1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright 2014-2018 Advanced Micro Devices, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 */ 23 #include <linux/dma-buf.h> 24 #include <linux/list.h> 25 #include <linux/pagemap.h> 26 #include <linux/sched/mm.h> 27 #include <linux/sched/task.h> 28 #include <linux/fdtable.h> 29 #include <drm/ttm/ttm_tt.h> 30 31 #include <drm/drm_exec.h> 32 33 #include "amdgpu_object.h" 34 #include "amdgpu_gem.h" 35 #include "amdgpu_vm.h" 36 #include "amdgpu_hmm.h" 37 #include "amdgpu_amdkfd.h" 38 #include "amdgpu_dma_buf.h" 39 #include <uapi/linux/kfd_ioctl.h> 40 #include "amdgpu_xgmi.h" 41 #include "kfd_priv.h" 42 #include "kfd_smi_events.h" 43 44 /* Userptr restore delay, just long enough to allow consecutive VM 45 * changes to accumulate 46 */ 47 #define AMDGPU_USERPTR_RESTORE_DELAY_MS 1 48 #define AMDGPU_RESERVE_MEM_LIMIT (3UL << 29) 49 50 /* 51 * Align VRAM availability to 2MB to avoid fragmentation caused by 4K allocations in the tail 2MB 52 * BO chunk 53 */ 54 #define VRAM_AVAILABLITY_ALIGN (1 << 21) 55 56 /* Impose limit on how much memory KFD can use */ 57 static struct { 58 uint64_t max_system_mem_limit; 59 uint64_t max_ttm_mem_limit; 60 int64_t system_mem_used; 61 int64_t ttm_mem_used; 62 spinlock_t mem_limit_lock; 63 } kfd_mem_limit; 64 65 static const char * const domain_bit_to_string[] = { 66 "CPU", 67 "GTT", 68 "VRAM", 69 "GDS", 70 "GWS", 71 "OA" 72 }; 73 74 #define domain_string(domain) domain_bit_to_string[ffs(domain)-1] 75 76 static void amdgpu_amdkfd_restore_userptr_worker(struct work_struct *work); 77 78 static bool kfd_mem_is_attached(struct amdgpu_vm *avm, 79 struct kgd_mem *mem) 80 { 81 struct kfd_mem_attachment *entry; 82 83 list_for_each_entry(entry, &mem->attachments, list) 84 if (entry->bo_va->base.vm == avm) 85 return true; 86 87 return false; 88 } 89 90 /** 91 * reuse_dmamap() - Check whether adev can share the original 92 * userptr BO 93 * 94 * If both adev and bo_adev are in direct mapping or 95 * in the same iommu group, they can share the original BO. 96 * 97 * @adev: Device to which can or cannot share the original BO 98 * @bo_adev: Device to which allocated BO belongs to 99 * 100 * Return: returns true if adev can share original userptr BO, 101 * false otherwise. 102 */ 103 static bool reuse_dmamap(struct amdgpu_device *adev, struct amdgpu_device *bo_adev) 104 { 105 return (adev->ram_is_direct_mapped && bo_adev->ram_is_direct_mapped) || 106 (adev->dev->iommu_group == bo_adev->dev->iommu_group); 107 } 108 109 /* Set memory usage limits. Current, limits are 110 * System (TTM + userptr) memory - 15/16th System RAM 111 * TTM memory - 3/8th System RAM 112 */ 113 void amdgpu_amdkfd_gpuvm_init_mem_limits(void) 114 { 115 struct sysinfo si; 116 uint64_t mem; 117 118 if (kfd_mem_limit.max_system_mem_limit) 119 return; 120 121 si_meminfo(&si); 122 mem = si.totalram - si.totalhigh; 123 mem *= si.mem_unit; 124 125 spin_lock_init(&kfd_mem_limit.mem_limit_lock); 126 kfd_mem_limit.max_system_mem_limit = mem - (mem >> 6); 127 if (kfd_mem_limit.max_system_mem_limit < 2 * AMDGPU_RESERVE_MEM_LIMIT) 128 kfd_mem_limit.max_system_mem_limit >>= 1; 129 else 130 kfd_mem_limit.max_system_mem_limit -= AMDGPU_RESERVE_MEM_LIMIT; 131 132 kfd_mem_limit.max_ttm_mem_limit = ttm_tt_pages_limit() << PAGE_SHIFT; 133 pr_debug("Kernel memory limit %lluM, TTM limit %lluM\n", 134 (kfd_mem_limit.max_system_mem_limit >> 20), 135 (kfd_mem_limit.max_ttm_mem_limit >> 20)); 136 } 137 138 void amdgpu_amdkfd_reserve_system_mem(uint64_t size) 139 { 140 kfd_mem_limit.system_mem_used += size; 141 } 142 143 /* Estimate page table size needed to represent a given memory size 144 * 145 * With 4KB pages, we need one 8 byte PTE for each 4KB of memory 146 * (factor 512, >> 9). With 2MB pages, we need one 8 byte PTE for 2MB 147 * of memory (factor 256K, >> 18). ROCm user mode tries to optimize 148 * for 2MB pages for TLB efficiency. However, small allocations and 149 * fragmented system memory still need some 4KB pages. We choose a 150 * compromise that should work in most cases without reserving too 151 * much memory for page tables unnecessarily (factor 16K, >> 14). 152 */ 153 154 #define ESTIMATE_PT_SIZE(mem_size) max(((mem_size) >> 14), AMDGPU_VM_RESERVED_VRAM) 155 156 /** 157 * amdgpu_amdkfd_reserve_mem_limit() - Decrease available memory by size 158 * of buffer. 159 * 160 * @adev: Device to which allocated BO belongs to 161 * @size: Size of buffer, in bytes, encapsulated by B0. This should be 162 * equivalent to amdgpu_bo_size(BO) 163 * @alloc_flag: Flag used in allocating a BO as noted above 164 * @xcp_id: xcp_id is used to get xcp from xcp manager, one xcp is 165 * managed as one compute node in driver for app 166 * 167 * Return: 168 * returns -ENOMEM in case of error, ZERO otherwise 169 */ 170 int amdgpu_amdkfd_reserve_mem_limit(struct amdgpu_device *adev, 171 uint64_t size, u32 alloc_flag, int8_t xcp_id) 172 { 173 uint64_t reserved_for_pt = 174 ESTIMATE_PT_SIZE(amdgpu_amdkfd_total_mem_size); 175 size_t system_mem_needed, ttm_mem_needed, vram_needed; 176 int ret = 0; 177 uint64_t vram_size = 0; 178 179 system_mem_needed = 0; 180 ttm_mem_needed = 0; 181 vram_needed = 0; 182 if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_GTT) { 183 system_mem_needed = size; 184 ttm_mem_needed = size; 185 } else if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) { 186 /* 187 * Conservatively round up the allocation requirement to 2 MB 188 * to avoid fragmentation caused by 4K allocations in the tail 189 * 2M BO chunk. 190 */ 191 vram_needed = size; 192 /* 193 * For GFX 9.4.3, get the VRAM size from XCP structs 194 */ 195 if (WARN_ONCE(xcp_id < 0, "invalid XCP ID %d", xcp_id)) 196 return -EINVAL; 197 198 vram_size = KFD_XCP_MEMORY_SIZE(adev, xcp_id); 199 if (adev->gmc.is_app_apu || adev->flags & AMD_IS_APU) { 200 system_mem_needed = size; 201 ttm_mem_needed = size; 202 } 203 } else if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) { 204 system_mem_needed = size; 205 } else if (!(alloc_flag & 206 (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL | 207 KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP))) { 208 pr_err("%s: Invalid BO type %#x\n", __func__, alloc_flag); 209 return -ENOMEM; 210 } 211 212 spin_lock(&kfd_mem_limit.mem_limit_lock); 213 214 if (kfd_mem_limit.system_mem_used + system_mem_needed > 215 kfd_mem_limit.max_system_mem_limit) 216 pr_debug("Set no_system_mem_limit=1 if using shared memory\n"); 217 218 if ((kfd_mem_limit.system_mem_used + system_mem_needed > 219 kfd_mem_limit.max_system_mem_limit && !no_system_mem_limit) || 220 (kfd_mem_limit.ttm_mem_used + ttm_mem_needed > 221 kfd_mem_limit.max_ttm_mem_limit) || 222 (adev && xcp_id >= 0 && adev->kfd.vram_used[xcp_id] + vram_needed > 223 vram_size - reserved_for_pt - atomic64_read(&adev->vram_pin_size))) { 224 ret = -ENOMEM; 225 goto release; 226 } 227 228 /* Update memory accounting by decreasing available system 229 * memory, TTM memory and GPU memory as computed above 230 */ 231 WARN_ONCE(vram_needed && !adev, 232 "adev reference can't be null when vram is used"); 233 if (adev && xcp_id >= 0) { 234 adev->kfd.vram_used[xcp_id] += vram_needed; 235 adev->kfd.vram_used_aligned[xcp_id] += 236 (adev->gmc.is_app_apu || adev->flags & AMD_IS_APU) ? 237 vram_needed : 238 ALIGN(vram_needed, VRAM_AVAILABLITY_ALIGN); 239 } 240 kfd_mem_limit.system_mem_used += system_mem_needed; 241 kfd_mem_limit.ttm_mem_used += ttm_mem_needed; 242 243 release: 244 spin_unlock(&kfd_mem_limit.mem_limit_lock); 245 return ret; 246 } 247 248 void amdgpu_amdkfd_unreserve_mem_limit(struct amdgpu_device *adev, 249 uint64_t size, u32 alloc_flag, int8_t xcp_id) 250 { 251 spin_lock(&kfd_mem_limit.mem_limit_lock); 252 253 if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_GTT) { 254 kfd_mem_limit.system_mem_used -= size; 255 kfd_mem_limit.ttm_mem_used -= size; 256 } else if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) { 257 WARN_ONCE(!adev, 258 "adev reference can't be null when alloc mem flags vram is set"); 259 if (WARN_ONCE(xcp_id < 0, "invalid XCP ID %d", xcp_id)) 260 goto release; 261 262 if (adev) { 263 adev->kfd.vram_used[xcp_id] -= size; 264 if (adev->gmc.is_app_apu || adev->flags & AMD_IS_APU) { 265 adev->kfd.vram_used_aligned[xcp_id] -= size; 266 kfd_mem_limit.system_mem_used -= size; 267 kfd_mem_limit.ttm_mem_used -= size; 268 } else { 269 adev->kfd.vram_used_aligned[xcp_id] -= 270 ALIGN(size, VRAM_AVAILABLITY_ALIGN); 271 } 272 } 273 } else if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) { 274 kfd_mem_limit.system_mem_used -= size; 275 } else if (!(alloc_flag & 276 (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL | 277 KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP))) { 278 pr_err("%s: Invalid BO type %#x\n", __func__, alloc_flag); 279 goto release; 280 } 281 WARN_ONCE(adev && xcp_id >= 0 && adev->kfd.vram_used[xcp_id] < 0, 282 "KFD VRAM memory accounting unbalanced for xcp: %d", xcp_id); 283 WARN_ONCE(kfd_mem_limit.ttm_mem_used < 0, 284 "KFD TTM memory accounting unbalanced"); 285 WARN_ONCE(kfd_mem_limit.system_mem_used < 0, 286 "KFD system memory accounting unbalanced"); 287 288 release: 289 spin_unlock(&kfd_mem_limit.mem_limit_lock); 290 } 291 292 void amdgpu_amdkfd_release_notify(struct amdgpu_bo *bo) 293 { 294 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 295 u32 alloc_flags = bo->kfd_bo->alloc_flags; 296 u64 size = amdgpu_bo_size(bo); 297 298 amdgpu_amdkfd_unreserve_mem_limit(adev, size, alloc_flags, 299 bo->xcp_id); 300 301 kfree(bo->kfd_bo); 302 } 303 304 /** 305 * create_dmamap_sg_bo() - Creates a amdgpu_bo object to reflect information 306 * about USERPTR or DOOREBELL or MMIO BO. 307 * 308 * @adev: Device for which dmamap BO is being created 309 * @mem: BO of peer device that is being DMA mapped. Provides parameters 310 * in building the dmamap BO 311 * @bo_out: Output parameter updated with handle of dmamap BO 312 */ 313 static int 314 create_dmamap_sg_bo(struct amdgpu_device *adev, 315 struct kgd_mem *mem, struct amdgpu_bo **bo_out) 316 { 317 struct drm_gem_object *gem_obj; 318 int ret; 319 uint64_t flags = 0; 320 321 ret = amdgpu_bo_reserve(mem->bo, false); 322 if (ret) 323 return ret; 324 325 if (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) 326 flags |= mem->bo->flags & (AMDGPU_GEM_CREATE_COHERENT | 327 AMDGPU_GEM_CREATE_UNCACHED); 328 329 ret = amdgpu_gem_object_create(adev, mem->bo->tbo.base.size, 1, 330 AMDGPU_GEM_DOMAIN_CPU, AMDGPU_GEM_CREATE_PREEMPTIBLE | flags, 331 ttm_bo_type_sg, mem->bo->tbo.base.resv, &gem_obj, 0); 332 333 amdgpu_bo_unreserve(mem->bo); 334 335 if (ret) { 336 pr_err("Error in creating DMA mappable SG BO on domain: %d\n", ret); 337 return -EINVAL; 338 } 339 340 *bo_out = gem_to_amdgpu_bo(gem_obj); 341 (*bo_out)->parent = amdgpu_bo_ref(mem->bo); 342 return ret; 343 } 344 345 /* amdgpu_amdkfd_remove_eviction_fence - Removes eviction fence from BO's 346 * reservation object. 347 * 348 * @bo: [IN] Remove eviction fence(s) from this BO 349 * @ef: [IN] This eviction fence is removed if it 350 * is present in the shared list. 351 * 352 * NOTE: Must be called with BO reserved i.e. bo->tbo.resv->lock held. 353 */ 354 static int amdgpu_amdkfd_remove_eviction_fence(struct amdgpu_bo *bo, 355 struct amdgpu_amdkfd_fence *ef) 356 { 357 struct dma_fence *replacement; 358 359 if (!ef) 360 return -EINVAL; 361 362 /* TODO: Instead of block before we should use the fence of the page 363 * table update and TLB flush here directly. 364 */ 365 replacement = dma_fence_get_stub(); 366 dma_resv_replace_fences(bo->tbo.base.resv, ef->base.context, 367 replacement, DMA_RESV_USAGE_BOOKKEEP); 368 dma_fence_put(replacement); 369 return 0; 370 } 371 372 int amdgpu_amdkfd_remove_fence_on_pt_pd_bos(struct amdgpu_bo *bo) 373 { 374 struct amdgpu_bo *root = bo; 375 struct amdgpu_vm_bo_base *vm_bo; 376 struct amdgpu_vm *vm; 377 struct amdkfd_process_info *info; 378 struct amdgpu_amdkfd_fence *ef; 379 int ret; 380 381 /* we can always get vm_bo from root PD bo.*/ 382 while (root->parent) 383 root = root->parent; 384 385 vm_bo = root->vm_bo; 386 if (!vm_bo) 387 return 0; 388 389 vm = vm_bo->vm; 390 if (!vm) 391 return 0; 392 393 info = vm->process_info; 394 if (!info || !info->eviction_fence) 395 return 0; 396 397 ef = container_of(dma_fence_get(&info->eviction_fence->base), 398 struct amdgpu_amdkfd_fence, base); 399 400 BUG_ON(!dma_resv_trylock(bo->tbo.base.resv)); 401 ret = amdgpu_amdkfd_remove_eviction_fence(bo, ef); 402 dma_resv_unlock(bo->tbo.base.resv); 403 404 dma_fence_put(&ef->base); 405 return ret; 406 } 407 408 static int amdgpu_amdkfd_bo_validate(struct amdgpu_bo *bo, uint32_t domain, 409 bool wait) 410 { 411 struct ttm_operation_ctx ctx = { false, false }; 412 int ret; 413 414 if (WARN(amdgpu_ttm_tt_get_usermm(bo->tbo.ttm), 415 "Called with userptr BO")) 416 return -EINVAL; 417 418 amdgpu_bo_placement_from_domain(bo, domain); 419 420 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 421 if (ret) 422 goto validate_fail; 423 if (wait) 424 amdgpu_bo_sync_wait(bo, AMDGPU_FENCE_OWNER_KFD, false); 425 426 validate_fail: 427 return ret; 428 } 429 430 int amdgpu_amdkfd_bo_validate_and_fence(struct amdgpu_bo *bo, 431 uint32_t domain, 432 struct dma_fence *fence) 433 { 434 int ret = amdgpu_bo_reserve(bo, false); 435 436 if (ret) 437 return ret; 438 439 ret = amdgpu_amdkfd_bo_validate(bo, domain, true); 440 if (ret) 441 goto unreserve_out; 442 443 ret = dma_resv_reserve_fences(bo->tbo.base.resv, 1); 444 if (ret) 445 goto unreserve_out; 446 447 dma_resv_add_fence(bo->tbo.base.resv, fence, 448 DMA_RESV_USAGE_BOOKKEEP); 449 450 unreserve_out: 451 amdgpu_bo_unreserve(bo); 452 453 return ret; 454 } 455 456 static int amdgpu_amdkfd_validate_vm_bo(void *_unused, struct amdgpu_bo *bo) 457 { 458 return amdgpu_amdkfd_bo_validate(bo, bo->allowed_domains, false); 459 } 460 461 /* vm_validate_pt_pd_bos - Validate page table and directory BOs 462 * 463 * Page directories are not updated here because huge page handling 464 * during page table updates can invalidate page directory entries 465 * again. Page directories are only updated after updating page 466 * tables. 467 */ 468 static int vm_validate_pt_pd_bos(struct amdgpu_vm *vm, 469 struct ww_acquire_ctx *ticket) 470 { 471 struct amdgpu_bo *pd = vm->root.bo; 472 struct amdgpu_device *adev = amdgpu_ttm_adev(pd->tbo.bdev); 473 int ret; 474 475 ret = amdgpu_vm_validate(adev, vm, ticket, 476 amdgpu_amdkfd_validate_vm_bo, NULL); 477 if (ret) { 478 pr_err("failed to validate PT BOs\n"); 479 return ret; 480 } 481 482 vm->pd_phys_addr = amdgpu_gmc_pd_addr(vm->root.bo); 483 484 return 0; 485 } 486 487 static int vm_update_pds(struct amdgpu_vm *vm, struct amdgpu_sync *sync) 488 { 489 struct amdgpu_bo *pd = vm->root.bo; 490 struct amdgpu_device *adev = amdgpu_ttm_adev(pd->tbo.bdev); 491 int ret; 492 493 ret = amdgpu_vm_update_pdes(adev, vm, false); 494 if (ret) 495 return ret; 496 497 return amdgpu_sync_fence(sync, vm->last_update); 498 } 499 500 static uint64_t get_pte_flags(struct amdgpu_device *adev, struct kgd_mem *mem) 501 { 502 uint32_t mapping_flags = AMDGPU_VM_PAGE_READABLE | 503 AMDGPU_VM_MTYPE_DEFAULT; 504 505 if (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE) 506 mapping_flags |= AMDGPU_VM_PAGE_WRITEABLE; 507 if (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE) 508 mapping_flags |= AMDGPU_VM_PAGE_EXECUTABLE; 509 510 return amdgpu_gem_va_map_flags(adev, mapping_flags); 511 } 512 513 /** 514 * create_sg_table() - Create an sg_table for a contiguous DMA addr range 515 * @addr: The starting address to point to 516 * @size: Size of memory area in bytes being pointed to 517 * 518 * Allocates an instance of sg_table and initializes it to point to memory 519 * area specified by input parameters. The address used to build is assumed 520 * to be DMA mapped, if needed. 521 * 522 * DOORBELL or MMIO BOs use only one scatterlist node in their sg_table 523 * because they are physically contiguous. 524 * 525 * Return: Initialized instance of SG Table or NULL 526 */ 527 static struct sg_table *create_sg_table(uint64_t addr, uint32_t size) 528 { 529 struct sg_table *sg = kmalloc(sizeof(*sg), GFP_KERNEL); 530 531 if (!sg) 532 return NULL; 533 if (sg_alloc_table(sg, 1, GFP_KERNEL)) { 534 kfree(sg); 535 return NULL; 536 } 537 sg_dma_address(sg->sgl) = addr; 538 sg->sgl->length = size; 539 #ifdef CONFIG_NEED_SG_DMA_LENGTH 540 sg->sgl->dma_length = size; 541 #endif 542 return sg; 543 } 544 545 static int 546 kfd_mem_dmamap_userptr(struct kgd_mem *mem, 547 struct kfd_mem_attachment *attachment) 548 { 549 enum dma_data_direction direction = 550 mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? 551 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 552 struct ttm_operation_ctx ctx = {.interruptible = true}; 553 struct amdgpu_bo *bo = attachment->bo_va->base.bo; 554 struct amdgpu_device *adev = attachment->adev; 555 struct ttm_tt *src_ttm = mem->bo->tbo.ttm; 556 struct ttm_tt *ttm = bo->tbo.ttm; 557 int ret; 558 559 if (WARN_ON(ttm->num_pages != src_ttm->num_pages)) 560 return -EINVAL; 561 562 ttm->sg = kmalloc(sizeof(*ttm->sg), GFP_KERNEL); 563 if (unlikely(!ttm->sg)) 564 return -ENOMEM; 565 566 /* Same sequence as in amdgpu_ttm_tt_pin_userptr */ 567 ret = sg_alloc_table_from_pages(ttm->sg, src_ttm->pages, 568 ttm->num_pages, 0, 569 (u64)ttm->num_pages << PAGE_SHIFT, 570 GFP_KERNEL); 571 if (unlikely(ret)) 572 goto free_sg; 573 574 ret = dma_map_sgtable(adev->dev, ttm->sg, direction, 0); 575 if (unlikely(ret)) 576 goto release_sg; 577 578 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_GTT); 579 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 580 if (ret) 581 goto unmap_sg; 582 583 return 0; 584 585 unmap_sg: 586 dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0); 587 release_sg: 588 pr_err("DMA map userptr failed: %d\n", ret); 589 sg_free_table(ttm->sg); 590 free_sg: 591 kfree(ttm->sg); 592 ttm->sg = NULL; 593 return ret; 594 } 595 596 static int 597 kfd_mem_dmamap_dmabuf(struct kfd_mem_attachment *attachment) 598 { 599 struct ttm_operation_ctx ctx = {.interruptible = true}; 600 struct amdgpu_bo *bo = attachment->bo_va->base.bo; 601 int ret; 602 603 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_CPU); 604 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 605 if (ret) 606 return ret; 607 608 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_GTT); 609 return ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 610 } 611 612 /** 613 * kfd_mem_dmamap_sg_bo() - Create DMA mapped sg_table to access DOORBELL or MMIO BO 614 * @mem: SG BO of the DOORBELL or MMIO resource on the owning device 615 * @attachment: Virtual address attachment of the BO on accessing device 616 * 617 * An access request from the device that owns DOORBELL does not require DMA mapping. 618 * This is because the request doesn't go through PCIe root complex i.e. it instead 619 * loops back. The need to DMA map arises only when accessing peer device's DOORBELL 620 * 621 * In contrast, all access requests for MMIO need to be DMA mapped without regard to 622 * device ownership. This is because access requests for MMIO go through PCIe root 623 * complex. 624 * 625 * This is accomplished in two steps: 626 * - Obtain DMA mapped address of DOORBELL or MMIO memory that could be used 627 * in updating requesting device's page table 628 * - Signal TTM to mark memory pointed to by requesting device's BO as GPU 629 * accessible. This allows an update of requesting device's page table 630 * with entries associated with DOOREBELL or MMIO memory 631 * 632 * This method is invoked in the following contexts: 633 * - Mapping of DOORBELL or MMIO BO of same or peer device 634 * - Validating an evicted DOOREBELL or MMIO BO on device seeking access 635 * 636 * Return: ZERO if successful, NON-ZERO otherwise 637 */ 638 static int 639 kfd_mem_dmamap_sg_bo(struct kgd_mem *mem, 640 struct kfd_mem_attachment *attachment) 641 { 642 struct ttm_operation_ctx ctx = {.interruptible = true}; 643 struct amdgpu_bo *bo = attachment->bo_va->base.bo; 644 struct amdgpu_device *adev = attachment->adev; 645 struct ttm_tt *ttm = bo->tbo.ttm; 646 enum dma_data_direction dir; 647 dma_addr_t dma_addr; 648 bool mmio; 649 int ret; 650 651 /* Expect SG Table of dmapmap BO to be NULL */ 652 mmio = (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP); 653 if (unlikely(ttm->sg)) { 654 pr_err("SG Table of %d BO for peer device is UNEXPECTEDLY NON-NULL", mmio); 655 return -EINVAL; 656 } 657 658 dir = mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? 659 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 660 dma_addr = mem->bo->tbo.sg->sgl->dma_address; 661 pr_debug("%d BO size: %d\n", mmio, mem->bo->tbo.sg->sgl->length); 662 pr_debug("%d BO address before DMA mapping: %llx\n", mmio, dma_addr); 663 dma_addr = dma_map_resource(adev->dev, dma_addr, 664 mem->bo->tbo.sg->sgl->length, dir, DMA_ATTR_SKIP_CPU_SYNC); 665 ret = dma_mapping_error(adev->dev, dma_addr); 666 if (unlikely(ret)) 667 return ret; 668 pr_debug("%d BO address after DMA mapping: %llx\n", mmio, dma_addr); 669 670 ttm->sg = create_sg_table(dma_addr, mem->bo->tbo.sg->sgl->length); 671 if (unlikely(!ttm->sg)) { 672 ret = -ENOMEM; 673 goto unmap_sg; 674 } 675 676 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_GTT); 677 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 678 if (unlikely(ret)) 679 goto free_sg; 680 681 return ret; 682 683 free_sg: 684 sg_free_table(ttm->sg); 685 kfree(ttm->sg); 686 ttm->sg = NULL; 687 unmap_sg: 688 dma_unmap_resource(adev->dev, dma_addr, mem->bo->tbo.sg->sgl->length, 689 dir, DMA_ATTR_SKIP_CPU_SYNC); 690 return ret; 691 } 692 693 static int 694 kfd_mem_dmamap_attachment(struct kgd_mem *mem, 695 struct kfd_mem_attachment *attachment) 696 { 697 switch (attachment->type) { 698 case KFD_MEM_ATT_SHARED: 699 return 0; 700 case KFD_MEM_ATT_USERPTR: 701 return kfd_mem_dmamap_userptr(mem, attachment); 702 case KFD_MEM_ATT_DMABUF: 703 return kfd_mem_dmamap_dmabuf(attachment); 704 case KFD_MEM_ATT_SG: 705 return kfd_mem_dmamap_sg_bo(mem, attachment); 706 default: 707 WARN_ON_ONCE(1); 708 } 709 return -EINVAL; 710 } 711 712 static void 713 kfd_mem_dmaunmap_userptr(struct kgd_mem *mem, 714 struct kfd_mem_attachment *attachment) 715 { 716 enum dma_data_direction direction = 717 mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? 718 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 719 struct ttm_operation_ctx ctx = {.interruptible = false}; 720 struct amdgpu_bo *bo = attachment->bo_va->base.bo; 721 struct amdgpu_device *adev = attachment->adev; 722 struct ttm_tt *ttm = bo->tbo.ttm; 723 724 if (unlikely(!ttm->sg)) 725 return; 726 727 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_CPU); 728 ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 729 730 dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0); 731 sg_free_table(ttm->sg); 732 kfree(ttm->sg); 733 ttm->sg = NULL; 734 } 735 736 static void 737 kfd_mem_dmaunmap_dmabuf(struct kfd_mem_attachment *attachment) 738 { 739 /* This is a no-op. We don't want to trigger eviction fences when 740 * unmapping DMABufs. Therefore the invalidation (moving to system 741 * domain) is done in kfd_mem_dmamap_dmabuf. 742 */ 743 } 744 745 /** 746 * kfd_mem_dmaunmap_sg_bo() - Free DMA mapped sg_table of DOORBELL or MMIO BO 747 * @mem: SG BO of the DOORBELL or MMIO resource on the owning device 748 * @attachment: Virtual address attachment of the BO on accessing device 749 * 750 * The method performs following steps: 751 * - Signal TTM to mark memory pointed to by BO as GPU inaccessible 752 * - Free SG Table that is used to encapsulate DMA mapped memory of 753 * peer device's DOORBELL or MMIO memory 754 * 755 * This method is invoked in the following contexts: 756 * UNMapping of DOORBELL or MMIO BO on a device having access to its memory 757 * Eviction of DOOREBELL or MMIO BO on device having access to its memory 758 * 759 * Return: void 760 */ 761 static void 762 kfd_mem_dmaunmap_sg_bo(struct kgd_mem *mem, 763 struct kfd_mem_attachment *attachment) 764 { 765 struct ttm_operation_ctx ctx = {.interruptible = true}; 766 struct amdgpu_bo *bo = attachment->bo_va->base.bo; 767 struct amdgpu_device *adev = attachment->adev; 768 struct ttm_tt *ttm = bo->tbo.ttm; 769 enum dma_data_direction dir; 770 771 if (unlikely(!ttm->sg)) { 772 pr_debug("SG Table of BO is NULL"); 773 return; 774 } 775 776 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_CPU); 777 ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 778 779 dir = mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? 780 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 781 dma_unmap_resource(adev->dev, ttm->sg->sgl->dma_address, 782 ttm->sg->sgl->length, dir, DMA_ATTR_SKIP_CPU_SYNC); 783 sg_free_table(ttm->sg); 784 kfree(ttm->sg); 785 ttm->sg = NULL; 786 bo->tbo.sg = NULL; 787 } 788 789 static void 790 kfd_mem_dmaunmap_attachment(struct kgd_mem *mem, 791 struct kfd_mem_attachment *attachment) 792 { 793 switch (attachment->type) { 794 case KFD_MEM_ATT_SHARED: 795 break; 796 case KFD_MEM_ATT_USERPTR: 797 kfd_mem_dmaunmap_userptr(mem, attachment); 798 break; 799 case KFD_MEM_ATT_DMABUF: 800 kfd_mem_dmaunmap_dmabuf(attachment); 801 break; 802 case KFD_MEM_ATT_SG: 803 kfd_mem_dmaunmap_sg_bo(mem, attachment); 804 break; 805 default: 806 WARN_ON_ONCE(1); 807 } 808 } 809 810 static int kfd_mem_export_dmabuf(struct kgd_mem *mem) 811 { 812 if (!mem->dmabuf) { 813 struct amdgpu_device *bo_adev; 814 struct dma_buf *dmabuf; 815 int r, fd; 816 817 bo_adev = amdgpu_ttm_adev(mem->bo->tbo.bdev); 818 r = drm_gem_prime_handle_to_fd(&bo_adev->ddev, bo_adev->kfd.client.file, 819 mem->gem_handle, 820 mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? 821 DRM_RDWR : 0, &fd); 822 if (r) 823 return r; 824 dmabuf = dma_buf_get(fd); 825 close_fd(fd); 826 if (WARN_ON_ONCE(IS_ERR(dmabuf))) 827 return PTR_ERR(dmabuf); 828 mem->dmabuf = dmabuf; 829 } 830 831 return 0; 832 } 833 834 static int 835 kfd_mem_attach_dmabuf(struct amdgpu_device *adev, struct kgd_mem *mem, 836 struct amdgpu_bo **bo) 837 { 838 struct drm_gem_object *gobj; 839 int ret; 840 841 ret = kfd_mem_export_dmabuf(mem); 842 if (ret) 843 return ret; 844 845 gobj = amdgpu_gem_prime_import(adev_to_drm(adev), mem->dmabuf); 846 if (IS_ERR(gobj)) 847 return PTR_ERR(gobj); 848 849 *bo = gem_to_amdgpu_bo(gobj); 850 (*bo)->flags |= AMDGPU_GEM_CREATE_PREEMPTIBLE; 851 852 return 0; 853 } 854 855 /* kfd_mem_attach - Add a BO to a VM 856 * 857 * Everything that needs to bo done only once when a BO is first added 858 * to a VM. It can later be mapped and unmapped many times without 859 * repeating these steps. 860 * 861 * 0. Create BO for DMA mapping, if needed 862 * 1. Allocate and initialize BO VA entry data structure 863 * 2. Add BO to the VM 864 * 3. Determine ASIC-specific PTE flags 865 * 4. Alloc page tables and directories if needed 866 * 4a. Validate new page tables and directories 867 */ 868 static int kfd_mem_attach(struct amdgpu_device *adev, struct kgd_mem *mem, 869 struct amdgpu_vm *vm, bool is_aql) 870 { 871 struct amdgpu_device *bo_adev = amdgpu_ttm_adev(mem->bo->tbo.bdev); 872 unsigned long bo_size = mem->bo->tbo.base.size; 873 uint64_t va = mem->va; 874 struct kfd_mem_attachment *attachment[2] = {NULL, NULL}; 875 struct amdgpu_bo *bo[2] = {NULL, NULL}; 876 struct amdgpu_bo_va *bo_va; 877 bool same_hive = false; 878 int i, ret; 879 880 if (!va) { 881 pr_err("Invalid VA when adding BO to VM\n"); 882 return -EINVAL; 883 } 884 885 /* Determine access to VRAM, MMIO and DOORBELL BOs of peer devices 886 * 887 * The access path of MMIO and DOORBELL BOs of is always over PCIe. 888 * In contrast the access path of VRAM BOs depens upon the type of 889 * link that connects the peer device. Access over PCIe is allowed 890 * if peer device has large BAR. In contrast, access over xGMI is 891 * allowed for both small and large BAR configurations of peer device 892 */ 893 if ((adev != bo_adev && !(adev->gmc.is_app_apu || adev->flags & AMD_IS_APU)) && 894 ((mem->domain == AMDGPU_GEM_DOMAIN_VRAM) || 895 (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) || 896 (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP))) { 897 if (mem->domain == AMDGPU_GEM_DOMAIN_VRAM) 898 same_hive = amdgpu_xgmi_same_hive(adev, bo_adev); 899 if (!same_hive && !amdgpu_device_is_peer_accessible(bo_adev, adev)) 900 return -EINVAL; 901 } 902 903 for (i = 0; i <= is_aql; i++) { 904 attachment[i] = kzalloc(sizeof(*attachment[i]), GFP_KERNEL); 905 if (unlikely(!attachment[i])) { 906 ret = -ENOMEM; 907 goto unwind; 908 } 909 910 pr_debug("\t add VA 0x%llx - 0x%llx to vm %p\n", va, 911 va + bo_size, vm); 912 913 if ((adev == bo_adev && !(mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) || 914 (amdgpu_ttm_tt_get_usermm(mem->bo->tbo.ttm) && reuse_dmamap(adev, bo_adev)) || 915 (mem->domain == AMDGPU_GEM_DOMAIN_GTT && reuse_dmamap(adev, bo_adev)) || 916 same_hive) { 917 /* Mappings on the local GPU, or VRAM mappings in the 918 * local hive, or userptr, or GTT mapping can reuse dma map 919 * address space share the original BO 920 */ 921 attachment[i]->type = KFD_MEM_ATT_SHARED; 922 bo[i] = mem->bo; 923 drm_gem_object_get(&bo[i]->tbo.base); 924 } else if (i > 0) { 925 /* Multiple mappings on the same GPU share the BO */ 926 attachment[i]->type = KFD_MEM_ATT_SHARED; 927 bo[i] = bo[0]; 928 drm_gem_object_get(&bo[i]->tbo.base); 929 } else if (amdgpu_ttm_tt_get_usermm(mem->bo->tbo.ttm)) { 930 /* Create an SG BO to DMA-map userptrs on other GPUs */ 931 attachment[i]->type = KFD_MEM_ATT_USERPTR; 932 ret = create_dmamap_sg_bo(adev, mem, &bo[i]); 933 if (ret) 934 goto unwind; 935 /* Handle DOORBELL BOs of peer devices and MMIO BOs of local and peer devices */ 936 } else if (mem->bo->tbo.type == ttm_bo_type_sg) { 937 WARN_ONCE(!(mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL || 938 mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP), 939 "Handing invalid SG BO in ATTACH request"); 940 attachment[i]->type = KFD_MEM_ATT_SG; 941 ret = create_dmamap_sg_bo(adev, mem, &bo[i]); 942 if (ret) 943 goto unwind; 944 /* Enable acces to GTT and VRAM BOs of peer devices */ 945 } else if (mem->domain == AMDGPU_GEM_DOMAIN_GTT || 946 mem->domain == AMDGPU_GEM_DOMAIN_VRAM) { 947 attachment[i]->type = KFD_MEM_ATT_DMABUF; 948 ret = kfd_mem_attach_dmabuf(adev, mem, &bo[i]); 949 if (ret) 950 goto unwind; 951 pr_debug("Employ DMABUF mechanism to enable peer GPU access\n"); 952 } else { 953 WARN_ONCE(true, "Handling invalid ATTACH request"); 954 ret = -EINVAL; 955 goto unwind; 956 } 957 958 /* Add BO to VM internal data structures */ 959 ret = amdgpu_bo_reserve(bo[i], false); 960 if (ret) { 961 pr_debug("Unable to reserve BO during memory attach"); 962 goto unwind; 963 } 964 bo_va = amdgpu_vm_bo_find(vm, bo[i]); 965 if (!bo_va) 966 bo_va = amdgpu_vm_bo_add(adev, vm, bo[i]); 967 else 968 ++bo_va->ref_count; 969 attachment[i]->bo_va = bo_va; 970 amdgpu_bo_unreserve(bo[i]); 971 if (unlikely(!attachment[i]->bo_va)) { 972 ret = -ENOMEM; 973 pr_err("Failed to add BO object to VM. ret == %d\n", 974 ret); 975 goto unwind; 976 } 977 attachment[i]->va = va; 978 attachment[i]->pte_flags = get_pte_flags(adev, mem); 979 attachment[i]->adev = adev; 980 list_add(&attachment[i]->list, &mem->attachments); 981 982 va += bo_size; 983 } 984 985 return 0; 986 987 unwind: 988 for (; i >= 0; i--) { 989 if (!attachment[i]) 990 continue; 991 if (attachment[i]->bo_va) { 992 amdgpu_bo_reserve(bo[i], true); 993 if (--attachment[i]->bo_va->ref_count == 0) 994 amdgpu_vm_bo_del(adev, attachment[i]->bo_va); 995 amdgpu_bo_unreserve(bo[i]); 996 list_del(&attachment[i]->list); 997 } 998 if (bo[i]) 999 drm_gem_object_put(&bo[i]->tbo.base); 1000 kfree(attachment[i]); 1001 } 1002 return ret; 1003 } 1004 1005 static void kfd_mem_detach(struct kfd_mem_attachment *attachment) 1006 { 1007 struct amdgpu_bo *bo = attachment->bo_va->base.bo; 1008 1009 pr_debug("\t remove VA 0x%llx in entry %p\n", 1010 attachment->va, attachment); 1011 if (--attachment->bo_va->ref_count == 0) 1012 amdgpu_vm_bo_del(attachment->adev, attachment->bo_va); 1013 drm_gem_object_put(&bo->tbo.base); 1014 list_del(&attachment->list); 1015 kfree(attachment); 1016 } 1017 1018 static void add_kgd_mem_to_kfd_bo_list(struct kgd_mem *mem, 1019 struct amdkfd_process_info *process_info, 1020 bool userptr) 1021 { 1022 mutex_lock(&process_info->lock); 1023 if (userptr) 1024 list_add_tail(&mem->validate_list, 1025 &process_info->userptr_valid_list); 1026 else 1027 list_add_tail(&mem->validate_list, &process_info->kfd_bo_list); 1028 mutex_unlock(&process_info->lock); 1029 } 1030 1031 static void remove_kgd_mem_from_kfd_bo_list(struct kgd_mem *mem, 1032 struct amdkfd_process_info *process_info) 1033 { 1034 mutex_lock(&process_info->lock); 1035 list_del(&mem->validate_list); 1036 mutex_unlock(&process_info->lock); 1037 } 1038 1039 /* Initializes user pages. It registers the MMU notifier and validates 1040 * the userptr BO in the GTT domain. 1041 * 1042 * The BO must already be on the userptr_valid_list. Otherwise an 1043 * eviction and restore may happen that leaves the new BO unmapped 1044 * with the user mode queues running. 1045 * 1046 * Takes the process_info->lock to protect against concurrent restore 1047 * workers. 1048 * 1049 * Returns 0 for success, negative errno for errors. 1050 */ 1051 static int init_user_pages(struct kgd_mem *mem, uint64_t user_addr, 1052 bool criu_resume) 1053 { 1054 struct amdkfd_process_info *process_info = mem->process_info; 1055 struct amdgpu_bo *bo = mem->bo; 1056 struct ttm_operation_ctx ctx = { true, false }; 1057 struct hmm_range *range; 1058 int ret = 0; 1059 1060 mutex_lock(&process_info->lock); 1061 1062 ret = amdgpu_ttm_tt_set_userptr(&bo->tbo, user_addr, 0); 1063 if (ret) { 1064 pr_err("%s: Failed to set userptr: %d\n", __func__, ret); 1065 goto out; 1066 } 1067 1068 ret = amdgpu_hmm_register(bo, user_addr); 1069 if (ret) { 1070 pr_err("%s: Failed to register MMU notifier: %d\n", 1071 __func__, ret); 1072 goto out; 1073 } 1074 1075 if (criu_resume) { 1076 /* 1077 * During a CRIU restore operation, the userptr buffer objects 1078 * will be validated in the restore_userptr_work worker at a 1079 * later stage when it is scheduled by another ioctl called by 1080 * CRIU master process for the target pid for restore. 1081 */ 1082 mutex_lock(&process_info->notifier_lock); 1083 mem->invalid++; 1084 mutex_unlock(&process_info->notifier_lock); 1085 mutex_unlock(&process_info->lock); 1086 return 0; 1087 } 1088 1089 ret = amdgpu_ttm_tt_get_user_pages(bo, bo->tbo.ttm->pages, &range); 1090 if (ret) { 1091 if (ret == -EAGAIN) 1092 pr_debug("Failed to get user pages, try again\n"); 1093 else 1094 pr_err("%s: Failed to get user pages: %d\n", __func__, ret); 1095 goto unregister_out; 1096 } 1097 1098 ret = amdgpu_bo_reserve(bo, true); 1099 if (ret) { 1100 pr_err("%s: Failed to reserve BO\n", __func__); 1101 goto release_out; 1102 } 1103 amdgpu_bo_placement_from_domain(bo, mem->domain); 1104 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 1105 if (ret) 1106 pr_err("%s: failed to validate BO\n", __func__); 1107 amdgpu_bo_unreserve(bo); 1108 1109 release_out: 1110 amdgpu_ttm_tt_get_user_pages_done(bo->tbo.ttm, range); 1111 unregister_out: 1112 if (ret) 1113 amdgpu_hmm_unregister(bo); 1114 out: 1115 mutex_unlock(&process_info->lock); 1116 return ret; 1117 } 1118 1119 /* Reserving a BO and its page table BOs must happen atomically to 1120 * avoid deadlocks. Some operations update multiple VMs at once. Track 1121 * all the reservation info in a context structure. Optionally a sync 1122 * object can track VM updates. 1123 */ 1124 struct bo_vm_reservation_context { 1125 /* DRM execution context for the reservation */ 1126 struct drm_exec exec; 1127 /* Number of VMs reserved */ 1128 unsigned int n_vms; 1129 /* Pointer to sync object */ 1130 struct amdgpu_sync *sync; 1131 }; 1132 1133 enum bo_vm_match { 1134 BO_VM_NOT_MAPPED = 0, /* Match VMs where a BO is not mapped */ 1135 BO_VM_MAPPED, /* Match VMs where a BO is mapped */ 1136 BO_VM_ALL, /* Match all VMs a BO was added to */ 1137 }; 1138 1139 /** 1140 * reserve_bo_and_vm - reserve a BO and a VM unconditionally. 1141 * @mem: KFD BO structure. 1142 * @vm: the VM to reserve. 1143 * @ctx: the struct that will be used in unreserve_bo_and_vms(). 1144 */ 1145 static int reserve_bo_and_vm(struct kgd_mem *mem, 1146 struct amdgpu_vm *vm, 1147 struct bo_vm_reservation_context *ctx) 1148 { 1149 struct amdgpu_bo *bo = mem->bo; 1150 int ret; 1151 1152 WARN_ON(!vm); 1153 1154 ctx->n_vms = 1; 1155 ctx->sync = &mem->sync; 1156 drm_exec_init(&ctx->exec, DRM_EXEC_INTERRUPTIBLE_WAIT, 0); 1157 drm_exec_until_all_locked(&ctx->exec) { 1158 ret = amdgpu_vm_lock_pd(vm, &ctx->exec, 2); 1159 drm_exec_retry_on_contention(&ctx->exec); 1160 if (unlikely(ret)) 1161 goto error; 1162 1163 ret = drm_exec_prepare_obj(&ctx->exec, &bo->tbo.base, 1); 1164 drm_exec_retry_on_contention(&ctx->exec); 1165 if (unlikely(ret)) 1166 goto error; 1167 } 1168 return 0; 1169 1170 error: 1171 pr_err("Failed to reserve buffers in ttm.\n"); 1172 drm_exec_fini(&ctx->exec); 1173 return ret; 1174 } 1175 1176 /** 1177 * reserve_bo_and_cond_vms - reserve a BO and some VMs conditionally 1178 * @mem: KFD BO structure. 1179 * @vm: the VM to reserve. If NULL, then all VMs associated with the BO 1180 * is used. Otherwise, a single VM associated with the BO. 1181 * @map_type: the mapping status that will be used to filter the VMs. 1182 * @ctx: the struct that will be used in unreserve_bo_and_vms(). 1183 * 1184 * Returns 0 for success, negative for failure. 1185 */ 1186 static int reserve_bo_and_cond_vms(struct kgd_mem *mem, 1187 struct amdgpu_vm *vm, enum bo_vm_match map_type, 1188 struct bo_vm_reservation_context *ctx) 1189 { 1190 struct kfd_mem_attachment *entry; 1191 struct amdgpu_bo *bo = mem->bo; 1192 int ret; 1193 1194 ctx->sync = &mem->sync; 1195 drm_exec_init(&ctx->exec, DRM_EXEC_INTERRUPTIBLE_WAIT | 1196 DRM_EXEC_IGNORE_DUPLICATES, 0); 1197 drm_exec_until_all_locked(&ctx->exec) { 1198 ctx->n_vms = 0; 1199 list_for_each_entry(entry, &mem->attachments, list) { 1200 if ((vm && vm != entry->bo_va->base.vm) || 1201 (entry->is_mapped != map_type 1202 && map_type != BO_VM_ALL)) 1203 continue; 1204 1205 ret = amdgpu_vm_lock_pd(entry->bo_va->base.vm, 1206 &ctx->exec, 2); 1207 drm_exec_retry_on_contention(&ctx->exec); 1208 if (unlikely(ret)) 1209 goto error; 1210 ++ctx->n_vms; 1211 } 1212 1213 ret = drm_exec_prepare_obj(&ctx->exec, &bo->tbo.base, 1); 1214 drm_exec_retry_on_contention(&ctx->exec); 1215 if (unlikely(ret)) 1216 goto error; 1217 } 1218 return 0; 1219 1220 error: 1221 pr_err("Failed to reserve buffers in ttm.\n"); 1222 drm_exec_fini(&ctx->exec); 1223 return ret; 1224 } 1225 1226 /** 1227 * unreserve_bo_and_vms - Unreserve BO and VMs from a reservation context 1228 * @ctx: Reservation context to unreserve 1229 * @wait: Optionally wait for a sync object representing pending VM updates 1230 * @intr: Whether the wait is interruptible 1231 * 1232 * Also frees any resources allocated in 1233 * reserve_bo_and_(cond_)vm(s). Returns the status from 1234 * amdgpu_sync_wait. 1235 */ 1236 static int unreserve_bo_and_vms(struct bo_vm_reservation_context *ctx, 1237 bool wait, bool intr) 1238 { 1239 int ret = 0; 1240 1241 if (wait) 1242 ret = amdgpu_sync_wait(ctx->sync, intr); 1243 1244 drm_exec_fini(&ctx->exec); 1245 ctx->sync = NULL; 1246 return ret; 1247 } 1248 1249 static void unmap_bo_from_gpuvm(struct kgd_mem *mem, 1250 struct kfd_mem_attachment *entry, 1251 struct amdgpu_sync *sync) 1252 { 1253 struct amdgpu_bo_va *bo_va = entry->bo_va; 1254 struct amdgpu_device *adev = entry->adev; 1255 struct amdgpu_vm *vm = bo_va->base.vm; 1256 1257 amdgpu_vm_bo_unmap(adev, bo_va, entry->va); 1258 1259 amdgpu_vm_clear_freed(adev, vm, &bo_va->last_pt_update); 1260 1261 amdgpu_sync_fence(sync, bo_va->last_pt_update); 1262 } 1263 1264 static int update_gpuvm_pte(struct kgd_mem *mem, 1265 struct kfd_mem_attachment *entry, 1266 struct amdgpu_sync *sync) 1267 { 1268 struct amdgpu_bo_va *bo_va = entry->bo_va; 1269 struct amdgpu_device *adev = entry->adev; 1270 int ret; 1271 1272 ret = kfd_mem_dmamap_attachment(mem, entry); 1273 if (ret) 1274 return ret; 1275 1276 /* Update the page tables */ 1277 ret = amdgpu_vm_bo_update(adev, bo_va, false); 1278 if (ret) { 1279 pr_err("amdgpu_vm_bo_update failed\n"); 1280 return ret; 1281 } 1282 1283 return amdgpu_sync_fence(sync, bo_va->last_pt_update); 1284 } 1285 1286 static int map_bo_to_gpuvm(struct kgd_mem *mem, 1287 struct kfd_mem_attachment *entry, 1288 struct amdgpu_sync *sync, 1289 bool no_update_pte) 1290 { 1291 int ret; 1292 1293 /* Set virtual address for the allocation */ 1294 ret = amdgpu_vm_bo_map(entry->adev, entry->bo_va, entry->va, 0, 1295 amdgpu_bo_size(entry->bo_va->base.bo), 1296 entry->pte_flags); 1297 if (ret) { 1298 pr_err("Failed to map VA 0x%llx in vm. ret %d\n", 1299 entry->va, ret); 1300 return ret; 1301 } 1302 1303 if (no_update_pte) 1304 return 0; 1305 1306 ret = update_gpuvm_pte(mem, entry, sync); 1307 if (ret) { 1308 pr_err("update_gpuvm_pte() failed\n"); 1309 goto update_gpuvm_pte_failed; 1310 } 1311 1312 return 0; 1313 1314 update_gpuvm_pte_failed: 1315 unmap_bo_from_gpuvm(mem, entry, sync); 1316 kfd_mem_dmaunmap_attachment(mem, entry); 1317 return ret; 1318 } 1319 1320 static int process_validate_vms(struct amdkfd_process_info *process_info, 1321 struct ww_acquire_ctx *ticket) 1322 { 1323 struct amdgpu_vm *peer_vm; 1324 int ret; 1325 1326 list_for_each_entry(peer_vm, &process_info->vm_list_head, 1327 vm_list_node) { 1328 ret = vm_validate_pt_pd_bos(peer_vm, ticket); 1329 if (ret) 1330 return ret; 1331 } 1332 1333 return 0; 1334 } 1335 1336 static int process_sync_pds_resv(struct amdkfd_process_info *process_info, 1337 struct amdgpu_sync *sync) 1338 { 1339 struct amdgpu_vm *peer_vm; 1340 int ret; 1341 1342 list_for_each_entry(peer_vm, &process_info->vm_list_head, 1343 vm_list_node) { 1344 struct amdgpu_bo *pd = peer_vm->root.bo; 1345 1346 ret = amdgpu_sync_resv(NULL, sync, pd->tbo.base.resv, 1347 AMDGPU_SYNC_NE_OWNER, 1348 AMDGPU_FENCE_OWNER_KFD); 1349 if (ret) 1350 return ret; 1351 } 1352 1353 return 0; 1354 } 1355 1356 static int process_update_pds(struct amdkfd_process_info *process_info, 1357 struct amdgpu_sync *sync) 1358 { 1359 struct amdgpu_vm *peer_vm; 1360 int ret; 1361 1362 list_for_each_entry(peer_vm, &process_info->vm_list_head, 1363 vm_list_node) { 1364 ret = vm_update_pds(peer_vm, sync); 1365 if (ret) 1366 return ret; 1367 } 1368 1369 return 0; 1370 } 1371 1372 static int init_kfd_vm(struct amdgpu_vm *vm, void **process_info, 1373 struct dma_fence **ef) 1374 { 1375 struct amdkfd_process_info *info = NULL; 1376 int ret; 1377 1378 if (!*process_info) { 1379 info = kzalloc(sizeof(*info), GFP_KERNEL); 1380 if (!info) 1381 return -ENOMEM; 1382 1383 mutex_init(&info->lock); 1384 mutex_init(&info->notifier_lock); 1385 INIT_LIST_HEAD(&info->vm_list_head); 1386 INIT_LIST_HEAD(&info->kfd_bo_list); 1387 INIT_LIST_HEAD(&info->userptr_valid_list); 1388 INIT_LIST_HEAD(&info->userptr_inval_list); 1389 1390 info->eviction_fence = 1391 amdgpu_amdkfd_fence_create(dma_fence_context_alloc(1), 1392 current->mm, 1393 NULL); 1394 if (!info->eviction_fence) { 1395 pr_err("Failed to create eviction fence\n"); 1396 ret = -ENOMEM; 1397 goto create_evict_fence_fail; 1398 } 1399 1400 info->pid = get_task_pid(current->group_leader, PIDTYPE_PID); 1401 INIT_DELAYED_WORK(&info->restore_userptr_work, 1402 amdgpu_amdkfd_restore_userptr_worker); 1403 1404 *process_info = info; 1405 } 1406 1407 vm->process_info = *process_info; 1408 1409 /* Validate page directory and attach eviction fence */ 1410 ret = amdgpu_bo_reserve(vm->root.bo, true); 1411 if (ret) 1412 goto reserve_pd_fail; 1413 ret = vm_validate_pt_pd_bos(vm, NULL); 1414 if (ret) { 1415 pr_err("validate_pt_pd_bos() failed\n"); 1416 goto validate_pd_fail; 1417 } 1418 ret = amdgpu_bo_sync_wait(vm->root.bo, 1419 AMDGPU_FENCE_OWNER_KFD, false); 1420 if (ret) 1421 goto wait_pd_fail; 1422 ret = dma_resv_reserve_fences(vm->root.bo->tbo.base.resv, 1); 1423 if (ret) 1424 goto reserve_shared_fail; 1425 dma_resv_add_fence(vm->root.bo->tbo.base.resv, 1426 &vm->process_info->eviction_fence->base, 1427 DMA_RESV_USAGE_BOOKKEEP); 1428 amdgpu_bo_unreserve(vm->root.bo); 1429 1430 /* Update process info */ 1431 mutex_lock(&vm->process_info->lock); 1432 list_add_tail(&vm->vm_list_node, 1433 &(vm->process_info->vm_list_head)); 1434 vm->process_info->n_vms++; 1435 1436 *ef = dma_fence_get(&vm->process_info->eviction_fence->base); 1437 mutex_unlock(&vm->process_info->lock); 1438 1439 return 0; 1440 1441 reserve_shared_fail: 1442 wait_pd_fail: 1443 validate_pd_fail: 1444 amdgpu_bo_unreserve(vm->root.bo); 1445 reserve_pd_fail: 1446 vm->process_info = NULL; 1447 if (info) { 1448 dma_fence_put(&info->eviction_fence->base); 1449 *process_info = NULL; 1450 put_pid(info->pid); 1451 create_evict_fence_fail: 1452 mutex_destroy(&info->lock); 1453 mutex_destroy(&info->notifier_lock); 1454 kfree(info); 1455 } 1456 return ret; 1457 } 1458 1459 /** 1460 * amdgpu_amdkfd_gpuvm_pin_bo() - Pins a BO using following criteria 1461 * @bo: Handle of buffer object being pinned 1462 * @domain: Domain into which BO should be pinned 1463 * 1464 * - USERPTR BOs are UNPINNABLE and will return error 1465 * - All other BO types (GTT, VRAM, MMIO and DOORBELL) will have their 1466 * PIN count incremented. It is valid to PIN a BO multiple times 1467 * 1468 * Return: ZERO if successful in pinning, Non-Zero in case of error. 1469 */ 1470 static int amdgpu_amdkfd_gpuvm_pin_bo(struct amdgpu_bo *bo, u32 domain) 1471 { 1472 int ret = 0; 1473 1474 ret = amdgpu_bo_reserve(bo, false); 1475 if (unlikely(ret)) 1476 return ret; 1477 1478 if (bo->flags & AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS) { 1479 /* 1480 * If bo is not contiguous on VRAM, move to system memory first to ensure 1481 * we can get contiguous VRAM space after evicting other BOs. 1482 */ 1483 if (!(bo->tbo.resource->placement & TTM_PL_FLAG_CONTIGUOUS)) { 1484 struct ttm_operation_ctx ctx = { true, false }; 1485 1486 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_GTT); 1487 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 1488 if (unlikely(ret)) { 1489 pr_debug("validate bo 0x%p to GTT failed %d\n", &bo->tbo, ret); 1490 goto out; 1491 } 1492 } 1493 } 1494 1495 ret = amdgpu_bo_pin_restricted(bo, domain, 0, 0); 1496 if (ret) 1497 pr_err("Error in Pinning BO to domain: %d\n", domain); 1498 1499 amdgpu_bo_sync_wait(bo, AMDGPU_FENCE_OWNER_KFD, false); 1500 out: 1501 amdgpu_bo_unreserve(bo); 1502 return ret; 1503 } 1504 1505 /** 1506 * amdgpu_amdkfd_gpuvm_unpin_bo() - Unpins BO using following criteria 1507 * @bo: Handle of buffer object being unpinned 1508 * 1509 * - Is a illegal request for USERPTR BOs and is ignored 1510 * - All other BO types (GTT, VRAM, MMIO and DOORBELL) will have their 1511 * PIN count decremented. Calls to UNPIN must balance calls to PIN 1512 */ 1513 static void amdgpu_amdkfd_gpuvm_unpin_bo(struct amdgpu_bo *bo) 1514 { 1515 int ret = 0; 1516 1517 ret = amdgpu_bo_reserve(bo, false); 1518 if (unlikely(ret)) 1519 return; 1520 1521 amdgpu_bo_unpin(bo); 1522 amdgpu_bo_unreserve(bo); 1523 } 1524 1525 int amdgpu_amdkfd_gpuvm_set_vm_pasid(struct amdgpu_device *adev, 1526 struct amdgpu_vm *avm, u32 pasid) 1527 1528 { 1529 int ret; 1530 1531 /* Free the original amdgpu allocated pasid, 1532 * will be replaced with kfd allocated pasid. 1533 */ 1534 if (avm->pasid) { 1535 amdgpu_pasid_free(avm->pasid); 1536 amdgpu_vm_set_pasid(adev, avm, 0); 1537 } 1538 1539 ret = amdgpu_vm_set_pasid(adev, avm, pasid); 1540 if (ret) 1541 return ret; 1542 1543 return 0; 1544 } 1545 1546 int amdgpu_amdkfd_gpuvm_acquire_process_vm(struct amdgpu_device *adev, 1547 struct amdgpu_vm *avm, 1548 void **process_info, 1549 struct dma_fence **ef) 1550 { 1551 int ret; 1552 1553 /* Already a compute VM? */ 1554 if (avm->process_info) 1555 return -EINVAL; 1556 1557 /* Convert VM into a compute VM */ 1558 ret = amdgpu_vm_make_compute(adev, avm); 1559 if (ret) 1560 return ret; 1561 1562 /* Initialize KFD part of the VM and process info */ 1563 ret = init_kfd_vm(avm, process_info, ef); 1564 if (ret) 1565 return ret; 1566 1567 amdgpu_vm_set_task_info(avm); 1568 1569 return 0; 1570 } 1571 1572 void amdgpu_amdkfd_gpuvm_destroy_cb(struct amdgpu_device *adev, 1573 struct amdgpu_vm *vm) 1574 { 1575 struct amdkfd_process_info *process_info = vm->process_info; 1576 1577 if (!process_info) 1578 return; 1579 1580 /* Update process info */ 1581 mutex_lock(&process_info->lock); 1582 process_info->n_vms--; 1583 list_del(&vm->vm_list_node); 1584 mutex_unlock(&process_info->lock); 1585 1586 vm->process_info = NULL; 1587 1588 /* Release per-process resources when last compute VM is destroyed */ 1589 if (!process_info->n_vms) { 1590 WARN_ON(!list_empty(&process_info->kfd_bo_list)); 1591 WARN_ON(!list_empty(&process_info->userptr_valid_list)); 1592 WARN_ON(!list_empty(&process_info->userptr_inval_list)); 1593 1594 dma_fence_put(&process_info->eviction_fence->base); 1595 cancel_delayed_work_sync(&process_info->restore_userptr_work); 1596 put_pid(process_info->pid); 1597 mutex_destroy(&process_info->lock); 1598 mutex_destroy(&process_info->notifier_lock); 1599 kfree(process_info); 1600 } 1601 } 1602 1603 void amdgpu_amdkfd_gpuvm_release_process_vm(struct amdgpu_device *adev, 1604 void *drm_priv) 1605 { 1606 struct amdgpu_vm *avm; 1607 1608 if (WARN_ON(!adev || !drm_priv)) 1609 return; 1610 1611 avm = drm_priv_to_vm(drm_priv); 1612 1613 pr_debug("Releasing process vm %p\n", avm); 1614 1615 /* The original pasid of amdgpu vm has already been 1616 * released during making a amdgpu vm to a compute vm 1617 * The current pasid is managed by kfd and will be 1618 * released on kfd process destroy. Set amdgpu pasid 1619 * to 0 to avoid duplicate release. 1620 */ 1621 amdgpu_vm_release_compute(adev, avm); 1622 } 1623 1624 uint64_t amdgpu_amdkfd_gpuvm_get_process_page_dir(void *drm_priv) 1625 { 1626 struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv); 1627 struct amdgpu_bo *pd = avm->root.bo; 1628 struct amdgpu_device *adev = amdgpu_ttm_adev(pd->tbo.bdev); 1629 1630 if (adev->asic_type < CHIP_VEGA10) 1631 return avm->pd_phys_addr >> AMDGPU_GPU_PAGE_SHIFT; 1632 return avm->pd_phys_addr; 1633 } 1634 1635 void amdgpu_amdkfd_block_mmu_notifications(void *p) 1636 { 1637 struct amdkfd_process_info *pinfo = (struct amdkfd_process_info *)p; 1638 1639 mutex_lock(&pinfo->lock); 1640 WRITE_ONCE(pinfo->block_mmu_notifications, true); 1641 mutex_unlock(&pinfo->lock); 1642 } 1643 1644 int amdgpu_amdkfd_criu_resume(void *p) 1645 { 1646 int ret = 0; 1647 struct amdkfd_process_info *pinfo = (struct amdkfd_process_info *)p; 1648 1649 mutex_lock(&pinfo->lock); 1650 pr_debug("scheduling work\n"); 1651 mutex_lock(&pinfo->notifier_lock); 1652 pinfo->evicted_bos++; 1653 mutex_unlock(&pinfo->notifier_lock); 1654 if (!READ_ONCE(pinfo->block_mmu_notifications)) { 1655 ret = -EINVAL; 1656 goto out_unlock; 1657 } 1658 WRITE_ONCE(pinfo->block_mmu_notifications, false); 1659 queue_delayed_work(system_freezable_wq, 1660 &pinfo->restore_userptr_work, 0); 1661 1662 out_unlock: 1663 mutex_unlock(&pinfo->lock); 1664 return ret; 1665 } 1666 1667 size_t amdgpu_amdkfd_get_available_memory(struct amdgpu_device *adev, 1668 uint8_t xcp_id) 1669 { 1670 uint64_t reserved_for_pt = 1671 ESTIMATE_PT_SIZE(amdgpu_amdkfd_total_mem_size); 1672 ssize_t available; 1673 uint64_t vram_available, system_mem_available, ttm_mem_available; 1674 1675 spin_lock(&kfd_mem_limit.mem_limit_lock); 1676 vram_available = KFD_XCP_MEMORY_SIZE(adev, xcp_id) 1677 - adev->kfd.vram_used_aligned[xcp_id] 1678 - atomic64_read(&adev->vram_pin_size) 1679 - reserved_for_pt; 1680 1681 if (adev->gmc.is_app_apu || adev->flags & AMD_IS_APU) { 1682 system_mem_available = no_system_mem_limit ? 1683 kfd_mem_limit.max_system_mem_limit : 1684 kfd_mem_limit.max_system_mem_limit - 1685 kfd_mem_limit.system_mem_used; 1686 1687 ttm_mem_available = kfd_mem_limit.max_ttm_mem_limit - 1688 kfd_mem_limit.ttm_mem_used; 1689 1690 available = min3(system_mem_available, ttm_mem_available, 1691 vram_available); 1692 available = ALIGN_DOWN(available, PAGE_SIZE); 1693 } else { 1694 available = ALIGN_DOWN(vram_available, VRAM_AVAILABLITY_ALIGN); 1695 } 1696 1697 spin_unlock(&kfd_mem_limit.mem_limit_lock); 1698 1699 if (available < 0) 1700 available = 0; 1701 1702 return available; 1703 } 1704 1705 int amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu( 1706 struct amdgpu_device *adev, uint64_t va, uint64_t size, 1707 void *drm_priv, struct kgd_mem **mem, 1708 uint64_t *offset, uint32_t flags, bool criu_resume) 1709 { 1710 struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv); 1711 struct amdgpu_fpriv *fpriv = container_of(avm, struct amdgpu_fpriv, vm); 1712 enum ttm_bo_type bo_type = ttm_bo_type_device; 1713 struct sg_table *sg = NULL; 1714 uint64_t user_addr = 0; 1715 struct amdgpu_bo *bo; 1716 struct drm_gem_object *gobj = NULL; 1717 u32 domain, alloc_domain; 1718 uint64_t aligned_size; 1719 int8_t xcp_id = -1; 1720 u64 alloc_flags; 1721 int ret; 1722 1723 /* 1724 * Check on which domain to allocate BO 1725 */ 1726 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) { 1727 domain = alloc_domain = AMDGPU_GEM_DOMAIN_VRAM; 1728 1729 if (adev->gmc.is_app_apu || adev->flags & AMD_IS_APU) { 1730 domain = AMDGPU_GEM_DOMAIN_GTT; 1731 alloc_domain = AMDGPU_GEM_DOMAIN_GTT; 1732 alloc_flags = 0; 1733 } else { 1734 alloc_flags = AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE; 1735 alloc_flags |= (flags & KFD_IOC_ALLOC_MEM_FLAGS_PUBLIC) ? 1736 AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED : 0; 1737 1738 /* For contiguous VRAM allocation */ 1739 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_CONTIGUOUS) 1740 alloc_flags |= AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS; 1741 } 1742 xcp_id = fpriv->xcp_id == AMDGPU_XCP_NO_PARTITION ? 1743 0 : fpriv->xcp_id; 1744 } else if (flags & KFD_IOC_ALLOC_MEM_FLAGS_GTT) { 1745 domain = alloc_domain = AMDGPU_GEM_DOMAIN_GTT; 1746 alloc_flags = 0; 1747 } else { 1748 domain = AMDGPU_GEM_DOMAIN_GTT; 1749 alloc_domain = AMDGPU_GEM_DOMAIN_CPU; 1750 alloc_flags = AMDGPU_GEM_CREATE_PREEMPTIBLE; 1751 1752 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) { 1753 if (!offset || !*offset) 1754 return -EINVAL; 1755 user_addr = untagged_addr(*offset); 1756 } else if (flags & (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL | 1757 KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) { 1758 bo_type = ttm_bo_type_sg; 1759 if (size > UINT_MAX) 1760 return -EINVAL; 1761 sg = create_sg_table(*offset, size); 1762 if (!sg) 1763 return -ENOMEM; 1764 } else { 1765 return -EINVAL; 1766 } 1767 } 1768 1769 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_COHERENT) 1770 alloc_flags |= AMDGPU_GEM_CREATE_COHERENT; 1771 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_EXT_COHERENT) 1772 alloc_flags |= AMDGPU_GEM_CREATE_EXT_COHERENT; 1773 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_UNCACHED) 1774 alloc_flags |= AMDGPU_GEM_CREATE_UNCACHED; 1775 1776 *mem = kzalloc(sizeof(struct kgd_mem), GFP_KERNEL); 1777 if (!*mem) { 1778 ret = -ENOMEM; 1779 goto err; 1780 } 1781 INIT_LIST_HEAD(&(*mem)->attachments); 1782 mutex_init(&(*mem)->lock); 1783 (*mem)->aql_queue = !!(flags & KFD_IOC_ALLOC_MEM_FLAGS_AQL_QUEUE_MEM); 1784 1785 /* Workaround for AQL queue wraparound bug. Map the same 1786 * memory twice. That means we only actually allocate half 1787 * the memory. 1788 */ 1789 if ((*mem)->aql_queue) 1790 size >>= 1; 1791 aligned_size = PAGE_ALIGN(size); 1792 1793 (*mem)->alloc_flags = flags; 1794 1795 amdgpu_sync_create(&(*mem)->sync); 1796 1797 ret = amdgpu_amdkfd_reserve_mem_limit(adev, aligned_size, flags, 1798 xcp_id); 1799 if (ret) { 1800 pr_debug("Insufficient memory\n"); 1801 goto err_reserve_limit; 1802 } 1803 1804 pr_debug("\tcreate BO VA 0x%llx size 0x%llx domain %s xcp_id %d\n", 1805 va, (*mem)->aql_queue ? size << 1 : size, 1806 domain_string(alloc_domain), xcp_id); 1807 1808 ret = amdgpu_gem_object_create(adev, aligned_size, 1, alloc_domain, alloc_flags, 1809 bo_type, NULL, &gobj, xcp_id + 1); 1810 if (ret) { 1811 pr_debug("Failed to create BO on domain %s. ret %d\n", 1812 domain_string(alloc_domain), ret); 1813 goto err_bo_create; 1814 } 1815 ret = drm_vma_node_allow(&gobj->vma_node, drm_priv); 1816 if (ret) { 1817 pr_debug("Failed to allow vma node access. ret %d\n", ret); 1818 goto err_node_allow; 1819 } 1820 ret = drm_gem_handle_create(adev->kfd.client.file, gobj, &(*mem)->gem_handle); 1821 if (ret) 1822 goto err_gem_handle_create; 1823 bo = gem_to_amdgpu_bo(gobj); 1824 if (bo_type == ttm_bo_type_sg) { 1825 bo->tbo.sg = sg; 1826 bo->tbo.ttm->sg = sg; 1827 } 1828 bo->kfd_bo = *mem; 1829 (*mem)->bo = bo; 1830 if (user_addr) 1831 bo->flags |= AMDGPU_AMDKFD_CREATE_USERPTR_BO; 1832 1833 (*mem)->va = va; 1834 (*mem)->domain = domain; 1835 (*mem)->mapped_to_gpu_memory = 0; 1836 (*mem)->process_info = avm->process_info; 1837 1838 add_kgd_mem_to_kfd_bo_list(*mem, avm->process_info, user_addr); 1839 1840 if (user_addr) { 1841 pr_debug("creating userptr BO for user_addr = %llx\n", user_addr); 1842 ret = init_user_pages(*mem, user_addr, criu_resume); 1843 if (ret) 1844 goto allocate_init_user_pages_failed; 1845 } else if (flags & (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL | 1846 KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) { 1847 ret = amdgpu_amdkfd_gpuvm_pin_bo(bo, AMDGPU_GEM_DOMAIN_GTT); 1848 if (ret) { 1849 pr_err("Pinning MMIO/DOORBELL BO during ALLOC FAILED\n"); 1850 goto err_pin_bo; 1851 } 1852 bo->allowed_domains = AMDGPU_GEM_DOMAIN_GTT; 1853 bo->preferred_domains = AMDGPU_GEM_DOMAIN_GTT; 1854 } else { 1855 mutex_lock(&avm->process_info->lock); 1856 if (avm->process_info->eviction_fence && 1857 !dma_fence_is_signaled(&avm->process_info->eviction_fence->base)) 1858 ret = amdgpu_amdkfd_bo_validate_and_fence(bo, domain, 1859 &avm->process_info->eviction_fence->base); 1860 mutex_unlock(&avm->process_info->lock); 1861 if (ret) 1862 goto err_validate_bo; 1863 } 1864 1865 if (offset) 1866 *offset = amdgpu_bo_mmap_offset(bo); 1867 1868 return 0; 1869 1870 allocate_init_user_pages_failed: 1871 err_pin_bo: 1872 err_validate_bo: 1873 remove_kgd_mem_from_kfd_bo_list(*mem, avm->process_info); 1874 drm_gem_handle_delete(adev->kfd.client.file, (*mem)->gem_handle); 1875 err_gem_handle_create: 1876 drm_vma_node_revoke(&gobj->vma_node, drm_priv); 1877 err_node_allow: 1878 /* Don't unreserve system mem limit twice */ 1879 goto err_reserve_limit; 1880 err_bo_create: 1881 amdgpu_amdkfd_unreserve_mem_limit(adev, aligned_size, flags, xcp_id); 1882 err_reserve_limit: 1883 amdgpu_sync_free(&(*mem)->sync); 1884 mutex_destroy(&(*mem)->lock); 1885 if (gobj) 1886 drm_gem_object_put(gobj); 1887 else 1888 kfree(*mem); 1889 err: 1890 if (sg) { 1891 sg_free_table(sg); 1892 kfree(sg); 1893 } 1894 return ret; 1895 } 1896 1897 int amdgpu_amdkfd_gpuvm_free_memory_of_gpu( 1898 struct amdgpu_device *adev, struct kgd_mem *mem, void *drm_priv, 1899 uint64_t *size) 1900 { 1901 struct amdkfd_process_info *process_info = mem->process_info; 1902 unsigned long bo_size = mem->bo->tbo.base.size; 1903 bool use_release_notifier = (mem->bo->kfd_bo == mem); 1904 struct kfd_mem_attachment *entry, *tmp; 1905 struct bo_vm_reservation_context ctx; 1906 unsigned int mapped_to_gpu_memory; 1907 int ret; 1908 bool is_imported = false; 1909 1910 mutex_lock(&mem->lock); 1911 1912 /* Unpin MMIO/DOORBELL BO's that were pinned during allocation */ 1913 if (mem->alloc_flags & 1914 (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL | 1915 KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) { 1916 amdgpu_amdkfd_gpuvm_unpin_bo(mem->bo); 1917 } 1918 1919 mapped_to_gpu_memory = mem->mapped_to_gpu_memory; 1920 is_imported = mem->is_imported; 1921 mutex_unlock(&mem->lock); 1922 /* lock is not needed after this, since mem is unused and will 1923 * be freed anyway 1924 */ 1925 1926 if (mapped_to_gpu_memory > 0) { 1927 pr_debug("BO VA 0x%llx size 0x%lx is still mapped.\n", 1928 mem->va, bo_size); 1929 return -EBUSY; 1930 } 1931 1932 /* Make sure restore workers don't access the BO any more */ 1933 mutex_lock(&process_info->lock); 1934 list_del(&mem->validate_list); 1935 mutex_unlock(&process_info->lock); 1936 1937 /* Cleanup user pages and MMU notifiers */ 1938 if (amdgpu_ttm_tt_get_usermm(mem->bo->tbo.ttm)) { 1939 amdgpu_hmm_unregister(mem->bo); 1940 mutex_lock(&process_info->notifier_lock); 1941 amdgpu_ttm_tt_discard_user_pages(mem->bo->tbo.ttm, mem->range); 1942 mutex_unlock(&process_info->notifier_lock); 1943 } 1944 1945 ret = reserve_bo_and_cond_vms(mem, NULL, BO_VM_ALL, &ctx); 1946 if (unlikely(ret)) 1947 return ret; 1948 1949 amdgpu_amdkfd_remove_eviction_fence(mem->bo, 1950 process_info->eviction_fence); 1951 pr_debug("Release VA 0x%llx - 0x%llx\n", mem->va, 1952 mem->va + bo_size * (1 + mem->aql_queue)); 1953 1954 /* Remove from VM internal data structures */ 1955 list_for_each_entry_safe(entry, tmp, &mem->attachments, list) { 1956 kfd_mem_dmaunmap_attachment(mem, entry); 1957 kfd_mem_detach(entry); 1958 } 1959 1960 ret = unreserve_bo_and_vms(&ctx, false, false); 1961 1962 /* Free the sync object */ 1963 amdgpu_sync_free(&mem->sync); 1964 1965 /* If the SG is not NULL, it's one we created for a doorbell or mmio 1966 * remap BO. We need to free it. 1967 */ 1968 if (mem->bo->tbo.sg) { 1969 sg_free_table(mem->bo->tbo.sg); 1970 kfree(mem->bo->tbo.sg); 1971 } 1972 1973 /* Update the size of the BO being freed if it was allocated from 1974 * VRAM and is not imported. For APP APU VRAM allocations are done 1975 * in GTT domain 1976 */ 1977 if (size) { 1978 if (!is_imported && 1979 (mem->bo->preferred_domains == AMDGPU_GEM_DOMAIN_VRAM || 1980 ((adev->gmc.is_app_apu || adev->flags & AMD_IS_APU) && 1981 mem->bo->preferred_domains == AMDGPU_GEM_DOMAIN_GTT))) 1982 *size = bo_size; 1983 else 1984 *size = 0; 1985 } 1986 1987 /* Free the BO*/ 1988 drm_vma_node_revoke(&mem->bo->tbo.base.vma_node, drm_priv); 1989 drm_gem_handle_delete(adev->kfd.client.file, mem->gem_handle); 1990 if (mem->dmabuf) { 1991 dma_buf_put(mem->dmabuf); 1992 mem->dmabuf = NULL; 1993 } 1994 mutex_destroy(&mem->lock); 1995 1996 /* If this releases the last reference, it will end up calling 1997 * amdgpu_amdkfd_release_notify and kfree the mem struct. That's why 1998 * this needs to be the last call here. 1999 */ 2000 drm_gem_object_put(&mem->bo->tbo.base); 2001 2002 /* 2003 * For kgd_mem allocated in amdgpu_amdkfd_gpuvm_import_dmabuf(), 2004 * explicitly free it here. 2005 */ 2006 if (!use_release_notifier) 2007 kfree(mem); 2008 2009 return ret; 2010 } 2011 2012 int amdgpu_amdkfd_gpuvm_map_memory_to_gpu( 2013 struct amdgpu_device *adev, struct kgd_mem *mem, 2014 void *drm_priv) 2015 { 2016 struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv); 2017 int ret; 2018 struct amdgpu_bo *bo; 2019 uint32_t domain; 2020 struct kfd_mem_attachment *entry; 2021 struct bo_vm_reservation_context ctx; 2022 unsigned long bo_size; 2023 bool is_invalid_userptr = false; 2024 2025 bo = mem->bo; 2026 if (!bo) { 2027 pr_err("Invalid BO when mapping memory to GPU\n"); 2028 return -EINVAL; 2029 } 2030 2031 /* Make sure restore is not running concurrently. Since we 2032 * don't map invalid userptr BOs, we rely on the next restore 2033 * worker to do the mapping 2034 */ 2035 mutex_lock(&mem->process_info->lock); 2036 2037 /* Lock notifier lock. If we find an invalid userptr BO, we can be 2038 * sure that the MMU notifier is no longer running 2039 * concurrently and the queues are actually stopped 2040 */ 2041 if (amdgpu_ttm_tt_get_usermm(bo->tbo.ttm)) { 2042 mutex_lock(&mem->process_info->notifier_lock); 2043 is_invalid_userptr = !!mem->invalid; 2044 mutex_unlock(&mem->process_info->notifier_lock); 2045 } 2046 2047 mutex_lock(&mem->lock); 2048 2049 domain = mem->domain; 2050 bo_size = bo->tbo.base.size; 2051 2052 pr_debug("Map VA 0x%llx - 0x%llx to vm %p domain %s\n", 2053 mem->va, 2054 mem->va + bo_size * (1 + mem->aql_queue), 2055 avm, domain_string(domain)); 2056 2057 if (!kfd_mem_is_attached(avm, mem)) { 2058 ret = kfd_mem_attach(adev, mem, avm, mem->aql_queue); 2059 if (ret) 2060 goto out; 2061 } 2062 2063 ret = reserve_bo_and_vm(mem, avm, &ctx); 2064 if (unlikely(ret)) 2065 goto out; 2066 2067 /* Userptr can be marked as "not invalid", but not actually be 2068 * validated yet (still in the system domain). In that case 2069 * the queues are still stopped and we can leave mapping for 2070 * the next restore worker 2071 */ 2072 if (amdgpu_ttm_tt_get_usermm(bo->tbo.ttm) && 2073 bo->tbo.resource->mem_type == TTM_PL_SYSTEM) 2074 is_invalid_userptr = true; 2075 2076 ret = vm_validate_pt_pd_bos(avm, NULL); 2077 if (unlikely(ret)) 2078 goto out_unreserve; 2079 2080 list_for_each_entry(entry, &mem->attachments, list) { 2081 if (entry->bo_va->base.vm != avm || entry->is_mapped) 2082 continue; 2083 2084 pr_debug("\t map VA 0x%llx - 0x%llx in entry %p\n", 2085 entry->va, entry->va + bo_size, entry); 2086 2087 ret = map_bo_to_gpuvm(mem, entry, ctx.sync, 2088 is_invalid_userptr); 2089 if (ret) { 2090 pr_err("Failed to map bo to gpuvm\n"); 2091 goto out_unreserve; 2092 } 2093 2094 ret = vm_update_pds(avm, ctx.sync); 2095 if (ret) { 2096 pr_err("Failed to update page directories\n"); 2097 goto out_unreserve; 2098 } 2099 2100 entry->is_mapped = true; 2101 mem->mapped_to_gpu_memory++; 2102 pr_debug("\t INC mapping count %d\n", 2103 mem->mapped_to_gpu_memory); 2104 } 2105 2106 ret = unreserve_bo_and_vms(&ctx, false, false); 2107 2108 goto out; 2109 2110 out_unreserve: 2111 unreserve_bo_and_vms(&ctx, false, false); 2112 out: 2113 mutex_unlock(&mem->process_info->lock); 2114 mutex_unlock(&mem->lock); 2115 return ret; 2116 } 2117 2118 int amdgpu_amdkfd_gpuvm_dmaunmap_mem(struct kgd_mem *mem, void *drm_priv) 2119 { 2120 struct kfd_mem_attachment *entry; 2121 struct amdgpu_vm *vm; 2122 int ret; 2123 2124 vm = drm_priv_to_vm(drm_priv); 2125 2126 mutex_lock(&mem->lock); 2127 2128 ret = amdgpu_bo_reserve(mem->bo, true); 2129 if (ret) 2130 goto out; 2131 2132 list_for_each_entry(entry, &mem->attachments, list) { 2133 if (entry->bo_va->base.vm != vm) 2134 continue; 2135 if (entry->bo_va->base.bo->tbo.ttm && 2136 !entry->bo_va->base.bo->tbo.ttm->sg) 2137 continue; 2138 2139 kfd_mem_dmaunmap_attachment(mem, entry); 2140 } 2141 2142 amdgpu_bo_unreserve(mem->bo); 2143 out: 2144 mutex_unlock(&mem->lock); 2145 2146 return ret; 2147 } 2148 2149 int amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu( 2150 struct amdgpu_device *adev, struct kgd_mem *mem, void *drm_priv) 2151 { 2152 struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv); 2153 unsigned long bo_size = mem->bo->tbo.base.size; 2154 struct kfd_mem_attachment *entry; 2155 struct bo_vm_reservation_context ctx; 2156 int ret; 2157 2158 mutex_lock(&mem->lock); 2159 2160 ret = reserve_bo_and_cond_vms(mem, avm, BO_VM_MAPPED, &ctx); 2161 if (unlikely(ret)) 2162 goto out; 2163 /* If no VMs were reserved, it means the BO wasn't actually mapped */ 2164 if (ctx.n_vms == 0) { 2165 ret = -EINVAL; 2166 goto unreserve_out; 2167 } 2168 2169 ret = vm_validate_pt_pd_bos(avm, NULL); 2170 if (unlikely(ret)) 2171 goto unreserve_out; 2172 2173 pr_debug("Unmap VA 0x%llx - 0x%llx from vm %p\n", 2174 mem->va, 2175 mem->va + bo_size * (1 + mem->aql_queue), 2176 avm); 2177 2178 list_for_each_entry(entry, &mem->attachments, list) { 2179 if (entry->bo_va->base.vm != avm || !entry->is_mapped) 2180 continue; 2181 2182 pr_debug("\t unmap VA 0x%llx - 0x%llx from entry %p\n", 2183 entry->va, entry->va + bo_size, entry); 2184 2185 unmap_bo_from_gpuvm(mem, entry, ctx.sync); 2186 entry->is_mapped = false; 2187 2188 mem->mapped_to_gpu_memory--; 2189 pr_debug("\t DEC mapping count %d\n", 2190 mem->mapped_to_gpu_memory); 2191 } 2192 2193 unreserve_out: 2194 unreserve_bo_and_vms(&ctx, false, false); 2195 out: 2196 mutex_unlock(&mem->lock); 2197 return ret; 2198 } 2199 2200 int amdgpu_amdkfd_gpuvm_sync_memory( 2201 struct amdgpu_device *adev, struct kgd_mem *mem, bool intr) 2202 { 2203 struct amdgpu_sync sync; 2204 int ret; 2205 2206 amdgpu_sync_create(&sync); 2207 2208 mutex_lock(&mem->lock); 2209 amdgpu_sync_clone(&mem->sync, &sync); 2210 mutex_unlock(&mem->lock); 2211 2212 ret = amdgpu_sync_wait(&sync, intr); 2213 amdgpu_sync_free(&sync); 2214 return ret; 2215 } 2216 2217 /** 2218 * amdgpu_amdkfd_map_gtt_bo_to_gart - Map BO to GART and increment reference count 2219 * @bo: Buffer object to be mapped 2220 * 2221 * Before return, bo reference count is incremented. To release the reference and unpin/ 2222 * unmap the BO, call amdgpu_amdkfd_free_gtt_mem. 2223 */ 2224 int amdgpu_amdkfd_map_gtt_bo_to_gart(struct amdgpu_bo *bo) 2225 { 2226 int ret; 2227 2228 ret = amdgpu_bo_reserve(bo, true); 2229 if (ret) { 2230 pr_err("Failed to reserve bo. ret %d\n", ret); 2231 goto err_reserve_bo_failed; 2232 } 2233 2234 ret = amdgpu_bo_pin(bo, AMDGPU_GEM_DOMAIN_GTT); 2235 if (ret) { 2236 pr_err("Failed to pin bo. ret %d\n", ret); 2237 goto err_pin_bo_failed; 2238 } 2239 2240 ret = amdgpu_ttm_alloc_gart(&bo->tbo); 2241 if (ret) { 2242 pr_err("Failed to bind bo to GART. ret %d\n", ret); 2243 goto err_map_bo_gart_failed; 2244 } 2245 2246 amdgpu_amdkfd_remove_eviction_fence( 2247 bo, bo->vm_bo->vm->process_info->eviction_fence); 2248 2249 amdgpu_bo_unreserve(bo); 2250 2251 bo = amdgpu_bo_ref(bo); 2252 2253 return 0; 2254 2255 err_map_bo_gart_failed: 2256 amdgpu_bo_unpin(bo); 2257 err_pin_bo_failed: 2258 amdgpu_bo_unreserve(bo); 2259 err_reserve_bo_failed: 2260 2261 return ret; 2262 } 2263 2264 /** amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel() - Map a GTT BO for kernel CPU access 2265 * 2266 * @mem: Buffer object to be mapped for CPU access 2267 * @kptr[out]: pointer in kernel CPU address space 2268 * @size[out]: size of the buffer 2269 * 2270 * Pins the BO and maps it for kernel CPU access. The eviction fence is removed 2271 * from the BO, since pinned BOs cannot be evicted. The bo must remain on the 2272 * validate_list, so the GPU mapping can be restored after a page table was 2273 * evicted. 2274 * 2275 * Return: 0 on success, error code on failure 2276 */ 2277 int amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(struct kgd_mem *mem, 2278 void **kptr, uint64_t *size) 2279 { 2280 int ret; 2281 struct amdgpu_bo *bo = mem->bo; 2282 2283 if (amdgpu_ttm_tt_get_usermm(bo->tbo.ttm)) { 2284 pr_err("userptr can't be mapped to kernel\n"); 2285 return -EINVAL; 2286 } 2287 2288 mutex_lock(&mem->process_info->lock); 2289 2290 ret = amdgpu_bo_reserve(bo, true); 2291 if (ret) { 2292 pr_err("Failed to reserve bo. ret %d\n", ret); 2293 goto bo_reserve_failed; 2294 } 2295 2296 ret = amdgpu_bo_pin(bo, AMDGPU_GEM_DOMAIN_GTT); 2297 if (ret) { 2298 pr_err("Failed to pin bo. ret %d\n", ret); 2299 goto pin_failed; 2300 } 2301 2302 ret = amdgpu_bo_kmap(bo, kptr); 2303 if (ret) { 2304 pr_err("Failed to map bo to kernel. ret %d\n", ret); 2305 goto kmap_failed; 2306 } 2307 2308 amdgpu_amdkfd_remove_eviction_fence( 2309 bo, mem->process_info->eviction_fence); 2310 2311 if (size) 2312 *size = amdgpu_bo_size(bo); 2313 2314 amdgpu_bo_unreserve(bo); 2315 2316 mutex_unlock(&mem->process_info->lock); 2317 return 0; 2318 2319 kmap_failed: 2320 amdgpu_bo_unpin(bo); 2321 pin_failed: 2322 amdgpu_bo_unreserve(bo); 2323 bo_reserve_failed: 2324 mutex_unlock(&mem->process_info->lock); 2325 2326 return ret; 2327 } 2328 2329 /** amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel() - Unmap a GTT BO for kernel CPU access 2330 * 2331 * @mem: Buffer object to be unmapped for CPU access 2332 * 2333 * Removes the kernel CPU mapping and unpins the BO. It does not restore the 2334 * eviction fence, so this function should only be used for cleanup before the 2335 * BO is destroyed. 2336 */ 2337 void amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(struct kgd_mem *mem) 2338 { 2339 struct amdgpu_bo *bo = mem->bo; 2340 2341 amdgpu_bo_reserve(bo, true); 2342 amdgpu_bo_kunmap(bo); 2343 amdgpu_bo_unpin(bo); 2344 amdgpu_bo_unreserve(bo); 2345 } 2346 2347 int amdgpu_amdkfd_gpuvm_get_vm_fault_info(struct amdgpu_device *adev, 2348 struct kfd_vm_fault_info *mem) 2349 { 2350 if (atomic_read(&adev->gmc.vm_fault_info_updated) == 1) { 2351 *mem = *adev->gmc.vm_fault_info; 2352 mb(); /* make sure read happened */ 2353 atomic_set(&adev->gmc.vm_fault_info_updated, 0); 2354 } 2355 return 0; 2356 } 2357 2358 static int import_obj_create(struct amdgpu_device *adev, 2359 struct dma_buf *dma_buf, 2360 struct drm_gem_object *obj, 2361 uint64_t va, void *drm_priv, 2362 struct kgd_mem **mem, uint64_t *size, 2363 uint64_t *mmap_offset) 2364 { 2365 struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv); 2366 struct amdgpu_bo *bo; 2367 int ret; 2368 2369 bo = gem_to_amdgpu_bo(obj); 2370 if (!(bo->preferred_domains & (AMDGPU_GEM_DOMAIN_VRAM | 2371 AMDGPU_GEM_DOMAIN_GTT))) 2372 /* Only VRAM and GTT BOs are supported */ 2373 return -EINVAL; 2374 2375 *mem = kzalloc(sizeof(struct kgd_mem), GFP_KERNEL); 2376 if (!*mem) 2377 return -ENOMEM; 2378 2379 ret = drm_vma_node_allow(&obj->vma_node, drm_priv); 2380 if (ret) 2381 goto err_free_mem; 2382 2383 if (size) 2384 *size = amdgpu_bo_size(bo); 2385 2386 if (mmap_offset) 2387 *mmap_offset = amdgpu_bo_mmap_offset(bo); 2388 2389 INIT_LIST_HEAD(&(*mem)->attachments); 2390 mutex_init(&(*mem)->lock); 2391 2392 (*mem)->alloc_flags = 2393 ((bo->preferred_domains & AMDGPU_GEM_DOMAIN_VRAM) ? 2394 KFD_IOC_ALLOC_MEM_FLAGS_VRAM : KFD_IOC_ALLOC_MEM_FLAGS_GTT) 2395 | KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE 2396 | KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE; 2397 2398 get_dma_buf(dma_buf); 2399 (*mem)->dmabuf = dma_buf; 2400 (*mem)->bo = bo; 2401 (*mem)->va = va; 2402 (*mem)->domain = (bo->preferred_domains & AMDGPU_GEM_DOMAIN_VRAM) && 2403 !(adev->gmc.is_app_apu || adev->flags & AMD_IS_APU) ? 2404 AMDGPU_GEM_DOMAIN_VRAM : AMDGPU_GEM_DOMAIN_GTT; 2405 2406 (*mem)->mapped_to_gpu_memory = 0; 2407 (*mem)->process_info = avm->process_info; 2408 add_kgd_mem_to_kfd_bo_list(*mem, avm->process_info, false); 2409 amdgpu_sync_create(&(*mem)->sync); 2410 (*mem)->is_imported = true; 2411 2412 mutex_lock(&avm->process_info->lock); 2413 if (avm->process_info->eviction_fence && 2414 !dma_fence_is_signaled(&avm->process_info->eviction_fence->base)) 2415 ret = amdgpu_amdkfd_bo_validate_and_fence(bo, (*mem)->domain, 2416 &avm->process_info->eviction_fence->base); 2417 mutex_unlock(&avm->process_info->lock); 2418 if (ret) 2419 goto err_remove_mem; 2420 2421 return 0; 2422 2423 err_remove_mem: 2424 remove_kgd_mem_from_kfd_bo_list(*mem, avm->process_info); 2425 drm_vma_node_revoke(&obj->vma_node, drm_priv); 2426 err_free_mem: 2427 kfree(*mem); 2428 return ret; 2429 } 2430 2431 int amdgpu_amdkfd_gpuvm_import_dmabuf_fd(struct amdgpu_device *adev, int fd, 2432 uint64_t va, void *drm_priv, 2433 struct kgd_mem **mem, uint64_t *size, 2434 uint64_t *mmap_offset) 2435 { 2436 struct drm_gem_object *obj; 2437 uint32_t handle; 2438 int ret; 2439 2440 ret = drm_gem_prime_fd_to_handle(&adev->ddev, adev->kfd.client.file, fd, 2441 &handle); 2442 if (ret) 2443 return ret; 2444 obj = drm_gem_object_lookup(adev->kfd.client.file, handle); 2445 if (!obj) { 2446 ret = -EINVAL; 2447 goto err_release_handle; 2448 } 2449 2450 ret = import_obj_create(adev, obj->dma_buf, obj, va, drm_priv, mem, size, 2451 mmap_offset); 2452 if (ret) 2453 goto err_put_obj; 2454 2455 (*mem)->gem_handle = handle; 2456 2457 return 0; 2458 2459 err_put_obj: 2460 drm_gem_object_put(obj); 2461 err_release_handle: 2462 drm_gem_handle_delete(adev->kfd.client.file, handle); 2463 return ret; 2464 } 2465 2466 int amdgpu_amdkfd_gpuvm_export_dmabuf(struct kgd_mem *mem, 2467 struct dma_buf **dma_buf) 2468 { 2469 int ret; 2470 2471 mutex_lock(&mem->lock); 2472 ret = kfd_mem_export_dmabuf(mem); 2473 if (ret) 2474 goto out; 2475 2476 get_dma_buf(mem->dmabuf); 2477 *dma_buf = mem->dmabuf; 2478 out: 2479 mutex_unlock(&mem->lock); 2480 return ret; 2481 } 2482 2483 /* Evict a userptr BO by stopping the queues if necessary 2484 * 2485 * Runs in MMU notifier, may be in RECLAIM_FS context. This means it 2486 * cannot do any memory allocations, and cannot take any locks that 2487 * are held elsewhere while allocating memory. 2488 * 2489 * It doesn't do anything to the BO itself. The real work happens in 2490 * restore, where we get updated page addresses. This function only 2491 * ensures that GPU access to the BO is stopped. 2492 */ 2493 int amdgpu_amdkfd_evict_userptr(struct mmu_interval_notifier *mni, 2494 unsigned long cur_seq, struct kgd_mem *mem) 2495 { 2496 struct amdkfd_process_info *process_info = mem->process_info; 2497 int r = 0; 2498 2499 /* Do not process MMU notifications during CRIU restore until 2500 * KFD_CRIU_OP_RESUME IOCTL is received 2501 */ 2502 if (READ_ONCE(process_info->block_mmu_notifications)) 2503 return 0; 2504 2505 mutex_lock(&process_info->notifier_lock); 2506 mmu_interval_set_seq(mni, cur_seq); 2507 2508 mem->invalid++; 2509 if (++process_info->evicted_bos == 1) { 2510 /* First eviction, stop the queues */ 2511 r = kgd2kfd_quiesce_mm(mni->mm, 2512 KFD_QUEUE_EVICTION_TRIGGER_USERPTR); 2513 if (r) 2514 pr_err("Failed to quiesce KFD\n"); 2515 queue_delayed_work(system_freezable_wq, 2516 &process_info->restore_userptr_work, 2517 msecs_to_jiffies(AMDGPU_USERPTR_RESTORE_DELAY_MS)); 2518 } 2519 mutex_unlock(&process_info->notifier_lock); 2520 2521 return r; 2522 } 2523 2524 /* Update invalid userptr BOs 2525 * 2526 * Moves invalidated (evicted) userptr BOs from userptr_valid_list to 2527 * userptr_inval_list and updates user pages for all BOs that have 2528 * been invalidated since their last update. 2529 */ 2530 static int update_invalid_user_pages(struct amdkfd_process_info *process_info, 2531 struct mm_struct *mm) 2532 { 2533 struct kgd_mem *mem, *tmp_mem; 2534 struct amdgpu_bo *bo; 2535 struct ttm_operation_ctx ctx = { false, false }; 2536 uint32_t invalid; 2537 int ret = 0; 2538 2539 mutex_lock(&process_info->notifier_lock); 2540 2541 /* Move all invalidated BOs to the userptr_inval_list */ 2542 list_for_each_entry_safe(mem, tmp_mem, 2543 &process_info->userptr_valid_list, 2544 validate_list) 2545 if (mem->invalid) 2546 list_move_tail(&mem->validate_list, 2547 &process_info->userptr_inval_list); 2548 2549 /* Go through userptr_inval_list and update any invalid user_pages */ 2550 list_for_each_entry(mem, &process_info->userptr_inval_list, 2551 validate_list) { 2552 invalid = mem->invalid; 2553 if (!invalid) 2554 /* BO hasn't been invalidated since the last 2555 * revalidation attempt. Keep its page list. 2556 */ 2557 continue; 2558 2559 bo = mem->bo; 2560 2561 amdgpu_ttm_tt_discard_user_pages(bo->tbo.ttm, mem->range); 2562 mem->range = NULL; 2563 2564 /* BO reservations and getting user pages (hmm_range_fault) 2565 * must happen outside the notifier lock 2566 */ 2567 mutex_unlock(&process_info->notifier_lock); 2568 2569 /* Move the BO to system (CPU) domain if necessary to unmap 2570 * and free the SG table 2571 */ 2572 if (bo->tbo.resource->mem_type != TTM_PL_SYSTEM) { 2573 if (amdgpu_bo_reserve(bo, true)) 2574 return -EAGAIN; 2575 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_CPU); 2576 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 2577 amdgpu_bo_unreserve(bo); 2578 if (ret) { 2579 pr_err("%s: Failed to invalidate userptr BO\n", 2580 __func__); 2581 return -EAGAIN; 2582 } 2583 } 2584 2585 /* Get updated user pages */ 2586 ret = amdgpu_ttm_tt_get_user_pages(bo, bo->tbo.ttm->pages, 2587 &mem->range); 2588 if (ret) { 2589 pr_debug("Failed %d to get user pages\n", ret); 2590 2591 /* Return -EFAULT bad address error as success. It will 2592 * fail later with a VM fault if the GPU tries to access 2593 * it. Better than hanging indefinitely with stalled 2594 * user mode queues. 2595 * 2596 * Return other error -EBUSY or -ENOMEM to retry restore 2597 */ 2598 if (ret != -EFAULT) 2599 return ret; 2600 2601 ret = 0; 2602 } 2603 2604 mutex_lock(&process_info->notifier_lock); 2605 2606 /* Mark the BO as valid unless it was invalidated 2607 * again concurrently. 2608 */ 2609 if (mem->invalid != invalid) { 2610 ret = -EAGAIN; 2611 goto unlock_out; 2612 } 2613 /* set mem valid if mem has hmm range associated */ 2614 if (mem->range) 2615 mem->invalid = 0; 2616 } 2617 2618 unlock_out: 2619 mutex_unlock(&process_info->notifier_lock); 2620 2621 return ret; 2622 } 2623 2624 /* Validate invalid userptr BOs 2625 * 2626 * Validates BOs on the userptr_inval_list. Also updates GPUVM page tables 2627 * with new page addresses and waits for the page table updates to complete. 2628 */ 2629 static int validate_invalid_user_pages(struct amdkfd_process_info *process_info) 2630 { 2631 struct ttm_operation_ctx ctx = { false, false }; 2632 struct amdgpu_sync sync; 2633 struct drm_exec exec; 2634 2635 struct amdgpu_vm *peer_vm; 2636 struct kgd_mem *mem, *tmp_mem; 2637 struct amdgpu_bo *bo; 2638 int ret; 2639 2640 amdgpu_sync_create(&sync); 2641 2642 drm_exec_init(&exec, 0, 0); 2643 /* Reserve all BOs and page tables for validation */ 2644 drm_exec_until_all_locked(&exec) { 2645 /* Reserve all the page directories */ 2646 list_for_each_entry(peer_vm, &process_info->vm_list_head, 2647 vm_list_node) { 2648 ret = amdgpu_vm_lock_pd(peer_vm, &exec, 2); 2649 drm_exec_retry_on_contention(&exec); 2650 if (unlikely(ret)) 2651 goto unreserve_out; 2652 } 2653 2654 /* Reserve the userptr_inval_list entries to resv_list */ 2655 list_for_each_entry(mem, &process_info->userptr_inval_list, 2656 validate_list) { 2657 struct drm_gem_object *gobj; 2658 2659 gobj = &mem->bo->tbo.base; 2660 ret = drm_exec_prepare_obj(&exec, gobj, 1); 2661 drm_exec_retry_on_contention(&exec); 2662 if (unlikely(ret)) 2663 goto unreserve_out; 2664 } 2665 } 2666 2667 ret = process_validate_vms(process_info, NULL); 2668 if (ret) 2669 goto unreserve_out; 2670 2671 /* Validate BOs and update GPUVM page tables */ 2672 list_for_each_entry_safe(mem, tmp_mem, 2673 &process_info->userptr_inval_list, 2674 validate_list) { 2675 struct kfd_mem_attachment *attachment; 2676 2677 bo = mem->bo; 2678 2679 /* Validate the BO if we got user pages */ 2680 if (bo->tbo.ttm->pages[0]) { 2681 amdgpu_bo_placement_from_domain(bo, mem->domain); 2682 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 2683 if (ret) { 2684 pr_err("%s: failed to validate BO\n", __func__); 2685 goto unreserve_out; 2686 } 2687 } 2688 2689 /* Update mapping. If the BO was not validated 2690 * (because we couldn't get user pages), this will 2691 * clear the page table entries, which will result in 2692 * VM faults if the GPU tries to access the invalid 2693 * memory. 2694 */ 2695 list_for_each_entry(attachment, &mem->attachments, list) { 2696 if (!attachment->is_mapped) 2697 continue; 2698 2699 kfd_mem_dmaunmap_attachment(mem, attachment); 2700 ret = update_gpuvm_pte(mem, attachment, &sync); 2701 if (ret) { 2702 pr_err("%s: update PTE failed\n", __func__); 2703 /* make sure this gets validated again */ 2704 mutex_lock(&process_info->notifier_lock); 2705 mem->invalid++; 2706 mutex_unlock(&process_info->notifier_lock); 2707 goto unreserve_out; 2708 } 2709 } 2710 } 2711 2712 /* Update page directories */ 2713 ret = process_update_pds(process_info, &sync); 2714 2715 unreserve_out: 2716 drm_exec_fini(&exec); 2717 amdgpu_sync_wait(&sync, false); 2718 amdgpu_sync_free(&sync); 2719 2720 return ret; 2721 } 2722 2723 /* Confirm that all user pages are valid while holding the notifier lock 2724 * 2725 * Moves valid BOs from the userptr_inval_list back to userptr_val_list. 2726 */ 2727 static int confirm_valid_user_pages_locked(struct amdkfd_process_info *process_info) 2728 { 2729 struct kgd_mem *mem, *tmp_mem; 2730 int ret = 0; 2731 2732 list_for_each_entry_safe(mem, tmp_mem, 2733 &process_info->userptr_inval_list, 2734 validate_list) { 2735 bool valid; 2736 2737 /* keep mem without hmm range at userptr_inval_list */ 2738 if (!mem->range) 2739 continue; 2740 2741 /* Only check mem with hmm range associated */ 2742 valid = amdgpu_ttm_tt_get_user_pages_done( 2743 mem->bo->tbo.ttm, mem->range); 2744 2745 mem->range = NULL; 2746 if (!valid) { 2747 WARN(!mem->invalid, "Invalid BO not marked invalid"); 2748 ret = -EAGAIN; 2749 continue; 2750 } 2751 2752 if (mem->invalid) { 2753 WARN(1, "Valid BO is marked invalid"); 2754 ret = -EAGAIN; 2755 continue; 2756 } 2757 2758 list_move_tail(&mem->validate_list, 2759 &process_info->userptr_valid_list); 2760 } 2761 2762 return ret; 2763 } 2764 2765 /* Worker callback to restore evicted userptr BOs 2766 * 2767 * Tries to update and validate all userptr BOs. If successful and no 2768 * concurrent evictions happened, the queues are restarted. Otherwise, 2769 * reschedule for another attempt later. 2770 */ 2771 static void amdgpu_amdkfd_restore_userptr_worker(struct work_struct *work) 2772 { 2773 struct delayed_work *dwork = to_delayed_work(work); 2774 struct amdkfd_process_info *process_info = 2775 container_of(dwork, struct amdkfd_process_info, 2776 restore_userptr_work); 2777 struct task_struct *usertask; 2778 struct mm_struct *mm; 2779 uint32_t evicted_bos; 2780 2781 mutex_lock(&process_info->notifier_lock); 2782 evicted_bos = process_info->evicted_bos; 2783 mutex_unlock(&process_info->notifier_lock); 2784 if (!evicted_bos) 2785 return; 2786 2787 /* Reference task and mm in case of concurrent process termination */ 2788 usertask = get_pid_task(process_info->pid, PIDTYPE_PID); 2789 if (!usertask) 2790 return; 2791 mm = get_task_mm(usertask); 2792 if (!mm) { 2793 put_task_struct(usertask); 2794 return; 2795 } 2796 2797 mutex_lock(&process_info->lock); 2798 2799 if (update_invalid_user_pages(process_info, mm)) 2800 goto unlock_out; 2801 /* userptr_inval_list can be empty if all evicted userptr BOs 2802 * have been freed. In that case there is nothing to validate 2803 * and we can just restart the queues. 2804 */ 2805 if (!list_empty(&process_info->userptr_inval_list)) { 2806 if (validate_invalid_user_pages(process_info)) 2807 goto unlock_out; 2808 } 2809 /* Final check for concurrent evicton and atomic update. If 2810 * another eviction happens after successful update, it will 2811 * be a first eviction that calls quiesce_mm. The eviction 2812 * reference counting inside KFD will handle this case. 2813 */ 2814 mutex_lock(&process_info->notifier_lock); 2815 if (process_info->evicted_bos != evicted_bos) 2816 goto unlock_notifier_out; 2817 2818 if (confirm_valid_user_pages_locked(process_info)) { 2819 WARN(1, "User pages unexpectedly invalid"); 2820 goto unlock_notifier_out; 2821 } 2822 2823 process_info->evicted_bos = evicted_bos = 0; 2824 2825 if (kgd2kfd_resume_mm(mm)) { 2826 pr_err("%s: Failed to resume KFD\n", __func__); 2827 /* No recovery from this failure. Probably the CP is 2828 * hanging. No point trying again. 2829 */ 2830 } 2831 2832 unlock_notifier_out: 2833 mutex_unlock(&process_info->notifier_lock); 2834 unlock_out: 2835 mutex_unlock(&process_info->lock); 2836 2837 /* If validation failed, reschedule another attempt */ 2838 if (evicted_bos) { 2839 queue_delayed_work(system_freezable_wq, 2840 &process_info->restore_userptr_work, 2841 msecs_to_jiffies(AMDGPU_USERPTR_RESTORE_DELAY_MS)); 2842 2843 kfd_smi_event_queue_restore_rescheduled(mm); 2844 } 2845 mmput(mm); 2846 put_task_struct(usertask); 2847 } 2848 2849 static void replace_eviction_fence(struct dma_fence __rcu **ef, 2850 struct dma_fence *new_ef) 2851 { 2852 struct dma_fence *old_ef = rcu_replace_pointer(*ef, new_ef, true 2853 /* protected by process_info->lock */); 2854 2855 /* If we're replacing an unsignaled eviction fence, that fence will 2856 * never be signaled, and if anyone is still waiting on that fence, 2857 * they will hang forever. This should never happen. We should only 2858 * replace the fence in restore_work that only gets scheduled after 2859 * eviction work signaled the fence. 2860 */ 2861 WARN_ONCE(!dma_fence_is_signaled(old_ef), 2862 "Replacing unsignaled eviction fence"); 2863 dma_fence_put(old_ef); 2864 } 2865 2866 /** amdgpu_amdkfd_gpuvm_restore_process_bos - Restore all BOs for the given 2867 * KFD process identified by process_info 2868 * 2869 * @process_info: amdkfd_process_info of the KFD process 2870 * 2871 * After memory eviction, restore thread calls this function. The function 2872 * should be called when the Process is still valid. BO restore involves - 2873 * 2874 * 1. Release old eviction fence and create new one 2875 * 2. Get two copies of PD BO list from all the VMs. Keep one copy as pd_list. 2876 * 3 Use the second PD list and kfd_bo_list to create a list (ctx.list) of 2877 * BOs that need to be reserved. 2878 * 4. Reserve all the BOs 2879 * 5. Validate of PD and PT BOs. 2880 * 6. Validate all KFD BOs using kfd_bo_list and Map them and add new fence 2881 * 7. Add fence to all PD and PT BOs. 2882 * 8. Unreserve all BOs 2883 */ 2884 int amdgpu_amdkfd_gpuvm_restore_process_bos(void *info, struct dma_fence __rcu **ef) 2885 { 2886 struct amdkfd_process_info *process_info = info; 2887 struct amdgpu_vm *peer_vm; 2888 struct kgd_mem *mem; 2889 struct list_head duplicate_save; 2890 struct amdgpu_sync sync_obj; 2891 unsigned long failed_size = 0; 2892 unsigned long total_size = 0; 2893 struct drm_exec exec; 2894 int ret; 2895 2896 INIT_LIST_HEAD(&duplicate_save); 2897 2898 mutex_lock(&process_info->lock); 2899 2900 drm_exec_init(&exec, DRM_EXEC_IGNORE_DUPLICATES, 0); 2901 drm_exec_until_all_locked(&exec) { 2902 list_for_each_entry(peer_vm, &process_info->vm_list_head, 2903 vm_list_node) { 2904 ret = amdgpu_vm_lock_pd(peer_vm, &exec, 2); 2905 drm_exec_retry_on_contention(&exec); 2906 if (unlikely(ret)) { 2907 pr_err("Locking VM PD failed, ret: %d\n", ret); 2908 goto ttm_reserve_fail; 2909 } 2910 } 2911 2912 /* Reserve all BOs and page tables/directory. Add all BOs from 2913 * kfd_bo_list to ctx.list 2914 */ 2915 list_for_each_entry(mem, &process_info->kfd_bo_list, 2916 validate_list) { 2917 struct drm_gem_object *gobj; 2918 2919 gobj = &mem->bo->tbo.base; 2920 ret = drm_exec_prepare_obj(&exec, gobj, 1); 2921 drm_exec_retry_on_contention(&exec); 2922 if (unlikely(ret)) { 2923 pr_err("drm_exec_prepare_obj failed, ret: %d\n", ret); 2924 goto ttm_reserve_fail; 2925 } 2926 } 2927 } 2928 2929 amdgpu_sync_create(&sync_obj); 2930 2931 /* Validate BOs managed by KFD */ 2932 list_for_each_entry(mem, &process_info->kfd_bo_list, 2933 validate_list) { 2934 2935 struct amdgpu_bo *bo = mem->bo; 2936 uint32_t domain = mem->domain; 2937 struct dma_resv_iter cursor; 2938 struct dma_fence *fence; 2939 2940 total_size += amdgpu_bo_size(bo); 2941 2942 ret = amdgpu_amdkfd_bo_validate(bo, domain, false); 2943 if (ret) { 2944 pr_debug("Memory eviction: Validate BOs failed\n"); 2945 failed_size += amdgpu_bo_size(bo); 2946 ret = amdgpu_amdkfd_bo_validate(bo, 2947 AMDGPU_GEM_DOMAIN_GTT, false); 2948 if (ret) { 2949 pr_debug("Memory eviction: Try again\n"); 2950 goto validate_map_fail; 2951 } 2952 } 2953 dma_resv_for_each_fence(&cursor, bo->tbo.base.resv, 2954 DMA_RESV_USAGE_KERNEL, fence) { 2955 ret = amdgpu_sync_fence(&sync_obj, fence); 2956 if (ret) { 2957 pr_debug("Memory eviction: Sync BO fence failed. Try again\n"); 2958 goto validate_map_fail; 2959 } 2960 } 2961 } 2962 2963 if (failed_size) 2964 pr_debug("0x%lx/0x%lx in system\n", failed_size, total_size); 2965 2966 /* Validate PDs, PTs and evicted DMABuf imports last. Otherwise BO 2967 * validations above would invalidate DMABuf imports again. 2968 */ 2969 ret = process_validate_vms(process_info, &exec.ticket); 2970 if (ret) { 2971 pr_debug("Validating VMs failed, ret: %d\n", ret); 2972 goto validate_map_fail; 2973 } 2974 2975 /* Update mappings managed by KFD. */ 2976 list_for_each_entry(mem, &process_info->kfd_bo_list, 2977 validate_list) { 2978 struct kfd_mem_attachment *attachment; 2979 2980 list_for_each_entry(attachment, &mem->attachments, list) { 2981 if (!attachment->is_mapped) 2982 continue; 2983 2984 if (attachment->bo_va->base.bo->tbo.pin_count) 2985 continue; 2986 2987 kfd_mem_dmaunmap_attachment(mem, attachment); 2988 ret = update_gpuvm_pte(mem, attachment, &sync_obj); 2989 if (ret) { 2990 pr_debug("Memory eviction: update PTE failed. Try again\n"); 2991 goto validate_map_fail; 2992 } 2993 } 2994 } 2995 2996 /* Update mappings not managed by KFD */ 2997 list_for_each_entry(peer_vm, &process_info->vm_list_head, 2998 vm_list_node) { 2999 struct amdgpu_device *adev = amdgpu_ttm_adev( 3000 peer_vm->root.bo->tbo.bdev); 3001 3002 ret = amdgpu_vm_handle_moved(adev, peer_vm, &exec.ticket); 3003 if (ret) { 3004 pr_debug("Memory eviction: handle moved failed. Try again\n"); 3005 goto validate_map_fail; 3006 } 3007 } 3008 3009 /* Update page directories */ 3010 ret = process_update_pds(process_info, &sync_obj); 3011 if (ret) { 3012 pr_debug("Memory eviction: update PDs failed. Try again\n"); 3013 goto validate_map_fail; 3014 } 3015 3016 /* Sync with fences on all the page tables. They implicitly depend on any 3017 * move fences from amdgpu_vm_handle_moved above. 3018 */ 3019 ret = process_sync_pds_resv(process_info, &sync_obj); 3020 if (ret) { 3021 pr_debug("Memory eviction: Failed to sync to PD BO moving fence. Try again\n"); 3022 goto validate_map_fail; 3023 } 3024 3025 /* Wait for validate and PT updates to finish */ 3026 amdgpu_sync_wait(&sync_obj, false); 3027 3028 /* The old eviction fence may be unsignaled if restore happens 3029 * after a GPU reset or suspend/resume. Keep the old fence in that 3030 * case. Otherwise release the old eviction fence and create new 3031 * one, because fence only goes from unsignaled to signaled once 3032 * and cannot be reused. Use context and mm from the old fence. 3033 * 3034 * If an old eviction fence signals after this check, that's OK. 3035 * Anyone signaling an eviction fence must stop the queues first 3036 * and schedule another restore worker. 3037 */ 3038 if (dma_fence_is_signaled(&process_info->eviction_fence->base)) { 3039 struct amdgpu_amdkfd_fence *new_fence = 3040 amdgpu_amdkfd_fence_create( 3041 process_info->eviction_fence->base.context, 3042 process_info->eviction_fence->mm, 3043 NULL); 3044 3045 if (!new_fence) { 3046 pr_err("Failed to create eviction fence\n"); 3047 ret = -ENOMEM; 3048 goto validate_map_fail; 3049 } 3050 dma_fence_put(&process_info->eviction_fence->base); 3051 process_info->eviction_fence = new_fence; 3052 replace_eviction_fence(ef, dma_fence_get(&new_fence->base)); 3053 } else { 3054 WARN_ONCE(*ef != &process_info->eviction_fence->base, 3055 "KFD eviction fence doesn't match KGD process_info"); 3056 } 3057 3058 /* Attach new eviction fence to all BOs except pinned ones */ 3059 list_for_each_entry(mem, &process_info->kfd_bo_list, validate_list) { 3060 if (mem->bo->tbo.pin_count) 3061 continue; 3062 3063 dma_resv_add_fence(mem->bo->tbo.base.resv, 3064 &process_info->eviction_fence->base, 3065 DMA_RESV_USAGE_BOOKKEEP); 3066 } 3067 /* Attach eviction fence to PD / PT BOs and DMABuf imports */ 3068 list_for_each_entry(peer_vm, &process_info->vm_list_head, 3069 vm_list_node) { 3070 struct amdgpu_bo *bo = peer_vm->root.bo; 3071 3072 dma_resv_add_fence(bo->tbo.base.resv, 3073 &process_info->eviction_fence->base, 3074 DMA_RESV_USAGE_BOOKKEEP); 3075 } 3076 3077 validate_map_fail: 3078 amdgpu_sync_free(&sync_obj); 3079 ttm_reserve_fail: 3080 drm_exec_fini(&exec); 3081 mutex_unlock(&process_info->lock); 3082 return ret; 3083 } 3084 3085 int amdgpu_amdkfd_add_gws_to_process(void *info, void *gws, struct kgd_mem **mem) 3086 { 3087 struct amdkfd_process_info *process_info = (struct amdkfd_process_info *)info; 3088 struct amdgpu_bo *gws_bo = (struct amdgpu_bo *)gws; 3089 int ret; 3090 3091 if (!info || !gws) 3092 return -EINVAL; 3093 3094 *mem = kzalloc(sizeof(struct kgd_mem), GFP_KERNEL); 3095 if (!*mem) 3096 return -ENOMEM; 3097 3098 mutex_init(&(*mem)->lock); 3099 INIT_LIST_HEAD(&(*mem)->attachments); 3100 (*mem)->bo = amdgpu_bo_ref(gws_bo); 3101 (*mem)->domain = AMDGPU_GEM_DOMAIN_GWS; 3102 (*mem)->process_info = process_info; 3103 add_kgd_mem_to_kfd_bo_list(*mem, process_info, false); 3104 amdgpu_sync_create(&(*mem)->sync); 3105 3106 3107 /* Validate gws bo the first time it is added to process */ 3108 mutex_lock(&(*mem)->process_info->lock); 3109 ret = amdgpu_bo_reserve(gws_bo, false); 3110 if (unlikely(ret)) { 3111 pr_err("Reserve gws bo failed %d\n", ret); 3112 goto bo_reservation_failure; 3113 } 3114 3115 ret = amdgpu_amdkfd_bo_validate(gws_bo, AMDGPU_GEM_DOMAIN_GWS, true); 3116 if (ret) { 3117 pr_err("GWS BO validate failed %d\n", ret); 3118 goto bo_validation_failure; 3119 } 3120 /* GWS resource is shared b/t amdgpu and amdkfd 3121 * Add process eviction fence to bo so they can 3122 * evict each other. 3123 */ 3124 ret = dma_resv_reserve_fences(gws_bo->tbo.base.resv, 1); 3125 if (ret) 3126 goto reserve_shared_fail; 3127 dma_resv_add_fence(gws_bo->tbo.base.resv, 3128 &process_info->eviction_fence->base, 3129 DMA_RESV_USAGE_BOOKKEEP); 3130 amdgpu_bo_unreserve(gws_bo); 3131 mutex_unlock(&(*mem)->process_info->lock); 3132 3133 return ret; 3134 3135 reserve_shared_fail: 3136 bo_validation_failure: 3137 amdgpu_bo_unreserve(gws_bo); 3138 bo_reservation_failure: 3139 mutex_unlock(&(*mem)->process_info->lock); 3140 amdgpu_sync_free(&(*mem)->sync); 3141 remove_kgd_mem_from_kfd_bo_list(*mem, process_info); 3142 amdgpu_bo_unref(&gws_bo); 3143 mutex_destroy(&(*mem)->lock); 3144 kfree(*mem); 3145 *mem = NULL; 3146 return ret; 3147 } 3148 3149 int amdgpu_amdkfd_remove_gws_from_process(void *info, void *mem) 3150 { 3151 int ret; 3152 struct amdkfd_process_info *process_info = (struct amdkfd_process_info *)info; 3153 struct kgd_mem *kgd_mem = (struct kgd_mem *)mem; 3154 struct amdgpu_bo *gws_bo = kgd_mem->bo; 3155 3156 /* Remove BO from process's validate list so restore worker won't touch 3157 * it anymore 3158 */ 3159 remove_kgd_mem_from_kfd_bo_list(kgd_mem, process_info); 3160 3161 ret = amdgpu_bo_reserve(gws_bo, false); 3162 if (unlikely(ret)) { 3163 pr_err("Reserve gws bo failed %d\n", ret); 3164 //TODO add BO back to validate_list? 3165 return ret; 3166 } 3167 amdgpu_amdkfd_remove_eviction_fence(gws_bo, 3168 process_info->eviction_fence); 3169 amdgpu_bo_unreserve(gws_bo); 3170 amdgpu_sync_free(&kgd_mem->sync); 3171 amdgpu_bo_unref(&gws_bo); 3172 mutex_destroy(&kgd_mem->lock); 3173 kfree(mem); 3174 return 0; 3175 } 3176 3177 /* Returns GPU-specific tiling mode information */ 3178 int amdgpu_amdkfd_get_tile_config(struct amdgpu_device *adev, 3179 struct tile_config *config) 3180 { 3181 config->gb_addr_config = adev->gfx.config.gb_addr_config; 3182 config->tile_config_ptr = adev->gfx.config.tile_mode_array; 3183 config->num_tile_configs = 3184 ARRAY_SIZE(adev->gfx.config.tile_mode_array); 3185 config->macro_tile_config_ptr = 3186 adev->gfx.config.macrotile_mode_array; 3187 config->num_macro_tile_configs = 3188 ARRAY_SIZE(adev->gfx.config.macrotile_mode_array); 3189 3190 /* Those values are not set from GFX9 onwards */ 3191 config->num_banks = adev->gfx.config.num_banks; 3192 config->num_ranks = adev->gfx.config.num_ranks; 3193 3194 return 0; 3195 } 3196 3197 bool amdgpu_amdkfd_bo_mapped_to_dev(struct amdgpu_device *adev, struct kgd_mem *mem) 3198 { 3199 struct kfd_mem_attachment *entry; 3200 3201 list_for_each_entry(entry, &mem->attachments, list) { 3202 if (entry->is_mapped && entry->adev == adev) 3203 return true; 3204 } 3205 return false; 3206 } 3207 3208 #if defined(CONFIG_DEBUG_FS) 3209 3210 int kfd_debugfs_kfd_mem_limits(struct seq_file *m, void *data) 3211 { 3212 3213 spin_lock(&kfd_mem_limit.mem_limit_lock); 3214 seq_printf(m, "System mem used %lldM out of %lluM\n", 3215 (kfd_mem_limit.system_mem_used >> 20), 3216 (kfd_mem_limit.max_system_mem_limit >> 20)); 3217 seq_printf(m, "TTM mem used %lldM out of %lluM\n", 3218 (kfd_mem_limit.ttm_mem_used >> 20), 3219 (kfd_mem_limit.max_ttm_mem_limit >> 20)); 3220 spin_unlock(&kfd_mem_limit.mem_limit_lock); 3221 3222 return 0; 3223 } 3224 3225 #endif 3226