1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright 2014-2018 Advanced Micro Devices, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 */ 23 #include <linux/dma-buf.h> 24 #include <linux/list.h> 25 #include <linux/pagemap.h> 26 #include <linux/sched/mm.h> 27 #include <linux/sched/task.h> 28 #include <drm/ttm/ttm_tt.h> 29 30 #include <drm/drm_exec.h> 31 32 #include "amdgpu_object.h" 33 #include "amdgpu_gem.h" 34 #include "amdgpu_vm.h" 35 #include "amdgpu_hmm.h" 36 #include "amdgpu_amdkfd.h" 37 #include "amdgpu_dma_buf.h" 38 #include <uapi/linux/kfd_ioctl.h> 39 #include "amdgpu_xgmi.h" 40 #include "kfd_priv.h" 41 #include "kfd_smi_events.h" 42 43 /* Userptr restore delay, just long enough to allow consecutive VM 44 * changes to accumulate 45 */ 46 #define AMDGPU_USERPTR_RESTORE_DELAY_MS 1 47 #define AMDGPU_RESERVE_MEM_LIMIT (3UL << 29) 48 49 /* 50 * Align VRAM availability to 2MB to avoid fragmentation caused by 4K allocations in the tail 2MB 51 * BO chunk 52 */ 53 #define VRAM_AVAILABLITY_ALIGN (1 << 21) 54 55 /* Impose limit on how much memory KFD can use */ 56 static struct { 57 uint64_t max_system_mem_limit; 58 uint64_t max_ttm_mem_limit; 59 int64_t system_mem_used; 60 int64_t ttm_mem_used; 61 spinlock_t mem_limit_lock; 62 } kfd_mem_limit; 63 64 static const char * const domain_bit_to_string[] = { 65 "CPU", 66 "GTT", 67 "VRAM", 68 "GDS", 69 "GWS", 70 "OA" 71 }; 72 73 #define domain_string(domain) domain_bit_to_string[ffs(domain)-1] 74 75 static void amdgpu_amdkfd_restore_userptr_worker(struct work_struct *work); 76 77 static bool kfd_mem_is_attached(struct amdgpu_vm *avm, 78 struct kgd_mem *mem) 79 { 80 struct kfd_mem_attachment *entry; 81 82 list_for_each_entry(entry, &mem->attachments, list) 83 if (entry->bo_va->base.vm == avm) 84 return true; 85 86 return false; 87 } 88 89 /** 90 * reuse_dmamap() - Check whether adev can share the original 91 * userptr BO 92 * 93 * If both adev and bo_adev are in direct mapping or 94 * in the same iommu group, they can share the original BO. 95 * 96 * @adev: Device to which can or cannot share the original BO 97 * @bo_adev: Device to which allocated BO belongs to 98 * 99 * Return: returns true if adev can share original userptr BO, 100 * false otherwise. 101 */ 102 static bool reuse_dmamap(struct amdgpu_device *adev, struct amdgpu_device *bo_adev) 103 { 104 return (adev->ram_is_direct_mapped && bo_adev->ram_is_direct_mapped) || 105 (adev->dev->iommu_group == bo_adev->dev->iommu_group); 106 } 107 108 /* Set memory usage limits. Current, limits are 109 * System (TTM + userptr) memory - 15/16th System RAM 110 * TTM memory - 3/8th System RAM 111 */ 112 void amdgpu_amdkfd_gpuvm_init_mem_limits(void) 113 { 114 struct sysinfo si; 115 uint64_t mem; 116 117 if (kfd_mem_limit.max_system_mem_limit) 118 return; 119 120 si_meminfo(&si); 121 mem = si.totalram - si.totalhigh; 122 mem *= si.mem_unit; 123 124 spin_lock_init(&kfd_mem_limit.mem_limit_lock); 125 kfd_mem_limit.max_system_mem_limit = mem - (mem >> 6); 126 if (kfd_mem_limit.max_system_mem_limit < 2 * AMDGPU_RESERVE_MEM_LIMIT) 127 kfd_mem_limit.max_system_mem_limit >>= 1; 128 else 129 kfd_mem_limit.max_system_mem_limit -= AMDGPU_RESERVE_MEM_LIMIT; 130 131 kfd_mem_limit.max_ttm_mem_limit = ttm_tt_pages_limit() << PAGE_SHIFT; 132 pr_debug("Kernel memory limit %lluM, TTM limit %lluM\n", 133 (kfd_mem_limit.max_system_mem_limit >> 20), 134 (kfd_mem_limit.max_ttm_mem_limit >> 20)); 135 } 136 137 void amdgpu_amdkfd_reserve_system_mem(uint64_t size) 138 { 139 kfd_mem_limit.system_mem_used += size; 140 } 141 142 /* Estimate page table size needed to represent a given memory size 143 * 144 * With 4KB pages, we need one 8 byte PTE for each 4KB of memory 145 * (factor 512, >> 9). With 2MB pages, we need one 8 byte PTE for 2MB 146 * of memory (factor 256K, >> 18). ROCm user mode tries to optimize 147 * for 2MB pages for TLB efficiency. However, small allocations and 148 * fragmented system memory still need some 4KB pages. We choose a 149 * compromise that should work in most cases without reserving too 150 * much memory for page tables unnecessarily (factor 16K, >> 14). 151 */ 152 153 #define ESTIMATE_PT_SIZE(mem_size) max(((mem_size) >> 14), AMDGPU_VM_RESERVED_VRAM) 154 155 /** 156 * amdgpu_amdkfd_reserve_mem_limit() - Decrease available memory by size 157 * of buffer. 158 * 159 * @adev: Device to which allocated BO belongs to 160 * @size: Size of buffer, in bytes, encapsulated by B0. This should be 161 * equivalent to amdgpu_bo_size(BO) 162 * @alloc_flag: Flag used in allocating a BO as noted above 163 * @xcp_id: xcp_id is used to get xcp from xcp manager, one xcp is 164 * managed as one compute node in driver for app 165 * 166 * Return: 167 * returns -ENOMEM in case of error, ZERO otherwise 168 */ 169 int amdgpu_amdkfd_reserve_mem_limit(struct amdgpu_device *adev, 170 uint64_t size, u32 alloc_flag, int8_t xcp_id) 171 { 172 uint64_t reserved_for_pt = 173 ESTIMATE_PT_SIZE(amdgpu_amdkfd_total_mem_size); 174 size_t system_mem_needed, ttm_mem_needed, vram_needed; 175 int ret = 0; 176 uint64_t vram_size = 0; 177 178 system_mem_needed = 0; 179 ttm_mem_needed = 0; 180 vram_needed = 0; 181 if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_GTT) { 182 system_mem_needed = size; 183 ttm_mem_needed = size; 184 } else if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) { 185 /* 186 * Conservatively round up the allocation requirement to 2 MB 187 * to avoid fragmentation caused by 4K allocations in the tail 188 * 2M BO chunk. 189 */ 190 vram_needed = size; 191 /* 192 * For GFX 9.4.3, get the VRAM size from XCP structs 193 */ 194 if (WARN_ONCE(xcp_id < 0, "invalid XCP ID %d", xcp_id)) 195 return -EINVAL; 196 197 vram_size = KFD_XCP_MEMORY_SIZE(adev, xcp_id); 198 if (adev->gmc.is_app_apu) { 199 system_mem_needed = size; 200 ttm_mem_needed = size; 201 } 202 } else if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) { 203 system_mem_needed = size; 204 } else if (!(alloc_flag & 205 (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL | 206 KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP))) { 207 pr_err("%s: Invalid BO type %#x\n", __func__, alloc_flag); 208 return -ENOMEM; 209 } 210 211 spin_lock(&kfd_mem_limit.mem_limit_lock); 212 213 if (kfd_mem_limit.system_mem_used + system_mem_needed > 214 kfd_mem_limit.max_system_mem_limit) 215 pr_debug("Set no_system_mem_limit=1 if using shared memory\n"); 216 217 if ((kfd_mem_limit.system_mem_used + system_mem_needed > 218 kfd_mem_limit.max_system_mem_limit && !no_system_mem_limit) || 219 (kfd_mem_limit.ttm_mem_used + ttm_mem_needed > 220 kfd_mem_limit.max_ttm_mem_limit) || 221 (adev && xcp_id >= 0 && adev->kfd.vram_used[xcp_id] + vram_needed > 222 vram_size - reserved_for_pt)) { 223 ret = -ENOMEM; 224 goto release; 225 } 226 227 /* Update memory accounting by decreasing available system 228 * memory, TTM memory and GPU memory as computed above 229 */ 230 WARN_ONCE(vram_needed && !adev, 231 "adev reference can't be null when vram is used"); 232 if (adev && xcp_id >= 0) { 233 adev->kfd.vram_used[xcp_id] += vram_needed; 234 adev->kfd.vram_used_aligned[xcp_id] += adev->gmc.is_app_apu ? 235 vram_needed : 236 ALIGN(vram_needed, VRAM_AVAILABLITY_ALIGN); 237 } 238 kfd_mem_limit.system_mem_used += system_mem_needed; 239 kfd_mem_limit.ttm_mem_used += ttm_mem_needed; 240 241 release: 242 spin_unlock(&kfd_mem_limit.mem_limit_lock); 243 return ret; 244 } 245 246 void amdgpu_amdkfd_unreserve_mem_limit(struct amdgpu_device *adev, 247 uint64_t size, u32 alloc_flag, int8_t xcp_id) 248 { 249 spin_lock(&kfd_mem_limit.mem_limit_lock); 250 251 if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_GTT) { 252 kfd_mem_limit.system_mem_used -= size; 253 kfd_mem_limit.ttm_mem_used -= size; 254 } else if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) { 255 WARN_ONCE(!adev, 256 "adev reference can't be null when alloc mem flags vram is set"); 257 if (WARN_ONCE(xcp_id < 0, "invalid XCP ID %d", xcp_id)) 258 goto release; 259 260 if (adev) { 261 adev->kfd.vram_used[xcp_id] -= size; 262 if (adev->gmc.is_app_apu) { 263 adev->kfd.vram_used_aligned[xcp_id] -= size; 264 kfd_mem_limit.system_mem_used -= size; 265 kfd_mem_limit.ttm_mem_used -= size; 266 } else { 267 adev->kfd.vram_used_aligned[xcp_id] -= 268 ALIGN(size, VRAM_AVAILABLITY_ALIGN); 269 } 270 } 271 } else if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) { 272 kfd_mem_limit.system_mem_used -= size; 273 } else if (!(alloc_flag & 274 (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL | 275 KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP))) { 276 pr_err("%s: Invalid BO type %#x\n", __func__, alloc_flag); 277 goto release; 278 } 279 WARN_ONCE(adev && xcp_id >= 0 && adev->kfd.vram_used[xcp_id] < 0, 280 "KFD VRAM memory accounting unbalanced for xcp: %d", xcp_id); 281 WARN_ONCE(kfd_mem_limit.ttm_mem_used < 0, 282 "KFD TTM memory accounting unbalanced"); 283 WARN_ONCE(kfd_mem_limit.system_mem_used < 0, 284 "KFD system memory accounting unbalanced"); 285 286 release: 287 spin_unlock(&kfd_mem_limit.mem_limit_lock); 288 } 289 290 void amdgpu_amdkfd_release_notify(struct amdgpu_bo *bo) 291 { 292 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 293 u32 alloc_flags = bo->kfd_bo->alloc_flags; 294 u64 size = amdgpu_bo_size(bo); 295 296 amdgpu_amdkfd_unreserve_mem_limit(adev, size, alloc_flags, 297 bo->xcp_id); 298 299 kfree(bo->kfd_bo); 300 } 301 302 /** 303 * create_dmamap_sg_bo() - Creates a amdgpu_bo object to reflect information 304 * about USERPTR or DOOREBELL or MMIO BO. 305 * 306 * @adev: Device for which dmamap BO is being created 307 * @mem: BO of peer device that is being DMA mapped. Provides parameters 308 * in building the dmamap BO 309 * @bo_out: Output parameter updated with handle of dmamap BO 310 */ 311 static int 312 create_dmamap_sg_bo(struct amdgpu_device *adev, 313 struct kgd_mem *mem, struct amdgpu_bo **bo_out) 314 { 315 struct drm_gem_object *gem_obj; 316 int ret; 317 uint64_t flags = 0; 318 319 ret = amdgpu_bo_reserve(mem->bo, false); 320 if (ret) 321 return ret; 322 323 if (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) 324 flags |= mem->bo->flags & (AMDGPU_GEM_CREATE_COHERENT | 325 AMDGPU_GEM_CREATE_UNCACHED); 326 327 ret = amdgpu_gem_object_create(adev, mem->bo->tbo.base.size, 1, 328 AMDGPU_GEM_DOMAIN_CPU, AMDGPU_GEM_CREATE_PREEMPTIBLE | flags, 329 ttm_bo_type_sg, mem->bo->tbo.base.resv, &gem_obj, 0); 330 331 amdgpu_bo_unreserve(mem->bo); 332 333 if (ret) { 334 pr_err("Error in creating DMA mappable SG BO on domain: %d\n", ret); 335 return -EINVAL; 336 } 337 338 *bo_out = gem_to_amdgpu_bo(gem_obj); 339 (*bo_out)->parent = amdgpu_bo_ref(mem->bo); 340 return ret; 341 } 342 343 /* amdgpu_amdkfd_remove_eviction_fence - Removes eviction fence from BO's 344 * reservation object. 345 * 346 * @bo: [IN] Remove eviction fence(s) from this BO 347 * @ef: [IN] This eviction fence is removed if it 348 * is present in the shared list. 349 * 350 * NOTE: Must be called with BO reserved i.e. bo->tbo.resv->lock held. 351 */ 352 static int amdgpu_amdkfd_remove_eviction_fence(struct amdgpu_bo *bo, 353 struct amdgpu_amdkfd_fence *ef) 354 { 355 struct dma_fence *replacement; 356 357 if (!ef) 358 return -EINVAL; 359 360 /* TODO: Instead of block before we should use the fence of the page 361 * table update and TLB flush here directly. 362 */ 363 replacement = dma_fence_get_stub(); 364 dma_resv_replace_fences(bo->tbo.base.resv, ef->base.context, 365 replacement, DMA_RESV_USAGE_BOOKKEEP); 366 dma_fence_put(replacement); 367 return 0; 368 } 369 370 int amdgpu_amdkfd_remove_fence_on_pt_pd_bos(struct amdgpu_bo *bo) 371 { 372 struct amdgpu_bo *root = bo; 373 struct amdgpu_vm_bo_base *vm_bo; 374 struct amdgpu_vm *vm; 375 struct amdkfd_process_info *info; 376 struct amdgpu_amdkfd_fence *ef; 377 int ret; 378 379 /* we can always get vm_bo from root PD bo.*/ 380 while (root->parent) 381 root = root->parent; 382 383 vm_bo = root->vm_bo; 384 if (!vm_bo) 385 return 0; 386 387 vm = vm_bo->vm; 388 if (!vm) 389 return 0; 390 391 info = vm->process_info; 392 if (!info || !info->eviction_fence) 393 return 0; 394 395 ef = container_of(dma_fence_get(&info->eviction_fence->base), 396 struct amdgpu_amdkfd_fence, base); 397 398 BUG_ON(!dma_resv_trylock(bo->tbo.base.resv)); 399 ret = amdgpu_amdkfd_remove_eviction_fence(bo, ef); 400 dma_resv_unlock(bo->tbo.base.resv); 401 402 dma_fence_put(&ef->base); 403 return ret; 404 } 405 406 static int amdgpu_amdkfd_bo_validate(struct amdgpu_bo *bo, uint32_t domain, 407 bool wait) 408 { 409 struct ttm_operation_ctx ctx = { false, false }; 410 int ret; 411 412 if (WARN(amdgpu_ttm_tt_get_usermm(bo->tbo.ttm), 413 "Called with userptr BO")) 414 return -EINVAL; 415 416 amdgpu_bo_placement_from_domain(bo, domain); 417 418 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 419 if (ret) 420 goto validate_fail; 421 if (wait) 422 amdgpu_bo_sync_wait(bo, AMDGPU_FENCE_OWNER_KFD, false); 423 424 validate_fail: 425 return ret; 426 } 427 428 static int amdgpu_amdkfd_validate_vm_bo(void *_unused, struct amdgpu_bo *bo) 429 { 430 return amdgpu_amdkfd_bo_validate(bo, bo->allowed_domains, false); 431 } 432 433 /* vm_validate_pt_pd_bos - Validate page table and directory BOs 434 * 435 * Page directories are not updated here because huge page handling 436 * during page table updates can invalidate page directory entries 437 * again. Page directories are only updated after updating page 438 * tables. 439 */ 440 static int vm_validate_pt_pd_bos(struct amdgpu_vm *vm) 441 { 442 struct amdgpu_bo *pd = vm->root.bo; 443 struct amdgpu_device *adev = amdgpu_ttm_adev(pd->tbo.bdev); 444 int ret; 445 446 ret = amdgpu_vm_validate_pt_bos(adev, vm, amdgpu_amdkfd_validate_vm_bo, NULL); 447 if (ret) { 448 pr_err("failed to validate PT BOs\n"); 449 return ret; 450 } 451 452 vm->pd_phys_addr = amdgpu_gmc_pd_addr(vm->root.bo); 453 454 return 0; 455 } 456 457 static int vm_update_pds(struct amdgpu_vm *vm, struct amdgpu_sync *sync) 458 { 459 struct amdgpu_bo *pd = vm->root.bo; 460 struct amdgpu_device *adev = amdgpu_ttm_adev(pd->tbo.bdev); 461 int ret; 462 463 ret = amdgpu_vm_update_pdes(adev, vm, false); 464 if (ret) 465 return ret; 466 467 return amdgpu_sync_fence(sync, vm->last_update); 468 } 469 470 static uint64_t get_pte_flags(struct amdgpu_device *adev, struct kgd_mem *mem) 471 { 472 uint32_t mapping_flags = AMDGPU_VM_PAGE_READABLE | 473 AMDGPU_VM_MTYPE_DEFAULT; 474 475 if (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE) 476 mapping_flags |= AMDGPU_VM_PAGE_WRITEABLE; 477 if (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE) 478 mapping_flags |= AMDGPU_VM_PAGE_EXECUTABLE; 479 480 return amdgpu_gem_va_map_flags(adev, mapping_flags); 481 } 482 483 /** 484 * create_sg_table() - Create an sg_table for a contiguous DMA addr range 485 * @addr: The starting address to point to 486 * @size: Size of memory area in bytes being pointed to 487 * 488 * Allocates an instance of sg_table and initializes it to point to memory 489 * area specified by input parameters. The address used to build is assumed 490 * to be DMA mapped, if needed. 491 * 492 * DOORBELL or MMIO BOs use only one scatterlist node in their sg_table 493 * because they are physically contiguous. 494 * 495 * Return: Initialized instance of SG Table or NULL 496 */ 497 static struct sg_table *create_sg_table(uint64_t addr, uint32_t size) 498 { 499 struct sg_table *sg = kmalloc(sizeof(*sg), GFP_KERNEL); 500 501 if (!sg) 502 return NULL; 503 if (sg_alloc_table(sg, 1, GFP_KERNEL)) { 504 kfree(sg); 505 return NULL; 506 } 507 sg_dma_address(sg->sgl) = addr; 508 sg->sgl->length = size; 509 #ifdef CONFIG_NEED_SG_DMA_LENGTH 510 sg->sgl->dma_length = size; 511 #endif 512 return sg; 513 } 514 515 static int 516 kfd_mem_dmamap_userptr(struct kgd_mem *mem, 517 struct kfd_mem_attachment *attachment) 518 { 519 enum dma_data_direction direction = 520 mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? 521 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 522 struct ttm_operation_ctx ctx = {.interruptible = true}; 523 struct amdgpu_bo *bo = attachment->bo_va->base.bo; 524 struct amdgpu_device *adev = attachment->adev; 525 struct ttm_tt *src_ttm = mem->bo->tbo.ttm; 526 struct ttm_tt *ttm = bo->tbo.ttm; 527 int ret; 528 529 if (WARN_ON(ttm->num_pages != src_ttm->num_pages)) 530 return -EINVAL; 531 532 ttm->sg = kmalloc(sizeof(*ttm->sg), GFP_KERNEL); 533 if (unlikely(!ttm->sg)) 534 return -ENOMEM; 535 536 /* Same sequence as in amdgpu_ttm_tt_pin_userptr */ 537 ret = sg_alloc_table_from_pages(ttm->sg, src_ttm->pages, 538 ttm->num_pages, 0, 539 (u64)ttm->num_pages << PAGE_SHIFT, 540 GFP_KERNEL); 541 if (unlikely(ret)) 542 goto free_sg; 543 544 ret = dma_map_sgtable(adev->dev, ttm->sg, direction, 0); 545 if (unlikely(ret)) 546 goto release_sg; 547 548 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_GTT); 549 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 550 if (ret) 551 goto unmap_sg; 552 553 return 0; 554 555 unmap_sg: 556 dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0); 557 release_sg: 558 pr_err("DMA map userptr failed: %d\n", ret); 559 sg_free_table(ttm->sg); 560 free_sg: 561 kfree(ttm->sg); 562 ttm->sg = NULL; 563 return ret; 564 } 565 566 static int 567 kfd_mem_dmamap_dmabuf(struct kfd_mem_attachment *attachment) 568 { 569 struct ttm_operation_ctx ctx = {.interruptible = true}; 570 struct amdgpu_bo *bo = attachment->bo_va->base.bo; 571 int ret; 572 573 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_CPU); 574 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 575 if (ret) 576 return ret; 577 578 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_GTT); 579 return ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 580 } 581 582 /** 583 * kfd_mem_dmamap_sg_bo() - Create DMA mapped sg_table to access DOORBELL or MMIO BO 584 * @mem: SG BO of the DOORBELL or MMIO resource on the owning device 585 * @attachment: Virtual address attachment of the BO on accessing device 586 * 587 * An access request from the device that owns DOORBELL does not require DMA mapping. 588 * This is because the request doesn't go through PCIe root complex i.e. it instead 589 * loops back. The need to DMA map arises only when accessing peer device's DOORBELL 590 * 591 * In contrast, all access requests for MMIO need to be DMA mapped without regard to 592 * device ownership. This is because access requests for MMIO go through PCIe root 593 * complex. 594 * 595 * This is accomplished in two steps: 596 * - Obtain DMA mapped address of DOORBELL or MMIO memory that could be used 597 * in updating requesting device's page table 598 * - Signal TTM to mark memory pointed to by requesting device's BO as GPU 599 * accessible. This allows an update of requesting device's page table 600 * with entries associated with DOOREBELL or MMIO memory 601 * 602 * This method is invoked in the following contexts: 603 * - Mapping of DOORBELL or MMIO BO of same or peer device 604 * - Validating an evicted DOOREBELL or MMIO BO on device seeking access 605 * 606 * Return: ZERO if successful, NON-ZERO otherwise 607 */ 608 static int 609 kfd_mem_dmamap_sg_bo(struct kgd_mem *mem, 610 struct kfd_mem_attachment *attachment) 611 { 612 struct ttm_operation_ctx ctx = {.interruptible = true}; 613 struct amdgpu_bo *bo = attachment->bo_va->base.bo; 614 struct amdgpu_device *adev = attachment->adev; 615 struct ttm_tt *ttm = bo->tbo.ttm; 616 enum dma_data_direction dir; 617 dma_addr_t dma_addr; 618 bool mmio; 619 int ret; 620 621 /* Expect SG Table of dmapmap BO to be NULL */ 622 mmio = (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP); 623 if (unlikely(ttm->sg)) { 624 pr_err("SG Table of %d BO for peer device is UNEXPECTEDLY NON-NULL", mmio); 625 return -EINVAL; 626 } 627 628 dir = mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? 629 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 630 dma_addr = mem->bo->tbo.sg->sgl->dma_address; 631 pr_debug("%d BO size: %d\n", mmio, mem->bo->tbo.sg->sgl->length); 632 pr_debug("%d BO address before DMA mapping: %llx\n", mmio, dma_addr); 633 dma_addr = dma_map_resource(adev->dev, dma_addr, 634 mem->bo->tbo.sg->sgl->length, dir, DMA_ATTR_SKIP_CPU_SYNC); 635 ret = dma_mapping_error(adev->dev, dma_addr); 636 if (unlikely(ret)) 637 return ret; 638 pr_debug("%d BO address after DMA mapping: %llx\n", mmio, dma_addr); 639 640 ttm->sg = create_sg_table(dma_addr, mem->bo->tbo.sg->sgl->length); 641 if (unlikely(!ttm->sg)) { 642 ret = -ENOMEM; 643 goto unmap_sg; 644 } 645 646 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_GTT); 647 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 648 if (unlikely(ret)) 649 goto free_sg; 650 651 return ret; 652 653 free_sg: 654 sg_free_table(ttm->sg); 655 kfree(ttm->sg); 656 ttm->sg = NULL; 657 unmap_sg: 658 dma_unmap_resource(adev->dev, dma_addr, mem->bo->tbo.sg->sgl->length, 659 dir, DMA_ATTR_SKIP_CPU_SYNC); 660 return ret; 661 } 662 663 static int 664 kfd_mem_dmamap_attachment(struct kgd_mem *mem, 665 struct kfd_mem_attachment *attachment) 666 { 667 switch (attachment->type) { 668 case KFD_MEM_ATT_SHARED: 669 return 0; 670 case KFD_MEM_ATT_USERPTR: 671 return kfd_mem_dmamap_userptr(mem, attachment); 672 case KFD_MEM_ATT_DMABUF: 673 return kfd_mem_dmamap_dmabuf(attachment); 674 case KFD_MEM_ATT_SG: 675 return kfd_mem_dmamap_sg_bo(mem, attachment); 676 default: 677 WARN_ON_ONCE(1); 678 } 679 return -EINVAL; 680 } 681 682 static void 683 kfd_mem_dmaunmap_userptr(struct kgd_mem *mem, 684 struct kfd_mem_attachment *attachment) 685 { 686 enum dma_data_direction direction = 687 mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? 688 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 689 struct ttm_operation_ctx ctx = {.interruptible = false}; 690 struct amdgpu_bo *bo = attachment->bo_va->base.bo; 691 struct amdgpu_device *adev = attachment->adev; 692 struct ttm_tt *ttm = bo->tbo.ttm; 693 694 if (unlikely(!ttm->sg)) 695 return; 696 697 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_CPU); 698 ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 699 700 dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0); 701 sg_free_table(ttm->sg); 702 kfree(ttm->sg); 703 ttm->sg = NULL; 704 } 705 706 static void 707 kfd_mem_dmaunmap_dmabuf(struct kfd_mem_attachment *attachment) 708 { 709 /* This is a no-op. We don't want to trigger eviction fences when 710 * unmapping DMABufs. Therefore the invalidation (moving to system 711 * domain) is done in kfd_mem_dmamap_dmabuf. 712 */ 713 } 714 715 /** 716 * kfd_mem_dmaunmap_sg_bo() - Free DMA mapped sg_table of DOORBELL or MMIO BO 717 * @mem: SG BO of the DOORBELL or MMIO resource on the owning device 718 * @attachment: Virtual address attachment of the BO on accessing device 719 * 720 * The method performs following steps: 721 * - Signal TTM to mark memory pointed to by BO as GPU inaccessible 722 * - Free SG Table that is used to encapsulate DMA mapped memory of 723 * peer device's DOORBELL or MMIO memory 724 * 725 * This method is invoked in the following contexts: 726 * UNMapping of DOORBELL or MMIO BO on a device having access to its memory 727 * Eviction of DOOREBELL or MMIO BO on device having access to its memory 728 * 729 * Return: void 730 */ 731 static void 732 kfd_mem_dmaunmap_sg_bo(struct kgd_mem *mem, 733 struct kfd_mem_attachment *attachment) 734 { 735 struct ttm_operation_ctx ctx = {.interruptible = true}; 736 struct amdgpu_bo *bo = attachment->bo_va->base.bo; 737 struct amdgpu_device *adev = attachment->adev; 738 struct ttm_tt *ttm = bo->tbo.ttm; 739 enum dma_data_direction dir; 740 741 if (unlikely(!ttm->sg)) { 742 pr_debug("SG Table of BO is NULL"); 743 return; 744 } 745 746 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_CPU); 747 ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 748 749 dir = mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? 750 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 751 dma_unmap_resource(adev->dev, ttm->sg->sgl->dma_address, 752 ttm->sg->sgl->length, dir, DMA_ATTR_SKIP_CPU_SYNC); 753 sg_free_table(ttm->sg); 754 kfree(ttm->sg); 755 ttm->sg = NULL; 756 bo->tbo.sg = NULL; 757 } 758 759 static void 760 kfd_mem_dmaunmap_attachment(struct kgd_mem *mem, 761 struct kfd_mem_attachment *attachment) 762 { 763 switch (attachment->type) { 764 case KFD_MEM_ATT_SHARED: 765 break; 766 case KFD_MEM_ATT_USERPTR: 767 kfd_mem_dmaunmap_userptr(mem, attachment); 768 break; 769 case KFD_MEM_ATT_DMABUF: 770 kfd_mem_dmaunmap_dmabuf(attachment); 771 break; 772 case KFD_MEM_ATT_SG: 773 kfd_mem_dmaunmap_sg_bo(mem, attachment); 774 break; 775 default: 776 WARN_ON_ONCE(1); 777 } 778 } 779 780 static int kfd_mem_export_dmabuf(struct kgd_mem *mem) 781 { 782 if (!mem->dmabuf) { 783 struct dma_buf *ret = amdgpu_gem_prime_export( 784 &mem->bo->tbo.base, 785 mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? 786 DRM_RDWR : 0); 787 if (IS_ERR(ret)) 788 return PTR_ERR(ret); 789 mem->dmabuf = ret; 790 } 791 792 return 0; 793 } 794 795 static int 796 kfd_mem_attach_dmabuf(struct amdgpu_device *adev, struct kgd_mem *mem, 797 struct amdgpu_bo **bo) 798 { 799 struct drm_gem_object *gobj; 800 int ret; 801 802 ret = kfd_mem_export_dmabuf(mem); 803 if (ret) 804 return ret; 805 806 gobj = amdgpu_gem_prime_import(adev_to_drm(adev), mem->dmabuf); 807 if (IS_ERR(gobj)) 808 return PTR_ERR(gobj); 809 810 *bo = gem_to_amdgpu_bo(gobj); 811 (*bo)->flags |= AMDGPU_GEM_CREATE_PREEMPTIBLE; 812 813 return 0; 814 } 815 816 /* kfd_mem_attach - Add a BO to a VM 817 * 818 * Everything that needs to bo done only once when a BO is first added 819 * to a VM. It can later be mapped and unmapped many times without 820 * repeating these steps. 821 * 822 * 0. Create BO for DMA mapping, if needed 823 * 1. Allocate and initialize BO VA entry data structure 824 * 2. Add BO to the VM 825 * 3. Determine ASIC-specific PTE flags 826 * 4. Alloc page tables and directories if needed 827 * 4a. Validate new page tables and directories 828 */ 829 static int kfd_mem_attach(struct amdgpu_device *adev, struct kgd_mem *mem, 830 struct amdgpu_vm *vm, bool is_aql) 831 { 832 struct amdgpu_device *bo_adev = amdgpu_ttm_adev(mem->bo->tbo.bdev); 833 unsigned long bo_size = mem->bo->tbo.base.size; 834 uint64_t va = mem->va; 835 struct kfd_mem_attachment *attachment[2] = {NULL, NULL}; 836 struct amdgpu_bo *bo[2] = {NULL, NULL}; 837 bool same_hive = false; 838 int i, ret; 839 840 if (!va) { 841 pr_err("Invalid VA when adding BO to VM\n"); 842 return -EINVAL; 843 } 844 845 /* Determine access to VRAM, MMIO and DOORBELL BOs of peer devices 846 * 847 * The access path of MMIO and DOORBELL BOs of is always over PCIe. 848 * In contrast the access path of VRAM BOs depens upon the type of 849 * link that connects the peer device. Access over PCIe is allowed 850 * if peer device has large BAR. In contrast, access over xGMI is 851 * allowed for both small and large BAR configurations of peer device 852 */ 853 if ((adev != bo_adev && !adev->gmc.is_app_apu) && 854 ((mem->domain == AMDGPU_GEM_DOMAIN_VRAM) || 855 (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) || 856 (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP))) { 857 if (mem->domain == AMDGPU_GEM_DOMAIN_VRAM) 858 same_hive = amdgpu_xgmi_same_hive(adev, bo_adev); 859 if (!same_hive && !amdgpu_device_is_peer_accessible(bo_adev, adev)) 860 return -EINVAL; 861 } 862 863 for (i = 0; i <= is_aql; i++) { 864 attachment[i] = kzalloc(sizeof(*attachment[i]), GFP_KERNEL); 865 if (unlikely(!attachment[i])) { 866 ret = -ENOMEM; 867 goto unwind; 868 } 869 870 pr_debug("\t add VA 0x%llx - 0x%llx to vm %p\n", va, 871 va + bo_size, vm); 872 873 if ((adev == bo_adev && !(mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) || 874 (amdgpu_ttm_tt_get_usermm(mem->bo->tbo.ttm) && reuse_dmamap(adev, bo_adev)) || 875 (mem->domain == AMDGPU_GEM_DOMAIN_GTT && reuse_dmamap(adev, bo_adev)) || 876 same_hive) { 877 /* Mappings on the local GPU, or VRAM mappings in the 878 * local hive, or userptr, or GTT mapping can reuse dma map 879 * address space share the original BO 880 */ 881 attachment[i]->type = KFD_MEM_ATT_SHARED; 882 bo[i] = mem->bo; 883 drm_gem_object_get(&bo[i]->tbo.base); 884 } else if (i > 0) { 885 /* Multiple mappings on the same GPU share the BO */ 886 attachment[i]->type = KFD_MEM_ATT_SHARED; 887 bo[i] = bo[0]; 888 drm_gem_object_get(&bo[i]->tbo.base); 889 } else if (amdgpu_ttm_tt_get_usermm(mem->bo->tbo.ttm)) { 890 /* Create an SG BO to DMA-map userptrs on other GPUs */ 891 attachment[i]->type = KFD_MEM_ATT_USERPTR; 892 ret = create_dmamap_sg_bo(adev, mem, &bo[i]); 893 if (ret) 894 goto unwind; 895 /* Handle DOORBELL BOs of peer devices and MMIO BOs of local and peer devices */ 896 } else if (mem->bo->tbo.type == ttm_bo_type_sg) { 897 WARN_ONCE(!(mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL || 898 mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP), 899 "Handing invalid SG BO in ATTACH request"); 900 attachment[i]->type = KFD_MEM_ATT_SG; 901 ret = create_dmamap_sg_bo(adev, mem, &bo[i]); 902 if (ret) 903 goto unwind; 904 /* Enable acces to GTT and VRAM BOs of peer devices */ 905 } else if (mem->domain == AMDGPU_GEM_DOMAIN_GTT || 906 mem->domain == AMDGPU_GEM_DOMAIN_VRAM) { 907 attachment[i]->type = KFD_MEM_ATT_DMABUF; 908 ret = kfd_mem_attach_dmabuf(adev, mem, &bo[i]); 909 if (ret) 910 goto unwind; 911 pr_debug("Employ DMABUF mechanism to enable peer GPU access\n"); 912 } else { 913 WARN_ONCE(true, "Handling invalid ATTACH request"); 914 ret = -EINVAL; 915 goto unwind; 916 } 917 918 /* Add BO to VM internal data structures */ 919 ret = amdgpu_bo_reserve(bo[i], false); 920 if (ret) { 921 pr_debug("Unable to reserve BO during memory attach"); 922 goto unwind; 923 } 924 attachment[i]->bo_va = amdgpu_vm_bo_add(adev, vm, bo[i]); 925 amdgpu_bo_unreserve(bo[i]); 926 if (unlikely(!attachment[i]->bo_va)) { 927 ret = -ENOMEM; 928 pr_err("Failed to add BO object to VM. ret == %d\n", 929 ret); 930 goto unwind; 931 } 932 attachment[i]->va = va; 933 attachment[i]->pte_flags = get_pte_flags(adev, mem); 934 attachment[i]->adev = adev; 935 list_add(&attachment[i]->list, &mem->attachments); 936 937 va += bo_size; 938 } 939 940 return 0; 941 942 unwind: 943 for (; i >= 0; i--) { 944 if (!attachment[i]) 945 continue; 946 if (attachment[i]->bo_va) { 947 amdgpu_bo_reserve(bo[i], true); 948 amdgpu_vm_bo_del(adev, attachment[i]->bo_va); 949 amdgpu_bo_unreserve(bo[i]); 950 list_del(&attachment[i]->list); 951 } 952 if (bo[i]) 953 drm_gem_object_put(&bo[i]->tbo.base); 954 kfree(attachment[i]); 955 } 956 return ret; 957 } 958 959 static void kfd_mem_detach(struct kfd_mem_attachment *attachment) 960 { 961 struct amdgpu_bo *bo = attachment->bo_va->base.bo; 962 963 pr_debug("\t remove VA 0x%llx in entry %p\n", 964 attachment->va, attachment); 965 amdgpu_vm_bo_del(attachment->adev, attachment->bo_va); 966 drm_gem_object_put(&bo->tbo.base); 967 list_del(&attachment->list); 968 kfree(attachment); 969 } 970 971 static void add_kgd_mem_to_kfd_bo_list(struct kgd_mem *mem, 972 struct amdkfd_process_info *process_info, 973 bool userptr) 974 { 975 mutex_lock(&process_info->lock); 976 if (userptr) 977 list_add_tail(&mem->validate_list, 978 &process_info->userptr_valid_list); 979 else 980 list_add_tail(&mem->validate_list, &process_info->kfd_bo_list); 981 mutex_unlock(&process_info->lock); 982 } 983 984 static void remove_kgd_mem_from_kfd_bo_list(struct kgd_mem *mem, 985 struct amdkfd_process_info *process_info) 986 { 987 mutex_lock(&process_info->lock); 988 list_del(&mem->validate_list); 989 mutex_unlock(&process_info->lock); 990 } 991 992 /* Initializes user pages. It registers the MMU notifier and validates 993 * the userptr BO in the GTT domain. 994 * 995 * The BO must already be on the userptr_valid_list. Otherwise an 996 * eviction and restore may happen that leaves the new BO unmapped 997 * with the user mode queues running. 998 * 999 * Takes the process_info->lock to protect against concurrent restore 1000 * workers. 1001 * 1002 * Returns 0 for success, negative errno for errors. 1003 */ 1004 static int init_user_pages(struct kgd_mem *mem, uint64_t user_addr, 1005 bool criu_resume) 1006 { 1007 struct amdkfd_process_info *process_info = mem->process_info; 1008 struct amdgpu_bo *bo = mem->bo; 1009 struct ttm_operation_ctx ctx = { true, false }; 1010 struct hmm_range *range; 1011 int ret = 0; 1012 1013 mutex_lock(&process_info->lock); 1014 1015 ret = amdgpu_ttm_tt_set_userptr(&bo->tbo, user_addr, 0); 1016 if (ret) { 1017 pr_err("%s: Failed to set userptr: %d\n", __func__, ret); 1018 goto out; 1019 } 1020 1021 ret = amdgpu_hmm_register(bo, user_addr); 1022 if (ret) { 1023 pr_err("%s: Failed to register MMU notifier: %d\n", 1024 __func__, ret); 1025 goto out; 1026 } 1027 1028 if (criu_resume) { 1029 /* 1030 * During a CRIU restore operation, the userptr buffer objects 1031 * will be validated in the restore_userptr_work worker at a 1032 * later stage when it is scheduled by another ioctl called by 1033 * CRIU master process for the target pid for restore. 1034 */ 1035 mutex_lock(&process_info->notifier_lock); 1036 mem->invalid++; 1037 mutex_unlock(&process_info->notifier_lock); 1038 mutex_unlock(&process_info->lock); 1039 return 0; 1040 } 1041 1042 ret = amdgpu_ttm_tt_get_user_pages(bo, bo->tbo.ttm->pages, &range); 1043 if (ret) { 1044 pr_err("%s: Failed to get user pages: %d\n", __func__, ret); 1045 goto unregister_out; 1046 } 1047 1048 ret = amdgpu_bo_reserve(bo, true); 1049 if (ret) { 1050 pr_err("%s: Failed to reserve BO\n", __func__); 1051 goto release_out; 1052 } 1053 amdgpu_bo_placement_from_domain(bo, mem->domain); 1054 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 1055 if (ret) 1056 pr_err("%s: failed to validate BO\n", __func__); 1057 amdgpu_bo_unreserve(bo); 1058 1059 release_out: 1060 amdgpu_ttm_tt_get_user_pages_done(bo->tbo.ttm, range); 1061 unregister_out: 1062 if (ret) 1063 amdgpu_hmm_unregister(bo); 1064 out: 1065 mutex_unlock(&process_info->lock); 1066 return ret; 1067 } 1068 1069 /* Reserving a BO and its page table BOs must happen atomically to 1070 * avoid deadlocks. Some operations update multiple VMs at once. Track 1071 * all the reservation info in a context structure. Optionally a sync 1072 * object can track VM updates. 1073 */ 1074 struct bo_vm_reservation_context { 1075 /* DRM execution context for the reservation */ 1076 struct drm_exec exec; 1077 /* Number of VMs reserved */ 1078 unsigned int n_vms; 1079 /* Pointer to sync object */ 1080 struct amdgpu_sync *sync; 1081 }; 1082 1083 enum bo_vm_match { 1084 BO_VM_NOT_MAPPED = 0, /* Match VMs where a BO is not mapped */ 1085 BO_VM_MAPPED, /* Match VMs where a BO is mapped */ 1086 BO_VM_ALL, /* Match all VMs a BO was added to */ 1087 }; 1088 1089 /** 1090 * reserve_bo_and_vm - reserve a BO and a VM unconditionally. 1091 * @mem: KFD BO structure. 1092 * @vm: the VM to reserve. 1093 * @ctx: the struct that will be used in unreserve_bo_and_vms(). 1094 */ 1095 static int reserve_bo_and_vm(struct kgd_mem *mem, 1096 struct amdgpu_vm *vm, 1097 struct bo_vm_reservation_context *ctx) 1098 { 1099 struct amdgpu_bo *bo = mem->bo; 1100 int ret; 1101 1102 WARN_ON(!vm); 1103 1104 ctx->n_vms = 1; 1105 ctx->sync = &mem->sync; 1106 drm_exec_init(&ctx->exec, DRM_EXEC_INTERRUPTIBLE_WAIT); 1107 drm_exec_until_all_locked(&ctx->exec) { 1108 ret = amdgpu_vm_lock_pd(vm, &ctx->exec, 2); 1109 drm_exec_retry_on_contention(&ctx->exec); 1110 if (unlikely(ret)) 1111 goto error; 1112 1113 ret = drm_exec_lock_obj(&ctx->exec, &bo->tbo.base); 1114 drm_exec_retry_on_contention(&ctx->exec); 1115 if (unlikely(ret)) 1116 goto error; 1117 } 1118 return 0; 1119 1120 error: 1121 pr_err("Failed to reserve buffers in ttm.\n"); 1122 drm_exec_fini(&ctx->exec); 1123 return ret; 1124 } 1125 1126 /** 1127 * reserve_bo_and_cond_vms - reserve a BO and some VMs conditionally 1128 * @mem: KFD BO structure. 1129 * @vm: the VM to reserve. If NULL, then all VMs associated with the BO 1130 * is used. Otherwise, a single VM associated with the BO. 1131 * @map_type: the mapping status that will be used to filter the VMs. 1132 * @ctx: the struct that will be used in unreserve_bo_and_vms(). 1133 * 1134 * Returns 0 for success, negative for failure. 1135 */ 1136 static int reserve_bo_and_cond_vms(struct kgd_mem *mem, 1137 struct amdgpu_vm *vm, enum bo_vm_match map_type, 1138 struct bo_vm_reservation_context *ctx) 1139 { 1140 struct kfd_mem_attachment *entry; 1141 struct amdgpu_bo *bo = mem->bo; 1142 int ret; 1143 1144 ctx->sync = &mem->sync; 1145 drm_exec_init(&ctx->exec, DRM_EXEC_INTERRUPTIBLE_WAIT); 1146 drm_exec_until_all_locked(&ctx->exec) { 1147 ctx->n_vms = 0; 1148 list_for_each_entry(entry, &mem->attachments, list) { 1149 if ((vm && vm != entry->bo_va->base.vm) || 1150 (entry->is_mapped != map_type 1151 && map_type != BO_VM_ALL)) 1152 continue; 1153 1154 ret = amdgpu_vm_lock_pd(entry->bo_va->base.vm, 1155 &ctx->exec, 2); 1156 drm_exec_retry_on_contention(&ctx->exec); 1157 if (unlikely(ret)) 1158 goto error; 1159 ++ctx->n_vms; 1160 } 1161 1162 ret = drm_exec_prepare_obj(&ctx->exec, &bo->tbo.base, 1); 1163 drm_exec_retry_on_contention(&ctx->exec); 1164 if (unlikely(ret)) 1165 goto error; 1166 } 1167 return 0; 1168 1169 error: 1170 pr_err("Failed to reserve buffers in ttm.\n"); 1171 drm_exec_fini(&ctx->exec); 1172 return ret; 1173 } 1174 1175 /** 1176 * unreserve_bo_and_vms - Unreserve BO and VMs from a reservation context 1177 * @ctx: Reservation context to unreserve 1178 * @wait: Optionally wait for a sync object representing pending VM updates 1179 * @intr: Whether the wait is interruptible 1180 * 1181 * Also frees any resources allocated in 1182 * reserve_bo_and_(cond_)vm(s). Returns the status from 1183 * amdgpu_sync_wait. 1184 */ 1185 static int unreserve_bo_and_vms(struct bo_vm_reservation_context *ctx, 1186 bool wait, bool intr) 1187 { 1188 int ret = 0; 1189 1190 if (wait) 1191 ret = amdgpu_sync_wait(ctx->sync, intr); 1192 1193 drm_exec_fini(&ctx->exec); 1194 ctx->sync = NULL; 1195 return ret; 1196 } 1197 1198 static void unmap_bo_from_gpuvm(struct kgd_mem *mem, 1199 struct kfd_mem_attachment *entry, 1200 struct amdgpu_sync *sync) 1201 { 1202 struct amdgpu_bo_va *bo_va = entry->bo_va; 1203 struct amdgpu_device *adev = entry->adev; 1204 struct amdgpu_vm *vm = bo_va->base.vm; 1205 1206 amdgpu_vm_bo_unmap(adev, bo_va, entry->va); 1207 1208 amdgpu_vm_clear_freed(adev, vm, &bo_va->last_pt_update); 1209 1210 amdgpu_sync_fence(sync, bo_va->last_pt_update); 1211 } 1212 1213 static int update_gpuvm_pte(struct kgd_mem *mem, 1214 struct kfd_mem_attachment *entry, 1215 struct amdgpu_sync *sync) 1216 { 1217 struct amdgpu_bo_va *bo_va = entry->bo_va; 1218 struct amdgpu_device *adev = entry->adev; 1219 int ret; 1220 1221 ret = kfd_mem_dmamap_attachment(mem, entry); 1222 if (ret) 1223 return ret; 1224 1225 /* Update the page tables */ 1226 ret = amdgpu_vm_bo_update(adev, bo_va, false); 1227 if (ret) { 1228 pr_err("amdgpu_vm_bo_update failed\n"); 1229 return ret; 1230 } 1231 1232 return amdgpu_sync_fence(sync, bo_va->last_pt_update); 1233 } 1234 1235 static int map_bo_to_gpuvm(struct kgd_mem *mem, 1236 struct kfd_mem_attachment *entry, 1237 struct amdgpu_sync *sync, 1238 bool no_update_pte) 1239 { 1240 int ret; 1241 1242 /* Set virtual address for the allocation */ 1243 ret = amdgpu_vm_bo_map(entry->adev, entry->bo_va, entry->va, 0, 1244 amdgpu_bo_size(entry->bo_va->base.bo), 1245 entry->pte_flags); 1246 if (ret) { 1247 pr_err("Failed to map VA 0x%llx in vm. ret %d\n", 1248 entry->va, ret); 1249 return ret; 1250 } 1251 1252 if (no_update_pte) 1253 return 0; 1254 1255 ret = update_gpuvm_pte(mem, entry, sync); 1256 if (ret) { 1257 pr_err("update_gpuvm_pte() failed\n"); 1258 goto update_gpuvm_pte_failed; 1259 } 1260 1261 return 0; 1262 1263 update_gpuvm_pte_failed: 1264 unmap_bo_from_gpuvm(mem, entry, sync); 1265 kfd_mem_dmaunmap_attachment(mem, entry); 1266 return ret; 1267 } 1268 1269 static int process_validate_vms(struct amdkfd_process_info *process_info) 1270 { 1271 struct amdgpu_vm *peer_vm; 1272 int ret; 1273 1274 list_for_each_entry(peer_vm, &process_info->vm_list_head, 1275 vm_list_node) { 1276 ret = vm_validate_pt_pd_bos(peer_vm); 1277 if (ret) 1278 return ret; 1279 } 1280 1281 return 0; 1282 } 1283 1284 static int process_sync_pds_resv(struct amdkfd_process_info *process_info, 1285 struct amdgpu_sync *sync) 1286 { 1287 struct amdgpu_vm *peer_vm; 1288 int ret; 1289 1290 list_for_each_entry(peer_vm, &process_info->vm_list_head, 1291 vm_list_node) { 1292 struct amdgpu_bo *pd = peer_vm->root.bo; 1293 1294 ret = amdgpu_sync_resv(NULL, sync, pd->tbo.base.resv, 1295 AMDGPU_SYNC_NE_OWNER, 1296 AMDGPU_FENCE_OWNER_KFD); 1297 if (ret) 1298 return ret; 1299 } 1300 1301 return 0; 1302 } 1303 1304 static int process_update_pds(struct amdkfd_process_info *process_info, 1305 struct amdgpu_sync *sync) 1306 { 1307 struct amdgpu_vm *peer_vm; 1308 int ret; 1309 1310 list_for_each_entry(peer_vm, &process_info->vm_list_head, 1311 vm_list_node) { 1312 ret = vm_update_pds(peer_vm, sync); 1313 if (ret) 1314 return ret; 1315 } 1316 1317 return 0; 1318 } 1319 1320 static int init_kfd_vm(struct amdgpu_vm *vm, void **process_info, 1321 struct dma_fence **ef) 1322 { 1323 struct amdkfd_process_info *info = NULL; 1324 int ret; 1325 1326 if (!*process_info) { 1327 info = kzalloc(sizeof(*info), GFP_KERNEL); 1328 if (!info) 1329 return -ENOMEM; 1330 1331 mutex_init(&info->lock); 1332 mutex_init(&info->notifier_lock); 1333 INIT_LIST_HEAD(&info->vm_list_head); 1334 INIT_LIST_HEAD(&info->kfd_bo_list); 1335 INIT_LIST_HEAD(&info->userptr_valid_list); 1336 INIT_LIST_HEAD(&info->userptr_inval_list); 1337 1338 info->eviction_fence = 1339 amdgpu_amdkfd_fence_create(dma_fence_context_alloc(1), 1340 current->mm, 1341 NULL); 1342 if (!info->eviction_fence) { 1343 pr_err("Failed to create eviction fence\n"); 1344 ret = -ENOMEM; 1345 goto create_evict_fence_fail; 1346 } 1347 1348 info->pid = get_task_pid(current->group_leader, PIDTYPE_PID); 1349 INIT_DELAYED_WORK(&info->restore_userptr_work, 1350 amdgpu_amdkfd_restore_userptr_worker); 1351 1352 *process_info = info; 1353 *ef = dma_fence_get(&info->eviction_fence->base); 1354 } 1355 1356 vm->process_info = *process_info; 1357 1358 /* Validate page directory and attach eviction fence */ 1359 ret = amdgpu_bo_reserve(vm->root.bo, true); 1360 if (ret) 1361 goto reserve_pd_fail; 1362 ret = vm_validate_pt_pd_bos(vm); 1363 if (ret) { 1364 pr_err("validate_pt_pd_bos() failed\n"); 1365 goto validate_pd_fail; 1366 } 1367 ret = amdgpu_bo_sync_wait(vm->root.bo, 1368 AMDGPU_FENCE_OWNER_KFD, false); 1369 if (ret) 1370 goto wait_pd_fail; 1371 ret = dma_resv_reserve_fences(vm->root.bo->tbo.base.resv, 1); 1372 if (ret) 1373 goto reserve_shared_fail; 1374 dma_resv_add_fence(vm->root.bo->tbo.base.resv, 1375 &vm->process_info->eviction_fence->base, 1376 DMA_RESV_USAGE_BOOKKEEP); 1377 amdgpu_bo_unreserve(vm->root.bo); 1378 1379 /* Update process info */ 1380 mutex_lock(&vm->process_info->lock); 1381 list_add_tail(&vm->vm_list_node, 1382 &(vm->process_info->vm_list_head)); 1383 vm->process_info->n_vms++; 1384 mutex_unlock(&vm->process_info->lock); 1385 1386 return 0; 1387 1388 reserve_shared_fail: 1389 wait_pd_fail: 1390 validate_pd_fail: 1391 amdgpu_bo_unreserve(vm->root.bo); 1392 reserve_pd_fail: 1393 vm->process_info = NULL; 1394 if (info) { 1395 /* Two fence references: one in info and one in *ef */ 1396 dma_fence_put(&info->eviction_fence->base); 1397 dma_fence_put(*ef); 1398 *ef = NULL; 1399 *process_info = NULL; 1400 put_pid(info->pid); 1401 create_evict_fence_fail: 1402 mutex_destroy(&info->lock); 1403 mutex_destroy(&info->notifier_lock); 1404 kfree(info); 1405 } 1406 return ret; 1407 } 1408 1409 /** 1410 * amdgpu_amdkfd_gpuvm_pin_bo() - Pins a BO using following criteria 1411 * @bo: Handle of buffer object being pinned 1412 * @domain: Domain into which BO should be pinned 1413 * 1414 * - USERPTR BOs are UNPINNABLE and will return error 1415 * - All other BO types (GTT, VRAM, MMIO and DOORBELL) will have their 1416 * PIN count incremented. It is valid to PIN a BO multiple times 1417 * 1418 * Return: ZERO if successful in pinning, Non-Zero in case of error. 1419 */ 1420 static int amdgpu_amdkfd_gpuvm_pin_bo(struct amdgpu_bo *bo, u32 domain) 1421 { 1422 int ret = 0; 1423 1424 ret = amdgpu_bo_reserve(bo, false); 1425 if (unlikely(ret)) 1426 return ret; 1427 1428 ret = amdgpu_bo_pin_restricted(bo, domain, 0, 0); 1429 if (ret) 1430 pr_err("Error in Pinning BO to domain: %d\n", domain); 1431 1432 amdgpu_bo_sync_wait(bo, AMDGPU_FENCE_OWNER_KFD, false); 1433 amdgpu_bo_unreserve(bo); 1434 1435 return ret; 1436 } 1437 1438 /** 1439 * amdgpu_amdkfd_gpuvm_unpin_bo() - Unpins BO using following criteria 1440 * @bo: Handle of buffer object being unpinned 1441 * 1442 * - Is a illegal request for USERPTR BOs and is ignored 1443 * - All other BO types (GTT, VRAM, MMIO and DOORBELL) will have their 1444 * PIN count decremented. Calls to UNPIN must balance calls to PIN 1445 */ 1446 static void amdgpu_amdkfd_gpuvm_unpin_bo(struct amdgpu_bo *bo) 1447 { 1448 int ret = 0; 1449 1450 ret = amdgpu_bo_reserve(bo, false); 1451 if (unlikely(ret)) 1452 return; 1453 1454 amdgpu_bo_unpin(bo); 1455 amdgpu_bo_unreserve(bo); 1456 } 1457 1458 int amdgpu_amdkfd_gpuvm_set_vm_pasid(struct amdgpu_device *adev, 1459 struct amdgpu_vm *avm, u32 pasid) 1460 1461 { 1462 int ret; 1463 1464 /* Free the original amdgpu allocated pasid, 1465 * will be replaced with kfd allocated pasid. 1466 */ 1467 if (avm->pasid) { 1468 amdgpu_pasid_free(avm->pasid); 1469 amdgpu_vm_set_pasid(adev, avm, 0); 1470 } 1471 1472 ret = amdgpu_vm_set_pasid(adev, avm, pasid); 1473 if (ret) 1474 return ret; 1475 1476 return 0; 1477 } 1478 1479 int amdgpu_amdkfd_gpuvm_acquire_process_vm(struct amdgpu_device *adev, 1480 struct amdgpu_vm *avm, 1481 void **process_info, 1482 struct dma_fence **ef) 1483 { 1484 int ret; 1485 1486 /* Already a compute VM? */ 1487 if (avm->process_info) 1488 return -EINVAL; 1489 1490 /* Convert VM into a compute VM */ 1491 ret = amdgpu_vm_make_compute(adev, avm); 1492 if (ret) 1493 return ret; 1494 1495 /* Initialize KFD part of the VM and process info */ 1496 ret = init_kfd_vm(avm, process_info, ef); 1497 if (ret) 1498 return ret; 1499 1500 amdgpu_vm_set_task_info(avm); 1501 1502 return 0; 1503 } 1504 1505 void amdgpu_amdkfd_gpuvm_destroy_cb(struct amdgpu_device *adev, 1506 struct amdgpu_vm *vm) 1507 { 1508 struct amdkfd_process_info *process_info = vm->process_info; 1509 1510 if (!process_info) 1511 return; 1512 1513 /* Update process info */ 1514 mutex_lock(&process_info->lock); 1515 process_info->n_vms--; 1516 list_del(&vm->vm_list_node); 1517 mutex_unlock(&process_info->lock); 1518 1519 vm->process_info = NULL; 1520 1521 /* Release per-process resources when last compute VM is destroyed */ 1522 if (!process_info->n_vms) { 1523 WARN_ON(!list_empty(&process_info->kfd_bo_list)); 1524 WARN_ON(!list_empty(&process_info->userptr_valid_list)); 1525 WARN_ON(!list_empty(&process_info->userptr_inval_list)); 1526 1527 dma_fence_put(&process_info->eviction_fence->base); 1528 cancel_delayed_work_sync(&process_info->restore_userptr_work); 1529 put_pid(process_info->pid); 1530 mutex_destroy(&process_info->lock); 1531 mutex_destroy(&process_info->notifier_lock); 1532 kfree(process_info); 1533 } 1534 } 1535 1536 void amdgpu_amdkfd_gpuvm_release_process_vm(struct amdgpu_device *adev, 1537 void *drm_priv) 1538 { 1539 struct amdgpu_vm *avm; 1540 1541 if (WARN_ON(!adev || !drm_priv)) 1542 return; 1543 1544 avm = drm_priv_to_vm(drm_priv); 1545 1546 pr_debug("Releasing process vm %p\n", avm); 1547 1548 /* The original pasid of amdgpu vm has already been 1549 * released during making a amdgpu vm to a compute vm 1550 * The current pasid is managed by kfd and will be 1551 * released on kfd process destroy. Set amdgpu pasid 1552 * to 0 to avoid duplicate release. 1553 */ 1554 amdgpu_vm_release_compute(adev, avm); 1555 } 1556 1557 uint64_t amdgpu_amdkfd_gpuvm_get_process_page_dir(void *drm_priv) 1558 { 1559 struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv); 1560 struct amdgpu_bo *pd = avm->root.bo; 1561 struct amdgpu_device *adev = amdgpu_ttm_adev(pd->tbo.bdev); 1562 1563 if (adev->asic_type < CHIP_VEGA10) 1564 return avm->pd_phys_addr >> AMDGPU_GPU_PAGE_SHIFT; 1565 return avm->pd_phys_addr; 1566 } 1567 1568 void amdgpu_amdkfd_block_mmu_notifications(void *p) 1569 { 1570 struct amdkfd_process_info *pinfo = (struct amdkfd_process_info *)p; 1571 1572 mutex_lock(&pinfo->lock); 1573 WRITE_ONCE(pinfo->block_mmu_notifications, true); 1574 mutex_unlock(&pinfo->lock); 1575 } 1576 1577 int amdgpu_amdkfd_criu_resume(void *p) 1578 { 1579 int ret = 0; 1580 struct amdkfd_process_info *pinfo = (struct amdkfd_process_info *)p; 1581 1582 mutex_lock(&pinfo->lock); 1583 pr_debug("scheduling work\n"); 1584 mutex_lock(&pinfo->notifier_lock); 1585 pinfo->evicted_bos++; 1586 mutex_unlock(&pinfo->notifier_lock); 1587 if (!READ_ONCE(pinfo->block_mmu_notifications)) { 1588 ret = -EINVAL; 1589 goto out_unlock; 1590 } 1591 WRITE_ONCE(pinfo->block_mmu_notifications, false); 1592 schedule_delayed_work(&pinfo->restore_userptr_work, 0); 1593 1594 out_unlock: 1595 mutex_unlock(&pinfo->lock); 1596 return ret; 1597 } 1598 1599 size_t amdgpu_amdkfd_get_available_memory(struct amdgpu_device *adev, 1600 uint8_t xcp_id) 1601 { 1602 uint64_t reserved_for_pt = 1603 ESTIMATE_PT_SIZE(amdgpu_amdkfd_total_mem_size); 1604 ssize_t available; 1605 uint64_t vram_available, system_mem_available, ttm_mem_available; 1606 1607 spin_lock(&kfd_mem_limit.mem_limit_lock); 1608 vram_available = KFD_XCP_MEMORY_SIZE(adev, xcp_id) 1609 - adev->kfd.vram_used_aligned[xcp_id] 1610 - atomic64_read(&adev->vram_pin_size) 1611 - reserved_for_pt; 1612 1613 if (adev->gmc.is_app_apu) { 1614 system_mem_available = no_system_mem_limit ? 1615 kfd_mem_limit.max_system_mem_limit : 1616 kfd_mem_limit.max_system_mem_limit - 1617 kfd_mem_limit.system_mem_used; 1618 1619 ttm_mem_available = kfd_mem_limit.max_ttm_mem_limit - 1620 kfd_mem_limit.ttm_mem_used; 1621 1622 available = min3(system_mem_available, ttm_mem_available, 1623 vram_available); 1624 available = ALIGN_DOWN(available, PAGE_SIZE); 1625 } else { 1626 available = ALIGN_DOWN(vram_available, VRAM_AVAILABLITY_ALIGN); 1627 } 1628 1629 spin_unlock(&kfd_mem_limit.mem_limit_lock); 1630 1631 if (available < 0) 1632 available = 0; 1633 1634 return available; 1635 } 1636 1637 int amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu( 1638 struct amdgpu_device *adev, uint64_t va, uint64_t size, 1639 void *drm_priv, struct kgd_mem **mem, 1640 uint64_t *offset, uint32_t flags, bool criu_resume) 1641 { 1642 struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv); 1643 struct amdgpu_fpriv *fpriv = container_of(avm, struct amdgpu_fpriv, vm); 1644 enum ttm_bo_type bo_type = ttm_bo_type_device; 1645 struct sg_table *sg = NULL; 1646 uint64_t user_addr = 0; 1647 struct amdgpu_bo *bo; 1648 struct drm_gem_object *gobj = NULL; 1649 u32 domain, alloc_domain; 1650 uint64_t aligned_size; 1651 int8_t xcp_id = -1; 1652 u64 alloc_flags; 1653 int ret; 1654 1655 /* 1656 * Check on which domain to allocate BO 1657 */ 1658 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) { 1659 domain = alloc_domain = AMDGPU_GEM_DOMAIN_VRAM; 1660 1661 if (adev->gmc.is_app_apu) { 1662 domain = AMDGPU_GEM_DOMAIN_GTT; 1663 alloc_domain = AMDGPU_GEM_DOMAIN_GTT; 1664 alloc_flags = 0; 1665 } else { 1666 alloc_flags = AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE; 1667 alloc_flags |= (flags & KFD_IOC_ALLOC_MEM_FLAGS_PUBLIC) ? 1668 AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED : 0; 1669 } 1670 xcp_id = fpriv->xcp_id == AMDGPU_XCP_NO_PARTITION ? 1671 0 : fpriv->xcp_id; 1672 } else if (flags & KFD_IOC_ALLOC_MEM_FLAGS_GTT) { 1673 domain = alloc_domain = AMDGPU_GEM_DOMAIN_GTT; 1674 alloc_flags = 0; 1675 } else { 1676 domain = AMDGPU_GEM_DOMAIN_GTT; 1677 alloc_domain = AMDGPU_GEM_DOMAIN_CPU; 1678 alloc_flags = AMDGPU_GEM_CREATE_PREEMPTIBLE; 1679 1680 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) { 1681 if (!offset || !*offset) 1682 return -EINVAL; 1683 user_addr = untagged_addr(*offset); 1684 } else if (flags & (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL | 1685 KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) { 1686 bo_type = ttm_bo_type_sg; 1687 if (size > UINT_MAX) 1688 return -EINVAL; 1689 sg = create_sg_table(*offset, size); 1690 if (!sg) 1691 return -ENOMEM; 1692 } else { 1693 return -EINVAL; 1694 } 1695 } 1696 1697 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_COHERENT) 1698 alloc_flags |= AMDGPU_GEM_CREATE_COHERENT; 1699 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_EXT_COHERENT) 1700 alloc_flags |= AMDGPU_GEM_CREATE_EXT_COHERENT; 1701 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_UNCACHED) 1702 alloc_flags |= AMDGPU_GEM_CREATE_UNCACHED; 1703 1704 *mem = kzalloc(sizeof(struct kgd_mem), GFP_KERNEL); 1705 if (!*mem) { 1706 ret = -ENOMEM; 1707 goto err; 1708 } 1709 INIT_LIST_HEAD(&(*mem)->attachments); 1710 mutex_init(&(*mem)->lock); 1711 (*mem)->aql_queue = !!(flags & KFD_IOC_ALLOC_MEM_FLAGS_AQL_QUEUE_MEM); 1712 1713 /* Workaround for AQL queue wraparound bug. Map the same 1714 * memory twice. That means we only actually allocate half 1715 * the memory. 1716 */ 1717 if ((*mem)->aql_queue) 1718 size >>= 1; 1719 aligned_size = PAGE_ALIGN(size); 1720 1721 (*mem)->alloc_flags = flags; 1722 1723 amdgpu_sync_create(&(*mem)->sync); 1724 1725 ret = amdgpu_amdkfd_reserve_mem_limit(adev, aligned_size, flags, 1726 xcp_id); 1727 if (ret) { 1728 pr_debug("Insufficient memory\n"); 1729 goto err_reserve_limit; 1730 } 1731 1732 pr_debug("\tcreate BO VA 0x%llx size 0x%llx domain %s xcp_id %d\n", 1733 va, (*mem)->aql_queue ? size << 1 : size, 1734 domain_string(alloc_domain), xcp_id); 1735 1736 ret = amdgpu_gem_object_create(adev, aligned_size, 1, alloc_domain, alloc_flags, 1737 bo_type, NULL, &gobj, xcp_id + 1); 1738 if (ret) { 1739 pr_debug("Failed to create BO on domain %s. ret %d\n", 1740 domain_string(alloc_domain), ret); 1741 goto err_bo_create; 1742 } 1743 ret = drm_vma_node_allow(&gobj->vma_node, drm_priv); 1744 if (ret) { 1745 pr_debug("Failed to allow vma node access. ret %d\n", ret); 1746 goto err_node_allow; 1747 } 1748 bo = gem_to_amdgpu_bo(gobj); 1749 if (bo_type == ttm_bo_type_sg) { 1750 bo->tbo.sg = sg; 1751 bo->tbo.ttm->sg = sg; 1752 } 1753 bo->kfd_bo = *mem; 1754 (*mem)->bo = bo; 1755 if (user_addr) 1756 bo->flags |= AMDGPU_AMDKFD_CREATE_USERPTR_BO; 1757 1758 (*mem)->va = va; 1759 (*mem)->domain = domain; 1760 (*mem)->mapped_to_gpu_memory = 0; 1761 (*mem)->process_info = avm->process_info; 1762 1763 add_kgd_mem_to_kfd_bo_list(*mem, avm->process_info, user_addr); 1764 1765 if (user_addr) { 1766 pr_debug("creating userptr BO for user_addr = %llx\n", user_addr); 1767 ret = init_user_pages(*mem, user_addr, criu_resume); 1768 if (ret) 1769 goto allocate_init_user_pages_failed; 1770 } else if (flags & (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL | 1771 KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) { 1772 ret = amdgpu_amdkfd_gpuvm_pin_bo(bo, AMDGPU_GEM_DOMAIN_GTT); 1773 if (ret) { 1774 pr_err("Pinning MMIO/DOORBELL BO during ALLOC FAILED\n"); 1775 goto err_pin_bo; 1776 } 1777 bo->allowed_domains = AMDGPU_GEM_DOMAIN_GTT; 1778 bo->preferred_domains = AMDGPU_GEM_DOMAIN_GTT; 1779 } 1780 1781 if (offset) 1782 *offset = amdgpu_bo_mmap_offset(bo); 1783 1784 return 0; 1785 1786 allocate_init_user_pages_failed: 1787 err_pin_bo: 1788 remove_kgd_mem_from_kfd_bo_list(*mem, avm->process_info); 1789 drm_vma_node_revoke(&gobj->vma_node, drm_priv); 1790 err_node_allow: 1791 /* Don't unreserve system mem limit twice */ 1792 goto err_reserve_limit; 1793 err_bo_create: 1794 amdgpu_amdkfd_unreserve_mem_limit(adev, aligned_size, flags, xcp_id); 1795 err_reserve_limit: 1796 mutex_destroy(&(*mem)->lock); 1797 if (gobj) 1798 drm_gem_object_put(gobj); 1799 else 1800 kfree(*mem); 1801 err: 1802 if (sg) { 1803 sg_free_table(sg); 1804 kfree(sg); 1805 } 1806 return ret; 1807 } 1808 1809 int amdgpu_amdkfd_gpuvm_free_memory_of_gpu( 1810 struct amdgpu_device *adev, struct kgd_mem *mem, void *drm_priv, 1811 uint64_t *size) 1812 { 1813 struct amdkfd_process_info *process_info = mem->process_info; 1814 unsigned long bo_size = mem->bo->tbo.base.size; 1815 bool use_release_notifier = (mem->bo->kfd_bo == mem); 1816 struct kfd_mem_attachment *entry, *tmp; 1817 struct bo_vm_reservation_context ctx; 1818 unsigned int mapped_to_gpu_memory; 1819 int ret; 1820 bool is_imported = false; 1821 1822 mutex_lock(&mem->lock); 1823 1824 /* Unpin MMIO/DOORBELL BO's that were pinned during allocation */ 1825 if (mem->alloc_flags & 1826 (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL | 1827 KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) { 1828 amdgpu_amdkfd_gpuvm_unpin_bo(mem->bo); 1829 } 1830 1831 mapped_to_gpu_memory = mem->mapped_to_gpu_memory; 1832 is_imported = mem->is_imported; 1833 mutex_unlock(&mem->lock); 1834 /* lock is not needed after this, since mem is unused and will 1835 * be freed anyway 1836 */ 1837 1838 if (mapped_to_gpu_memory > 0) { 1839 pr_debug("BO VA 0x%llx size 0x%lx is still mapped.\n", 1840 mem->va, bo_size); 1841 return -EBUSY; 1842 } 1843 1844 /* Make sure restore workers don't access the BO any more */ 1845 mutex_lock(&process_info->lock); 1846 list_del(&mem->validate_list); 1847 mutex_unlock(&process_info->lock); 1848 1849 /* Cleanup user pages and MMU notifiers */ 1850 if (amdgpu_ttm_tt_get_usermm(mem->bo->tbo.ttm)) { 1851 amdgpu_hmm_unregister(mem->bo); 1852 mutex_lock(&process_info->notifier_lock); 1853 amdgpu_ttm_tt_discard_user_pages(mem->bo->tbo.ttm, mem->range); 1854 mutex_unlock(&process_info->notifier_lock); 1855 } 1856 1857 ret = reserve_bo_and_cond_vms(mem, NULL, BO_VM_ALL, &ctx); 1858 if (unlikely(ret)) 1859 return ret; 1860 1861 /* The eviction fence should be removed by the last unmap. 1862 * TODO: Log an error condition if the bo still has the eviction fence 1863 * attached 1864 */ 1865 amdgpu_amdkfd_remove_eviction_fence(mem->bo, 1866 process_info->eviction_fence); 1867 pr_debug("Release VA 0x%llx - 0x%llx\n", mem->va, 1868 mem->va + bo_size * (1 + mem->aql_queue)); 1869 1870 /* Remove from VM internal data structures */ 1871 list_for_each_entry_safe(entry, tmp, &mem->attachments, list) { 1872 kfd_mem_dmaunmap_attachment(mem, entry); 1873 kfd_mem_detach(entry); 1874 } 1875 1876 ret = unreserve_bo_and_vms(&ctx, false, false); 1877 1878 /* Free the sync object */ 1879 amdgpu_sync_free(&mem->sync); 1880 1881 /* If the SG is not NULL, it's one we created for a doorbell or mmio 1882 * remap BO. We need to free it. 1883 */ 1884 if (mem->bo->tbo.sg) { 1885 sg_free_table(mem->bo->tbo.sg); 1886 kfree(mem->bo->tbo.sg); 1887 } 1888 1889 /* Update the size of the BO being freed if it was allocated from 1890 * VRAM and is not imported. For APP APU VRAM allocations are done 1891 * in GTT domain 1892 */ 1893 if (size) { 1894 if (!is_imported && 1895 (mem->bo->preferred_domains == AMDGPU_GEM_DOMAIN_VRAM || 1896 (adev->gmc.is_app_apu && 1897 mem->bo->preferred_domains == AMDGPU_GEM_DOMAIN_GTT))) 1898 *size = bo_size; 1899 else 1900 *size = 0; 1901 } 1902 1903 /* Free the BO*/ 1904 drm_vma_node_revoke(&mem->bo->tbo.base.vma_node, drm_priv); 1905 if (mem->dmabuf) 1906 dma_buf_put(mem->dmabuf); 1907 mutex_destroy(&mem->lock); 1908 1909 /* If this releases the last reference, it will end up calling 1910 * amdgpu_amdkfd_release_notify and kfree the mem struct. That's why 1911 * this needs to be the last call here. 1912 */ 1913 drm_gem_object_put(&mem->bo->tbo.base); 1914 1915 /* 1916 * For kgd_mem allocated in amdgpu_amdkfd_gpuvm_import_dmabuf(), 1917 * explicitly free it here. 1918 */ 1919 if (!use_release_notifier) 1920 kfree(mem); 1921 1922 return ret; 1923 } 1924 1925 int amdgpu_amdkfd_gpuvm_map_memory_to_gpu( 1926 struct amdgpu_device *adev, struct kgd_mem *mem, 1927 void *drm_priv) 1928 { 1929 struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv); 1930 int ret; 1931 struct amdgpu_bo *bo; 1932 uint32_t domain; 1933 struct kfd_mem_attachment *entry; 1934 struct bo_vm_reservation_context ctx; 1935 unsigned long bo_size; 1936 bool is_invalid_userptr = false; 1937 1938 bo = mem->bo; 1939 if (!bo) { 1940 pr_err("Invalid BO when mapping memory to GPU\n"); 1941 return -EINVAL; 1942 } 1943 1944 /* Make sure restore is not running concurrently. Since we 1945 * don't map invalid userptr BOs, we rely on the next restore 1946 * worker to do the mapping 1947 */ 1948 mutex_lock(&mem->process_info->lock); 1949 1950 /* Lock notifier lock. If we find an invalid userptr BO, we can be 1951 * sure that the MMU notifier is no longer running 1952 * concurrently and the queues are actually stopped 1953 */ 1954 if (amdgpu_ttm_tt_get_usermm(bo->tbo.ttm)) { 1955 mutex_lock(&mem->process_info->notifier_lock); 1956 is_invalid_userptr = !!mem->invalid; 1957 mutex_unlock(&mem->process_info->notifier_lock); 1958 } 1959 1960 mutex_lock(&mem->lock); 1961 1962 domain = mem->domain; 1963 bo_size = bo->tbo.base.size; 1964 1965 pr_debug("Map VA 0x%llx - 0x%llx to vm %p domain %s\n", 1966 mem->va, 1967 mem->va + bo_size * (1 + mem->aql_queue), 1968 avm, domain_string(domain)); 1969 1970 if (!kfd_mem_is_attached(avm, mem)) { 1971 ret = kfd_mem_attach(adev, mem, avm, mem->aql_queue); 1972 if (ret) 1973 goto out; 1974 } 1975 1976 ret = reserve_bo_and_vm(mem, avm, &ctx); 1977 if (unlikely(ret)) 1978 goto out; 1979 1980 /* Userptr can be marked as "not invalid", but not actually be 1981 * validated yet (still in the system domain). In that case 1982 * the queues are still stopped and we can leave mapping for 1983 * the next restore worker 1984 */ 1985 if (amdgpu_ttm_tt_get_usermm(bo->tbo.ttm) && 1986 bo->tbo.resource->mem_type == TTM_PL_SYSTEM) 1987 is_invalid_userptr = true; 1988 1989 ret = vm_validate_pt_pd_bos(avm); 1990 if (unlikely(ret)) 1991 goto out_unreserve; 1992 1993 if (mem->mapped_to_gpu_memory == 0 && 1994 !amdgpu_ttm_tt_get_usermm(bo->tbo.ttm)) { 1995 /* Validate BO only once. The eviction fence gets added to BO 1996 * the first time it is mapped. Validate will wait for all 1997 * background evictions to complete. 1998 */ 1999 ret = amdgpu_amdkfd_bo_validate(bo, domain, true); 2000 if (ret) { 2001 pr_debug("Validate failed\n"); 2002 goto out_unreserve; 2003 } 2004 } 2005 2006 list_for_each_entry(entry, &mem->attachments, list) { 2007 if (entry->bo_va->base.vm != avm || entry->is_mapped) 2008 continue; 2009 2010 pr_debug("\t map VA 0x%llx - 0x%llx in entry %p\n", 2011 entry->va, entry->va + bo_size, entry); 2012 2013 ret = map_bo_to_gpuvm(mem, entry, ctx.sync, 2014 is_invalid_userptr); 2015 if (ret) { 2016 pr_err("Failed to map bo to gpuvm\n"); 2017 goto out_unreserve; 2018 } 2019 2020 ret = vm_update_pds(avm, ctx.sync); 2021 if (ret) { 2022 pr_err("Failed to update page directories\n"); 2023 goto out_unreserve; 2024 } 2025 2026 entry->is_mapped = true; 2027 mem->mapped_to_gpu_memory++; 2028 pr_debug("\t INC mapping count %d\n", 2029 mem->mapped_to_gpu_memory); 2030 } 2031 2032 if (!amdgpu_ttm_tt_get_usermm(bo->tbo.ttm) && !bo->tbo.pin_count) 2033 dma_resv_add_fence(bo->tbo.base.resv, 2034 &avm->process_info->eviction_fence->base, 2035 DMA_RESV_USAGE_BOOKKEEP); 2036 ret = unreserve_bo_and_vms(&ctx, false, false); 2037 2038 goto out; 2039 2040 out_unreserve: 2041 unreserve_bo_and_vms(&ctx, false, false); 2042 out: 2043 mutex_unlock(&mem->process_info->lock); 2044 mutex_unlock(&mem->lock); 2045 return ret; 2046 } 2047 2048 void amdgpu_amdkfd_gpuvm_dmaunmap_mem(struct kgd_mem *mem, void *drm_priv) 2049 { 2050 struct kfd_mem_attachment *entry; 2051 struct amdgpu_vm *vm; 2052 2053 vm = drm_priv_to_vm(drm_priv); 2054 2055 mutex_lock(&mem->lock); 2056 2057 list_for_each_entry(entry, &mem->attachments, list) { 2058 if (entry->bo_va->base.vm == vm) 2059 kfd_mem_dmaunmap_attachment(mem, entry); 2060 } 2061 2062 mutex_unlock(&mem->lock); 2063 } 2064 2065 int amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu( 2066 struct amdgpu_device *adev, struct kgd_mem *mem, void *drm_priv) 2067 { 2068 struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv); 2069 struct amdkfd_process_info *process_info = avm->process_info; 2070 unsigned long bo_size = mem->bo->tbo.base.size; 2071 struct kfd_mem_attachment *entry; 2072 struct bo_vm_reservation_context ctx; 2073 int ret; 2074 2075 mutex_lock(&mem->lock); 2076 2077 ret = reserve_bo_and_cond_vms(mem, avm, BO_VM_MAPPED, &ctx); 2078 if (unlikely(ret)) 2079 goto out; 2080 /* If no VMs were reserved, it means the BO wasn't actually mapped */ 2081 if (ctx.n_vms == 0) { 2082 ret = -EINVAL; 2083 goto unreserve_out; 2084 } 2085 2086 ret = vm_validate_pt_pd_bos(avm); 2087 if (unlikely(ret)) 2088 goto unreserve_out; 2089 2090 pr_debug("Unmap VA 0x%llx - 0x%llx from vm %p\n", 2091 mem->va, 2092 mem->va + bo_size * (1 + mem->aql_queue), 2093 avm); 2094 2095 list_for_each_entry(entry, &mem->attachments, list) { 2096 if (entry->bo_va->base.vm != avm || !entry->is_mapped) 2097 continue; 2098 2099 pr_debug("\t unmap VA 0x%llx - 0x%llx from entry %p\n", 2100 entry->va, entry->va + bo_size, entry); 2101 2102 unmap_bo_from_gpuvm(mem, entry, ctx.sync); 2103 entry->is_mapped = false; 2104 2105 mem->mapped_to_gpu_memory--; 2106 pr_debug("\t DEC mapping count %d\n", 2107 mem->mapped_to_gpu_memory); 2108 } 2109 2110 /* If BO is unmapped from all VMs, unfence it. It can be evicted if 2111 * required. 2112 */ 2113 if (mem->mapped_to_gpu_memory == 0 && 2114 !amdgpu_ttm_tt_get_usermm(mem->bo->tbo.ttm) && 2115 !mem->bo->tbo.pin_count) 2116 amdgpu_amdkfd_remove_eviction_fence(mem->bo, 2117 process_info->eviction_fence); 2118 2119 unreserve_out: 2120 unreserve_bo_and_vms(&ctx, false, false); 2121 out: 2122 mutex_unlock(&mem->lock); 2123 return ret; 2124 } 2125 2126 int amdgpu_amdkfd_gpuvm_sync_memory( 2127 struct amdgpu_device *adev, struct kgd_mem *mem, bool intr) 2128 { 2129 struct amdgpu_sync sync; 2130 int ret; 2131 2132 amdgpu_sync_create(&sync); 2133 2134 mutex_lock(&mem->lock); 2135 amdgpu_sync_clone(&mem->sync, &sync); 2136 mutex_unlock(&mem->lock); 2137 2138 ret = amdgpu_sync_wait(&sync, intr); 2139 amdgpu_sync_free(&sync); 2140 return ret; 2141 } 2142 2143 /** 2144 * amdgpu_amdkfd_map_gtt_bo_to_gart - Map BO to GART and increment reference count 2145 * @adev: Device to which allocated BO belongs 2146 * @bo: Buffer object to be mapped 2147 * 2148 * Before return, bo reference count is incremented. To release the reference and unpin/ 2149 * unmap the BO, call amdgpu_amdkfd_free_gtt_mem. 2150 */ 2151 int amdgpu_amdkfd_map_gtt_bo_to_gart(struct amdgpu_device *adev, struct amdgpu_bo *bo) 2152 { 2153 int ret; 2154 2155 ret = amdgpu_bo_reserve(bo, true); 2156 if (ret) { 2157 pr_err("Failed to reserve bo. ret %d\n", ret); 2158 goto err_reserve_bo_failed; 2159 } 2160 2161 ret = amdgpu_bo_pin(bo, AMDGPU_GEM_DOMAIN_GTT); 2162 if (ret) { 2163 pr_err("Failed to pin bo. ret %d\n", ret); 2164 goto err_pin_bo_failed; 2165 } 2166 2167 ret = amdgpu_ttm_alloc_gart(&bo->tbo); 2168 if (ret) { 2169 pr_err("Failed to bind bo to GART. ret %d\n", ret); 2170 goto err_map_bo_gart_failed; 2171 } 2172 2173 amdgpu_amdkfd_remove_eviction_fence( 2174 bo, bo->vm_bo->vm->process_info->eviction_fence); 2175 2176 amdgpu_bo_unreserve(bo); 2177 2178 bo = amdgpu_bo_ref(bo); 2179 2180 return 0; 2181 2182 err_map_bo_gart_failed: 2183 amdgpu_bo_unpin(bo); 2184 err_pin_bo_failed: 2185 amdgpu_bo_unreserve(bo); 2186 err_reserve_bo_failed: 2187 2188 return ret; 2189 } 2190 2191 /** amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel() - Map a GTT BO for kernel CPU access 2192 * 2193 * @mem: Buffer object to be mapped for CPU access 2194 * @kptr[out]: pointer in kernel CPU address space 2195 * @size[out]: size of the buffer 2196 * 2197 * Pins the BO and maps it for kernel CPU access. The eviction fence is removed 2198 * from the BO, since pinned BOs cannot be evicted. The bo must remain on the 2199 * validate_list, so the GPU mapping can be restored after a page table was 2200 * evicted. 2201 * 2202 * Return: 0 on success, error code on failure 2203 */ 2204 int amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(struct kgd_mem *mem, 2205 void **kptr, uint64_t *size) 2206 { 2207 int ret; 2208 struct amdgpu_bo *bo = mem->bo; 2209 2210 if (amdgpu_ttm_tt_get_usermm(bo->tbo.ttm)) { 2211 pr_err("userptr can't be mapped to kernel\n"); 2212 return -EINVAL; 2213 } 2214 2215 mutex_lock(&mem->process_info->lock); 2216 2217 ret = amdgpu_bo_reserve(bo, true); 2218 if (ret) { 2219 pr_err("Failed to reserve bo. ret %d\n", ret); 2220 goto bo_reserve_failed; 2221 } 2222 2223 ret = amdgpu_bo_pin(bo, AMDGPU_GEM_DOMAIN_GTT); 2224 if (ret) { 2225 pr_err("Failed to pin bo. ret %d\n", ret); 2226 goto pin_failed; 2227 } 2228 2229 ret = amdgpu_bo_kmap(bo, kptr); 2230 if (ret) { 2231 pr_err("Failed to map bo to kernel. ret %d\n", ret); 2232 goto kmap_failed; 2233 } 2234 2235 amdgpu_amdkfd_remove_eviction_fence( 2236 bo, mem->process_info->eviction_fence); 2237 2238 if (size) 2239 *size = amdgpu_bo_size(bo); 2240 2241 amdgpu_bo_unreserve(bo); 2242 2243 mutex_unlock(&mem->process_info->lock); 2244 return 0; 2245 2246 kmap_failed: 2247 amdgpu_bo_unpin(bo); 2248 pin_failed: 2249 amdgpu_bo_unreserve(bo); 2250 bo_reserve_failed: 2251 mutex_unlock(&mem->process_info->lock); 2252 2253 return ret; 2254 } 2255 2256 /** amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel() - Unmap a GTT BO for kernel CPU access 2257 * 2258 * @mem: Buffer object to be unmapped for CPU access 2259 * 2260 * Removes the kernel CPU mapping and unpins the BO. It does not restore the 2261 * eviction fence, so this function should only be used for cleanup before the 2262 * BO is destroyed. 2263 */ 2264 void amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(struct kgd_mem *mem) 2265 { 2266 struct amdgpu_bo *bo = mem->bo; 2267 2268 amdgpu_bo_reserve(bo, true); 2269 amdgpu_bo_kunmap(bo); 2270 amdgpu_bo_unpin(bo); 2271 amdgpu_bo_unreserve(bo); 2272 } 2273 2274 int amdgpu_amdkfd_gpuvm_get_vm_fault_info(struct amdgpu_device *adev, 2275 struct kfd_vm_fault_info *mem) 2276 { 2277 if (atomic_read(&adev->gmc.vm_fault_info_updated) == 1) { 2278 *mem = *adev->gmc.vm_fault_info; 2279 mb(); /* make sure read happened */ 2280 atomic_set(&adev->gmc.vm_fault_info_updated, 0); 2281 } 2282 return 0; 2283 } 2284 2285 int amdgpu_amdkfd_gpuvm_import_dmabuf(struct amdgpu_device *adev, 2286 struct dma_buf *dma_buf, 2287 uint64_t va, void *drm_priv, 2288 struct kgd_mem **mem, uint64_t *size, 2289 uint64_t *mmap_offset) 2290 { 2291 struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv); 2292 struct drm_gem_object *obj; 2293 struct amdgpu_bo *bo; 2294 int ret; 2295 2296 obj = amdgpu_gem_prime_import(adev_to_drm(adev), dma_buf); 2297 if (IS_ERR(obj)) 2298 return PTR_ERR(obj); 2299 2300 bo = gem_to_amdgpu_bo(obj); 2301 if (!(bo->preferred_domains & (AMDGPU_GEM_DOMAIN_VRAM | 2302 AMDGPU_GEM_DOMAIN_GTT))) { 2303 /* Only VRAM and GTT BOs are supported */ 2304 ret = -EINVAL; 2305 goto err_put_obj; 2306 } 2307 2308 *mem = kzalloc(sizeof(struct kgd_mem), GFP_KERNEL); 2309 if (!*mem) { 2310 ret = -ENOMEM; 2311 goto err_put_obj; 2312 } 2313 2314 ret = drm_vma_node_allow(&obj->vma_node, drm_priv); 2315 if (ret) 2316 goto err_free_mem; 2317 2318 if (size) 2319 *size = amdgpu_bo_size(bo); 2320 2321 if (mmap_offset) 2322 *mmap_offset = amdgpu_bo_mmap_offset(bo); 2323 2324 INIT_LIST_HEAD(&(*mem)->attachments); 2325 mutex_init(&(*mem)->lock); 2326 2327 (*mem)->alloc_flags = 2328 ((bo->preferred_domains & AMDGPU_GEM_DOMAIN_VRAM) ? 2329 KFD_IOC_ALLOC_MEM_FLAGS_VRAM : KFD_IOC_ALLOC_MEM_FLAGS_GTT) 2330 | KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE 2331 | KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE; 2332 2333 get_dma_buf(dma_buf); 2334 (*mem)->dmabuf = dma_buf; 2335 (*mem)->bo = bo; 2336 (*mem)->va = va; 2337 (*mem)->domain = (bo->preferred_domains & AMDGPU_GEM_DOMAIN_VRAM) && !adev->gmc.is_app_apu ? 2338 AMDGPU_GEM_DOMAIN_VRAM : AMDGPU_GEM_DOMAIN_GTT; 2339 2340 (*mem)->mapped_to_gpu_memory = 0; 2341 (*mem)->process_info = avm->process_info; 2342 add_kgd_mem_to_kfd_bo_list(*mem, avm->process_info, false); 2343 amdgpu_sync_create(&(*mem)->sync); 2344 (*mem)->is_imported = true; 2345 2346 return 0; 2347 2348 err_free_mem: 2349 kfree(*mem); 2350 err_put_obj: 2351 drm_gem_object_put(obj); 2352 return ret; 2353 } 2354 2355 int amdgpu_amdkfd_gpuvm_export_dmabuf(struct kgd_mem *mem, 2356 struct dma_buf **dma_buf) 2357 { 2358 int ret; 2359 2360 mutex_lock(&mem->lock); 2361 ret = kfd_mem_export_dmabuf(mem); 2362 if (ret) 2363 goto out; 2364 2365 get_dma_buf(mem->dmabuf); 2366 *dma_buf = mem->dmabuf; 2367 out: 2368 mutex_unlock(&mem->lock); 2369 return ret; 2370 } 2371 2372 /* Evict a userptr BO by stopping the queues if necessary 2373 * 2374 * Runs in MMU notifier, may be in RECLAIM_FS context. This means it 2375 * cannot do any memory allocations, and cannot take any locks that 2376 * are held elsewhere while allocating memory. 2377 * 2378 * It doesn't do anything to the BO itself. The real work happens in 2379 * restore, where we get updated page addresses. This function only 2380 * ensures that GPU access to the BO is stopped. 2381 */ 2382 int amdgpu_amdkfd_evict_userptr(struct mmu_interval_notifier *mni, 2383 unsigned long cur_seq, struct kgd_mem *mem) 2384 { 2385 struct amdkfd_process_info *process_info = mem->process_info; 2386 int r = 0; 2387 2388 /* Do not process MMU notifications during CRIU restore until 2389 * KFD_CRIU_OP_RESUME IOCTL is received 2390 */ 2391 if (READ_ONCE(process_info->block_mmu_notifications)) 2392 return 0; 2393 2394 mutex_lock(&process_info->notifier_lock); 2395 mmu_interval_set_seq(mni, cur_seq); 2396 2397 mem->invalid++; 2398 if (++process_info->evicted_bos == 1) { 2399 /* First eviction, stop the queues */ 2400 r = kgd2kfd_quiesce_mm(mni->mm, 2401 KFD_QUEUE_EVICTION_TRIGGER_USERPTR); 2402 if (r) 2403 pr_err("Failed to quiesce KFD\n"); 2404 schedule_delayed_work(&process_info->restore_userptr_work, 2405 msecs_to_jiffies(AMDGPU_USERPTR_RESTORE_DELAY_MS)); 2406 } 2407 mutex_unlock(&process_info->notifier_lock); 2408 2409 return r; 2410 } 2411 2412 /* Update invalid userptr BOs 2413 * 2414 * Moves invalidated (evicted) userptr BOs from userptr_valid_list to 2415 * userptr_inval_list and updates user pages for all BOs that have 2416 * been invalidated since their last update. 2417 */ 2418 static int update_invalid_user_pages(struct amdkfd_process_info *process_info, 2419 struct mm_struct *mm) 2420 { 2421 struct kgd_mem *mem, *tmp_mem; 2422 struct amdgpu_bo *bo; 2423 struct ttm_operation_ctx ctx = { false, false }; 2424 uint32_t invalid; 2425 int ret = 0; 2426 2427 mutex_lock(&process_info->notifier_lock); 2428 2429 /* Move all invalidated BOs to the userptr_inval_list */ 2430 list_for_each_entry_safe(mem, tmp_mem, 2431 &process_info->userptr_valid_list, 2432 validate_list) 2433 if (mem->invalid) 2434 list_move_tail(&mem->validate_list, 2435 &process_info->userptr_inval_list); 2436 2437 /* Go through userptr_inval_list and update any invalid user_pages */ 2438 list_for_each_entry(mem, &process_info->userptr_inval_list, 2439 validate_list) { 2440 invalid = mem->invalid; 2441 if (!invalid) 2442 /* BO hasn't been invalidated since the last 2443 * revalidation attempt. Keep its page list. 2444 */ 2445 continue; 2446 2447 bo = mem->bo; 2448 2449 amdgpu_ttm_tt_discard_user_pages(bo->tbo.ttm, mem->range); 2450 mem->range = NULL; 2451 2452 /* BO reservations and getting user pages (hmm_range_fault) 2453 * must happen outside the notifier lock 2454 */ 2455 mutex_unlock(&process_info->notifier_lock); 2456 2457 /* Move the BO to system (CPU) domain if necessary to unmap 2458 * and free the SG table 2459 */ 2460 if (bo->tbo.resource->mem_type != TTM_PL_SYSTEM) { 2461 if (amdgpu_bo_reserve(bo, true)) 2462 return -EAGAIN; 2463 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_CPU); 2464 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 2465 amdgpu_bo_unreserve(bo); 2466 if (ret) { 2467 pr_err("%s: Failed to invalidate userptr BO\n", 2468 __func__); 2469 return -EAGAIN; 2470 } 2471 } 2472 2473 /* Get updated user pages */ 2474 ret = amdgpu_ttm_tt_get_user_pages(bo, bo->tbo.ttm->pages, 2475 &mem->range); 2476 if (ret) { 2477 pr_debug("Failed %d to get user pages\n", ret); 2478 2479 /* Return -EFAULT bad address error as success. It will 2480 * fail later with a VM fault if the GPU tries to access 2481 * it. Better than hanging indefinitely with stalled 2482 * user mode queues. 2483 * 2484 * Return other error -EBUSY or -ENOMEM to retry restore 2485 */ 2486 if (ret != -EFAULT) 2487 return ret; 2488 2489 ret = 0; 2490 } 2491 2492 mutex_lock(&process_info->notifier_lock); 2493 2494 /* Mark the BO as valid unless it was invalidated 2495 * again concurrently. 2496 */ 2497 if (mem->invalid != invalid) { 2498 ret = -EAGAIN; 2499 goto unlock_out; 2500 } 2501 /* set mem valid if mem has hmm range associated */ 2502 if (mem->range) 2503 mem->invalid = 0; 2504 } 2505 2506 unlock_out: 2507 mutex_unlock(&process_info->notifier_lock); 2508 2509 return ret; 2510 } 2511 2512 /* Validate invalid userptr BOs 2513 * 2514 * Validates BOs on the userptr_inval_list. Also updates GPUVM page tables 2515 * with new page addresses and waits for the page table updates to complete. 2516 */ 2517 static int validate_invalid_user_pages(struct amdkfd_process_info *process_info) 2518 { 2519 struct ttm_operation_ctx ctx = { false, false }; 2520 struct amdgpu_sync sync; 2521 struct drm_exec exec; 2522 2523 struct amdgpu_vm *peer_vm; 2524 struct kgd_mem *mem, *tmp_mem; 2525 struct amdgpu_bo *bo; 2526 int ret; 2527 2528 amdgpu_sync_create(&sync); 2529 2530 drm_exec_init(&exec, 0); 2531 /* Reserve all BOs and page tables for validation */ 2532 drm_exec_until_all_locked(&exec) { 2533 /* Reserve all the page directories */ 2534 list_for_each_entry(peer_vm, &process_info->vm_list_head, 2535 vm_list_node) { 2536 ret = amdgpu_vm_lock_pd(peer_vm, &exec, 2); 2537 drm_exec_retry_on_contention(&exec); 2538 if (unlikely(ret)) 2539 goto unreserve_out; 2540 } 2541 2542 /* Reserve the userptr_inval_list entries to resv_list */ 2543 list_for_each_entry(mem, &process_info->userptr_inval_list, 2544 validate_list) { 2545 struct drm_gem_object *gobj; 2546 2547 gobj = &mem->bo->tbo.base; 2548 ret = drm_exec_prepare_obj(&exec, gobj, 1); 2549 drm_exec_retry_on_contention(&exec); 2550 if (unlikely(ret)) 2551 goto unreserve_out; 2552 } 2553 } 2554 2555 ret = process_validate_vms(process_info); 2556 if (ret) 2557 goto unreserve_out; 2558 2559 /* Validate BOs and update GPUVM page tables */ 2560 list_for_each_entry_safe(mem, tmp_mem, 2561 &process_info->userptr_inval_list, 2562 validate_list) { 2563 struct kfd_mem_attachment *attachment; 2564 2565 bo = mem->bo; 2566 2567 /* Validate the BO if we got user pages */ 2568 if (bo->tbo.ttm->pages[0]) { 2569 amdgpu_bo_placement_from_domain(bo, mem->domain); 2570 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 2571 if (ret) { 2572 pr_err("%s: failed to validate BO\n", __func__); 2573 goto unreserve_out; 2574 } 2575 } 2576 2577 /* Update mapping. If the BO was not validated 2578 * (because we couldn't get user pages), this will 2579 * clear the page table entries, which will result in 2580 * VM faults if the GPU tries to access the invalid 2581 * memory. 2582 */ 2583 list_for_each_entry(attachment, &mem->attachments, list) { 2584 if (!attachment->is_mapped) 2585 continue; 2586 2587 kfd_mem_dmaunmap_attachment(mem, attachment); 2588 ret = update_gpuvm_pte(mem, attachment, &sync); 2589 if (ret) { 2590 pr_err("%s: update PTE failed\n", __func__); 2591 /* make sure this gets validated again */ 2592 mutex_lock(&process_info->notifier_lock); 2593 mem->invalid++; 2594 mutex_unlock(&process_info->notifier_lock); 2595 goto unreserve_out; 2596 } 2597 } 2598 } 2599 2600 /* Update page directories */ 2601 ret = process_update_pds(process_info, &sync); 2602 2603 unreserve_out: 2604 drm_exec_fini(&exec); 2605 amdgpu_sync_wait(&sync, false); 2606 amdgpu_sync_free(&sync); 2607 2608 return ret; 2609 } 2610 2611 /* Confirm that all user pages are valid while holding the notifier lock 2612 * 2613 * Moves valid BOs from the userptr_inval_list back to userptr_val_list. 2614 */ 2615 static int confirm_valid_user_pages_locked(struct amdkfd_process_info *process_info) 2616 { 2617 struct kgd_mem *mem, *tmp_mem; 2618 int ret = 0; 2619 2620 list_for_each_entry_safe(mem, tmp_mem, 2621 &process_info->userptr_inval_list, 2622 validate_list) { 2623 bool valid; 2624 2625 /* keep mem without hmm range at userptr_inval_list */ 2626 if (!mem->range) 2627 continue; 2628 2629 /* Only check mem with hmm range associated */ 2630 valid = amdgpu_ttm_tt_get_user_pages_done( 2631 mem->bo->tbo.ttm, mem->range); 2632 2633 mem->range = NULL; 2634 if (!valid) { 2635 WARN(!mem->invalid, "Invalid BO not marked invalid"); 2636 ret = -EAGAIN; 2637 continue; 2638 } 2639 2640 if (mem->invalid) { 2641 WARN(1, "Valid BO is marked invalid"); 2642 ret = -EAGAIN; 2643 continue; 2644 } 2645 2646 list_move_tail(&mem->validate_list, 2647 &process_info->userptr_valid_list); 2648 } 2649 2650 return ret; 2651 } 2652 2653 /* Worker callback to restore evicted userptr BOs 2654 * 2655 * Tries to update and validate all userptr BOs. If successful and no 2656 * concurrent evictions happened, the queues are restarted. Otherwise, 2657 * reschedule for another attempt later. 2658 */ 2659 static void amdgpu_amdkfd_restore_userptr_worker(struct work_struct *work) 2660 { 2661 struct delayed_work *dwork = to_delayed_work(work); 2662 struct amdkfd_process_info *process_info = 2663 container_of(dwork, struct amdkfd_process_info, 2664 restore_userptr_work); 2665 struct task_struct *usertask; 2666 struct mm_struct *mm; 2667 uint32_t evicted_bos; 2668 2669 mutex_lock(&process_info->notifier_lock); 2670 evicted_bos = process_info->evicted_bos; 2671 mutex_unlock(&process_info->notifier_lock); 2672 if (!evicted_bos) 2673 return; 2674 2675 /* Reference task and mm in case of concurrent process termination */ 2676 usertask = get_pid_task(process_info->pid, PIDTYPE_PID); 2677 if (!usertask) 2678 return; 2679 mm = get_task_mm(usertask); 2680 if (!mm) { 2681 put_task_struct(usertask); 2682 return; 2683 } 2684 2685 mutex_lock(&process_info->lock); 2686 2687 if (update_invalid_user_pages(process_info, mm)) 2688 goto unlock_out; 2689 /* userptr_inval_list can be empty if all evicted userptr BOs 2690 * have been freed. In that case there is nothing to validate 2691 * and we can just restart the queues. 2692 */ 2693 if (!list_empty(&process_info->userptr_inval_list)) { 2694 if (validate_invalid_user_pages(process_info)) 2695 goto unlock_out; 2696 } 2697 /* Final check for concurrent evicton and atomic update. If 2698 * another eviction happens after successful update, it will 2699 * be a first eviction that calls quiesce_mm. The eviction 2700 * reference counting inside KFD will handle this case. 2701 */ 2702 mutex_lock(&process_info->notifier_lock); 2703 if (process_info->evicted_bos != evicted_bos) 2704 goto unlock_notifier_out; 2705 2706 if (confirm_valid_user_pages_locked(process_info)) { 2707 WARN(1, "User pages unexpectedly invalid"); 2708 goto unlock_notifier_out; 2709 } 2710 2711 process_info->evicted_bos = evicted_bos = 0; 2712 2713 if (kgd2kfd_resume_mm(mm)) { 2714 pr_err("%s: Failed to resume KFD\n", __func__); 2715 /* No recovery from this failure. Probably the CP is 2716 * hanging. No point trying again. 2717 */ 2718 } 2719 2720 unlock_notifier_out: 2721 mutex_unlock(&process_info->notifier_lock); 2722 unlock_out: 2723 mutex_unlock(&process_info->lock); 2724 2725 /* If validation failed, reschedule another attempt */ 2726 if (evicted_bos) { 2727 schedule_delayed_work(&process_info->restore_userptr_work, 2728 msecs_to_jiffies(AMDGPU_USERPTR_RESTORE_DELAY_MS)); 2729 2730 kfd_smi_event_queue_restore_rescheduled(mm); 2731 } 2732 mmput(mm); 2733 put_task_struct(usertask); 2734 } 2735 2736 /** amdgpu_amdkfd_gpuvm_restore_process_bos - Restore all BOs for the given 2737 * KFD process identified by process_info 2738 * 2739 * @process_info: amdkfd_process_info of the KFD process 2740 * 2741 * After memory eviction, restore thread calls this function. The function 2742 * should be called when the Process is still valid. BO restore involves - 2743 * 2744 * 1. Release old eviction fence and create new one 2745 * 2. Get two copies of PD BO list from all the VMs. Keep one copy as pd_list. 2746 * 3 Use the second PD list and kfd_bo_list to create a list (ctx.list) of 2747 * BOs that need to be reserved. 2748 * 4. Reserve all the BOs 2749 * 5. Validate of PD and PT BOs. 2750 * 6. Validate all KFD BOs using kfd_bo_list and Map them and add new fence 2751 * 7. Add fence to all PD and PT BOs. 2752 * 8. Unreserve all BOs 2753 */ 2754 int amdgpu_amdkfd_gpuvm_restore_process_bos(void *info, struct dma_fence **ef) 2755 { 2756 struct amdkfd_process_info *process_info = info; 2757 struct amdgpu_vm *peer_vm; 2758 struct kgd_mem *mem; 2759 struct amdgpu_amdkfd_fence *new_fence; 2760 struct list_head duplicate_save; 2761 struct amdgpu_sync sync_obj; 2762 unsigned long failed_size = 0; 2763 unsigned long total_size = 0; 2764 struct drm_exec exec; 2765 int ret; 2766 2767 INIT_LIST_HEAD(&duplicate_save); 2768 2769 mutex_lock(&process_info->lock); 2770 2771 drm_exec_init(&exec, 0); 2772 drm_exec_until_all_locked(&exec) { 2773 list_for_each_entry(peer_vm, &process_info->vm_list_head, 2774 vm_list_node) { 2775 ret = amdgpu_vm_lock_pd(peer_vm, &exec, 2); 2776 drm_exec_retry_on_contention(&exec); 2777 if (unlikely(ret)) 2778 goto ttm_reserve_fail; 2779 } 2780 2781 /* Reserve all BOs and page tables/directory. Add all BOs from 2782 * kfd_bo_list to ctx.list 2783 */ 2784 list_for_each_entry(mem, &process_info->kfd_bo_list, 2785 validate_list) { 2786 struct drm_gem_object *gobj; 2787 2788 gobj = &mem->bo->tbo.base; 2789 ret = drm_exec_prepare_obj(&exec, gobj, 1); 2790 drm_exec_retry_on_contention(&exec); 2791 if (unlikely(ret)) 2792 goto ttm_reserve_fail; 2793 } 2794 } 2795 2796 amdgpu_sync_create(&sync_obj); 2797 2798 /* Validate PDs and PTs */ 2799 ret = process_validate_vms(process_info); 2800 if (ret) 2801 goto validate_map_fail; 2802 2803 ret = process_sync_pds_resv(process_info, &sync_obj); 2804 if (ret) { 2805 pr_debug("Memory eviction: Failed to sync to PD BO moving fence. Try again\n"); 2806 goto validate_map_fail; 2807 } 2808 2809 /* Validate BOs and map them to GPUVM (update VM page tables). */ 2810 list_for_each_entry(mem, &process_info->kfd_bo_list, 2811 validate_list) { 2812 2813 struct amdgpu_bo *bo = mem->bo; 2814 uint32_t domain = mem->domain; 2815 struct kfd_mem_attachment *attachment; 2816 struct dma_resv_iter cursor; 2817 struct dma_fence *fence; 2818 2819 total_size += amdgpu_bo_size(bo); 2820 2821 ret = amdgpu_amdkfd_bo_validate(bo, domain, false); 2822 if (ret) { 2823 pr_debug("Memory eviction: Validate BOs failed\n"); 2824 failed_size += amdgpu_bo_size(bo); 2825 ret = amdgpu_amdkfd_bo_validate(bo, 2826 AMDGPU_GEM_DOMAIN_GTT, false); 2827 if (ret) { 2828 pr_debug("Memory eviction: Try again\n"); 2829 goto validate_map_fail; 2830 } 2831 } 2832 dma_resv_for_each_fence(&cursor, bo->tbo.base.resv, 2833 DMA_RESV_USAGE_KERNEL, fence) { 2834 ret = amdgpu_sync_fence(&sync_obj, fence); 2835 if (ret) { 2836 pr_debug("Memory eviction: Sync BO fence failed. Try again\n"); 2837 goto validate_map_fail; 2838 } 2839 } 2840 list_for_each_entry(attachment, &mem->attachments, list) { 2841 if (!attachment->is_mapped) 2842 continue; 2843 2844 if (attachment->bo_va->base.bo->tbo.pin_count) 2845 continue; 2846 2847 kfd_mem_dmaunmap_attachment(mem, attachment); 2848 ret = update_gpuvm_pte(mem, attachment, &sync_obj); 2849 if (ret) { 2850 pr_debug("Memory eviction: update PTE failed. Try again\n"); 2851 goto validate_map_fail; 2852 } 2853 } 2854 } 2855 2856 if (failed_size) 2857 pr_debug("0x%lx/0x%lx in system\n", failed_size, total_size); 2858 2859 /* Update page directories */ 2860 ret = process_update_pds(process_info, &sync_obj); 2861 if (ret) { 2862 pr_debug("Memory eviction: update PDs failed. Try again\n"); 2863 goto validate_map_fail; 2864 } 2865 2866 /* Wait for validate and PT updates to finish */ 2867 amdgpu_sync_wait(&sync_obj, false); 2868 2869 /* Release old eviction fence and create new one, because fence only 2870 * goes from unsignaled to signaled, fence cannot be reused. 2871 * Use context and mm from the old fence. 2872 */ 2873 new_fence = amdgpu_amdkfd_fence_create( 2874 process_info->eviction_fence->base.context, 2875 process_info->eviction_fence->mm, 2876 NULL); 2877 if (!new_fence) { 2878 pr_err("Failed to create eviction fence\n"); 2879 ret = -ENOMEM; 2880 goto validate_map_fail; 2881 } 2882 dma_fence_put(&process_info->eviction_fence->base); 2883 process_info->eviction_fence = new_fence; 2884 *ef = dma_fence_get(&new_fence->base); 2885 2886 /* Attach new eviction fence to all BOs except pinned ones */ 2887 list_for_each_entry(mem, &process_info->kfd_bo_list, validate_list) { 2888 if (mem->bo->tbo.pin_count) 2889 continue; 2890 2891 dma_resv_add_fence(mem->bo->tbo.base.resv, 2892 &process_info->eviction_fence->base, 2893 DMA_RESV_USAGE_BOOKKEEP); 2894 } 2895 /* Attach eviction fence to PD / PT BOs */ 2896 list_for_each_entry(peer_vm, &process_info->vm_list_head, 2897 vm_list_node) { 2898 struct amdgpu_bo *bo = peer_vm->root.bo; 2899 2900 dma_resv_add_fence(bo->tbo.base.resv, 2901 &process_info->eviction_fence->base, 2902 DMA_RESV_USAGE_BOOKKEEP); 2903 } 2904 2905 validate_map_fail: 2906 amdgpu_sync_free(&sync_obj); 2907 ttm_reserve_fail: 2908 drm_exec_fini(&exec); 2909 mutex_unlock(&process_info->lock); 2910 return ret; 2911 } 2912 2913 int amdgpu_amdkfd_add_gws_to_process(void *info, void *gws, struct kgd_mem **mem) 2914 { 2915 struct amdkfd_process_info *process_info = (struct amdkfd_process_info *)info; 2916 struct amdgpu_bo *gws_bo = (struct amdgpu_bo *)gws; 2917 int ret; 2918 2919 if (!info || !gws) 2920 return -EINVAL; 2921 2922 *mem = kzalloc(sizeof(struct kgd_mem), GFP_KERNEL); 2923 if (!*mem) 2924 return -ENOMEM; 2925 2926 mutex_init(&(*mem)->lock); 2927 INIT_LIST_HEAD(&(*mem)->attachments); 2928 (*mem)->bo = amdgpu_bo_ref(gws_bo); 2929 (*mem)->domain = AMDGPU_GEM_DOMAIN_GWS; 2930 (*mem)->process_info = process_info; 2931 add_kgd_mem_to_kfd_bo_list(*mem, process_info, false); 2932 amdgpu_sync_create(&(*mem)->sync); 2933 2934 2935 /* Validate gws bo the first time it is added to process */ 2936 mutex_lock(&(*mem)->process_info->lock); 2937 ret = amdgpu_bo_reserve(gws_bo, false); 2938 if (unlikely(ret)) { 2939 pr_err("Reserve gws bo failed %d\n", ret); 2940 goto bo_reservation_failure; 2941 } 2942 2943 ret = amdgpu_amdkfd_bo_validate(gws_bo, AMDGPU_GEM_DOMAIN_GWS, true); 2944 if (ret) { 2945 pr_err("GWS BO validate failed %d\n", ret); 2946 goto bo_validation_failure; 2947 } 2948 /* GWS resource is shared b/t amdgpu and amdkfd 2949 * Add process eviction fence to bo so they can 2950 * evict each other. 2951 */ 2952 ret = dma_resv_reserve_fences(gws_bo->tbo.base.resv, 1); 2953 if (ret) 2954 goto reserve_shared_fail; 2955 dma_resv_add_fence(gws_bo->tbo.base.resv, 2956 &process_info->eviction_fence->base, 2957 DMA_RESV_USAGE_BOOKKEEP); 2958 amdgpu_bo_unreserve(gws_bo); 2959 mutex_unlock(&(*mem)->process_info->lock); 2960 2961 return ret; 2962 2963 reserve_shared_fail: 2964 bo_validation_failure: 2965 amdgpu_bo_unreserve(gws_bo); 2966 bo_reservation_failure: 2967 mutex_unlock(&(*mem)->process_info->lock); 2968 amdgpu_sync_free(&(*mem)->sync); 2969 remove_kgd_mem_from_kfd_bo_list(*mem, process_info); 2970 amdgpu_bo_unref(&gws_bo); 2971 mutex_destroy(&(*mem)->lock); 2972 kfree(*mem); 2973 *mem = NULL; 2974 return ret; 2975 } 2976 2977 int amdgpu_amdkfd_remove_gws_from_process(void *info, void *mem) 2978 { 2979 int ret; 2980 struct amdkfd_process_info *process_info = (struct amdkfd_process_info *)info; 2981 struct kgd_mem *kgd_mem = (struct kgd_mem *)mem; 2982 struct amdgpu_bo *gws_bo = kgd_mem->bo; 2983 2984 /* Remove BO from process's validate list so restore worker won't touch 2985 * it anymore 2986 */ 2987 remove_kgd_mem_from_kfd_bo_list(kgd_mem, process_info); 2988 2989 ret = amdgpu_bo_reserve(gws_bo, false); 2990 if (unlikely(ret)) { 2991 pr_err("Reserve gws bo failed %d\n", ret); 2992 //TODO add BO back to validate_list? 2993 return ret; 2994 } 2995 amdgpu_amdkfd_remove_eviction_fence(gws_bo, 2996 process_info->eviction_fence); 2997 amdgpu_bo_unreserve(gws_bo); 2998 amdgpu_sync_free(&kgd_mem->sync); 2999 amdgpu_bo_unref(&gws_bo); 3000 mutex_destroy(&kgd_mem->lock); 3001 kfree(mem); 3002 return 0; 3003 } 3004 3005 /* Returns GPU-specific tiling mode information */ 3006 int amdgpu_amdkfd_get_tile_config(struct amdgpu_device *adev, 3007 struct tile_config *config) 3008 { 3009 config->gb_addr_config = adev->gfx.config.gb_addr_config; 3010 config->tile_config_ptr = adev->gfx.config.tile_mode_array; 3011 config->num_tile_configs = 3012 ARRAY_SIZE(adev->gfx.config.tile_mode_array); 3013 config->macro_tile_config_ptr = 3014 adev->gfx.config.macrotile_mode_array; 3015 config->num_macro_tile_configs = 3016 ARRAY_SIZE(adev->gfx.config.macrotile_mode_array); 3017 3018 /* Those values are not set from GFX9 onwards */ 3019 config->num_banks = adev->gfx.config.num_banks; 3020 config->num_ranks = adev->gfx.config.num_ranks; 3021 3022 return 0; 3023 } 3024 3025 bool amdgpu_amdkfd_bo_mapped_to_dev(struct amdgpu_device *adev, struct kgd_mem *mem) 3026 { 3027 struct kfd_mem_attachment *entry; 3028 3029 list_for_each_entry(entry, &mem->attachments, list) { 3030 if (entry->is_mapped && entry->adev == adev) 3031 return true; 3032 } 3033 return false; 3034 } 3035 3036 #if defined(CONFIG_DEBUG_FS) 3037 3038 int kfd_debugfs_kfd_mem_limits(struct seq_file *m, void *data) 3039 { 3040 3041 spin_lock(&kfd_mem_limit.mem_limit_lock); 3042 seq_printf(m, "System mem used %lldM out of %lluM\n", 3043 (kfd_mem_limit.system_mem_used >> 20), 3044 (kfd_mem_limit.max_system_mem_limit >> 20)); 3045 seq_printf(m, "TTM mem used %lldM out of %lluM\n", 3046 (kfd_mem_limit.ttm_mem_used >> 20), 3047 (kfd_mem_limit.max_ttm_mem_limit >> 20)); 3048 spin_unlock(&kfd_mem_limit.mem_limit_lock); 3049 3050 return 0; 3051 } 3052 3053 #endif 3054