vm, &exec.ticket); 2902 if (ret) { 2903 pr_debug("Memory eviction: handle moved failed. Try again\n"); 2904 goto validate_map_fail; 2905 } 2906 } 2907 2908 /* Update page directories */ 2909 ret = process_update_pds(process_info, &sync_obj); 2910 if (ret) { 2911 pr_debug("Memory eviction: update PDs failed. Try again\n"); 2912 goto validate_map_fail; 2913 } 2914 2915 /* Sync with fences on all the page tables. They implicitly depend on any 2916 * move fences from amdgpu_vm_handle_moved above. 2917 */ 2918 ret = process_sync_pds_resv(process_info, &sync_obj); 2919 if (ret) { 2920 pr_debug("Memory eviction: Failed to sync to PD BO moving fence. Try again\n"); 2921 goto validate_map_fail; 2922 } 2923 2924 /* Wait for validate and PT updates to finish */ 2925 amdgpu_sync_wait(&sync_obj, false); 2926 2927 /* The old eviction fence may be unsignaled if restore happens 2928 * after a GPU reset or suspend/resume. Keep the old fence in that 2929 * case. Otherwise release the old eviction fence and create new 2930 * one, because fence only goes from unsignaled to signaled once 2931 * and cannot be reused. Use context and mm from the old fence. 2932 * 2933 * If an old eviction fence signals after this check, that's OK. 2934 * Anyone signaling an eviction fence must stop the queues first 2935 * and schedule another restore worker. 2936 */ 2937 if (dma_fence_is_signaled(&process_info->eviction_fence->base)) { 2938 struct amdgpu_amdkfd_fence *new_fence = 2939 amdgpu_amdkfd_fence_create( 2940 process_info->eviction_fence->base.context, 2941 process_info->eviction_fence->mm, 2942 NULL); 2943 2944 if (!new_fence) { 2945 pr_err("Failed to create eviction fence\n"); 2946 ret = -ENOMEM; 2947 goto validate_map_fail; 2948 } 2949 dma_fence_put(&process_info->eviction_fence->base); 2950 process_info->eviction_fence = new_fence; 2951 replace_eviction_fence(ef, dma_fence_get(&new_fence->base)); 2952 } else { 2953 WARN_ONCE(*ef != &process_info->eviction_fence->base, 2954 "KFD eviction fence doesn't match KGD process_info"); 2955 } 2956 2957 /* Attach new eviction fence to all BOs except pinned ones */ 2958 list_for_each_entry(mem, &process_info->kfd_bo_list, validate_list) { 2959 if (mem->bo->tbo.pin_count) 2960 continue; 2961 2962 dma_resv_add_fence(mem->bo->tbo.base.resv, 2963 &process_info->eviction_fence->base, 2964 DMA_RESV_USAGE_BOOKKEEP); 2965 } 2966 /* Attach eviction fence to PD / PT BOs */ 2967 list_for_each_entry(peer_vm, &process_info->vm_list_head, 2968 vm_list_node) { 2969 struct amdgpu_bo *bo = peer_vm->root.bo; 2970 2971 dma_resv_add_fence(bo->tbo.base.resv, 2972 &process_info->eviction_fence->base, 2973 DMA_RESV_USAGE_BOOKKEEP); 2974 } 2975 2976 validate_map_fail: 2977 amdgpu_sync_free(&sync_obj); 2978 ttm_reserve_fail: 2979 drm_exec_fini(&exec); 2980 mutex_unlock(&process_info->lock); 2981 return ret; 2982 } 2983 2984 int amdgpu_amdkfd_add_gws_to_process(void *info, void *gws, struct kgd_mem **mem) 2985 { 2986 struct amdkfd_process_info *process_info = (struct amdkfd_process_info *)info; 2987 struct amdgpu_bo *gws_bo = (struct amdgpu_bo *)gws; 2988 int ret; 2989 2990 if (!info || !gws) 2991 return -EINVAL; 2992 2993 *mem = kzalloc(sizeof(struct kgd_mem), GFP_KERNEL); 2994 if (!*mem) 2995 return -ENOMEM; 2996 2997 mutex_init(&(*mem)->lock); 2998 INIT_LIST_HEAD(&(*mem)->attachments); 2999 (*mem)->bo = amdgpu_bo_ref(gws_bo); 3000 (*mem)->domain = AMDGPU_GEM_DOMAIN_GWS; 3001 (*mem)->process_info = process_info; 3002 add_kgd_mem_to_kfd_bo_list(*mem, process_info, false); 3003 amdgpu_sync_create(&(*mem)->sync); 3004 3005 3006 /* Validate gws bo the first time it is added to process */ 3007 mutex_lock(&(*mem)->process_info->lock); 3008 ret = amdgpu_bo_reserve(gws_bo, false); 3009 if (unlikely(ret)) { 3010 pr_err("Reserve gws bo failed %d\n", ret); 3011 goto bo_reservation_failure; 3012 } 3013 3014 ret = amdgpu_amdkfd_bo_validate(gws_bo, AMDGPU_GEM_DOMAIN_GWS, true); 3015 if (ret) { 3016 pr_err("GWS BO validate failed %d\n", ret); 3017 goto bo_validation_failure; 3018 } 3019 /* GWS resource is shared b/t amdgpu and amdkfd 3020 * Add process eviction fence to bo so they can 3021 * evict each other. 3022 */ 3023 ret = dma_resv_reserve_fences(gws_bo->tbo.base.resv, 1); 3024 if (ret) 3025 goto reserve_shared_fail; 3026 dma_resv_add_fence(gws_bo->tbo.base.resv, 3027 &process_info->eviction_fence->base, 3028 DMA_RESV_USAGE_BOOKKEEP); 3029 amdgpu_bo_unreserve(gws_bo); 3030 mutex_unlock(&(*mem)->process_info->lock); 3031 3032 return ret; 3033 3034 reserve_shared_fail: 3035 bo_validation_failure: 3036 amdgpu_bo_unreserve(gws_bo); 3037 bo_reservation_failure: 3038 mutex_unlock(&(*mem)->process_info->lock); 3039 amdgpu_sync_free(&(*mem)->sync); 3040 remove_kgd_mem_from_kfd_bo_list(*mem, process_info); 3041 amdgpu_bo_unref(&gws_bo); 3042 mutex_destroy(&(*mem)->lock); 3043 kfree(*mem); 3044 *mem = NULL; 3045 return ret; 3046 } 3047 3048 int amdgpu_amdkfd_remove_gws_from_process(void *info, void *mem) 3049 { 3050 int ret; 3051 struct amdkfd_process_info *process_info = (struct amdkfd_process_info *)info; 3052 struct kgd_mem *kgd_mem = (struct kgd_mem *)mem; 3053 struct amdgpu_bo *gws_bo = kgd_mem->bo; 3054 3055 /* Remove BO from process's validate list so restore worker won't touch 3056 * it anymore 3057 */ 3058 remove_kgd_mem_from_kfd_bo_list(kgd_mem, process_info); 3059 3060 ret = amdgpu_bo_reserve(gws_bo, false); 3061 if (unlikely(ret)) { 3062 pr_err("Reserve gws bo failed %d\n", ret); 3063 //TODO add BO back to validate_list? 3064 return ret; 3065 } 3066 amdgpu_amdkfd_remove_eviction_fence(gws_bo, 3067 process_info->eviction_fence); 3068 amdgpu_bo_unreserve(gws_bo); 3069 amdgpu_sync_free(&kgd_mem->sync); 3070 amdgpu_bo_unref(&gws_bo); 3071 mutex_destroy(&kgd_mem->lock); 3072 kfree(mem); 3073 return 0; 3074 } 3075 3076 /* Returns GPU-specific tiling mode information */ 3077 int amdgpu_amdkfd_get_tile_config(struct amdgpu_device *adev, 3078 struct tile_config *config) 3079 { 3080 config->gb_addr_config = adev->gfx.config.gb_addr_config; 3081 config->tile_config_ptr = adev->gfx.config.tile_mode_array; 3082 config->num_tile_configs = 3083 ARRAY_SIZE(adev->gfx.config.tile_mode_array); 3084 config->macro_tile_config_ptr = 3085 adev->gfx.config.macrotile_mode_array; 3086 config->num_macro_tile_configs = 3087 ARRAY_SIZE(adev->gfx.config.macrotile_mode_array); 3088 3089 /* Those values are not set from GFX9 onwards */ 3090 config->num_banks = adev->gfx.config.num_banks; 3091 config->num_ranks = adev->gfx.config.num_ranks; 3092 3093 return 0; 3094 } 3095 3096 bool amdgpu_amdkfd_bo_mapped_to_dev(struct amdgpu_device *adev, struct kgd_mem *mem) 3097 { 3098 struct kfd_mem_attachment *entry; 3099 3100 list_for_each_entry(entry, &mem->attachments, list) { 3101 if (entry->is_mapped && entry->adev == adev) 3102 return true; 3103 } 3104 return false; 3105 } 3106 3107 #if defined(CONFIG_DEBUG_FS) 3108 3109 int kfd_debugfs_kfd_mem_limits(struct seq_file *m, void *data) 3110 { 3111 3112 spin_lock(&kfd_mem_limit.mem_limit_lock); 3113 seq_printf(m, "System mem used %lldM out of %lluM\n", 3114 (kfd_mem_limit.system_mem_used >> 20), 3115 (kfd_mem_limit.max_system_mem_limit >> 20)); 3116 seq_printf(m, "TTM mem used %lldM out of %lluM\n", 3117 (kfd_mem_limit.ttm_mem_used >> 20), 3118 (kfd_mem_limit.max_ttm_mem_limit >> 20)); 3119 spin_unlock(&kfd_mem_limit.mem_limit_lock); 3120 3121 return 0; 3122 } 3123 3124 #endif 3125