1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright 2014-2018 Advanced Micro Devices, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 */ 23 #include <linux/dma-buf.h> 24 #include <linux/list.h> 25 #include <linux/pagemap.h> 26 #include <linux/sched/mm.h> 27 #include <linux/sched/task.h> 28 #include <drm/ttm/ttm_tt.h> 29 30 #include <drm/drm_exec.h> 31 32 #include "amdgpu_object.h" 33 #include "amdgpu_gem.h" 34 #include "amdgpu_vm.h" 35 #include "amdgpu_hmm.h" 36 #include "amdgpu_amdkfd.h" 37 #include "amdgpu_dma_buf.h" 38 #include <uapi/linux/kfd_ioctl.h> 39 #include "amdgpu_xgmi.h" 40 #include "kfd_priv.h" 41 #include "kfd_smi_events.h" 42 43 /* Userptr restore delay, just long enough to allow consecutive VM 44 * changes to accumulate 45 */ 46 #define AMDGPU_USERPTR_RESTORE_DELAY_MS 1 47 #define AMDGPU_RESERVE_MEM_LIMIT (3UL << 29) 48 49 /* 50 * Align VRAM availability to 2MB to avoid fragmentation caused by 4K allocations in the tail 2MB 51 * BO chunk 52 */ 53 #define VRAM_AVAILABLITY_ALIGN (1 << 21) 54 55 /* Impose limit on how much memory KFD can use */ 56 static struct { 57 uint64_t max_system_mem_limit; 58 uint64_t max_ttm_mem_limit; 59 int64_t system_mem_used; 60 int64_t ttm_mem_used; 61 spinlock_t mem_limit_lock; 62 } kfd_mem_limit; 63 64 static const char * const domain_bit_to_string[] = { 65 "CPU", 66 "GTT", 67 "VRAM", 68 "GDS", 69 "GWS", 70 "OA" 71 }; 72 73 #define domain_string(domain) domain_bit_to_string[ffs(domain)-1] 74 75 static void amdgpu_amdkfd_restore_userptr_worker(struct work_struct *work); 76 77 static bool kfd_mem_is_attached(struct amdgpu_vm *avm, 78 struct kgd_mem *mem) 79 { 80 struct kfd_mem_attachment *entry; 81 82 list_for_each_entry(entry, &mem->attachments, list) 83 if (entry->bo_va->base.vm == avm) 84 return true; 85 86 return false; 87 } 88 89 /** 90 * reuse_dmamap() - Check whether adev can share the original 91 * userptr BO 92 * 93 * If both adev and bo_adev are in direct mapping or 94 * in the same iommu group, they can share the original BO. 95 * 96 * @adev: Device to which can or cannot share the original BO 97 * @bo_adev: Device to which allocated BO belongs to 98 * 99 * Return: returns true if adev can share original userptr BO, 100 * false otherwise. 101 */ 102 static bool reuse_dmamap(struct amdgpu_device *adev, struct amdgpu_device *bo_adev) 103 { 104 return (adev->ram_is_direct_mapped && bo_adev->ram_is_direct_mapped) || 105 (adev->dev->iommu_group == bo_adev->dev->iommu_group); 106 } 107 108 /* Set memory usage limits. Current, limits are 109 * System (TTM + userptr) memory - 15/16th System RAM 110 * TTM memory - 3/8th System RAM 111 */ 112 void amdgpu_amdkfd_gpuvm_init_mem_limits(void) 113 { 114 struct sysinfo si; 115 uint64_t mem; 116 117 if (kfd_mem_limit.max_system_mem_limit) 118 return; 119 120 si_meminfo(&si); 121 mem = si.totalram - si.totalhigh; 122 mem *= si.mem_unit; 123 124 spin_lock_init(&kfd_mem_limit.mem_limit_lock); 125 kfd_mem_limit.max_system_mem_limit = mem - (mem >> 6); 126 if (kfd_mem_limit.max_system_mem_limit < 2 * AMDGPU_RESERVE_MEM_LIMIT) 127 kfd_mem_limit.max_system_mem_limit >>= 1; 128 else 129 kfd_mem_limit.max_system_mem_limit -= AMDGPU_RESERVE_MEM_LIMIT; 130 131 kfd_mem_limit.max_ttm_mem_limit = ttm_tt_pages_limit() << PAGE_SHIFT; 132 pr_debug("Kernel memory limit %lluM, TTM limit %lluM\n", 133 (kfd_mem_limit.max_system_mem_limit >> 20), 134 (kfd_mem_limit.max_ttm_mem_limit >> 20)); 135 } 136 137 void amdgpu_amdkfd_reserve_system_mem(uint64_t size) 138 { 139 kfd_mem_limit.system_mem_used += size; 140 } 141 142 /* Estimate page table size needed to represent a given memory size 143 * 144 * With 4KB pages, we need one 8 byte PTE for each 4KB of memory 145 * (factor 512, >> 9). With 2MB pages, we need one 8 byte PTE for 2MB 146 * of memory (factor 256K, >> 18). ROCm user mode tries to optimize 147 * for 2MB pages for TLB efficiency. However, small allocations and 148 * fragmented system memory still need some 4KB pages. We choose a 149 * compromise that should work in most cases without reserving too 150 * much memory for page tables unnecessarily (factor 16K, >> 14). 151 */ 152 153 #define ESTIMATE_PT_SIZE(mem_size) max(((mem_size) >> 14), AMDGPU_VM_RESERVED_VRAM) 154 155 /** 156 * amdgpu_amdkfd_reserve_mem_limit() - Decrease available memory by size 157 * of buffer. 158 * 159 * @adev: Device to which allocated BO belongs to 160 * @size: Size of buffer, in bytes, encapsulated by B0. This should be 161 * equivalent to amdgpu_bo_size(BO) 162 * @alloc_flag: Flag used in allocating a BO as noted above 163 * @xcp_id: xcp_id is used to get xcp from xcp manager, one xcp is 164 * managed as one compute node in driver for app 165 * 166 * Return: 167 * returns -ENOMEM in case of error, ZERO otherwise 168 */ 169 int amdgpu_amdkfd_reserve_mem_limit(struct amdgpu_device *adev, 170 uint64_t size, u32 alloc_flag, int8_t xcp_id) 171 { 172 uint64_t reserved_for_pt = 173 ESTIMATE_PT_SIZE(amdgpu_amdkfd_total_mem_size); 174 struct amdgpu_ras *con = amdgpu_ras_get_context(adev); 175 uint64_t reserved_for_ras = (con ? con->reserved_pages_in_bytes : 0); 176 size_t system_mem_needed, ttm_mem_needed, vram_needed; 177 int ret = 0; 178 uint64_t vram_size = 0; 179 180 system_mem_needed = 0; 181 ttm_mem_needed = 0; 182 vram_needed = 0; 183 if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_GTT) { 184 system_mem_needed = size; 185 ttm_mem_needed = size; 186 } else if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) { 187 /* 188 * Conservatively round up the allocation requirement to 2 MB 189 * to avoid fragmentation caused by 4K allocations in the tail 190 * 2M BO chunk. 191 */ 192 vram_needed = size; 193 /* 194 * For GFX 9.4.3, get the VRAM size from XCP structs 195 */ 196 if (WARN_ONCE(xcp_id < 0, "invalid XCP ID %d", xcp_id)) 197 return -EINVAL; 198 199 vram_size = KFD_XCP_MEMORY_SIZE(adev, xcp_id); 200 if (adev->apu_prefer_gtt) { 201 system_mem_needed = size; 202 ttm_mem_needed = size; 203 } 204 } else if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) { 205 system_mem_needed = size; 206 } else if (!(alloc_flag & 207 (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL | 208 KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP))) { 209 pr_err("%s: Invalid BO type %#x\n", __func__, alloc_flag); 210 return -ENOMEM; 211 } 212 213 spin_lock(&kfd_mem_limit.mem_limit_lock); 214 215 if (kfd_mem_limit.system_mem_used + system_mem_needed > 216 kfd_mem_limit.max_system_mem_limit) { 217 pr_debug("Set no_system_mem_limit=1 if using shared memory\n"); 218 if (!no_system_mem_limit) { 219 ret = -ENOMEM; 220 goto release; 221 } 222 } 223 224 if (kfd_mem_limit.ttm_mem_used + ttm_mem_needed > 225 kfd_mem_limit.max_ttm_mem_limit) { 226 ret = -ENOMEM; 227 goto release; 228 } 229 230 /*if is_app_apu is false and apu_prefer_gtt is true, it is an APU with 231 * carve out < gtt. In that case, VRAM allocation will go to gtt domain, skip 232 * VRAM check since ttm_mem_limit check already cover this allocation 233 */ 234 235 if (adev && xcp_id >= 0 && (!adev->apu_prefer_gtt || adev->gmc.is_app_apu)) { 236 uint64_t vram_available = 237 vram_size - reserved_for_pt - reserved_for_ras - 238 atomic64_read(&adev->vram_pin_size); 239 if (adev->kfd.vram_used[xcp_id] + vram_needed > vram_available) { 240 ret = -ENOMEM; 241 goto release; 242 } 243 } 244 245 /* Update memory accounting by decreasing available system 246 * memory, TTM memory and GPU memory as computed above 247 */ 248 WARN_ONCE(vram_needed && !adev, 249 "adev reference can't be null when vram is used"); 250 if (adev && xcp_id >= 0) { 251 adev->kfd.vram_used[xcp_id] += vram_needed; 252 adev->kfd.vram_used_aligned[xcp_id] += 253 adev->apu_prefer_gtt ? 254 vram_needed : 255 ALIGN(vram_needed, VRAM_AVAILABLITY_ALIGN); 256 } 257 kfd_mem_limit.system_mem_used += system_mem_needed; 258 kfd_mem_limit.ttm_mem_used += ttm_mem_needed; 259 260 release: 261 spin_unlock(&kfd_mem_limit.mem_limit_lock); 262 return ret; 263 } 264 265 void amdgpu_amdkfd_unreserve_mem_limit(struct amdgpu_device *adev, 266 uint64_t size, u32 alloc_flag, int8_t xcp_id) 267 { 268 spin_lock(&kfd_mem_limit.mem_limit_lock); 269 270 if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_GTT) { 271 kfd_mem_limit.system_mem_used -= size; 272 kfd_mem_limit.ttm_mem_used -= size; 273 } else if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) { 274 WARN_ONCE(!adev, 275 "adev reference can't be null when alloc mem flags vram is set"); 276 if (WARN_ONCE(xcp_id < 0, "invalid XCP ID %d", xcp_id)) 277 goto release; 278 279 if (adev) { 280 adev->kfd.vram_used[xcp_id] -= size; 281 if (adev->apu_prefer_gtt) { 282 adev->kfd.vram_used_aligned[xcp_id] -= size; 283 kfd_mem_limit.system_mem_used -= size; 284 kfd_mem_limit.ttm_mem_used -= size; 285 } else { 286 adev->kfd.vram_used_aligned[xcp_id] -= 287 ALIGN(size, VRAM_AVAILABLITY_ALIGN); 288 } 289 } 290 } else if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) { 291 kfd_mem_limit.system_mem_used -= size; 292 } else if (!(alloc_flag & 293 (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL | 294 KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP))) { 295 pr_err("%s: Invalid BO type %#x\n", __func__, alloc_flag); 296 goto release; 297 } 298 WARN_ONCE(adev && xcp_id >= 0 && adev->kfd.vram_used[xcp_id] < 0, 299 "KFD VRAM memory accounting unbalanced for xcp: %d", xcp_id); 300 WARN_ONCE(kfd_mem_limit.ttm_mem_used < 0, 301 "KFD TTM memory accounting unbalanced"); 302 WARN_ONCE(kfd_mem_limit.system_mem_used < 0, 303 "KFD system memory accounting unbalanced"); 304 305 release: 306 spin_unlock(&kfd_mem_limit.mem_limit_lock); 307 } 308 309 void amdgpu_amdkfd_release_notify(struct amdgpu_bo *bo) 310 { 311 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 312 u32 alloc_flags = bo->kfd_bo->alloc_flags; 313 u64 size = amdgpu_bo_size(bo); 314 315 amdgpu_amdkfd_unreserve_mem_limit(adev, size, alloc_flags, 316 bo->xcp_id); 317 318 kfree(bo->kfd_bo); 319 } 320 321 /** 322 * create_dmamap_sg_bo() - Creates a amdgpu_bo object to reflect information 323 * about USERPTR or DOOREBELL or MMIO BO. 324 * 325 * @adev: Device for which dmamap BO is being created 326 * @mem: BO of peer device that is being DMA mapped. Provides parameters 327 * in building the dmamap BO 328 * @bo_out: Output parameter updated with handle of dmamap BO 329 */ 330 static int 331 create_dmamap_sg_bo(struct amdgpu_device *adev, 332 struct kgd_mem *mem, struct amdgpu_bo **bo_out) 333 { 334 struct drm_gem_object *gem_obj; 335 int ret; 336 uint64_t flags = 0; 337 338 ret = amdgpu_bo_reserve(mem->bo, false); 339 if (ret) 340 return ret; 341 342 if (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) 343 flags |= mem->bo->flags & (AMDGPU_GEM_CREATE_COHERENT | 344 AMDGPU_GEM_CREATE_UNCACHED); 345 346 ret = amdgpu_gem_object_create(adev, mem->bo->tbo.base.size, 1, 347 AMDGPU_GEM_DOMAIN_CPU, AMDGPU_GEM_CREATE_PREEMPTIBLE | flags, 348 ttm_bo_type_sg, mem->bo->tbo.base.resv, &gem_obj, 0); 349 350 amdgpu_bo_unreserve(mem->bo); 351 352 if (ret) { 353 pr_err("Error in creating DMA mappable SG BO on domain: %d\n", ret); 354 return -EINVAL; 355 } 356 357 *bo_out = gem_to_amdgpu_bo(gem_obj); 358 (*bo_out)->parent = amdgpu_bo_ref(mem->bo); 359 return ret; 360 } 361 362 /* amdgpu_amdkfd_remove_eviction_fence - Removes eviction fence from BO's 363 * reservation object. 364 * 365 * @bo: [IN] Remove eviction fence(s) from this BO 366 * @ef: [IN] This eviction fence is removed if it 367 * is present in the shared list. 368 * 369 * NOTE: Must be called with BO reserved i.e. bo->tbo.resv->lock held. 370 */ 371 static int amdgpu_amdkfd_remove_eviction_fence(struct amdgpu_bo *bo, 372 struct amdgpu_amdkfd_fence *ef) 373 { 374 struct dma_fence *replacement; 375 376 if (!ef) 377 return -EINVAL; 378 379 /* TODO: Instead of block before we should use the fence of the page 380 * table update and TLB flush here directly. 381 */ 382 replacement = dma_fence_get_stub(); 383 dma_resv_replace_fences(bo->tbo.base.resv, ef->base.context, 384 replacement, DMA_RESV_USAGE_BOOKKEEP); 385 dma_fence_put(replacement); 386 return 0; 387 } 388 389 /** 390 * amdgpu_amdkfd_remove_all_eviction_fences - Remove all eviction fences 391 * @bo: the BO where to remove the evictions fences from. 392 * 393 * This functions should only be used on release when all references to the BO 394 * are already dropped. We remove the eviction fence from the private copy of 395 * the dma_resv object here since that is what is used during release to 396 * determine of the BO is idle or not. 397 */ 398 void amdgpu_amdkfd_remove_all_eviction_fences(struct amdgpu_bo *bo) 399 { 400 struct dma_resv *resv = &bo->tbo.base._resv; 401 struct dma_fence *fence, *stub; 402 struct dma_resv_iter cursor; 403 404 dma_resv_assert_held(resv); 405 406 stub = dma_fence_get_stub(); 407 dma_resv_for_each_fence(&cursor, resv, DMA_RESV_USAGE_BOOKKEEP, fence) { 408 if (!to_amdgpu_amdkfd_fence(fence)) 409 continue; 410 411 dma_resv_replace_fences(resv, fence->context, stub, 412 DMA_RESV_USAGE_BOOKKEEP); 413 } 414 dma_fence_put(stub); 415 } 416 417 static int amdgpu_amdkfd_bo_validate(struct amdgpu_bo *bo, uint32_t domain, 418 bool wait) 419 { 420 struct ttm_operation_ctx ctx = { false, false }; 421 int ret; 422 423 if (WARN(amdgpu_ttm_tt_get_usermm(bo->tbo.ttm), 424 "Called with userptr BO")) 425 return -EINVAL; 426 427 /* bo has been pinned, not need validate it */ 428 if (bo->tbo.pin_count) 429 return 0; 430 431 amdgpu_bo_placement_from_domain(bo, domain); 432 433 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 434 if (ret) 435 goto validate_fail; 436 if (wait) 437 amdgpu_bo_sync_wait(bo, AMDGPU_FENCE_OWNER_KFD, false); 438 439 validate_fail: 440 return ret; 441 } 442 443 int amdgpu_amdkfd_bo_validate_and_fence(struct amdgpu_bo *bo, 444 uint32_t domain, 445 struct dma_fence *fence) 446 { 447 int ret = amdgpu_bo_reserve(bo, false); 448 449 if (ret) 450 return ret; 451 452 ret = amdgpu_amdkfd_bo_validate(bo, domain, true); 453 if (ret) 454 goto unreserve_out; 455 456 ret = dma_resv_reserve_fences(bo->tbo.base.resv, 1); 457 if (ret) 458 goto unreserve_out; 459 460 dma_resv_add_fence(bo->tbo.base.resv, fence, 461 DMA_RESV_USAGE_BOOKKEEP); 462 463 unreserve_out: 464 amdgpu_bo_unreserve(bo); 465 466 return ret; 467 } 468 469 static int amdgpu_amdkfd_validate_vm_bo(void *_unused, struct amdgpu_bo *bo) 470 { 471 return amdgpu_amdkfd_bo_validate(bo, bo->allowed_domains, false); 472 } 473 474 /* vm_validate_pt_pd_bos - Validate page table and directory BOs 475 * 476 * Page directories are not updated here because huge page handling 477 * during page table updates can invalidate page directory entries 478 * again. Page directories are only updated after updating page 479 * tables. 480 */ 481 static int vm_validate_pt_pd_bos(struct amdgpu_vm *vm, 482 struct ww_acquire_ctx *ticket) 483 { 484 struct amdgpu_bo *pd = vm->root.bo; 485 struct amdgpu_device *adev = amdgpu_ttm_adev(pd->tbo.bdev); 486 int ret; 487 488 ret = amdgpu_vm_validate(adev, vm, ticket, 489 amdgpu_amdkfd_validate_vm_bo, NULL); 490 if (ret) { 491 pr_err("failed to validate PT BOs\n"); 492 return ret; 493 } 494 495 vm->pd_phys_addr = amdgpu_gmc_pd_addr(vm->root.bo); 496 497 return 0; 498 } 499 500 static int vm_update_pds(struct amdgpu_vm *vm, struct amdgpu_sync *sync) 501 { 502 struct amdgpu_bo *pd = vm->root.bo; 503 struct amdgpu_device *adev = amdgpu_ttm_adev(pd->tbo.bdev); 504 int ret; 505 506 ret = amdgpu_vm_update_pdes(adev, vm, false); 507 if (ret) 508 return ret; 509 510 return amdgpu_sync_fence(sync, vm->last_update, GFP_KERNEL); 511 } 512 513 static uint64_t get_pte_flags(struct amdgpu_device *adev, struct amdgpu_vm *vm, 514 struct kgd_mem *mem) 515 { 516 uint32_t mapping_flags = AMDGPU_VM_PAGE_READABLE | 517 AMDGPU_VM_MTYPE_DEFAULT; 518 519 if (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE) 520 mapping_flags |= AMDGPU_VM_PAGE_WRITEABLE; 521 if (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE) 522 mapping_flags |= AMDGPU_VM_PAGE_EXECUTABLE; 523 524 return mapping_flags; 525 } 526 527 /** 528 * create_sg_table() - Create an sg_table for a contiguous DMA addr range 529 * @addr: The starting address to point to 530 * @size: Size of memory area in bytes being pointed to 531 * 532 * Allocates an instance of sg_table and initializes it to point to memory 533 * area specified by input parameters. The address used to build is assumed 534 * to be DMA mapped, if needed. 535 * 536 * DOORBELL or MMIO BOs use only one scatterlist node in their sg_table 537 * because they are physically contiguous. 538 * 539 * Return: Initialized instance of SG Table or NULL 540 */ 541 static struct sg_table *create_sg_table(uint64_t addr, uint32_t size) 542 { 543 struct sg_table *sg = kmalloc(sizeof(*sg), GFP_KERNEL); 544 545 if (!sg) 546 return NULL; 547 if (sg_alloc_table(sg, 1, GFP_KERNEL)) { 548 kfree(sg); 549 return NULL; 550 } 551 sg_dma_address(sg->sgl) = addr; 552 sg->sgl->length = size; 553 #ifdef CONFIG_NEED_SG_DMA_LENGTH 554 sg->sgl->dma_length = size; 555 #endif 556 return sg; 557 } 558 559 static int 560 kfd_mem_dmamap_userptr(struct kgd_mem *mem, 561 struct kfd_mem_attachment *attachment) 562 { 563 enum dma_data_direction direction = 564 mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? 565 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 566 struct ttm_operation_ctx ctx = {.interruptible = true}; 567 struct amdgpu_bo *bo = attachment->bo_va->base.bo; 568 struct amdgpu_device *adev = attachment->adev; 569 struct ttm_tt *src_ttm = mem->bo->tbo.ttm; 570 struct ttm_tt *ttm = bo->tbo.ttm; 571 int ret; 572 573 if (WARN_ON(ttm->num_pages != src_ttm->num_pages)) 574 return -EINVAL; 575 576 ttm->sg = kmalloc(sizeof(*ttm->sg), GFP_KERNEL); 577 if (unlikely(!ttm->sg)) 578 return -ENOMEM; 579 580 /* Same sequence as in amdgpu_ttm_tt_pin_userptr */ 581 ret = sg_alloc_table_from_pages(ttm->sg, src_ttm->pages, 582 ttm->num_pages, 0, 583 (u64)ttm->num_pages << PAGE_SHIFT, 584 GFP_KERNEL); 585 if (unlikely(ret)) 586 goto free_sg; 587 588 ret = dma_map_sgtable(adev->dev, ttm->sg, direction, 0); 589 if (unlikely(ret)) 590 goto release_sg; 591 592 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_GTT); 593 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 594 if (ret) 595 goto unmap_sg; 596 597 return 0; 598 599 unmap_sg: 600 dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0); 601 release_sg: 602 pr_err("DMA map userptr failed: %d\n", ret); 603 sg_free_table(ttm->sg); 604 free_sg: 605 kfree(ttm->sg); 606 ttm->sg = NULL; 607 return ret; 608 } 609 610 static int 611 kfd_mem_dmamap_dmabuf(struct kfd_mem_attachment *attachment) 612 { 613 struct ttm_operation_ctx ctx = {.interruptible = true}; 614 struct amdgpu_bo *bo = attachment->bo_va->base.bo; 615 616 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_GTT); 617 return ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 618 } 619 620 /** 621 * kfd_mem_dmamap_sg_bo() - Create DMA mapped sg_table to access DOORBELL or MMIO BO 622 * @mem: SG BO of the DOORBELL or MMIO resource on the owning device 623 * @attachment: Virtual address attachment of the BO on accessing device 624 * 625 * An access request from the device that owns DOORBELL does not require DMA mapping. 626 * This is because the request doesn't go through PCIe root complex i.e. it instead 627 * loops back. The need to DMA map arises only when accessing peer device's DOORBELL 628 * 629 * In contrast, all access requests for MMIO need to be DMA mapped without regard to 630 * device ownership. This is because access requests for MMIO go through PCIe root 631 * complex. 632 * 633 * This is accomplished in two steps: 634 * - Obtain DMA mapped address of DOORBELL or MMIO memory that could be used 635 * in updating requesting device's page table 636 * - Signal TTM to mark memory pointed to by requesting device's BO as GPU 637 * accessible. This allows an update of requesting device's page table 638 * with entries associated with DOOREBELL or MMIO memory 639 * 640 * This method is invoked in the following contexts: 641 * - Mapping of DOORBELL or MMIO BO of same or peer device 642 * - Validating an evicted DOOREBELL or MMIO BO on device seeking access 643 * 644 * Return: ZERO if successful, NON-ZERO otherwise 645 */ 646 static int 647 kfd_mem_dmamap_sg_bo(struct kgd_mem *mem, 648 struct kfd_mem_attachment *attachment) 649 { 650 struct ttm_operation_ctx ctx = {.interruptible = true}; 651 struct amdgpu_bo *bo = attachment->bo_va->base.bo; 652 struct amdgpu_device *adev = attachment->adev; 653 struct ttm_tt *ttm = bo->tbo.ttm; 654 enum dma_data_direction dir; 655 dma_addr_t dma_addr; 656 bool mmio; 657 int ret; 658 659 /* Expect SG Table of dmapmap BO to be NULL */ 660 mmio = (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP); 661 if (unlikely(ttm->sg)) { 662 pr_err("SG Table of %d BO for peer device is UNEXPECTEDLY NON-NULL", mmio); 663 return -EINVAL; 664 } 665 666 dir = mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? 667 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 668 dma_addr = mem->bo->tbo.sg->sgl->dma_address; 669 pr_debug("%d BO size: %d\n", mmio, mem->bo->tbo.sg->sgl->length); 670 pr_debug("%d BO address before DMA mapping: %llx\n", mmio, dma_addr); 671 dma_addr = dma_map_resource(adev->dev, dma_addr, 672 mem->bo->tbo.sg->sgl->length, dir, DMA_ATTR_SKIP_CPU_SYNC); 673 ret = dma_mapping_error(adev->dev, dma_addr); 674 if (unlikely(ret)) 675 return ret; 676 pr_debug("%d BO address after DMA mapping: %llx\n", mmio, dma_addr); 677 678 ttm->sg = create_sg_table(dma_addr, mem->bo->tbo.sg->sgl->length); 679 if (unlikely(!ttm->sg)) { 680 ret = -ENOMEM; 681 goto unmap_sg; 682 } 683 684 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_GTT); 685 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 686 if (unlikely(ret)) 687 goto free_sg; 688 689 return ret; 690 691 free_sg: 692 sg_free_table(ttm->sg); 693 kfree(ttm->sg); 694 ttm->sg = NULL; 695 unmap_sg: 696 dma_unmap_resource(adev->dev, dma_addr, mem->bo->tbo.sg->sgl->length, 697 dir, DMA_ATTR_SKIP_CPU_SYNC); 698 return ret; 699 } 700 701 static int 702 kfd_mem_dmamap_attachment(struct kgd_mem *mem, 703 struct kfd_mem_attachment *attachment) 704 { 705 switch (attachment->type) { 706 case KFD_MEM_ATT_SHARED: 707 return 0; 708 case KFD_MEM_ATT_USERPTR: 709 return kfd_mem_dmamap_userptr(mem, attachment); 710 case KFD_MEM_ATT_DMABUF: 711 return kfd_mem_dmamap_dmabuf(attachment); 712 case KFD_MEM_ATT_SG: 713 return kfd_mem_dmamap_sg_bo(mem, attachment); 714 default: 715 WARN_ON_ONCE(1); 716 } 717 return -EINVAL; 718 } 719 720 static void 721 kfd_mem_dmaunmap_userptr(struct kgd_mem *mem, 722 struct kfd_mem_attachment *attachment) 723 { 724 enum dma_data_direction direction = 725 mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? 726 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 727 struct ttm_operation_ctx ctx = {.interruptible = false}; 728 struct amdgpu_bo *bo = attachment->bo_va->base.bo; 729 struct amdgpu_device *adev = attachment->adev; 730 struct ttm_tt *ttm = bo->tbo.ttm; 731 732 if (unlikely(!ttm->sg)) 733 return; 734 735 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_CPU); 736 (void)ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 737 738 dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0); 739 sg_free_table(ttm->sg); 740 kfree(ttm->sg); 741 ttm->sg = NULL; 742 } 743 744 static void 745 kfd_mem_dmaunmap_dmabuf(struct kfd_mem_attachment *attachment) 746 { 747 /* This is a no-op. We don't want to trigger eviction fences when 748 * unmapping DMABufs. Therefore the invalidation (moving to system 749 * domain) is done in kfd_mem_dmamap_dmabuf. 750 */ 751 } 752 753 /** 754 * kfd_mem_dmaunmap_sg_bo() - Free DMA mapped sg_table of DOORBELL or MMIO BO 755 * @mem: SG BO of the DOORBELL or MMIO resource on the owning device 756 * @attachment: Virtual address attachment of the BO on accessing device 757 * 758 * The method performs following steps: 759 * - Signal TTM to mark memory pointed to by BO as GPU inaccessible 760 * - Free SG Table that is used to encapsulate DMA mapped memory of 761 * peer device's DOORBELL or MMIO memory 762 * 763 * This method is invoked in the following contexts: 764 * UNMapping of DOORBELL or MMIO BO on a device having access to its memory 765 * Eviction of DOOREBELL or MMIO BO on device having access to its memory 766 * 767 * Return: void 768 */ 769 static void 770 kfd_mem_dmaunmap_sg_bo(struct kgd_mem *mem, 771 struct kfd_mem_attachment *attachment) 772 { 773 struct ttm_operation_ctx ctx = {.interruptible = true}; 774 struct amdgpu_bo *bo = attachment->bo_va->base.bo; 775 struct amdgpu_device *adev = attachment->adev; 776 struct ttm_tt *ttm = bo->tbo.ttm; 777 enum dma_data_direction dir; 778 779 if (unlikely(!ttm->sg)) { 780 pr_debug("SG Table of BO is NULL"); 781 return; 782 } 783 784 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_CPU); 785 (void)ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 786 787 dir = mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? 788 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 789 dma_unmap_resource(adev->dev, ttm->sg->sgl->dma_address, 790 ttm->sg->sgl->length, dir, DMA_ATTR_SKIP_CPU_SYNC); 791 sg_free_table(ttm->sg); 792 kfree(ttm->sg); 793 ttm->sg = NULL; 794 bo->tbo.sg = NULL; 795 } 796 797 static void 798 kfd_mem_dmaunmap_attachment(struct kgd_mem *mem, 799 struct kfd_mem_attachment *attachment) 800 { 801 switch (attachment->type) { 802 case KFD_MEM_ATT_SHARED: 803 break; 804 case KFD_MEM_ATT_USERPTR: 805 kfd_mem_dmaunmap_userptr(mem, attachment); 806 break; 807 case KFD_MEM_ATT_DMABUF: 808 kfd_mem_dmaunmap_dmabuf(attachment); 809 break; 810 case KFD_MEM_ATT_SG: 811 kfd_mem_dmaunmap_sg_bo(mem, attachment); 812 break; 813 default: 814 WARN_ON_ONCE(1); 815 } 816 } 817 818 static int kfd_mem_export_dmabuf(struct kgd_mem *mem) 819 { 820 if (!mem->dmabuf) { 821 struct amdgpu_device *bo_adev; 822 struct dma_buf *dmabuf; 823 824 bo_adev = amdgpu_ttm_adev(mem->bo->tbo.bdev); 825 dmabuf = drm_gem_prime_handle_to_dmabuf(&bo_adev->ddev, bo_adev->kfd.client.file, 826 mem->gem_handle, 827 mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? 828 DRM_RDWR : 0); 829 if (IS_ERR(dmabuf)) 830 return PTR_ERR(dmabuf); 831 mem->dmabuf = dmabuf; 832 } 833 834 return 0; 835 } 836 837 static int 838 kfd_mem_attach_dmabuf(struct amdgpu_device *adev, struct kgd_mem *mem, 839 struct amdgpu_bo **bo) 840 { 841 struct drm_gem_object *gobj; 842 int ret; 843 844 ret = kfd_mem_export_dmabuf(mem); 845 if (ret) 846 return ret; 847 848 gobj = amdgpu_gem_prime_import(adev_to_drm(adev), mem->dmabuf); 849 if (IS_ERR(gobj)) 850 return PTR_ERR(gobj); 851 852 *bo = gem_to_amdgpu_bo(gobj); 853 (*bo)->flags |= AMDGPU_GEM_CREATE_PREEMPTIBLE; 854 855 return 0; 856 } 857 858 /* kfd_mem_attach - Add a BO to a VM 859 * 860 * Everything that needs to bo done only once when a BO is first added 861 * to a VM. It can later be mapped and unmapped many times without 862 * repeating these steps. 863 * 864 * 0. Create BO for DMA mapping, if needed 865 * 1. Allocate and initialize BO VA entry data structure 866 * 2. Add BO to the VM 867 * 3. Determine ASIC-specific PTE flags 868 * 4. Alloc page tables and directories if needed 869 * 4a. Validate new page tables and directories 870 */ 871 static int kfd_mem_attach(struct amdgpu_device *adev, struct kgd_mem *mem, 872 struct amdgpu_vm *vm, bool is_aql) 873 { 874 struct amdgpu_device *bo_adev = amdgpu_ttm_adev(mem->bo->tbo.bdev); 875 unsigned long bo_size = mem->bo->tbo.base.size; 876 uint64_t va = mem->va; 877 struct kfd_mem_attachment *attachment[2] = {NULL, NULL}; 878 struct amdgpu_bo *bo[2] = {NULL, NULL}; 879 struct amdgpu_bo_va *bo_va; 880 bool same_hive = false; 881 int i, ret; 882 883 if (!va) { 884 pr_err("Invalid VA when adding BO to VM\n"); 885 return -EINVAL; 886 } 887 888 /* Determine access to VRAM, MMIO and DOORBELL BOs of peer devices 889 * 890 * The access path of MMIO and DOORBELL BOs of is always over PCIe. 891 * In contrast the access path of VRAM BOs depens upon the type of 892 * link that connects the peer device. Access over PCIe is allowed 893 * if peer device has large BAR. In contrast, access over xGMI is 894 * allowed for both small and large BAR configurations of peer device 895 */ 896 if ((adev != bo_adev && !adev->apu_prefer_gtt) && 897 ((mem->domain == AMDGPU_GEM_DOMAIN_VRAM) || 898 (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) || 899 (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP))) { 900 if (mem->domain == AMDGPU_GEM_DOMAIN_VRAM) 901 same_hive = amdgpu_xgmi_same_hive(adev, bo_adev); 902 if (!same_hive && !amdgpu_device_is_peer_accessible(bo_adev, adev)) 903 return -EINVAL; 904 } 905 906 for (i = 0; i <= is_aql; i++) { 907 attachment[i] = kzalloc(sizeof(*attachment[i]), GFP_KERNEL); 908 if (unlikely(!attachment[i])) { 909 ret = -ENOMEM; 910 goto unwind; 911 } 912 913 pr_debug("\t add VA 0x%llx - 0x%llx to vm %p\n", va, 914 va + bo_size, vm); 915 916 if ((adev == bo_adev && !(mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) || 917 (amdgpu_ttm_tt_get_usermm(mem->bo->tbo.ttm) && reuse_dmamap(adev, bo_adev)) || 918 (mem->domain == AMDGPU_GEM_DOMAIN_GTT && reuse_dmamap(adev, bo_adev)) || 919 same_hive) { 920 /* Mappings on the local GPU, or VRAM mappings in the 921 * local hive, or userptr, or GTT mapping can reuse dma map 922 * address space share the original BO 923 */ 924 attachment[i]->type = KFD_MEM_ATT_SHARED; 925 bo[i] = mem->bo; 926 drm_gem_object_get(&bo[i]->tbo.base); 927 } else if (i > 0) { 928 /* Multiple mappings on the same GPU share the BO */ 929 attachment[i]->type = KFD_MEM_ATT_SHARED; 930 bo[i] = bo[0]; 931 drm_gem_object_get(&bo[i]->tbo.base); 932 } else if (amdgpu_ttm_tt_get_usermm(mem->bo->tbo.ttm)) { 933 /* Create an SG BO to DMA-map userptrs on other GPUs */ 934 attachment[i]->type = KFD_MEM_ATT_USERPTR; 935 ret = create_dmamap_sg_bo(adev, mem, &bo[i]); 936 if (ret) 937 goto unwind; 938 /* Handle DOORBELL BOs of peer devices and MMIO BOs of local and peer devices */ 939 } else if (mem->bo->tbo.type == ttm_bo_type_sg) { 940 WARN_ONCE(!(mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL || 941 mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP), 942 "Handing invalid SG BO in ATTACH request"); 943 attachment[i]->type = KFD_MEM_ATT_SG; 944 ret = create_dmamap_sg_bo(adev, mem, &bo[i]); 945 if (ret) 946 goto unwind; 947 /* Enable acces to GTT and VRAM BOs of peer devices */ 948 } else if (mem->domain == AMDGPU_GEM_DOMAIN_GTT || 949 mem->domain == AMDGPU_GEM_DOMAIN_VRAM) { 950 attachment[i]->type = KFD_MEM_ATT_DMABUF; 951 ret = kfd_mem_attach_dmabuf(adev, mem, &bo[i]); 952 if (ret) 953 goto unwind; 954 pr_debug("Employ DMABUF mechanism to enable peer GPU access\n"); 955 } else { 956 WARN_ONCE(true, "Handling invalid ATTACH request"); 957 ret = -EINVAL; 958 goto unwind; 959 } 960 961 /* Add BO to VM internal data structures */ 962 ret = amdgpu_bo_reserve(bo[i], false); 963 if (ret) { 964 pr_debug("Unable to reserve BO during memory attach"); 965 goto unwind; 966 } 967 bo_va = amdgpu_vm_bo_find(vm, bo[i]); 968 if (!bo_va) 969 bo_va = amdgpu_vm_bo_add(adev, vm, bo[i]); 970 else 971 ++bo_va->ref_count; 972 attachment[i]->bo_va = bo_va; 973 amdgpu_bo_unreserve(bo[i]); 974 if (unlikely(!attachment[i]->bo_va)) { 975 ret = -ENOMEM; 976 pr_err("Failed to add BO object to VM. ret == %d\n", 977 ret); 978 goto unwind; 979 } 980 attachment[i]->va = va; 981 attachment[i]->pte_flags = get_pte_flags(adev, vm, mem); 982 attachment[i]->adev = adev; 983 list_add(&attachment[i]->list, &mem->attachments); 984 985 va += bo_size; 986 } 987 988 return 0; 989 990 unwind: 991 for (; i >= 0; i--) { 992 if (!attachment[i]) 993 continue; 994 if (attachment[i]->bo_va) { 995 (void)amdgpu_bo_reserve(bo[i], true); 996 if (--attachment[i]->bo_va->ref_count == 0) 997 amdgpu_vm_bo_del(adev, attachment[i]->bo_va); 998 amdgpu_bo_unreserve(bo[i]); 999 list_del(&attachment[i]->list); 1000 } 1001 if (bo[i]) 1002 drm_gem_object_put(&bo[i]->tbo.base); 1003 kfree(attachment[i]); 1004 } 1005 return ret; 1006 } 1007 1008 static void kfd_mem_detach(struct kfd_mem_attachment *attachment) 1009 { 1010 struct amdgpu_bo *bo = attachment->bo_va->base.bo; 1011 1012 pr_debug("\t remove VA 0x%llx in entry %p\n", 1013 attachment->va, attachment); 1014 if (--attachment->bo_va->ref_count == 0) 1015 amdgpu_vm_bo_del(attachment->adev, attachment->bo_va); 1016 drm_gem_object_put(&bo->tbo.base); 1017 list_del(&attachment->list); 1018 kfree(attachment); 1019 } 1020 1021 static void add_kgd_mem_to_kfd_bo_list(struct kgd_mem *mem, 1022 struct amdkfd_process_info *process_info, 1023 bool userptr) 1024 { 1025 mutex_lock(&process_info->lock); 1026 if (userptr) 1027 list_add_tail(&mem->validate_list, 1028 &process_info->userptr_valid_list); 1029 else 1030 list_add_tail(&mem->validate_list, &process_info->kfd_bo_list); 1031 mutex_unlock(&process_info->lock); 1032 } 1033 1034 static void remove_kgd_mem_from_kfd_bo_list(struct kgd_mem *mem, 1035 struct amdkfd_process_info *process_info) 1036 { 1037 mutex_lock(&process_info->lock); 1038 list_del(&mem->validate_list); 1039 mutex_unlock(&process_info->lock); 1040 } 1041 1042 /* Initializes user pages. It registers the MMU notifier and validates 1043 * the userptr BO in the GTT domain. 1044 * 1045 * The BO must already be on the userptr_valid_list. Otherwise an 1046 * eviction and restore may happen that leaves the new BO unmapped 1047 * with the user mode queues running. 1048 * 1049 * Takes the process_info->lock to protect against concurrent restore 1050 * workers. 1051 * 1052 * Returns 0 for success, negative errno for errors. 1053 */ 1054 static int init_user_pages(struct kgd_mem *mem, uint64_t user_addr, 1055 bool criu_resume) 1056 { 1057 struct amdkfd_process_info *process_info = mem->process_info; 1058 struct amdgpu_bo *bo = mem->bo; 1059 struct ttm_operation_ctx ctx = { true, false }; 1060 struct amdgpu_hmm_range *range; 1061 int ret = 0; 1062 1063 mutex_lock(&process_info->lock); 1064 1065 ret = amdgpu_ttm_tt_set_userptr(&bo->tbo, user_addr, 0); 1066 if (ret) { 1067 pr_err("%s: Failed to set userptr: %d\n", __func__, ret); 1068 goto out; 1069 } 1070 1071 ret = amdgpu_hmm_register(bo, user_addr); 1072 if (ret) { 1073 pr_err("%s: Failed to register MMU notifier: %d\n", 1074 __func__, ret); 1075 goto out; 1076 } 1077 1078 if (criu_resume) { 1079 /* 1080 * During a CRIU restore operation, the userptr buffer objects 1081 * will be validated in the restore_userptr_work worker at a 1082 * later stage when it is scheduled by another ioctl called by 1083 * CRIU master process for the target pid for restore. 1084 */ 1085 mutex_lock(&process_info->notifier_lock); 1086 mem->invalid++; 1087 mutex_unlock(&process_info->notifier_lock); 1088 mutex_unlock(&process_info->lock); 1089 return 0; 1090 } 1091 1092 range = amdgpu_hmm_range_alloc(NULL); 1093 if (unlikely(!range)) { 1094 ret = -ENOMEM; 1095 goto unregister_out; 1096 } 1097 1098 ret = amdgpu_ttm_tt_get_user_pages(bo, range); 1099 if (ret) { 1100 amdgpu_hmm_range_free(range); 1101 if (ret == -EAGAIN) 1102 pr_debug("Failed to get user pages, try again\n"); 1103 else 1104 pr_err("%s: Failed to get user pages: %d\n", __func__, ret); 1105 goto unregister_out; 1106 } 1107 1108 ret = amdgpu_bo_reserve(bo, true); 1109 if (ret) { 1110 pr_err("%s: Failed to reserve BO\n", __func__); 1111 goto release_out; 1112 } 1113 1114 amdgpu_ttm_tt_set_user_pages(bo->tbo.ttm, range); 1115 1116 amdgpu_bo_placement_from_domain(bo, mem->domain); 1117 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 1118 if (ret) 1119 pr_err("%s: failed to validate BO\n", __func__); 1120 amdgpu_bo_unreserve(bo); 1121 1122 release_out: 1123 amdgpu_hmm_range_free(range); 1124 unregister_out: 1125 if (ret) 1126 amdgpu_hmm_unregister(bo); 1127 out: 1128 mutex_unlock(&process_info->lock); 1129 return ret; 1130 } 1131 1132 /* Reserving a BO and its page table BOs must happen atomically to 1133 * avoid deadlocks. Some operations update multiple VMs at once. Track 1134 * all the reservation info in a context structure. Optionally a sync 1135 * object can track VM updates. 1136 */ 1137 struct bo_vm_reservation_context { 1138 /* DRM execution context for the reservation */ 1139 struct drm_exec exec; 1140 /* Number of VMs reserved */ 1141 unsigned int n_vms; 1142 /* Pointer to sync object */ 1143 struct amdgpu_sync *sync; 1144 }; 1145 1146 enum bo_vm_match { 1147 BO_VM_NOT_MAPPED = 0, /* Match VMs where a BO is not mapped */ 1148 BO_VM_MAPPED, /* Match VMs where a BO is mapped */ 1149 BO_VM_ALL, /* Match all VMs a BO was added to */ 1150 }; 1151 1152 /** 1153 * reserve_bo_and_vm - reserve a BO and a VM unconditionally. 1154 * @mem: KFD BO structure. 1155 * @vm: the VM to reserve. 1156 * @ctx: the struct that will be used in unreserve_bo_and_vms(). 1157 */ 1158 static int reserve_bo_and_vm(struct kgd_mem *mem, 1159 struct amdgpu_vm *vm, 1160 struct bo_vm_reservation_context *ctx) 1161 { 1162 struct amdgpu_bo *bo = mem->bo; 1163 int ret; 1164 1165 WARN_ON(!vm); 1166 1167 ctx->n_vms = 1; 1168 ctx->sync = &mem->sync; 1169 drm_exec_init(&ctx->exec, DRM_EXEC_INTERRUPTIBLE_WAIT, 0); 1170 drm_exec_until_all_locked(&ctx->exec) { 1171 ret = amdgpu_vm_lock_pd(vm, &ctx->exec, 2); 1172 drm_exec_retry_on_contention(&ctx->exec); 1173 if (unlikely(ret)) 1174 goto error; 1175 1176 ret = drm_exec_prepare_obj(&ctx->exec, &bo->tbo.base, 1); 1177 drm_exec_retry_on_contention(&ctx->exec); 1178 if (unlikely(ret)) 1179 goto error; 1180 } 1181 return 0; 1182 1183 error: 1184 pr_err("Failed to reserve buffers in ttm.\n"); 1185 drm_exec_fini(&ctx->exec); 1186 return ret; 1187 } 1188 1189 /** 1190 * reserve_bo_and_cond_vms - reserve a BO and some VMs conditionally 1191 * @mem: KFD BO structure. 1192 * @vm: the VM to reserve. If NULL, then all VMs associated with the BO 1193 * is used. Otherwise, a single VM associated with the BO. 1194 * @map_type: the mapping status that will be used to filter the VMs. 1195 * @ctx: the struct that will be used in unreserve_bo_and_vms(). 1196 * 1197 * Returns 0 for success, negative for failure. 1198 */ 1199 static int reserve_bo_and_cond_vms(struct kgd_mem *mem, 1200 struct amdgpu_vm *vm, enum bo_vm_match map_type, 1201 struct bo_vm_reservation_context *ctx) 1202 { 1203 struct kfd_mem_attachment *entry; 1204 struct amdgpu_bo *bo = mem->bo; 1205 int ret; 1206 1207 ctx->sync = &mem->sync; 1208 drm_exec_init(&ctx->exec, DRM_EXEC_INTERRUPTIBLE_WAIT | 1209 DRM_EXEC_IGNORE_DUPLICATES, 0); 1210 drm_exec_until_all_locked(&ctx->exec) { 1211 ctx->n_vms = 0; 1212 list_for_each_entry(entry, &mem->attachments, list) { 1213 if ((vm && vm != entry->bo_va->base.vm) || 1214 (entry->is_mapped != map_type 1215 && map_type != BO_VM_ALL)) 1216 continue; 1217 1218 ret = amdgpu_vm_lock_pd(entry->bo_va->base.vm, 1219 &ctx->exec, 2); 1220 drm_exec_retry_on_contention(&ctx->exec); 1221 if (unlikely(ret)) 1222 goto error; 1223 ++ctx->n_vms; 1224 } 1225 1226 ret = drm_exec_prepare_obj(&ctx->exec, &bo->tbo.base, 1); 1227 drm_exec_retry_on_contention(&ctx->exec); 1228 if (unlikely(ret)) 1229 goto error; 1230 } 1231 return 0; 1232 1233 error: 1234 pr_err("Failed to reserve buffers in ttm.\n"); 1235 drm_exec_fini(&ctx->exec); 1236 return ret; 1237 } 1238 1239 /** 1240 * unreserve_bo_and_vms - Unreserve BO and VMs from a reservation context 1241 * @ctx: Reservation context to unreserve 1242 * @wait: Optionally wait for a sync object representing pending VM updates 1243 * @intr: Whether the wait is interruptible 1244 * 1245 * Also frees any resources allocated in 1246 * reserve_bo_and_(cond_)vm(s). Returns the status from 1247 * amdgpu_sync_wait. 1248 */ 1249 static int unreserve_bo_and_vms(struct bo_vm_reservation_context *ctx, 1250 bool wait, bool intr) 1251 { 1252 int ret = 0; 1253 1254 if (wait) 1255 ret = amdgpu_sync_wait(ctx->sync, intr); 1256 1257 drm_exec_fini(&ctx->exec); 1258 ctx->sync = NULL; 1259 return ret; 1260 } 1261 1262 static int unmap_bo_from_gpuvm(struct kgd_mem *mem, 1263 struct kfd_mem_attachment *entry, 1264 struct amdgpu_sync *sync) 1265 { 1266 struct amdgpu_bo_va *bo_va = entry->bo_va; 1267 struct amdgpu_device *adev = entry->adev; 1268 struct amdgpu_vm *vm = bo_va->base.vm; 1269 1270 if (bo_va->queue_refcount) { 1271 pr_debug("bo_va->queue_refcount %d\n", bo_va->queue_refcount); 1272 return -EBUSY; 1273 } 1274 1275 (void)amdgpu_vm_bo_unmap(adev, bo_va, entry->va); 1276 1277 (void)amdgpu_vm_clear_freed(adev, vm, &bo_va->last_pt_update); 1278 1279 (void)amdgpu_sync_fence(sync, bo_va->last_pt_update, GFP_KERNEL); 1280 1281 return 0; 1282 } 1283 1284 static int update_gpuvm_pte(struct kgd_mem *mem, 1285 struct kfd_mem_attachment *entry, 1286 struct amdgpu_sync *sync) 1287 { 1288 struct amdgpu_bo_va *bo_va = entry->bo_va; 1289 struct amdgpu_device *adev = entry->adev; 1290 int ret; 1291 1292 ret = kfd_mem_dmamap_attachment(mem, entry); 1293 if (ret) 1294 return ret; 1295 1296 /* Update the page tables */ 1297 ret = amdgpu_vm_bo_update(adev, bo_va, false); 1298 if (ret) { 1299 pr_err("amdgpu_vm_bo_update failed\n"); 1300 return ret; 1301 } 1302 1303 return amdgpu_sync_fence(sync, bo_va->last_pt_update, GFP_KERNEL); 1304 } 1305 1306 static int map_bo_to_gpuvm(struct kgd_mem *mem, 1307 struct kfd_mem_attachment *entry, 1308 struct amdgpu_sync *sync, 1309 bool no_update_pte) 1310 { 1311 int ret; 1312 1313 /* Set virtual address for the allocation */ 1314 ret = amdgpu_vm_bo_map(entry->adev, entry->bo_va, entry->va, 0, 1315 amdgpu_bo_size(entry->bo_va->base.bo), 1316 entry->pte_flags); 1317 if (ret) { 1318 pr_err("Failed to map VA 0x%llx in vm. ret %d\n", 1319 entry->va, ret); 1320 return ret; 1321 } 1322 1323 if (no_update_pte) 1324 return 0; 1325 1326 ret = update_gpuvm_pte(mem, entry, sync); 1327 if (ret) { 1328 pr_err("update_gpuvm_pte() failed\n"); 1329 goto update_gpuvm_pte_failed; 1330 } 1331 1332 return 0; 1333 1334 update_gpuvm_pte_failed: 1335 unmap_bo_from_gpuvm(mem, entry, sync); 1336 kfd_mem_dmaunmap_attachment(mem, entry); 1337 return ret; 1338 } 1339 1340 static int process_validate_vms(struct amdkfd_process_info *process_info, 1341 struct ww_acquire_ctx *ticket) 1342 { 1343 struct amdgpu_vm *peer_vm; 1344 int ret; 1345 1346 list_for_each_entry(peer_vm, &process_info->vm_list_head, 1347 vm_list_node) { 1348 ret = vm_validate_pt_pd_bos(peer_vm, ticket); 1349 if (ret) 1350 return ret; 1351 } 1352 1353 return 0; 1354 } 1355 1356 static int process_sync_pds_resv(struct amdkfd_process_info *process_info, 1357 struct amdgpu_sync *sync) 1358 { 1359 struct amdgpu_vm *peer_vm; 1360 int ret; 1361 1362 list_for_each_entry(peer_vm, &process_info->vm_list_head, 1363 vm_list_node) { 1364 struct amdgpu_bo *pd = peer_vm->root.bo; 1365 1366 ret = amdgpu_sync_resv(NULL, sync, pd->tbo.base.resv, 1367 AMDGPU_SYNC_NE_OWNER, 1368 AMDGPU_FENCE_OWNER_KFD); 1369 if (ret) 1370 return ret; 1371 } 1372 1373 return 0; 1374 } 1375 1376 static int process_update_pds(struct amdkfd_process_info *process_info, 1377 struct amdgpu_sync *sync) 1378 { 1379 struct amdgpu_vm *peer_vm; 1380 int ret; 1381 1382 list_for_each_entry(peer_vm, &process_info->vm_list_head, 1383 vm_list_node) { 1384 ret = vm_update_pds(peer_vm, sync); 1385 if (ret) 1386 return ret; 1387 } 1388 1389 return 0; 1390 } 1391 1392 static int init_kfd_vm(struct amdgpu_vm *vm, void **process_info, 1393 struct dma_fence **ef) 1394 { 1395 struct amdkfd_process_info *info = NULL; 1396 int ret; 1397 1398 if (!*process_info) { 1399 info = kzalloc(sizeof(*info), GFP_KERNEL); 1400 if (!info) 1401 return -ENOMEM; 1402 1403 mutex_init(&info->lock); 1404 mutex_init(&info->notifier_lock); 1405 INIT_LIST_HEAD(&info->vm_list_head); 1406 INIT_LIST_HEAD(&info->kfd_bo_list); 1407 INIT_LIST_HEAD(&info->userptr_valid_list); 1408 INIT_LIST_HEAD(&info->userptr_inval_list); 1409 1410 info->eviction_fence = 1411 amdgpu_amdkfd_fence_create(dma_fence_context_alloc(1), 1412 current->mm, 1413 NULL); 1414 if (!info->eviction_fence) { 1415 pr_err("Failed to create eviction fence\n"); 1416 ret = -ENOMEM; 1417 goto create_evict_fence_fail; 1418 } 1419 1420 info->pid = get_task_pid(current->group_leader, PIDTYPE_PID); 1421 INIT_DELAYED_WORK(&info->restore_userptr_work, 1422 amdgpu_amdkfd_restore_userptr_worker); 1423 1424 *process_info = info; 1425 } 1426 1427 vm->process_info = *process_info; 1428 1429 /* Validate page directory and attach eviction fence */ 1430 ret = amdgpu_bo_reserve(vm->root.bo, true); 1431 if (ret) 1432 goto reserve_pd_fail; 1433 ret = vm_validate_pt_pd_bos(vm, NULL); 1434 if (ret) { 1435 pr_err("validate_pt_pd_bos() failed\n"); 1436 goto validate_pd_fail; 1437 } 1438 ret = amdgpu_bo_sync_wait(vm->root.bo, 1439 AMDGPU_FENCE_OWNER_KFD, false); 1440 if (ret) 1441 goto wait_pd_fail; 1442 ret = dma_resv_reserve_fences(vm->root.bo->tbo.base.resv, 1); 1443 if (ret) 1444 goto reserve_shared_fail; 1445 dma_resv_add_fence(vm->root.bo->tbo.base.resv, 1446 &vm->process_info->eviction_fence->base, 1447 DMA_RESV_USAGE_BOOKKEEP); 1448 amdgpu_bo_unreserve(vm->root.bo); 1449 1450 /* Update process info */ 1451 mutex_lock(&vm->process_info->lock); 1452 list_add_tail(&vm->vm_list_node, 1453 &(vm->process_info->vm_list_head)); 1454 vm->process_info->n_vms++; 1455 if (ef) 1456 *ef = dma_fence_get(&vm->process_info->eviction_fence->base); 1457 mutex_unlock(&vm->process_info->lock); 1458 1459 return 0; 1460 1461 reserve_shared_fail: 1462 wait_pd_fail: 1463 validate_pd_fail: 1464 amdgpu_bo_unreserve(vm->root.bo); 1465 reserve_pd_fail: 1466 vm->process_info = NULL; 1467 if (info) { 1468 dma_fence_put(&info->eviction_fence->base); 1469 *process_info = NULL; 1470 put_pid(info->pid); 1471 create_evict_fence_fail: 1472 mutex_destroy(&info->lock); 1473 mutex_destroy(&info->notifier_lock); 1474 kfree(info); 1475 } 1476 return ret; 1477 } 1478 1479 /** 1480 * amdgpu_amdkfd_gpuvm_pin_bo() - Pins a BO using following criteria 1481 * @bo: Handle of buffer object being pinned 1482 * @domain: Domain into which BO should be pinned 1483 * 1484 * - USERPTR BOs are UNPINNABLE and will return error 1485 * - All other BO types (GTT, VRAM, MMIO and DOORBELL) will have their 1486 * PIN count incremented. It is valid to PIN a BO multiple times 1487 * 1488 * Return: ZERO if successful in pinning, Non-Zero in case of error. 1489 */ 1490 static int amdgpu_amdkfd_gpuvm_pin_bo(struct amdgpu_bo *bo, u32 domain) 1491 { 1492 int ret = 0; 1493 1494 ret = amdgpu_bo_reserve(bo, false); 1495 if (unlikely(ret)) 1496 return ret; 1497 1498 if (bo->flags & AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS) { 1499 /* 1500 * If bo is not contiguous on VRAM, move to system memory first to ensure 1501 * we can get contiguous VRAM space after evicting other BOs. 1502 */ 1503 if (!(bo->tbo.resource->placement & TTM_PL_FLAG_CONTIGUOUS)) { 1504 struct ttm_operation_ctx ctx = { true, false }; 1505 1506 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_GTT); 1507 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 1508 if (unlikely(ret)) { 1509 pr_debug("validate bo 0x%p to GTT failed %d\n", &bo->tbo, ret); 1510 goto out; 1511 } 1512 } 1513 } 1514 1515 ret = amdgpu_bo_pin(bo, domain); 1516 if (ret) 1517 pr_err("Error in Pinning BO to domain: %d\n", domain); 1518 1519 amdgpu_bo_sync_wait(bo, AMDGPU_FENCE_OWNER_KFD, false); 1520 out: 1521 amdgpu_bo_unreserve(bo); 1522 return ret; 1523 } 1524 1525 /** 1526 * amdgpu_amdkfd_gpuvm_unpin_bo() - Unpins BO using following criteria 1527 * @bo: Handle of buffer object being unpinned 1528 * 1529 * - Is a illegal request for USERPTR BOs and is ignored 1530 * - All other BO types (GTT, VRAM, MMIO and DOORBELL) will have their 1531 * PIN count decremented. Calls to UNPIN must balance calls to PIN 1532 */ 1533 static void amdgpu_amdkfd_gpuvm_unpin_bo(struct amdgpu_bo *bo) 1534 { 1535 int ret = 0; 1536 1537 ret = amdgpu_bo_reserve(bo, false); 1538 if (unlikely(ret)) 1539 return; 1540 1541 amdgpu_bo_unpin(bo); 1542 amdgpu_bo_unreserve(bo); 1543 } 1544 1545 int amdgpu_amdkfd_gpuvm_acquire_process_vm(struct amdgpu_device *adev, 1546 struct amdgpu_vm *avm, 1547 void **process_info, 1548 struct dma_fence **ef) 1549 { 1550 int ret; 1551 1552 /* Already a compute VM? */ 1553 if (avm->process_info) 1554 return -EINVAL; 1555 1556 /* Convert VM into a compute VM */ 1557 ret = amdgpu_vm_make_compute(adev, avm); 1558 if (ret) 1559 return ret; 1560 1561 /* Initialize KFD part of the VM and process info */ 1562 ret = init_kfd_vm(avm, process_info, ef); 1563 if (ret) 1564 return ret; 1565 1566 amdgpu_vm_set_task_info(avm); 1567 1568 return 0; 1569 } 1570 1571 void amdgpu_amdkfd_gpuvm_destroy_cb(struct amdgpu_device *adev, 1572 struct amdgpu_vm *vm) 1573 { 1574 struct amdkfd_process_info *process_info = vm->process_info; 1575 1576 if (!process_info) 1577 return; 1578 1579 /* Update process info */ 1580 mutex_lock(&process_info->lock); 1581 process_info->n_vms--; 1582 list_del(&vm->vm_list_node); 1583 mutex_unlock(&process_info->lock); 1584 1585 vm->process_info = NULL; 1586 1587 /* Release per-process resources when last compute VM is destroyed */ 1588 if (!process_info->n_vms) { 1589 WARN_ON(!list_empty(&process_info->kfd_bo_list)); 1590 WARN_ON(!list_empty(&process_info->userptr_valid_list)); 1591 WARN_ON(!list_empty(&process_info->userptr_inval_list)); 1592 1593 dma_fence_put(&process_info->eviction_fence->base); 1594 cancel_delayed_work_sync(&process_info->restore_userptr_work); 1595 put_pid(process_info->pid); 1596 mutex_destroy(&process_info->lock); 1597 mutex_destroy(&process_info->notifier_lock); 1598 kfree(process_info); 1599 } 1600 } 1601 1602 uint64_t amdgpu_amdkfd_gpuvm_get_process_page_dir(void *drm_priv) 1603 { 1604 struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv); 1605 struct amdgpu_bo *pd = avm->root.bo; 1606 struct amdgpu_device *adev = amdgpu_ttm_adev(pd->tbo.bdev); 1607 1608 if (adev->asic_type < CHIP_VEGA10) 1609 return avm->pd_phys_addr >> AMDGPU_GPU_PAGE_SHIFT; 1610 return avm->pd_phys_addr; 1611 } 1612 1613 void amdgpu_amdkfd_block_mmu_notifications(void *p) 1614 { 1615 struct amdkfd_process_info *pinfo = (struct amdkfd_process_info *)p; 1616 1617 mutex_lock(&pinfo->lock); 1618 WRITE_ONCE(pinfo->block_mmu_notifications, true); 1619 mutex_unlock(&pinfo->lock); 1620 } 1621 1622 int amdgpu_amdkfd_criu_resume(void *p) 1623 { 1624 int ret = 0; 1625 struct amdkfd_process_info *pinfo = (struct amdkfd_process_info *)p; 1626 1627 mutex_lock(&pinfo->lock); 1628 pr_debug("scheduling work\n"); 1629 mutex_lock(&pinfo->notifier_lock); 1630 pinfo->evicted_bos++; 1631 mutex_unlock(&pinfo->notifier_lock); 1632 if (!READ_ONCE(pinfo->block_mmu_notifications)) { 1633 ret = -EINVAL; 1634 goto out_unlock; 1635 } 1636 WRITE_ONCE(pinfo->block_mmu_notifications, false); 1637 queue_delayed_work(system_freezable_wq, 1638 &pinfo->restore_userptr_work, 0); 1639 1640 out_unlock: 1641 mutex_unlock(&pinfo->lock); 1642 return ret; 1643 } 1644 1645 size_t amdgpu_amdkfd_get_available_memory(struct amdgpu_device *adev, 1646 uint8_t xcp_id) 1647 { 1648 uint64_t reserved_for_pt = 1649 ESTIMATE_PT_SIZE(amdgpu_amdkfd_total_mem_size); 1650 struct amdgpu_ras *con = amdgpu_ras_get_context(adev); 1651 uint64_t reserved_for_ras = (con ? con->reserved_pages_in_bytes : 0); 1652 ssize_t available; 1653 uint64_t vram_available, system_mem_available, ttm_mem_available; 1654 1655 spin_lock(&kfd_mem_limit.mem_limit_lock); 1656 if (adev->apu_prefer_gtt && !adev->gmc.is_app_apu) 1657 vram_available = KFD_XCP_MEMORY_SIZE(adev, xcp_id) 1658 - adev->kfd.vram_used_aligned[xcp_id]; 1659 else 1660 vram_available = KFD_XCP_MEMORY_SIZE(adev, xcp_id) 1661 - adev->kfd.vram_used_aligned[xcp_id] 1662 - atomic64_read(&adev->vram_pin_size) 1663 - reserved_for_pt 1664 - reserved_for_ras; 1665 1666 if (adev->apu_prefer_gtt) { 1667 system_mem_available = no_system_mem_limit ? 1668 kfd_mem_limit.max_system_mem_limit : 1669 kfd_mem_limit.max_system_mem_limit - 1670 kfd_mem_limit.system_mem_used; 1671 1672 ttm_mem_available = kfd_mem_limit.max_ttm_mem_limit - 1673 kfd_mem_limit.ttm_mem_used; 1674 1675 available = min3(system_mem_available, ttm_mem_available, 1676 vram_available); 1677 available = ALIGN_DOWN(available, PAGE_SIZE); 1678 } else { 1679 available = ALIGN_DOWN(vram_available, VRAM_AVAILABLITY_ALIGN); 1680 } 1681 1682 spin_unlock(&kfd_mem_limit.mem_limit_lock); 1683 1684 if (available < 0) 1685 available = 0; 1686 1687 return available; 1688 } 1689 1690 int amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu( 1691 struct amdgpu_device *adev, uint64_t va, uint64_t size, 1692 void *drm_priv, struct kgd_mem **mem, 1693 uint64_t *offset, uint32_t flags, bool criu_resume) 1694 { 1695 struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv); 1696 struct amdgpu_fpriv *fpriv = container_of(avm, struct amdgpu_fpriv, vm); 1697 enum ttm_bo_type bo_type = ttm_bo_type_device; 1698 struct sg_table *sg = NULL; 1699 uint64_t user_addr = 0; 1700 struct amdgpu_bo *bo; 1701 struct drm_gem_object *gobj = NULL; 1702 u32 domain, alloc_domain; 1703 uint64_t aligned_size; 1704 int8_t xcp_id = -1; 1705 u64 alloc_flags; 1706 int ret; 1707 1708 /* 1709 * Check on which domain to allocate BO 1710 */ 1711 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) { 1712 domain = alloc_domain = AMDGPU_GEM_DOMAIN_VRAM; 1713 1714 if (adev->apu_prefer_gtt) { 1715 domain = AMDGPU_GEM_DOMAIN_GTT; 1716 alloc_domain = AMDGPU_GEM_DOMAIN_GTT; 1717 alloc_flags = 0; 1718 } else { 1719 alloc_flags = AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE; 1720 alloc_flags |= (flags & KFD_IOC_ALLOC_MEM_FLAGS_PUBLIC) ? 1721 AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED : 0; 1722 1723 /* For contiguous VRAM allocation */ 1724 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_CONTIGUOUS) 1725 alloc_flags |= AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS; 1726 } 1727 xcp_id = fpriv->xcp_id == AMDGPU_XCP_NO_PARTITION ? 1728 0 : fpriv->xcp_id; 1729 } else if (flags & KFD_IOC_ALLOC_MEM_FLAGS_GTT) { 1730 domain = alloc_domain = AMDGPU_GEM_DOMAIN_GTT; 1731 alloc_flags = 0; 1732 } else { 1733 domain = AMDGPU_GEM_DOMAIN_GTT; 1734 alloc_domain = AMDGPU_GEM_DOMAIN_CPU; 1735 alloc_flags = AMDGPU_GEM_CREATE_PREEMPTIBLE; 1736 1737 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) { 1738 if (!offset || !*offset) 1739 return -EINVAL; 1740 user_addr = untagged_addr(*offset); 1741 } else if (flags & (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL | 1742 KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) { 1743 bo_type = ttm_bo_type_sg; 1744 if (size > UINT_MAX) 1745 return -EINVAL; 1746 sg = create_sg_table(*offset, size); 1747 if (!sg) 1748 return -ENOMEM; 1749 } else { 1750 return -EINVAL; 1751 } 1752 } 1753 1754 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_COHERENT) 1755 alloc_flags |= AMDGPU_GEM_CREATE_COHERENT; 1756 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_EXT_COHERENT) 1757 alloc_flags |= AMDGPU_GEM_CREATE_EXT_COHERENT; 1758 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_UNCACHED) 1759 alloc_flags |= AMDGPU_GEM_CREATE_UNCACHED; 1760 1761 *mem = kzalloc(sizeof(struct kgd_mem), GFP_KERNEL); 1762 if (!*mem) { 1763 ret = -ENOMEM; 1764 goto err; 1765 } 1766 INIT_LIST_HEAD(&(*mem)->attachments); 1767 mutex_init(&(*mem)->lock); 1768 (*mem)->aql_queue = !!(flags & KFD_IOC_ALLOC_MEM_FLAGS_AQL_QUEUE_MEM); 1769 1770 /* Workaround for AQL queue wraparound bug. Map the same 1771 * memory twice. That means we only actually allocate half 1772 * the memory. 1773 */ 1774 if ((*mem)->aql_queue) 1775 size >>= 1; 1776 aligned_size = PAGE_ALIGN(size); 1777 1778 (*mem)->alloc_flags = flags; 1779 1780 amdgpu_sync_create(&(*mem)->sync); 1781 1782 ret = amdgpu_amdkfd_reserve_mem_limit(adev, aligned_size, flags, 1783 xcp_id); 1784 if (ret) { 1785 pr_debug("Insufficient memory\n"); 1786 goto err_reserve_limit; 1787 } 1788 1789 pr_debug("\tcreate BO VA 0x%llx size 0x%llx domain %s xcp_id %d\n", 1790 va, (*mem)->aql_queue ? size << 1 : size, 1791 domain_string(alloc_domain), xcp_id); 1792 1793 ret = amdgpu_gem_object_create(adev, aligned_size, 1, alloc_domain, alloc_flags, 1794 bo_type, NULL, &gobj, xcp_id + 1); 1795 if (ret) { 1796 pr_debug("Failed to create BO on domain %s. ret %d\n", 1797 domain_string(alloc_domain), ret); 1798 goto err_bo_create; 1799 } 1800 ret = drm_vma_node_allow(&gobj->vma_node, drm_priv); 1801 if (ret) { 1802 pr_debug("Failed to allow vma node access. ret %d\n", ret); 1803 goto err_node_allow; 1804 } 1805 ret = drm_gem_handle_create(adev->kfd.client.file, gobj, &(*mem)->gem_handle); 1806 if (ret) 1807 goto err_gem_handle_create; 1808 bo = gem_to_amdgpu_bo(gobj); 1809 if (bo_type == ttm_bo_type_sg) { 1810 bo->tbo.sg = sg; 1811 bo->tbo.ttm->sg = sg; 1812 } 1813 bo->kfd_bo = *mem; 1814 (*mem)->bo = bo; 1815 if (user_addr) 1816 bo->flags |= AMDGPU_AMDKFD_CREATE_USERPTR_BO; 1817 1818 (*mem)->va = va; 1819 (*mem)->domain = domain; 1820 (*mem)->mapped_to_gpu_memory = 0; 1821 (*mem)->process_info = avm->process_info; 1822 1823 add_kgd_mem_to_kfd_bo_list(*mem, avm->process_info, user_addr); 1824 1825 if (user_addr) { 1826 pr_debug("creating userptr BO for user_addr = %llx\n", user_addr); 1827 ret = init_user_pages(*mem, user_addr, criu_resume); 1828 if (ret) 1829 goto allocate_init_user_pages_failed; 1830 } else if (flags & (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL | 1831 KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) { 1832 ret = amdgpu_amdkfd_gpuvm_pin_bo(bo, AMDGPU_GEM_DOMAIN_GTT); 1833 if (ret) { 1834 pr_err("Pinning MMIO/DOORBELL BO during ALLOC FAILED\n"); 1835 goto err_pin_bo; 1836 } 1837 bo->allowed_domains = AMDGPU_GEM_DOMAIN_GTT; 1838 bo->preferred_domains = AMDGPU_GEM_DOMAIN_GTT; 1839 } else { 1840 mutex_lock(&avm->process_info->lock); 1841 if (avm->process_info->eviction_fence && 1842 !dma_fence_is_signaled(&avm->process_info->eviction_fence->base)) 1843 ret = amdgpu_amdkfd_bo_validate_and_fence(bo, domain, 1844 &avm->process_info->eviction_fence->base); 1845 mutex_unlock(&avm->process_info->lock); 1846 if (ret) 1847 goto err_validate_bo; 1848 } 1849 1850 if (offset) 1851 *offset = amdgpu_bo_mmap_offset(bo); 1852 1853 return 0; 1854 1855 allocate_init_user_pages_failed: 1856 err_pin_bo: 1857 err_validate_bo: 1858 remove_kgd_mem_from_kfd_bo_list(*mem, avm->process_info); 1859 drm_gem_handle_delete(adev->kfd.client.file, (*mem)->gem_handle); 1860 err_gem_handle_create: 1861 drm_vma_node_revoke(&gobj->vma_node, drm_priv); 1862 err_node_allow: 1863 /* Don't unreserve system mem limit twice */ 1864 goto err_reserve_limit; 1865 err_bo_create: 1866 amdgpu_amdkfd_unreserve_mem_limit(adev, aligned_size, flags, xcp_id); 1867 err_reserve_limit: 1868 amdgpu_sync_free(&(*mem)->sync); 1869 mutex_destroy(&(*mem)->lock); 1870 if (gobj) 1871 drm_gem_object_put(gobj); 1872 else 1873 kfree(*mem); 1874 err: 1875 if (sg) { 1876 sg_free_table(sg); 1877 kfree(sg); 1878 } 1879 return ret; 1880 } 1881 1882 int amdgpu_amdkfd_gpuvm_free_memory_of_gpu( 1883 struct amdgpu_device *adev, struct kgd_mem *mem, void *drm_priv, 1884 uint64_t *size) 1885 { 1886 struct amdkfd_process_info *process_info = mem->process_info; 1887 unsigned long bo_size = mem->bo->tbo.base.size; 1888 bool use_release_notifier = (mem->bo->kfd_bo == mem); 1889 struct kfd_mem_attachment *entry, *tmp; 1890 struct bo_vm_reservation_context ctx; 1891 unsigned int mapped_to_gpu_memory; 1892 int ret; 1893 bool is_imported = false; 1894 1895 mutex_lock(&mem->lock); 1896 1897 /* Unpin MMIO/DOORBELL BO's that were pinned during allocation */ 1898 if (mem->alloc_flags & 1899 (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL | 1900 KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) { 1901 amdgpu_amdkfd_gpuvm_unpin_bo(mem->bo); 1902 } 1903 1904 mapped_to_gpu_memory = mem->mapped_to_gpu_memory; 1905 is_imported = mem->is_imported; 1906 mutex_unlock(&mem->lock); 1907 /* lock is not needed after this, since mem is unused and will 1908 * be freed anyway 1909 */ 1910 1911 if (mapped_to_gpu_memory > 0) { 1912 pr_debug("BO VA 0x%llx size 0x%lx is still mapped.\n", 1913 mem->va, bo_size); 1914 return -EBUSY; 1915 } 1916 1917 /* Make sure restore workers don't access the BO any more */ 1918 mutex_lock(&process_info->lock); 1919 list_del(&mem->validate_list); 1920 mutex_unlock(&process_info->lock); 1921 1922 /* Cleanup user pages and MMU notifiers */ 1923 if (amdgpu_ttm_tt_get_usermm(mem->bo->tbo.ttm)) { 1924 amdgpu_hmm_unregister(mem->bo); 1925 mutex_lock(&process_info->notifier_lock); 1926 amdgpu_hmm_range_free(mem->range); 1927 mutex_unlock(&process_info->notifier_lock); 1928 } 1929 1930 ret = reserve_bo_and_cond_vms(mem, NULL, BO_VM_ALL, &ctx); 1931 if (unlikely(ret)) 1932 return ret; 1933 1934 amdgpu_amdkfd_remove_eviction_fence(mem->bo, 1935 process_info->eviction_fence); 1936 pr_debug("Release VA 0x%llx - 0x%llx\n", mem->va, 1937 mem->va + bo_size * (1 + mem->aql_queue)); 1938 1939 /* Remove from VM internal data structures */ 1940 list_for_each_entry_safe(entry, tmp, &mem->attachments, list) { 1941 kfd_mem_dmaunmap_attachment(mem, entry); 1942 kfd_mem_detach(entry); 1943 } 1944 1945 ret = unreserve_bo_and_vms(&ctx, false, false); 1946 1947 /* Free the sync object */ 1948 amdgpu_sync_free(&mem->sync); 1949 1950 /* If the SG is not NULL, it's one we created for a doorbell or mmio 1951 * remap BO. We need to free it. 1952 */ 1953 if (mem->bo->tbo.sg) { 1954 sg_free_table(mem->bo->tbo.sg); 1955 kfree(mem->bo->tbo.sg); 1956 } 1957 1958 /* Update the size of the BO being freed if it was allocated from 1959 * VRAM and is not imported. For APP APU VRAM allocations are done 1960 * in GTT domain 1961 */ 1962 if (size) { 1963 if (!is_imported && 1964 (mem->bo->preferred_domains == AMDGPU_GEM_DOMAIN_VRAM || 1965 (adev->apu_prefer_gtt && 1966 mem->bo->preferred_domains == AMDGPU_GEM_DOMAIN_GTT))) 1967 *size = bo_size; 1968 else 1969 *size = 0; 1970 } 1971 1972 /* Free the BO*/ 1973 drm_vma_node_revoke(&mem->bo->tbo.base.vma_node, drm_priv); 1974 drm_gem_handle_delete(adev->kfd.client.file, mem->gem_handle); 1975 if (mem->dmabuf) { 1976 dma_buf_put(mem->dmabuf); 1977 mem->dmabuf = NULL; 1978 } 1979 mutex_destroy(&mem->lock); 1980 1981 /* If this releases the last reference, it will end up calling 1982 * amdgpu_amdkfd_release_notify and kfree the mem struct. That's why 1983 * this needs to be the last call here. 1984 */ 1985 drm_gem_object_put(&mem->bo->tbo.base); 1986 1987 /* 1988 * For kgd_mem allocated in amdgpu_amdkfd_gpuvm_import_dmabuf(), 1989 * explicitly free it here. 1990 */ 1991 if (!use_release_notifier) 1992 kfree(mem); 1993 1994 return ret; 1995 } 1996 1997 int amdgpu_amdkfd_gpuvm_map_memory_to_gpu( 1998 struct amdgpu_device *adev, struct kgd_mem *mem, 1999 void *drm_priv) 2000 { 2001 struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv); 2002 int ret; 2003 struct amdgpu_bo *bo; 2004 uint32_t domain; 2005 struct kfd_mem_attachment *entry; 2006 struct bo_vm_reservation_context ctx; 2007 unsigned long bo_size; 2008 bool is_invalid_userptr = false; 2009 2010 bo = mem->bo; 2011 if (!bo) { 2012 pr_err("Invalid BO when mapping memory to GPU\n"); 2013 return -EINVAL; 2014 } 2015 2016 /* Make sure restore is not running concurrently. Since we 2017 * don't map invalid userptr BOs, we rely on the next restore 2018 * worker to do the mapping 2019 */ 2020 mutex_lock(&mem->process_info->lock); 2021 2022 /* Lock notifier lock. If we find an invalid userptr BO, we can be 2023 * sure that the MMU notifier is no longer running 2024 * concurrently and the queues are actually stopped 2025 */ 2026 if (amdgpu_ttm_tt_get_usermm(bo->tbo.ttm)) { 2027 mutex_lock(&mem->process_info->notifier_lock); 2028 is_invalid_userptr = !!mem->invalid; 2029 mutex_unlock(&mem->process_info->notifier_lock); 2030 } 2031 2032 mutex_lock(&mem->lock); 2033 2034 domain = mem->domain; 2035 bo_size = bo->tbo.base.size; 2036 2037 pr_debug("Map VA 0x%llx - 0x%llx to vm %p domain %s\n", 2038 mem->va, 2039 mem->va + bo_size * (1 + mem->aql_queue), 2040 avm, domain_string(domain)); 2041 2042 if (!kfd_mem_is_attached(avm, mem)) { 2043 ret = kfd_mem_attach(adev, mem, avm, mem->aql_queue); 2044 if (ret) 2045 goto out; 2046 } 2047 2048 ret = reserve_bo_and_vm(mem, avm, &ctx); 2049 if (unlikely(ret)) 2050 goto out; 2051 2052 /* Userptr can be marked as "not invalid", but not actually be 2053 * validated yet (still in the system domain). In that case 2054 * the queues are still stopped and we can leave mapping for 2055 * the next restore worker 2056 */ 2057 if (amdgpu_ttm_tt_get_usermm(bo->tbo.ttm) && 2058 bo->tbo.resource->mem_type == TTM_PL_SYSTEM) 2059 is_invalid_userptr = true; 2060 2061 ret = vm_validate_pt_pd_bos(avm, NULL); 2062 if (unlikely(ret)) 2063 goto out_unreserve; 2064 2065 list_for_each_entry(entry, &mem->attachments, list) { 2066 if (entry->bo_va->base.vm != avm || entry->is_mapped) 2067 continue; 2068 2069 pr_debug("\t map VA 0x%llx - 0x%llx in entry %p\n", 2070 entry->va, entry->va + bo_size, entry); 2071 2072 ret = map_bo_to_gpuvm(mem, entry, ctx.sync, 2073 is_invalid_userptr); 2074 if (ret) { 2075 pr_err("Failed to map bo to gpuvm\n"); 2076 goto out_unreserve; 2077 } 2078 2079 ret = vm_update_pds(avm, ctx.sync); 2080 if (ret) { 2081 pr_err("Failed to update page directories\n"); 2082 goto out_unreserve; 2083 } 2084 2085 entry->is_mapped = true; 2086 mem->mapped_to_gpu_memory++; 2087 pr_debug("\t INC mapping count %d\n", 2088 mem->mapped_to_gpu_memory); 2089 } 2090 2091 ret = unreserve_bo_and_vms(&ctx, false, false); 2092 2093 goto out; 2094 2095 out_unreserve: 2096 unreserve_bo_and_vms(&ctx, false, false); 2097 out: 2098 mutex_unlock(&mem->process_info->lock); 2099 mutex_unlock(&mem->lock); 2100 return ret; 2101 } 2102 2103 int amdgpu_amdkfd_gpuvm_dmaunmap_mem(struct kgd_mem *mem, void *drm_priv) 2104 { 2105 struct kfd_mem_attachment *entry; 2106 struct amdgpu_vm *vm; 2107 int ret; 2108 2109 vm = drm_priv_to_vm(drm_priv); 2110 2111 mutex_lock(&mem->lock); 2112 2113 ret = amdgpu_bo_reserve(mem->bo, true); 2114 if (ret) 2115 goto out; 2116 2117 list_for_each_entry(entry, &mem->attachments, list) { 2118 if (entry->bo_va->base.vm != vm) 2119 continue; 2120 if (entry->bo_va->base.bo->tbo.ttm && 2121 !entry->bo_va->base.bo->tbo.ttm->sg) 2122 continue; 2123 2124 kfd_mem_dmaunmap_attachment(mem, entry); 2125 } 2126 2127 amdgpu_bo_unreserve(mem->bo); 2128 out: 2129 mutex_unlock(&mem->lock); 2130 2131 return ret; 2132 } 2133 2134 int amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu( 2135 struct amdgpu_device *adev, struct kgd_mem *mem, void *drm_priv) 2136 { 2137 struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv); 2138 unsigned long bo_size = mem->bo->tbo.base.size; 2139 struct kfd_mem_attachment *entry; 2140 struct bo_vm_reservation_context ctx; 2141 int ret; 2142 2143 mutex_lock(&mem->lock); 2144 2145 ret = reserve_bo_and_cond_vms(mem, avm, BO_VM_MAPPED, &ctx); 2146 if (unlikely(ret)) 2147 goto out; 2148 /* If no VMs were reserved, it means the BO wasn't actually mapped */ 2149 if (ctx.n_vms == 0) { 2150 ret = -EINVAL; 2151 goto unreserve_out; 2152 } 2153 2154 ret = vm_validate_pt_pd_bos(avm, NULL); 2155 if (unlikely(ret)) 2156 goto unreserve_out; 2157 2158 pr_debug("Unmap VA 0x%llx - 0x%llx from vm %p\n", 2159 mem->va, 2160 mem->va + bo_size * (1 + mem->aql_queue), 2161 avm); 2162 2163 list_for_each_entry(entry, &mem->attachments, list) { 2164 if (entry->bo_va->base.vm != avm || !entry->is_mapped) 2165 continue; 2166 2167 pr_debug("\t unmap VA 0x%llx - 0x%llx from entry %p\n", 2168 entry->va, entry->va + bo_size, entry); 2169 2170 ret = unmap_bo_from_gpuvm(mem, entry, ctx.sync); 2171 if (ret) 2172 goto unreserve_out; 2173 2174 entry->is_mapped = false; 2175 2176 mem->mapped_to_gpu_memory--; 2177 pr_debug("\t DEC mapping count %d\n", 2178 mem->mapped_to_gpu_memory); 2179 } 2180 2181 unreserve_out: 2182 unreserve_bo_and_vms(&ctx, false, false); 2183 out: 2184 mutex_unlock(&mem->lock); 2185 return ret; 2186 } 2187 2188 int amdgpu_amdkfd_gpuvm_sync_memory( 2189 struct amdgpu_device *adev, struct kgd_mem *mem, bool intr) 2190 { 2191 struct amdgpu_sync sync; 2192 int ret; 2193 2194 amdgpu_sync_create(&sync); 2195 2196 mutex_lock(&mem->lock); 2197 amdgpu_sync_clone(&mem->sync, &sync); 2198 mutex_unlock(&mem->lock); 2199 2200 ret = amdgpu_sync_wait(&sync, intr); 2201 amdgpu_sync_free(&sync); 2202 return ret; 2203 } 2204 2205 /** 2206 * amdgpu_amdkfd_map_gtt_bo_to_gart - Map BO to GART and increment reference count 2207 * @bo: Buffer object to be mapped 2208 * @bo_gart: Return bo reference 2209 * 2210 * Before return, bo reference count is incremented. To release the reference and unpin/ 2211 * unmap the BO, call amdgpu_amdkfd_free_gtt_mem. 2212 */ 2213 int amdgpu_amdkfd_map_gtt_bo_to_gart(struct amdgpu_bo *bo, struct amdgpu_bo **bo_gart) 2214 { 2215 int ret; 2216 2217 ret = amdgpu_bo_reserve(bo, true); 2218 if (ret) { 2219 pr_err("Failed to reserve bo. ret %d\n", ret); 2220 goto err_reserve_bo_failed; 2221 } 2222 2223 ret = amdgpu_bo_pin(bo, AMDGPU_GEM_DOMAIN_GTT); 2224 if (ret) { 2225 pr_err("Failed to pin bo. ret %d\n", ret); 2226 goto err_pin_bo_failed; 2227 } 2228 2229 ret = amdgpu_ttm_alloc_gart(&bo->tbo); 2230 if (ret) { 2231 pr_err("Failed to bind bo to GART. ret %d\n", ret); 2232 goto err_map_bo_gart_failed; 2233 } 2234 2235 amdgpu_amdkfd_remove_eviction_fence( 2236 bo, bo->vm_bo->vm->process_info->eviction_fence); 2237 2238 amdgpu_bo_unreserve(bo); 2239 2240 *bo_gart = amdgpu_bo_ref(bo); 2241 2242 return 0; 2243 2244 err_map_bo_gart_failed: 2245 amdgpu_bo_unpin(bo); 2246 err_pin_bo_failed: 2247 amdgpu_bo_unreserve(bo); 2248 err_reserve_bo_failed: 2249 2250 return ret; 2251 } 2252 2253 /** amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel() - Map a GTT BO for kernel CPU access 2254 * 2255 * @mem: Buffer object to be mapped for CPU access 2256 * @kptr[out]: pointer in kernel CPU address space 2257 * @size[out]: size of the buffer 2258 * 2259 * Pins the BO and maps it for kernel CPU access. The eviction fence is removed 2260 * from the BO, since pinned BOs cannot be evicted. The bo must remain on the 2261 * validate_list, so the GPU mapping can be restored after a page table was 2262 * evicted. 2263 * 2264 * Return: 0 on success, error code on failure 2265 */ 2266 int amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(struct kgd_mem *mem, 2267 void **kptr, uint64_t *size) 2268 { 2269 int ret; 2270 struct amdgpu_bo *bo = mem->bo; 2271 2272 if (amdgpu_ttm_tt_get_usermm(bo->tbo.ttm)) { 2273 pr_err("userptr can't be mapped to kernel\n"); 2274 return -EINVAL; 2275 } 2276 2277 mutex_lock(&mem->process_info->lock); 2278 2279 ret = amdgpu_bo_reserve(bo, true); 2280 if (ret) { 2281 pr_err("Failed to reserve bo. ret %d\n", ret); 2282 goto bo_reserve_failed; 2283 } 2284 2285 ret = amdgpu_bo_pin(bo, AMDGPU_GEM_DOMAIN_GTT); 2286 if (ret) { 2287 pr_err("Failed to pin bo. ret %d\n", ret); 2288 goto pin_failed; 2289 } 2290 2291 ret = amdgpu_bo_kmap(bo, kptr); 2292 if (ret) { 2293 pr_err("Failed to map bo to kernel. ret %d\n", ret); 2294 goto kmap_failed; 2295 } 2296 2297 amdgpu_amdkfd_remove_eviction_fence( 2298 bo, mem->process_info->eviction_fence); 2299 2300 if (size) 2301 *size = amdgpu_bo_size(bo); 2302 2303 amdgpu_bo_unreserve(bo); 2304 2305 mutex_unlock(&mem->process_info->lock); 2306 return 0; 2307 2308 kmap_failed: 2309 amdgpu_bo_unpin(bo); 2310 pin_failed: 2311 amdgpu_bo_unreserve(bo); 2312 bo_reserve_failed: 2313 mutex_unlock(&mem->process_info->lock); 2314 2315 return ret; 2316 } 2317 2318 /** amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel() - Unmap a GTT BO for kernel CPU access 2319 * 2320 * @mem: Buffer object to be unmapped for CPU access 2321 * 2322 * Removes the kernel CPU mapping and unpins the BO. It does not restore the 2323 * eviction fence, so this function should only be used for cleanup before the 2324 * BO is destroyed. 2325 */ 2326 void amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(struct kgd_mem *mem) 2327 { 2328 struct amdgpu_bo *bo = mem->bo; 2329 2330 (void)amdgpu_bo_reserve(bo, true); 2331 amdgpu_bo_kunmap(bo); 2332 amdgpu_bo_unpin(bo); 2333 amdgpu_bo_unreserve(bo); 2334 } 2335 2336 int amdgpu_amdkfd_gpuvm_get_vm_fault_info(struct amdgpu_device *adev, 2337 struct kfd_vm_fault_info *mem) 2338 { 2339 if (atomic_read_acquire(&adev->gmc.vm_fault_info_updated) == 1) { 2340 *mem = *adev->gmc.vm_fault_info; 2341 atomic_set_release(&adev->gmc.vm_fault_info_updated, 0); 2342 } 2343 return 0; 2344 } 2345 2346 static int import_obj_create(struct amdgpu_device *adev, 2347 struct dma_buf *dma_buf, 2348 struct drm_gem_object *obj, 2349 uint64_t va, void *drm_priv, 2350 struct kgd_mem **mem, uint64_t *size, 2351 uint64_t *mmap_offset) 2352 { 2353 struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv); 2354 struct amdgpu_bo *bo; 2355 int ret; 2356 2357 bo = gem_to_amdgpu_bo(obj); 2358 if (!(bo->preferred_domains & (AMDGPU_GEM_DOMAIN_VRAM | 2359 AMDGPU_GEM_DOMAIN_GTT))) 2360 /* Only VRAM and GTT BOs are supported */ 2361 return -EINVAL; 2362 2363 *mem = kzalloc(sizeof(struct kgd_mem), GFP_KERNEL); 2364 if (!*mem) 2365 return -ENOMEM; 2366 2367 ret = drm_vma_node_allow(&obj->vma_node, drm_priv); 2368 if (ret) 2369 goto err_free_mem; 2370 2371 if (size) 2372 *size = amdgpu_bo_size(bo); 2373 2374 if (mmap_offset) 2375 *mmap_offset = amdgpu_bo_mmap_offset(bo); 2376 2377 INIT_LIST_HEAD(&(*mem)->attachments); 2378 mutex_init(&(*mem)->lock); 2379 2380 (*mem)->alloc_flags = 2381 ((bo->preferred_domains & AMDGPU_GEM_DOMAIN_VRAM) ? 2382 KFD_IOC_ALLOC_MEM_FLAGS_VRAM : KFD_IOC_ALLOC_MEM_FLAGS_GTT) 2383 | KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE 2384 | KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE; 2385 2386 get_dma_buf(dma_buf); 2387 (*mem)->dmabuf = dma_buf; 2388 (*mem)->bo = bo; 2389 (*mem)->va = va; 2390 (*mem)->domain = (bo->preferred_domains & AMDGPU_GEM_DOMAIN_VRAM) && 2391 !adev->apu_prefer_gtt ? 2392 AMDGPU_GEM_DOMAIN_VRAM : AMDGPU_GEM_DOMAIN_GTT; 2393 2394 (*mem)->mapped_to_gpu_memory = 0; 2395 (*mem)->process_info = avm->process_info; 2396 add_kgd_mem_to_kfd_bo_list(*mem, avm->process_info, false); 2397 amdgpu_sync_create(&(*mem)->sync); 2398 (*mem)->is_imported = true; 2399 2400 mutex_lock(&avm->process_info->lock); 2401 if (avm->process_info->eviction_fence && 2402 !dma_fence_is_signaled(&avm->process_info->eviction_fence->base)) 2403 ret = amdgpu_amdkfd_bo_validate_and_fence(bo, (*mem)->domain, 2404 &avm->process_info->eviction_fence->base); 2405 mutex_unlock(&avm->process_info->lock); 2406 if (ret) 2407 goto err_remove_mem; 2408 2409 return 0; 2410 2411 err_remove_mem: 2412 remove_kgd_mem_from_kfd_bo_list(*mem, avm->process_info); 2413 drm_vma_node_revoke(&obj->vma_node, drm_priv); 2414 err_free_mem: 2415 kfree(*mem); 2416 return ret; 2417 } 2418 2419 int amdgpu_amdkfd_gpuvm_import_dmabuf_fd(struct amdgpu_device *adev, int fd, 2420 uint64_t va, void *drm_priv, 2421 struct kgd_mem **mem, uint64_t *size, 2422 uint64_t *mmap_offset) 2423 { 2424 struct drm_gem_object *obj; 2425 uint32_t handle; 2426 int ret; 2427 2428 ret = drm_gem_prime_fd_to_handle(&adev->ddev, adev->kfd.client.file, fd, 2429 &handle); 2430 if (ret) 2431 return ret; 2432 obj = drm_gem_object_lookup(adev->kfd.client.file, handle); 2433 if (!obj) { 2434 ret = -EINVAL; 2435 goto err_release_handle; 2436 } 2437 2438 ret = import_obj_create(adev, obj->dma_buf, obj, va, drm_priv, mem, size, 2439 mmap_offset); 2440 if (ret) 2441 goto err_put_obj; 2442 2443 (*mem)->gem_handle = handle; 2444 2445 return 0; 2446 2447 err_put_obj: 2448 drm_gem_object_put(obj); 2449 err_release_handle: 2450 drm_gem_handle_delete(adev->kfd.client.file, handle); 2451 return ret; 2452 } 2453 2454 int amdgpu_amdkfd_gpuvm_export_dmabuf(struct kgd_mem *mem, 2455 struct dma_buf **dma_buf) 2456 { 2457 int ret; 2458 2459 mutex_lock(&mem->lock); 2460 ret = kfd_mem_export_dmabuf(mem); 2461 if (ret) 2462 goto out; 2463 2464 get_dma_buf(mem->dmabuf); 2465 *dma_buf = mem->dmabuf; 2466 out: 2467 mutex_unlock(&mem->lock); 2468 return ret; 2469 } 2470 2471 /* Evict a userptr BO by stopping the queues if necessary 2472 * 2473 * Runs in MMU notifier, may be in RECLAIM_FS context. This means it 2474 * cannot do any memory allocations, and cannot take any locks that 2475 * are held elsewhere while allocating memory. 2476 * 2477 * It doesn't do anything to the BO itself. The real work happens in 2478 * restore, where we get updated page addresses. This function only 2479 * ensures that GPU access to the BO is stopped. 2480 */ 2481 int amdgpu_amdkfd_evict_userptr(struct mmu_interval_notifier *mni, 2482 unsigned long cur_seq, struct kgd_mem *mem) 2483 { 2484 struct amdkfd_process_info *process_info = mem->process_info; 2485 int r = 0; 2486 2487 /* Do not process MMU notifications during CRIU restore until 2488 * KFD_CRIU_OP_RESUME IOCTL is received 2489 */ 2490 if (READ_ONCE(process_info->block_mmu_notifications)) 2491 return 0; 2492 2493 mutex_lock(&process_info->notifier_lock); 2494 mmu_interval_set_seq(mni, cur_seq); 2495 2496 mem->invalid++; 2497 if (++process_info->evicted_bos == 1) { 2498 /* First eviction, stop the queues */ 2499 r = kgd2kfd_quiesce_mm(mni->mm, 2500 KFD_QUEUE_EVICTION_TRIGGER_USERPTR); 2501 2502 if (r && r != -ESRCH) 2503 pr_err("Failed to quiesce KFD\n"); 2504 2505 if (r != -ESRCH) 2506 queue_delayed_work(system_freezable_wq, 2507 &process_info->restore_userptr_work, 2508 msecs_to_jiffies(AMDGPU_USERPTR_RESTORE_DELAY_MS)); 2509 } 2510 mutex_unlock(&process_info->notifier_lock); 2511 2512 return r; 2513 } 2514 2515 /* Update invalid userptr BOs 2516 * 2517 * Moves invalidated (evicted) userptr BOs from userptr_valid_list to 2518 * userptr_inval_list and updates user pages for all BOs that have 2519 * been invalidated since their last update. 2520 */ 2521 static int update_invalid_user_pages(struct amdkfd_process_info *process_info, 2522 struct mm_struct *mm) 2523 { 2524 struct kgd_mem *mem, *tmp_mem; 2525 struct amdgpu_bo *bo; 2526 struct ttm_operation_ctx ctx = { false, false }; 2527 uint32_t invalid; 2528 int ret = 0; 2529 2530 mutex_lock(&process_info->notifier_lock); 2531 2532 /* Move all invalidated BOs to the userptr_inval_list */ 2533 list_for_each_entry_safe(mem, tmp_mem, 2534 &process_info->userptr_valid_list, 2535 validate_list) 2536 if (mem->invalid) 2537 list_move_tail(&mem->validate_list, 2538 &process_info->userptr_inval_list); 2539 2540 /* Go through userptr_inval_list and update any invalid user_pages */ 2541 list_for_each_entry(mem, &process_info->userptr_inval_list, 2542 validate_list) { 2543 invalid = mem->invalid; 2544 if (!invalid) 2545 /* BO hasn't been invalidated since the last 2546 * revalidation attempt. Keep its page list. 2547 */ 2548 continue; 2549 2550 bo = mem->bo; 2551 2552 amdgpu_hmm_range_free(mem->range); 2553 mem->range = NULL; 2554 2555 /* BO reservations and getting user pages (hmm_range_fault) 2556 * must happen outside the notifier lock 2557 */ 2558 mutex_unlock(&process_info->notifier_lock); 2559 2560 /* Move the BO to system (CPU) domain if necessary to unmap 2561 * and free the SG table 2562 */ 2563 if (bo->tbo.resource->mem_type != TTM_PL_SYSTEM) { 2564 if (amdgpu_bo_reserve(bo, true)) 2565 return -EAGAIN; 2566 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_CPU); 2567 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 2568 amdgpu_bo_unreserve(bo); 2569 if (ret) { 2570 pr_err("%s: Failed to invalidate userptr BO\n", 2571 __func__); 2572 return -EAGAIN; 2573 } 2574 } 2575 2576 mem->range = amdgpu_hmm_range_alloc(NULL); 2577 if (unlikely(!mem->range)) 2578 return -ENOMEM; 2579 /* Get updated user pages */ 2580 ret = amdgpu_ttm_tt_get_user_pages(bo, mem->range); 2581 if (ret) { 2582 amdgpu_hmm_range_free(mem->range); 2583 mem->range = NULL; 2584 pr_debug("Failed %d to get user pages\n", ret); 2585 2586 /* Return -EFAULT bad address error as success. It will 2587 * fail later with a VM fault if the GPU tries to access 2588 * it. Better than hanging indefinitely with stalled 2589 * user mode queues. 2590 * 2591 * Return other error -EBUSY or -ENOMEM to retry restore 2592 */ 2593 if (ret != -EFAULT) 2594 return ret; 2595 2596 /* If applications unmap memory before destroying the userptr 2597 * from the KFD, trigger a segmentation fault in VM debug mode. 2598 */ 2599 if (amdgpu_ttm_adev(bo->tbo.bdev)->debug_vm_userptr) { 2600 struct kfd_process *p; 2601 2602 pr_err("Pid %d unmapped memory before destroying userptr at GPU addr 0x%llx\n", 2603 pid_nr(process_info->pid), mem->va); 2604 2605 // Send GPU VM fault to user space 2606 p = kfd_lookup_process_by_pid(process_info->pid); 2607 if (p) { 2608 kfd_signal_vm_fault_event_with_userptr(p, mem->va); 2609 kfd_unref_process(p); 2610 } 2611 } 2612 2613 ret = 0; 2614 } 2615 2616 amdgpu_ttm_tt_set_user_pages(bo->tbo.ttm, mem->range); 2617 2618 mutex_lock(&process_info->notifier_lock); 2619 2620 /* Mark the BO as valid unless it was invalidated 2621 * again concurrently. 2622 */ 2623 if (mem->invalid != invalid) { 2624 ret = -EAGAIN; 2625 goto unlock_out; 2626 } 2627 /* set mem valid if mem has hmm range associated */ 2628 if (mem->range) 2629 mem->invalid = 0; 2630 } 2631 2632 unlock_out: 2633 mutex_unlock(&process_info->notifier_lock); 2634 2635 return ret; 2636 } 2637 2638 /* Validate invalid userptr BOs 2639 * 2640 * Validates BOs on the userptr_inval_list. Also updates GPUVM page tables 2641 * with new page addresses and waits for the page table updates to complete. 2642 */ 2643 static int validate_invalid_user_pages(struct amdkfd_process_info *process_info) 2644 { 2645 struct ttm_operation_ctx ctx = { false, false }; 2646 struct amdgpu_sync sync; 2647 struct drm_exec exec; 2648 2649 struct amdgpu_vm *peer_vm; 2650 struct kgd_mem *mem, *tmp_mem; 2651 struct amdgpu_bo *bo; 2652 int ret; 2653 2654 amdgpu_sync_create(&sync); 2655 2656 drm_exec_init(&exec, 0, 0); 2657 /* Reserve all BOs and page tables for validation */ 2658 drm_exec_until_all_locked(&exec) { 2659 /* Reserve all the page directories */ 2660 list_for_each_entry(peer_vm, &process_info->vm_list_head, 2661 vm_list_node) { 2662 ret = amdgpu_vm_lock_pd(peer_vm, &exec, 2); 2663 drm_exec_retry_on_contention(&exec); 2664 if (unlikely(ret)) 2665 goto unreserve_out; 2666 } 2667 2668 /* Reserve the userptr_inval_list entries to resv_list */ 2669 list_for_each_entry(mem, &process_info->userptr_inval_list, 2670 validate_list) { 2671 struct drm_gem_object *gobj; 2672 2673 gobj = &mem->bo->tbo.base; 2674 ret = drm_exec_prepare_obj(&exec, gobj, 1); 2675 drm_exec_retry_on_contention(&exec); 2676 if (unlikely(ret)) 2677 goto unreserve_out; 2678 } 2679 } 2680 2681 ret = process_validate_vms(process_info, NULL); 2682 if (ret) 2683 goto unreserve_out; 2684 2685 /* Validate BOs and update GPUVM page tables */ 2686 list_for_each_entry_safe(mem, tmp_mem, 2687 &process_info->userptr_inval_list, 2688 validate_list) { 2689 struct kfd_mem_attachment *attachment; 2690 2691 bo = mem->bo; 2692 2693 /* Validate the BO if we got user pages */ 2694 if (bo->tbo.ttm->pages[0]) { 2695 amdgpu_bo_placement_from_domain(bo, mem->domain); 2696 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 2697 if (ret) { 2698 pr_err("%s: failed to validate BO\n", __func__); 2699 goto unreserve_out; 2700 } 2701 } 2702 2703 /* Update mapping. If the BO was not validated 2704 * (because we couldn't get user pages), this will 2705 * clear the page table entries, which will result in 2706 * VM faults if the GPU tries to access the invalid 2707 * memory. 2708 */ 2709 list_for_each_entry(attachment, &mem->attachments, list) { 2710 if (!attachment->is_mapped) 2711 continue; 2712 2713 kfd_mem_dmaunmap_attachment(mem, attachment); 2714 ret = update_gpuvm_pte(mem, attachment, &sync); 2715 if (ret) { 2716 pr_err("%s: update PTE failed\n", __func__); 2717 /* make sure this gets validated again */ 2718 mutex_lock(&process_info->notifier_lock); 2719 mem->invalid++; 2720 mutex_unlock(&process_info->notifier_lock); 2721 goto unreserve_out; 2722 } 2723 } 2724 } 2725 2726 /* Update page directories */ 2727 ret = process_update_pds(process_info, &sync); 2728 2729 unreserve_out: 2730 drm_exec_fini(&exec); 2731 amdgpu_sync_wait(&sync, false); 2732 amdgpu_sync_free(&sync); 2733 2734 return ret; 2735 } 2736 2737 /* Confirm that all user pages are valid while holding the notifier lock 2738 * 2739 * Moves valid BOs from the userptr_inval_list back to userptr_val_list. 2740 */ 2741 static int confirm_valid_user_pages_locked(struct amdkfd_process_info *process_info) 2742 { 2743 struct kgd_mem *mem, *tmp_mem; 2744 int ret = 0; 2745 2746 list_for_each_entry_safe(mem, tmp_mem, 2747 &process_info->userptr_inval_list, 2748 validate_list) { 2749 bool valid; 2750 2751 /* keep mem without hmm range at userptr_inval_list */ 2752 if (!mem->range) 2753 continue; 2754 2755 /* Only check mem with hmm range associated */ 2756 valid = amdgpu_hmm_range_valid(mem->range); 2757 amdgpu_hmm_range_free(mem->range); 2758 2759 mem->range = NULL; 2760 if (!valid) { 2761 WARN(!mem->invalid, "Invalid BO not marked invalid"); 2762 ret = -EAGAIN; 2763 continue; 2764 } 2765 2766 if (mem->invalid) { 2767 WARN(1, "Valid BO is marked invalid"); 2768 ret = -EAGAIN; 2769 continue; 2770 } 2771 2772 list_move_tail(&mem->validate_list, 2773 &process_info->userptr_valid_list); 2774 } 2775 2776 return ret; 2777 } 2778 2779 /* Worker callback to restore evicted userptr BOs 2780 * 2781 * Tries to update and validate all userptr BOs. If successful and no 2782 * concurrent evictions happened, the queues are restarted. Otherwise, 2783 * reschedule for another attempt later. 2784 */ 2785 static void amdgpu_amdkfd_restore_userptr_worker(struct work_struct *work) 2786 { 2787 struct delayed_work *dwork = to_delayed_work(work); 2788 struct amdkfd_process_info *process_info = 2789 container_of(dwork, struct amdkfd_process_info, 2790 restore_userptr_work); 2791 struct task_struct *usertask; 2792 struct mm_struct *mm; 2793 uint32_t evicted_bos; 2794 2795 mutex_lock(&process_info->notifier_lock); 2796 evicted_bos = process_info->evicted_bos; 2797 mutex_unlock(&process_info->notifier_lock); 2798 if (!evicted_bos) 2799 return; 2800 2801 /* Reference task and mm in case of concurrent process termination */ 2802 usertask = get_pid_task(process_info->pid, PIDTYPE_PID); 2803 if (!usertask) 2804 return; 2805 mm = get_task_mm(usertask); 2806 if (!mm) { 2807 put_task_struct(usertask); 2808 return; 2809 } 2810 2811 mutex_lock(&process_info->lock); 2812 2813 if (update_invalid_user_pages(process_info, mm)) 2814 goto unlock_out; 2815 /* userptr_inval_list can be empty if all evicted userptr BOs 2816 * have been freed. In that case there is nothing to validate 2817 * and we can just restart the queues. 2818 */ 2819 if (!list_empty(&process_info->userptr_inval_list)) { 2820 if (validate_invalid_user_pages(process_info)) 2821 goto unlock_out; 2822 } 2823 /* Final check for concurrent evicton and atomic update. If 2824 * another eviction happens after successful update, it will 2825 * be a first eviction that calls quiesce_mm. The eviction 2826 * reference counting inside KFD will handle this case. 2827 */ 2828 mutex_lock(&process_info->notifier_lock); 2829 if (process_info->evicted_bos != evicted_bos) 2830 goto unlock_notifier_out; 2831 2832 if (confirm_valid_user_pages_locked(process_info)) { 2833 WARN(1, "User pages unexpectedly invalid"); 2834 goto unlock_notifier_out; 2835 } 2836 2837 process_info->evicted_bos = evicted_bos = 0; 2838 2839 if (kgd2kfd_resume_mm(mm)) { 2840 pr_err("%s: Failed to resume KFD\n", __func__); 2841 /* No recovery from this failure. Probably the CP is 2842 * hanging. No point trying again. 2843 */ 2844 } 2845 2846 unlock_notifier_out: 2847 mutex_unlock(&process_info->notifier_lock); 2848 unlock_out: 2849 mutex_unlock(&process_info->lock); 2850 2851 /* If validation failed, reschedule another attempt */ 2852 if (evicted_bos) { 2853 queue_delayed_work(system_freezable_wq, 2854 &process_info->restore_userptr_work, 2855 msecs_to_jiffies(AMDGPU_USERPTR_RESTORE_DELAY_MS)); 2856 2857 kfd_smi_event_queue_restore_rescheduled(mm); 2858 } 2859 mmput(mm); 2860 put_task_struct(usertask); 2861 } 2862 2863 static void replace_eviction_fence(struct dma_fence __rcu **ef, 2864 struct dma_fence *new_ef) 2865 { 2866 struct dma_fence *old_ef = rcu_replace_pointer(*ef, new_ef, true 2867 /* protected by process_info->lock */); 2868 2869 /* If we're replacing an unsignaled eviction fence, that fence will 2870 * never be signaled, and if anyone is still waiting on that fence, 2871 * they will hang forever. This should never happen. We should only 2872 * replace the fence in restore_work that only gets scheduled after 2873 * eviction work signaled the fence. 2874 */ 2875 WARN_ONCE(!dma_fence_is_signaled(old_ef), 2876 "Replacing unsignaled eviction fence"); 2877 dma_fence_put(old_ef); 2878 } 2879 2880 /** amdgpu_amdkfd_gpuvm_restore_process_bos - Restore all BOs for the given 2881 * KFD process identified by process_info 2882 * 2883 * @process_info: amdkfd_process_info of the KFD process 2884 * 2885 * After memory eviction, restore thread calls this function. The function 2886 * should be called when the Process is still valid. BO restore involves - 2887 * 2888 * 1. Release old eviction fence and create new one 2889 * 2. Get two copies of PD BO list from all the VMs. Keep one copy as pd_list. 2890 * 3 Use the second PD list and kfd_bo_list to create a list (ctx.list) of 2891 * BOs that need to be reserved. 2892 * 4. Reserve all the BOs 2893 * 5. Validate of PD and PT BOs. 2894 * 6. Validate all KFD BOs using kfd_bo_list and Map them and add new fence 2895 * 7. Add fence to all PD and PT BOs. 2896 * 8. Unreserve all BOs 2897 */ 2898 int amdgpu_amdkfd_gpuvm_restore_process_bos(void *info, struct dma_fence __rcu **ef) 2899 { 2900 struct amdkfd_process_info *process_info = info; 2901 struct amdgpu_vm *peer_vm; 2902 struct kgd_mem *mem; 2903 struct list_head duplicate_save; 2904 struct amdgpu_sync sync_obj; 2905 unsigned long failed_size = 0; 2906 unsigned long total_size = 0; 2907 struct drm_exec exec; 2908 int ret; 2909 2910 INIT_LIST_HEAD(&duplicate_save); 2911 2912 mutex_lock(&process_info->lock); 2913 2914 drm_exec_init(&exec, DRM_EXEC_IGNORE_DUPLICATES, 0); 2915 drm_exec_until_all_locked(&exec) { 2916 list_for_each_entry(peer_vm, &process_info->vm_list_head, 2917 vm_list_node) { 2918 ret = amdgpu_vm_lock_pd(peer_vm, &exec, 2); 2919 drm_exec_retry_on_contention(&exec); 2920 if (unlikely(ret)) { 2921 pr_err("Locking VM PD failed, ret: %d\n", ret); 2922 goto ttm_reserve_fail; 2923 } 2924 } 2925 2926 /* Reserve all BOs and page tables/directory. Add all BOs from 2927 * kfd_bo_list to ctx.list 2928 */ 2929 list_for_each_entry(mem, &process_info->kfd_bo_list, 2930 validate_list) { 2931 struct drm_gem_object *gobj; 2932 2933 gobj = &mem->bo->tbo.base; 2934 ret = drm_exec_prepare_obj(&exec, gobj, 1); 2935 drm_exec_retry_on_contention(&exec); 2936 if (unlikely(ret)) { 2937 pr_err("drm_exec_prepare_obj failed, ret: %d\n", ret); 2938 goto ttm_reserve_fail; 2939 } 2940 } 2941 } 2942 2943 amdgpu_sync_create(&sync_obj); 2944 2945 /* Validate BOs managed by KFD */ 2946 list_for_each_entry(mem, &process_info->kfd_bo_list, 2947 validate_list) { 2948 2949 struct amdgpu_bo *bo = mem->bo; 2950 uint32_t domain = mem->domain; 2951 struct dma_resv_iter cursor; 2952 struct dma_fence *fence; 2953 2954 total_size += amdgpu_bo_size(bo); 2955 2956 ret = amdgpu_amdkfd_bo_validate(bo, domain, false); 2957 if (ret) { 2958 pr_debug("Memory eviction: Validate BOs failed\n"); 2959 failed_size += amdgpu_bo_size(bo); 2960 ret = amdgpu_amdkfd_bo_validate(bo, 2961 AMDGPU_GEM_DOMAIN_GTT, false); 2962 if (ret) { 2963 pr_debug("Memory eviction: Try again\n"); 2964 goto validate_map_fail; 2965 } 2966 } 2967 dma_resv_for_each_fence(&cursor, bo->tbo.base.resv, 2968 DMA_RESV_USAGE_KERNEL, fence) { 2969 ret = amdgpu_sync_fence(&sync_obj, fence, GFP_KERNEL); 2970 if (ret) { 2971 pr_debug("Memory eviction: Sync BO fence failed. Try again\n"); 2972 goto validate_map_fail; 2973 } 2974 } 2975 } 2976 2977 if (failed_size) 2978 pr_debug("0x%lx/0x%lx in system\n", failed_size, total_size); 2979 2980 /* Validate PDs, PTs and evicted DMABuf imports last. Otherwise BO 2981 * validations above would invalidate DMABuf imports again. 2982 */ 2983 ret = process_validate_vms(process_info, &exec.ticket); 2984 if (ret) { 2985 pr_debug("Validating VMs failed, ret: %d\n", ret); 2986 goto validate_map_fail; 2987 } 2988 2989 /* Update mappings managed by KFD. */ 2990 list_for_each_entry(mem, &process_info->kfd_bo_list, 2991 validate_list) { 2992 struct kfd_mem_attachment *attachment; 2993 2994 list_for_each_entry(attachment, &mem->attachments, list) { 2995 if (!attachment->is_mapped) 2996 continue; 2997 2998 kfd_mem_dmaunmap_attachment(mem, attachment); 2999 ret = update_gpuvm_pte(mem, attachment, &sync_obj); 3000 if (ret) { 3001 pr_debug("Memory eviction: update PTE failed. Try again\n"); 3002 goto validate_map_fail; 3003 } 3004 } 3005 } 3006 3007 /* Update mappings not managed by KFD */ 3008 list_for_each_entry(peer_vm, &process_info->vm_list_head, 3009 vm_list_node) { 3010 struct amdgpu_device *adev = amdgpu_ttm_adev( 3011 peer_vm->root.bo->tbo.bdev); 3012 3013 struct amdgpu_fpriv *fpriv = 3014 container_of(peer_vm, struct amdgpu_fpriv, vm); 3015 3016 ret = amdgpu_vm_bo_update(adev, fpriv->prt_va, false); 3017 if (ret) { 3018 dev_dbg(adev->dev, 3019 "Memory eviction: handle PRT moved failed, pid %8d. Try again.\n", 3020 pid_nr(process_info->pid)); 3021 goto validate_map_fail; 3022 } 3023 3024 ret = amdgpu_vm_handle_moved(adev, peer_vm, &exec.ticket); 3025 if (ret) { 3026 dev_dbg(adev->dev, 3027 "Memory eviction: handle moved failed, pid %8d. Try again.\n", 3028 pid_nr(process_info->pid)); 3029 goto validate_map_fail; 3030 } 3031 } 3032 3033 /* Update page directories */ 3034 ret = process_update_pds(process_info, &sync_obj); 3035 if (ret) { 3036 pr_debug("Memory eviction: update PDs failed. Try again\n"); 3037 goto validate_map_fail; 3038 } 3039 3040 /* Sync with fences on all the page tables. They implicitly depend on any 3041 * move fences from amdgpu_vm_handle_moved above. 3042 */ 3043 ret = process_sync_pds_resv(process_info, &sync_obj); 3044 if (ret) { 3045 pr_debug("Memory eviction: Failed to sync to PD BO moving fence. Try again\n"); 3046 goto validate_map_fail; 3047 } 3048 3049 /* Wait for validate and PT updates to finish */ 3050 amdgpu_sync_wait(&sync_obj, false); 3051 3052 /* The old eviction fence may be unsignaled if restore happens 3053 * after a GPU reset or suspend/resume. Keep the old fence in that 3054 * case. Otherwise release the old eviction fence and create new 3055 * one, because fence only goes from unsignaled to signaled once 3056 * and cannot be reused. Use context and mm from the old fence. 3057 * 3058 * If an old eviction fence signals after this check, that's OK. 3059 * Anyone signaling an eviction fence must stop the queues first 3060 * and schedule another restore worker. 3061 */ 3062 if (dma_fence_is_signaled(&process_info->eviction_fence->base)) { 3063 struct amdgpu_amdkfd_fence *new_fence = 3064 amdgpu_amdkfd_fence_create( 3065 process_info->eviction_fence->base.context, 3066 process_info->eviction_fence->mm, 3067 NULL); 3068 3069 if (!new_fence) { 3070 pr_err("Failed to create eviction fence\n"); 3071 ret = -ENOMEM; 3072 goto validate_map_fail; 3073 } 3074 dma_fence_put(&process_info->eviction_fence->base); 3075 process_info->eviction_fence = new_fence; 3076 replace_eviction_fence(ef, dma_fence_get(&new_fence->base)); 3077 } else { 3078 WARN_ONCE(*ef != &process_info->eviction_fence->base, 3079 "KFD eviction fence doesn't match KGD process_info"); 3080 } 3081 3082 /* Attach new eviction fence to all BOs except pinned ones */ 3083 list_for_each_entry(mem, &process_info->kfd_bo_list, validate_list) { 3084 if (mem->bo->tbo.pin_count) 3085 continue; 3086 3087 dma_resv_add_fence(mem->bo->tbo.base.resv, 3088 &process_info->eviction_fence->base, 3089 DMA_RESV_USAGE_BOOKKEEP); 3090 } 3091 /* Attach eviction fence to PD / PT BOs and DMABuf imports */ 3092 list_for_each_entry(peer_vm, &process_info->vm_list_head, 3093 vm_list_node) { 3094 struct amdgpu_bo *bo = peer_vm->root.bo; 3095 3096 dma_resv_add_fence(bo->tbo.base.resv, 3097 &process_info->eviction_fence->base, 3098 DMA_RESV_USAGE_BOOKKEEP); 3099 } 3100 3101 validate_map_fail: 3102 amdgpu_sync_free(&sync_obj); 3103 ttm_reserve_fail: 3104 drm_exec_fini(&exec); 3105 mutex_unlock(&process_info->lock); 3106 return ret; 3107 } 3108 3109 int amdgpu_amdkfd_add_gws_to_process(void *info, void *gws, struct kgd_mem **mem) 3110 { 3111 struct amdkfd_process_info *process_info = (struct amdkfd_process_info *)info; 3112 struct amdgpu_bo *gws_bo = (struct amdgpu_bo *)gws; 3113 int ret; 3114 3115 if (!info || !gws) 3116 return -EINVAL; 3117 3118 *mem = kzalloc(sizeof(struct kgd_mem), GFP_KERNEL); 3119 if (!*mem) 3120 return -ENOMEM; 3121 3122 mutex_init(&(*mem)->lock); 3123 INIT_LIST_HEAD(&(*mem)->attachments); 3124 (*mem)->bo = amdgpu_bo_ref(gws_bo); 3125 (*mem)->domain = AMDGPU_GEM_DOMAIN_GWS; 3126 (*mem)->process_info = process_info; 3127 add_kgd_mem_to_kfd_bo_list(*mem, process_info, false); 3128 amdgpu_sync_create(&(*mem)->sync); 3129 3130 3131 /* Validate gws bo the first time it is added to process */ 3132 mutex_lock(&(*mem)->process_info->lock); 3133 ret = amdgpu_bo_reserve(gws_bo, false); 3134 if (unlikely(ret)) { 3135 pr_err("Reserve gws bo failed %d\n", ret); 3136 goto bo_reservation_failure; 3137 } 3138 3139 ret = amdgpu_amdkfd_bo_validate(gws_bo, AMDGPU_GEM_DOMAIN_GWS, true); 3140 if (ret) { 3141 pr_err("GWS BO validate failed %d\n", ret); 3142 goto bo_validation_failure; 3143 } 3144 /* GWS resource is shared b/t amdgpu and amdkfd 3145 * Add process eviction fence to bo so they can 3146 * evict each other. 3147 */ 3148 ret = dma_resv_reserve_fences(gws_bo->tbo.base.resv, 1); 3149 if (ret) 3150 goto reserve_shared_fail; 3151 dma_resv_add_fence(gws_bo->tbo.base.resv, 3152 &process_info->eviction_fence->base, 3153 DMA_RESV_USAGE_BOOKKEEP); 3154 amdgpu_bo_unreserve(gws_bo); 3155 mutex_unlock(&(*mem)->process_info->lock); 3156 3157 return ret; 3158 3159 reserve_shared_fail: 3160 bo_validation_failure: 3161 amdgpu_bo_unreserve(gws_bo); 3162 bo_reservation_failure: 3163 mutex_unlock(&(*mem)->process_info->lock); 3164 amdgpu_sync_free(&(*mem)->sync); 3165 remove_kgd_mem_from_kfd_bo_list(*mem, process_info); 3166 amdgpu_bo_unref(&gws_bo); 3167 mutex_destroy(&(*mem)->lock); 3168 kfree(*mem); 3169 *mem = NULL; 3170 return ret; 3171 } 3172 3173 int amdgpu_amdkfd_remove_gws_from_process(void *info, void *mem) 3174 { 3175 int ret; 3176 struct amdkfd_process_info *process_info = (struct amdkfd_process_info *)info; 3177 struct kgd_mem *kgd_mem = (struct kgd_mem *)mem; 3178 struct amdgpu_bo *gws_bo = kgd_mem->bo; 3179 3180 /* Remove BO from process's validate list so restore worker won't touch 3181 * it anymore 3182 */ 3183 remove_kgd_mem_from_kfd_bo_list(kgd_mem, process_info); 3184 3185 ret = amdgpu_bo_reserve(gws_bo, false); 3186 if (unlikely(ret)) { 3187 pr_err("Reserve gws bo failed %d\n", ret); 3188 //TODO add BO back to validate_list? 3189 return ret; 3190 } 3191 amdgpu_amdkfd_remove_eviction_fence(gws_bo, 3192 process_info->eviction_fence); 3193 amdgpu_bo_unreserve(gws_bo); 3194 amdgpu_sync_free(&kgd_mem->sync); 3195 amdgpu_bo_unref(&gws_bo); 3196 mutex_destroy(&kgd_mem->lock); 3197 kfree(mem); 3198 return 0; 3199 } 3200 3201 /* Returns GPU-specific tiling mode information */ 3202 int amdgpu_amdkfd_get_tile_config(struct amdgpu_device *adev, 3203 struct tile_config *config) 3204 { 3205 config->gb_addr_config = adev->gfx.config.gb_addr_config; 3206 config->tile_config_ptr = adev->gfx.config.tile_mode_array; 3207 config->num_tile_configs = 3208 ARRAY_SIZE(adev->gfx.config.tile_mode_array); 3209 config->macro_tile_config_ptr = 3210 adev->gfx.config.macrotile_mode_array; 3211 config->num_macro_tile_configs = 3212 ARRAY_SIZE(adev->gfx.config.macrotile_mode_array); 3213 3214 /* Those values are not set from GFX9 onwards */ 3215 config->num_banks = adev->gfx.config.num_banks; 3216 config->num_ranks = adev->gfx.config.num_ranks; 3217 3218 return 0; 3219 } 3220 3221 bool amdgpu_amdkfd_bo_mapped_to_dev(void *drm_priv, struct kgd_mem *mem) 3222 { 3223 struct amdgpu_vm *vm = drm_priv_to_vm(drm_priv); 3224 struct kfd_mem_attachment *entry; 3225 3226 list_for_each_entry(entry, &mem->attachments, list) { 3227 if (entry->is_mapped && entry->bo_va->base.vm == vm) 3228 return true; 3229 } 3230 return false; 3231 } 3232 3233 #if defined(CONFIG_DEBUG_FS) 3234 3235 int kfd_debugfs_kfd_mem_limits(struct seq_file *m, void *data) 3236 { 3237 3238 spin_lock(&kfd_mem_limit.mem_limit_lock); 3239 seq_printf(m, "System mem used %lldM out of %lluM\n", 3240 (kfd_mem_limit.system_mem_used >> 20), 3241 (kfd_mem_limit.max_system_mem_limit >> 20)); 3242 seq_printf(m, "TTM mem used %lldM out of %lluM\n", 3243 (kfd_mem_limit.ttm_mem_used >> 20), 3244 (kfd_mem_limit.max_ttm_mem_limit >> 20)); 3245 spin_unlock(&kfd_mem_limit.mem_limit_lock); 3246 3247 return 0; 3248 } 3249 3250 #endif 3251