1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright 2014-2018 Advanced Micro Devices, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 */ 23 #include <linux/dma-buf.h> 24 #include <linux/list.h> 25 #include <linux/pagemap.h> 26 #include <linux/sched/mm.h> 27 #include <linux/sched/task.h> 28 #include <linux/fdtable.h> 29 #include <drm/ttm/ttm_tt.h> 30 31 #include <drm/drm_exec.h> 32 33 #include "amdgpu_object.h" 34 #include "amdgpu_gem.h" 35 #include "amdgpu_vm.h" 36 #include "amdgpu_hmm.h" 37 #include "amdgpu_amdkfd.h" 38 #include "amdgpu_dma_buf.h" 39 #include <uapi/linux/kfd_ioctl.h> 40 #include "amdgpu_xgmi.h" 41 #include "kfd_priv.h" 42 #include "kfd_smi_events.h" 43 44 /* Userptr restore delay, just long enough to allow consecutive VM 45 * changes to accumulate 46 */ 47 #define AMDGPU_USERPTR_RESTORE_DELAY_MS 1 48 #define AMDGPU_RESERVE_MEM_LIMIT (3UL << 29) 49 50 /* 51 * Align VRAM availability to 2MB to avoid fragmentation caused by 4K allocations in the tail 2MB 52 * BO chunk 53 */ 54 #define VRAM_AVAILABLITY_ALIGN (1 << 21) 55 56 /* Impose limit on how much memory KFD can use */ 57 static struct { 58 uint64_t max_system_mem_limit; 59 uint64_t max_ttm_mem_limit; 60 int64_t system_mem_used; 61 int64_t ttm_mem_used; 62 spinlock_t mem_limit_lock; 63 } kfd_mem_limit; 64 65 static const char * const domain_bit_to_string[] = { 66 "CPU", 67 "GTT", 68 "VRAM", 69 "GDS", 70 "GWS", 71 "OA" 72 }; 73 74 #define domain_string(domain) domain_bit_to_string[ffs(domain)-1] 75 76 static void amdgpu_amdkfd_restore_userptr_worker(struct work_struct *work); 77 78 static bool kfd_mem_is_attached(struct amdgpu_vm *avm, 79 struct kgd_mem *mem) 80 { 81 struct kfd_mem_attachment *entry; 82 83 list_for_each_entry(entry, &mem->attachments, list) 84 if (entry->bo_va->base.vm == avm) 85 return true; 86 87 return false; 88 } 89 90 /** 91 * reuse_dmamap() - Check whether adev can share the original 92 * userptr BO 93 * 94 * If both adev and bo_adev are in direct mapping or 95 * in the same iommu group, they can share the original BO. 96 * 97 * @adev: Device to which can or cannot share the original BO 98 * @bo_adev: Device to which allocated BO belongs to 99 * 100 * Return: returns true if adev can share original userptr BO, 101 * false otherwise. 102 */ 103 static bool reuse_dmamap(struct amdgpu_device *adev, struct amdgpu_device *bo_adev) 104 { 105 return (adev->ram_is_direct_mapped && bo_adev->ram_is_direct_mapped) || 106 (adev->dev->iommu_group == bo_adev->dev->iommu_group); 107 } 108 109 /* Set memory usage limits. Current, limits are 110 * System (TTM + userptr) memory - 15/16th System RAM 111 * TTM memory - 3/8th System RAM 112 */ 113 void amdgpu_amdkfd_gpuvm_init_mem_limits(void) 114 { 115 struct sysinfo si; 116 uint64_t mem; 117 118 if (kfd_mem_limit.max_system_mem_limit) 119 return; 120 121 si_meminfo(&si); 122 mem = si.totalram - si.totalhigh; 123 mem *= si.mem_unit; 124 125 spin_lock_init(&kfd_mem_limit.mem_limit_lock); 126 kfd_mem_limit.max_system_mem_limit = mem - (mem >> 6); 127 if (kfd_mem_limit.max_system_mem_limit < 2 * AMDGPU_RESERVE_MEM_LIMIT) 128 kfd_mem_limit.max_system_mem_limit >>= 1; 129 else 130 kfd_mem_limit.max_system_mem_limit -= AMDGPU_RESERVE_MEM_LIMIT; 131 132 kfd_mem_limit.max_ttm_mem_limit = ttm_tt_pages_limit() << PAGE_SHIFT; 133 pr_debug("Kernel memory limit %lluM, TTM limit %lluM\n", 134 (kfd_mem_limit.max_system_mem_limit >> 20), 135 (kfd_mem_limit.max_ttm_mem_limit >> 20)); 136 } 137 138 void amdgpu_amdkfd_reserve_system_mem(uint64_t size) 139 { 140 kfd_mem_limit.system_mem_used += size; 141 } 142 143 /* Estimate page table size needed to represent a given memory size 144 * 145 * With 4KB pages, we need one 8 byte PTE for each 4KB of memory 146 * (factor 512, >> 9). With 2MB pages, we need one 8 byte PTE for 2MB 147 * of memory (factor 256K, >> 18). ROCm user mode tries to optimize 148 * for 2MB pages for TLB efficiency. However, small allocations and 149 * fragmented system memory still need some 4KB pages. We choose a 150 * compromise that should work in most cases without reserving too 151 * much memory for page tables unnecessarily (factor 16K, >> 14). 152 */ 153 154 #define ESTIMATE_PT_SIZE(mem_size) max(((mem_size) >> 14), AMDGPU_VM_RESERVED_VRAM) 155 156 /** 157 * amdgpu_amdkfd_reserve_mem_limit() - Decrease available memory by size 158 * of buffer. 159 * 160 * @adev: Device to which allocated BO belongs to 161 * @size: Size of buffer, in bytes, encapsulated by B0. This should be 162 * equivalent to amdgpu_bo_size(BO) 163 * @alloc_flag: Flag used in allocating a BO as noted above 164 * @xcp_id: xcp_id is used to get xcp from xcp manager, one xcp is 165 * managed as one compute node in driver for app 166 * 167 * Return: 168 * returns -ENOMEM in case of error, ZERO otherwise 169 */ 170 int amdgpu_amdkfd_reserve_mem_limit(struct amdgpu_device *adev, 171 uint64_t size, u32 alloc_flag, int8_t xcp_id) 172 { 173 uint64_t reserved_for_pt = 174 ESTIMATE_PT_SIZE(amdgpu_amdkfd_total_mem_size); 175 size_t system_mem_needed, ttm_mem_needed, vram_needed; 176 int ret = 0; 177 uint64_t vram_size = 0; 178 179 system_mem_needed = 0; 180 ttm_mem_needed = 0; 181 vram_needed = 0; 182 if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_GTT) { 183 system_mem_needed = size; 184 ttm_mem_needed = size; 185 } else if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) { 186 /* 187 * Conservatively round up the allocation requirement to 2 MB 188 * to avoid fragmentation caused by 4K allocations in the tail 189 * 2M BO chunk. 190 */ 191 vram_needed = size; 192 /* 193 * For GFX 9.4.3, get the VRAM size from XCP structs 194 */ 195 if (WARN_ONCE(xcp_id < 0, "invalid XCP ID %d", xcp_id)) 196 return -EINVAL; 197 198 vram_size = KFD_XCP_MEMORY_SIZE(adev, xcp_id); 199 if (adev->gmc.is_app_apu) { 200 system_mem_needed = size; 201 ttm_mem_needed = size; 202 } 203 } else if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) { 204 system_mem_needed = size; 205 } else if (!(alloc_flag & 206 (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL | 207 KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP))) { 208 pr_err("%s: Invalid BO type %#x\n", __func__, alloc_flag); 209 return -ENOMEM; 210 } 211 212 spin_lock(&kfd_mem_limit.mem_limit_lock); 213 214 if (kfd_mem_limit.system_mem_used + system_mem_needed > 215 kfd_mem_limit.max_system_mem_limit) 216 pr_debug("Set no_system_mem_limit=1 if using shared memory\n"); 217 218 if ((kfd_mem_limit.system_mem_used + system_mem_needed > 219 kfd_mem_limit.max_system_mem_limit && !no_system_mem_limit) || 220 (kfd_mem_limit.ttm_mem_used + ttm_mem_needed > 221 kfd_mem_limit.max_ttm_mem_limit) || 222 (adev && xcp_id >= 0 && adev->kfd.vram_used[xcp_id] + vram_needed > 223 vram_size - reserved_for_pt)) { 224 ret = -ENOMEM; 225 goto release; 226 } 227 228 /* Update memory accounting by decreasing available system 229 * memory, TTM memory and GPU memory as computed above 230 */ 231 WARN_ONCE(vram_needed && !adev, 232 "adev reference can't be null when vram is used"); 233 if (adev && xcp_id >= 0) { 234 adev->kfd.vram_used[xcp_id] += vram_needed; 235 adev->kfd.vram_used_aligned[xcp_id] += adev->gmc.is_app_apu ? 236 vram_needed : 237 ALIGN(vram_needed, VRAM_AVAILABLITY_ALIGN); 238 } 239 kfd_mem_limit.system_mem_used += system_mem_needed; 240 kfd_mem_limit.ttm_mem_used += ttm_mem_needed; 241 242 release: 243 spin_unlock(&kfd_mem_limit.mem_limit_lock); 244 return ret; 245 } 246 247 void amdgpu_amdkfd_unreserve_mem_limit(struct amdgpu_device *adev, 248 uint64_t size, u32 alloc_flag, int8_t xcp_id) 249 { 250 spin_lock(&kfd_mem_limit.mem_limit_lock); 251 252 if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_GTT) { 253 kfd_mem_limit.system_mem_used -= size; 254 kfd_mem_limit.ttm_mem_used -= size; 255 } else if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) { 256 WARN_ONCE(!adev, 257 "adev reference can't be null when alloc mem flags vram is set"); 258 if (WARN_ONCE(xcp_id < 0, "invalid XCP ID %d", xcp_id)) 259 goto release; 260 261 if (adev) { 262 adev->kfd.vram_used[xcp_id] -= size; 263 if (adev->gmc.is_app_apu) { 264 adev->kfd.vram_used_aligned[xcp_id] -= size; 265 kfd_mem_limit.system_mem_used -= size; 266 kfd_mem_limit.ttm_mem_used -= size; 267 } else { 268 adev->kfd.vram_used_aligned[xcp_id] -= 269 ALIGN(size, VRAM_AVAILABLITY_ALIGN); 270 } 271 } 272 } else if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) { 273 kfd_mem_limit.system_mem_used -= size; 274 } else if (!(alloc_flag & 275 (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL | 276 KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP))) { 277 pr_err("%s: Invalid BO type %#x\n", __func__, alloc_flag); 278 goto release; 279 } 280 WARN_ONCE(adev && xcp_id >= 0 && adev->kfd.vram_used[xcp_id] < 0, 281 "KFD VRAM memory accounting unbalanced for xcp: %d", xcp_id); 282 WARN_ONCE(kfd_mem_limit.ttm_mem_used < 0, 283 "KFD TTM memory accounting unbalanced"); 284 WARN_ONCE(kfd_mem_limit.system_mem_used < 0, 285 "KFD system memory accounting unbalanced"); 286 287 release: 288 spin_unlock(&kfd_mem_limit.mem_limit_lock); 289 } 290 291 void amdgpu_amdkfd_release_notify(struct amdgpu_bo *bo) 292 { 293 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 294 u32 alloc_flags = bo->kfd_bo->alloc_flags; 295 u64 size = amdgpu_bo_size(bo); 296 297 amdgpu_amdkfd_unreserve_mem_limit(adev, size, alloc_flags, 298 bo->xcp_id); 299 300 kfree(bo->kfd_bo); 301 } 302 303 /** 304 * create_dmamap_sg_bo() - Creates a amdgpu_bo object to reflect information 305 * about USERPTR or DOOREBELL or MMIO BO. 306 * 307 * @adev: Device for which dmamap BO is being created 308 * @mem: BO of peer device that is being DMA mapped. Provides parameters 309 * in building the dmamap BO 310 * @bo_out: Output parameter updated with handle of dmamap BO 311 */ 312 static int 313 create_dmamap_sg_bo(struct amdgpu_device *adev, 314 struct kgd_mem *mem, struct amdgpu_bo **bo_out) 315 { 316 struct drm_gem_object *gem_obj; 317 int ret; 318 uint64_t flags = 0; 319 320 ret = amdgpu_bo_reserve(mem->bo, false); 321 if (ret) 322 return ret; 323 324 if (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) 325 flags |= mem->bo->flags & (AMDGPU_GEM_CREATE_COHERENT | 326 AMDGPU_GEM_CREATE_UNCACHED); 327 328 ret = amdgpu_gem_object_create(adev, mem->bo->tbo.base.size, 1, 329 AMDGPU_GEM_DOMAIN_CPU, AMDGPU_GEM_CREATE_PREEMPTIBLE | flags, 330 ttm_bo_type_sg, mem->bo->tbo.base.resv, &gem_obj, 0); 331 332 amdgpu_bo_unreserve(mem->bo); 333 334 if (ret) { 335 pr_err("Error in creating DMA mappable SG BO on domain: %d\n", ret); 336 return -EINVAL; 337 } 338 339 *bo_out = gem_to_amdgpu_bo(gem_obj); 340 (*bo_out)->parent = amdgpu_bo_ref(mem->bo); 341 return ret; 342 } 343 344 /* amdgpu_amdkfd_remove_eviction_fence - Removes eviction fence from BO's 345 * reservation object. 346 * 347 * @bo: [IN] Remove eviction fence(s) from this BO 348 * @ef: [IN] This eviction fence is removed if it 349 * is present in the shared list. 350 * 351 * NOTE: Must be called with BO reserved i.e. bo->tbo.resv->lock held. 352 */ 353 static int amdgpu_amdkfd_remove_eviction_fence(struct amdgpu_bo *bo, 354 struct amdgpu_amdkfd_fence *ef) 355 { 356 struct dma_fence *replacement; 357 358 if (!ef) 359 return -EINVAL; 360 361 /* TODO: Instead of block before we should use the fence of the page 362 * table update and TLB flush here directly. 363 */ 364 replacement = dma_fence_get_stub(); 365 dma_resv_replace_fences(bo->tbo.base.resv, ef->base.context, 366 replacement, DMA_RESV_USAGE_BOOKKEEP); 367 dma_fence_put(replacement); 368 return 0; 369 } 370 371 int amdgpu_amdkfd_remove_fence_on_pt_pd_bos(struct amdgpu_bo *bo) 372 { 373 struct amdgpu_bo *root = bo; 374 struct amdgpu_vm_bo_base *vm_bo; 375 struct amdgpu_vm *vm; 376 struct amdkfd_process_info *info; 377 struct amdgpu_amdkfd_fence *ef; 378 int ret; 379 380 /* we can always get vm_bo from root PD bo.*/ 381 while (root->parent) 382 root = root->parent; 383 384 vm_bo = root->vm_bo; 385 if (!vm_bo) 386 return 0; 387 388 vm = vm_bo->vm; 389 if (!vm) 390 return 0; 391 392 info = vm->process_info; 393 if (!info || !info->eviction_fence) 394 return 0; 395 396 ef = container_of(dma_fence_get(&info->eviction_fence->base), 397 struct amdgpu_amdkfd_fence, base); 398 399 BUG_ON(!dma_resv_trylock(bo->tbo.base.resv)); 400 ret = amdgpu_amdkfd_remove_eviction_fence(bo, ef); 401 dma_resv_unlock(bo->tbo.base.resv); 402 403 dma_fence_put(&ef->base); 404 return ret; 405 } 406 407 static int amdgpu_amdkfd_bo_validate(struct amdgpu_bo *bo, uint32_t domain, 408 bool wait) 409 { 410 struct ttm_operation_ctx ctx = { false, false }; 411 int ret; 412 413 if (WARN(amdgpu_ttm_tt_get_usermm(bo->tbo.ttm), 414 "Called with userptr BO")) 415 return -EINVAL; 416 417 amdgpu_bo_placement_from_domain(bo, domain); 418 419 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 420 if (ret) 421 goto validate_fail; 422 if (wait) 423 amdgpu_bo_sync_wait(bo, AMDGPU_FENCE_OWNER_KFD, false); 424 425 validate_fail: 426 return ret; 427 } 428 429 static int amdgpu_amdkfd_bo_validate_and_fence(struct amdgpu_bo *bo, 430 uint32_t domain, 431 struct dma_fence *fence) 432 { 433 int ret = amdgpu_bo_reserve(bo, false); 434 435 if (ret) 436 return ret; 437 438 ret = amdgpu_amdkfd_bo_validate(bo, domain, true); 439 if (ret) 440 goto unreserve_out; 441 442 ret = dma_resv_reserve_fences(bo->tbo.base.resv, 1); 443 if (ret) 444 goto unreserve_out; 445 446 dma_resv_add_fence(bo->tbo.base.resv, fence, 447 DMA_RESV_USAGE_BOOKKEEP); 448 449 unreserve_out: 450 amdgpu_bo_unreserve(bo); 451 452 return ret; 453 } 454 455 static int amdgpu_amdkfd_validate_vm_bo(void *_unused, struct amdgpu_bo *bo) 456 { 457 return amdgpu_amdkfd_bo_validate(bo, bo->allowed_domains, false); 458 } 459 460 /* vm_validate_pt_pd_bos - Validate page table and directory BOs 461 * 462 * Page directories are not updated here because huge page handling 463 * during page table updates can invalidate page directory entries 464 * again. Page directories are only updated after updating page 465 * tables. 466 */ 467 static int vm_validate_pt_pd_bos(struct amdgpu_vm *vm) 468 { 469 struct amdgpu_bo *pd = vm->root.bo; 470 struct amdgpu_device *adev = amdgpu_ttm_adev(pd->tbo.bdev); 471 int ret; 472 473 ret = amdgpu_vm_validate_pt_bos(adev, vm, amdgpu_amdkfd_validate_vm_bo, NULL); 474 if (ret) { 475 pr_err("failed to validate PT BOs\n"); 476 return ret; 477 } 478 479 vm->pd_phys_addr = amdgpu_gmc_pd_addr(vm->root.bo); 480 481 return 0; 482 } 483 484 static int vm_update_pds(struct amdgpu_vm *vm, struct amdgpu_sync *sync) 485 { 486 struct amdgpu_bo *pd = vm->root.bo; 487 struct amdgpu_device *adev = amdgpu_ttm_adev(pd->tbo.bdev); 488 int ret; 489 490 ret = amdgpu_vm_update_pdes(adev, vm, false); 491 if (ret) 492 return ret; 493 494 return amdgpu_sync_fence(sync, vm->last_update); 495 } 496 497 static uint64_t get_pte_flags(struct amdgpu_device *adev, struct kgd_mem *mem) 498 { 499 uint32_t mapping_flags = AMDGPU_VM_PAGE_READABLE | 500 AMDGPU_VM_MTYPE_DEFAULT; 501 502 if (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE) 503 mapping_flags |= AMDGPU_VM_PAGE_WRITEABLE; 504 if (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE) 505 mapping_flags |= AMDGPU_VM_PAGE_EXECUTABLE; 506 507 return amdgpu_gem_va_map_flags(adev, mapping_flags); 508 } 509 510 /** 511 * create_sg_table() - Create an sg_table for a contiguous DMA addr range 512 * @addr: The starting address to point to 513 * @size: Size of memory area in bytes being pointed to 514 * 515 * Allocates an instance of sg_table and initializes it to point to memory 516 * area specified by input parameters. The address used to build is assumed 517 * to be DMA mapped, if needed. 518 * 519 * DOORBELL or MMIO BOs use only one scatterlist node in their sg_table 520 * because they are physically contiguous. 521 * 522 * Return: Initialized instance of SG Table or NULL 523 */ 524 static struct sg_table *create_sg_table(uint64_t addr, uint32_t size) 525 { 526 struct sg_table *sg = kmalloc(sizeof(*sg), GFP_KERNEL); 527 528 if (!sg) 529 return NULL; 530 if (sg_alloc_table(sg, 1, GFP_KERNEL)) { 531 kfree(sg); 532 return NULL; 533 } 534 sg_dma_address(sg->sgl) = addr; 535 sg->sgl->length = size; 536 #ifdef CONFIG_NEED_SG_DMA_LENGTH 537 sg->sgl->dma_length = size; 538 #endif 539 return sg; 540 } 541 542 static int 543 kfd_mem_dmamap_userptr(struct kgd_mem *mem, 544 struct kfd_mem_attachment *attachment) 545 { 546 enum dma_data_direction direction = 547 mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? 548 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 549 struct ttm_operation_ctx ctx = {.interruptible = true}; 550 struct amdgpu_bo *bo = attachment->bo_va->base.bo; 551 struct amdgpu_device *adev = attachment->adev; 552 struct ttm_tt *src_ttm = mem->bo->tbo.ttm; 553 struct ttm_tt *ttm = bo->tbo.ttm; 554 int ret; 555 556 if (WARN_ON(ttm->num_pages != src_ttm->num_pages)) 557 return -EINVAL; 558 559 ttm->sg = kmalloc(sizeof(*ttm->sg), GFP_KERNEL); 560 if (unlikely(!ttm->sg)) 561 return -ENOMEM; 562 563 /* Same sequence as in amdgpu_ttm_tt_pin_userptr */ 564 ret = sg_alloc_table_from_pages(ttm->sg, src_ttm->pages, 565 ttm->num_pages, 0, 566 (u64)ttm->num_pages << PAGE_SHIFT, 567 GFP_KERNEL); 568 if (unlikely(ret)) 569 goto free_sg; 570 571 ret = dma_map_sgtable(adev->dev, ttm->sg, direction, 0); 572 if (unlikely(ret)) 573 goto release_sg; 574 575 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_GTT); 576 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 577 if (ret) 578 goto unmap_sg; 579 580 return 0; 581 582 unmap_sg: 583 dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0); 584 release_sg: 585 pr_err("DMA map userptr failed: %d\n", ret); 586 sg_free_table(ttm->sg); 587 free_sg: 588 kfree(ttm->sg); 589 ttm->sg = NULL; 590 return ret; 591 } 592 593 static int 594 kfd_mem_dmamap_dmabuf(struct kfd_mem_attachment *attachment) 595 { 596 struct ttm_operation_ctx ctx = {.interruptible = true}; 597 struct amdgpu_bo *bo = attachment->bo_va->base.bo; 598 int ret; 599 600 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_CPU); 601 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 602 if (ret) 603 return ret; 604 605 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_GTT); 606 return ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 607 } 608 609 /** 610 * kfd_mem_dmamap_sg_bo() - Create DMA mapped sg_table to access DOORBELL or MMIO BO 611 * @mem: SG BO of the DOORBELL or MMIO resource on the owning device 612 * @attachment: Virtual address attachment of the BO on accessing device 613 * 614 * An access request from the device that owns DOORBELL does not require DMA mapping. 615 * This is because the request doesn't go through PCIe root complex i.e. it instead 616 * loops back. The need to DMA map arises only when accessing peer device's DOORBELL 617 * 618 * In contrast, all access requests for MMIO need to be DMA mapped without regard to 619 * device ownership. This is because access requests for MMIO go through PCIe root 620 * complex. 621 * 622 * This is accomplished in two steps: 623 * - Obtain DMA mapped address of DOORBELL or MMIO memory that could be used 624 * in updating requesting device's page table 625 * - Signal TTM to mark memory pointed to by requesting device's BO as GPU 626 * accessible. This allows an update of requesting device's page table 627 * with entries associated with DOOREBELL or MMIO memory 628 * 629 * This method is invoked in the following contexts: 630 * - Mapping of DOORBELL or MMIO BO of same or peer device 631 * - Validating an evicted DOOREBELL or MMIO BO on device seeking access 632 * 633 * Return: ZERO if successful, NON-ZERO otherwise 634 */ 635 static int 636 kfd_mem_dmamap_sg_bo(struct kgd_mem *mem, 637 struct kfd_mem_attachment *attachment) 638 { 639 struct ttm_operation_ctx ctx = {.interruptible = true}; 640 struct amdgpu_bo *bo = attachment->bo_va->base.bo; 641 struct amdgpu_device *adev = attachment->adev; 642 struct ttm_tt *ttm = bo->tbo.ttm; 643 enum dma_data_direction dir; 644 dma_addr_t dma_addr; 645 bool mmio; 646 int ret; 647 648 /* Expect SG Table of dmapmap BO to be NULL */ 649 mmio = (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP); 650 if (unlikely(ttm->sg)) { 651 pr_err("SG Table of %d BO for peer device is UNEXPECTEDLY NON-NULL", mmio); 652 return -EINVAL; 653 } 654 655 dir = mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? 656 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 657 dma_addr = mem->bo->tbo.sg->sgl->dma_address; 658 pr_debug("%d BO size: %d\n", mmio, mem->bo->tbo.sg->sgl->length); 659 pr_debug("%d BO address before DMA mapping: %llx\n", mmio, dma_addr); 660 dma_addr = dma_map_resource(adev->dev, dma_addr, 661 mem->bo->tbo.sg->sgl->length, dir, DMA_ATTR_SKIP_CPU_SYNC); 662 ret = dma_mapping_error(adev->dev, dma_addr); 663 if (unlikely(ret)) 664 return ret; 665 pr_debug("%d BO address after DMA mapping: %llx\n", mmio, dma_addr); 666 667 ttm->sg = create_sg_table(dma_addr, mem->bo->tbo.sg->sgl->length); 668 if (unlikely(!ttm->sg)) { 669 ret = -ENOMEM; 670 goto unmap_sg; 671 } 672 673 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_GTT); 674 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 675 if (unlikely(ret)) 676 goto free_sg; 677 678 return ret; 679 680 free_sg: 681 sg_free_table(ttm->sg); 682 kfree(ttm->sg); 683 ttm->sg = NULL; 684 unmap_sg: 685 dma_unmap_resource(adev->dev, dma_addr, mem->bo->tbo.sg->sgl->length, 686 dir, DMA_ATTR_SKIP_CPU_SYNC); 687 return ret; 688 } 689 690 static int 691 kfd_mem_dmamap_attachment(struct kgd_mem *mem, 692 struct kfd_mem_attachment *attachment) 693 { 694 switch (attachment->type) { 695 case KFD_MEM_ATT_SHARED: 696 return 0; 697 case KFD_MEM_ATT_USERPTR: 698 return kfd_mem_dmamap_userptr(mem, attachment); 699 case KFD_MEM_ATT_DMABUF: 700 return kfd_mem_dmamap_dmabuf(attachment); 701 case KFD_MEM_ATT_SG: 702 return kfd_mem_dmamap_sg_bo(mem, attachment); 703 default: 704 WARN_ON_ONCE(1); 705 } 706 return -EINVAL; 707 } 708 709 static void 710 kfd_mem_dmaunmap_userptr(struct kgd_mem *mem, 711 struct kfd_mem_attachment *attachment) 712 { 713 enum dma_data_direction direction = 714 mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? 715 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 716 struct ttm_operation_ctx ctx = {.interruptible = false}; 717 struct amdgpu_bo *bo = attachment->bo_va->base.bo; 718 struct amdgpu_device *adev = attachment->adev; 719 struct ttm_tt *ttm = bo->tbo.ttm; 720 721 if (unlikely(!ttm->sg)) 722 return; 723 724 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_CPU); 725 ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 726 727 dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0); 728 sg_free_table(ttm->sg); 729 kfree(ttm->sg); 730 ttm->sg = NULL; 731 } 732 733 static void 734 kfd_mem_dmaunmap_dmabuf(struct kfd_mem_attachment *attachment) 735 { 736 /* This is a no-op. We don't want to trigger eviction fences when 737 * unmapping DMABufs. Therefore the invalidation (moving to system 738 * domain) is done in kfd_mem_dmamap_dmabuf. 739 */ 740 } 741 742 /** 743 * kfd_mem_dmaunmap_sg_bo() - Free DMA mapped sg_table of DOORBELL or MMIO BO 744 * @mem: SG BO of the DOORBELL or MMIO resource on the owning device 745 * @attachment: Virtual address attachment of the BO on accessing device 746 * 747 * The method performs following steps: 748 * - Signal TTM to mark memory pointed to by BO as GPU inaccessible 749 * - Free SG Table that is used to encapsulate DMA mapped memory of 750 * peer device's DOORBELL or MMIO memory 751 * 752 * This method is invoked in the following contexts: 753 * UNMapping of DOORBELL or MMIO BO on a device having access to its memory 754 * Eviction of DOOREBELL or MMIO BO on device having access to its memory 755 * 756 * Return: void 757 */ 758 static void 759 kfd_mem_dmaunmap_sg_bo(struct kgd_mem *mem, 760 struct kfd_mem_attachment *attachment) 761 { 762 struct ttm_operation_ctx ctx = {.interruptible = true}; 763 struct amdgpu_bo *bo = attachment->bo_va->base.bo; 764 struct amdgpu_device *adev = attachment->adev; 765 struct ttm_tt *ttm = bo->tbo.ttm; 766 enum dma_data_direction dir; 767 768 if (unlikely(!ttm->sg)) { 769 pr_debug("SG Table of BO is NULL"); 770 return; 771 } 772 773 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_CPU); 774 ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 775 776 dir = mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? 777 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 778 dma_unmap_resource(adev->dev, ttm->sg->sgl->dma_address, 779 ttm->sg->sgl->length, dir, DMA_ATTR_SKIP_CPU_SYNC); 780 sg_free_table(ttm->sg); 781 kfree(ttm->sg); 782 ttm->sg = NULL; 783 bo->tbo.sg = NULL; 784 } 785 786 static void 787 kfd_mem_dmaunmap_attachment(struct kgd_mem *mem, 788 struct kfd_mem_attachment *attachment) 789 { 790 switch (attachment->type) { 791 case KFD_MEM_ATT_SHARED: 792 break; 793 case KFD_MEM_ATT_USERPTR: 794 kfd_mem_dmaunmap_userptr(mem, attachment); 795 break; 796 case KFD_MEM_ATT_DMABUF: 797 kfd_mem_dmaunmap_dmabuf(attachment); 798 break; 799 case KFD_MEM_ATT_SG: 800 kfd_mem_dmaunmap_sg_bo(mem, attachment); 801 break; 802 default: 803 WARN_ON_ONCE(1); 804 } 805 } 806 807 static int kfd_mem_export_dmabuf(struct kgd_mem *mem) 808 { 809 if (!mem->dmabuf) { 810 struct amdgpu_device *bo_adev; 811 struct dma_buf *dmabuf; 812 int r, fd; 813 814 bo_adev = amdgpu_ttm_adev(mem->bo->tbo.bdev); 815 r = drm_gem_prime_handle_to_fd(&bo_adev->ddev, bo_adev->kfd.client.file, 816 mem->gem_handle, 817 mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? 818 DRM_RDWR : 0, &fd); 819 if (r) 820 return r; 821 dmabuf = dma_buf_get(fd); 822 close_fd(fd); 823 if (WARN_ON_ONCE(IS_ERR(dmabuf))) 824 return PTR_ERR(dmabuf); 825 mem->dmabuf = dmabuf; 826 } 827 828 return 0; 829 } 830 831 static int 832 kfd_mem_attach_dmabuf(struct amdgpu_device *adev, struct kgd_mem *mem, 833 struct amdgpu_bo **bo) 834 { 835 struct drm_gem_object *gobj; 836 int ret; 837 838 ret = kfd_mem_export_dmabuf(mem); 839 if (ret) 840 return ret; 841 842 gobj = amdgpu_gem_prime_import(adev_to_drm(adev), mem->dmabuf); 843 if (IS_ERR(gobj)) 844 return PTR_ERR(gobj); 845 846 *bo = gem_to_amdgpu_bo(gobj); 847 (*bo)->flags |= AMDGPU_GEM_CREATE_PREEMPTIBLE; 848 849 return 0; 850 } 851 852 /* kfd_mem_attach - Add a BO to a VM 853 * 854 * Everything that needs to bo done only once when a BO is first added 855 * to a VM. It can later be mapped and unmapped many times without 856 * repeating these steps. 857 * 858 * 0. Create BO for DMA mapping, if needed 859 * 1. Allocate and initialize BO VA entry data structure 860 * 2. Add BO to the VM 861 * 3. Determine ASIC-specific PTE flags 862 * 4. Alloc page tables and directories if needed 863 * 4a. Validate new page tables and directories 864 */ 865 static int kfd_mem_attach(struct amdgpu_device *adev, struct kgd_mem *mem, 866 struct amdgpu_vm *vm, bool is_aql) 867 { 868 struct amdgpu_device *bo_adev = amdgpu_ttm_adev(mem->bo->tbo.bdev); 869 unsigned long bo_size = mem->bo->tbo.base.size; 870 uint64_t va = mem->va; 871 struct kfd_mem_attachment *attachment[2] = {NULL, NULL}; 872 struct amdgpu_bo *bo[2] = {NULL, NULL}; 873 struct amdgpu_bo_va *bo_va; 874 bool same_hive = false; 875 int i, ret; 876 877 if (!va) { 878 pr_err("Invalid VA when adding BO to VM\n"); 879 return -EINVAL; 880 } 881 882 /* Determine access to VRAM, MMIO and DOORBELL BOs of peer devices 883 * 884 * The access path of MMIO and DOORBELL BOs of is always over PCIe. 885 * In contrast the access path of VRAM BOs depens upon the type of 886 * link that connects the peer device. Access over PCIe is allowed 887 * if peer device has large BAR. In contrast, access over xGMI is 888 * allowed for both small and large BAR configurations of peer device 889 */ 890 if ((adev != bo_adev && !adev->gmc.is_app_apu) && 891 ((mem->domain == AMDGPU_GEM_DOMAIN_VRAM) || 892 (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) || 893 (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP))) { 894 if (mem->domain == AMDGPU_GEM_DOMAIN_VRAM) 895 same_hive = amdgpu_xgmi_same_hive(adev, bo_adev); 896 if (!same_hive && !amdgpu_device_is_peer_accessible(bo_adev, adev)) 897 return -EINVAL; 898 } 899 900 for (i = 0; i <= is_aql; i++) { 901 attachment[i] = kzalloc(sizeof(*attachment[i]), GFP_KERNEL); 902 if (unlikely(!attachment[i])) { 903 ret = -ENOMEM; 904 goto unwind; 905 } 906 907 pr_debug("\t add VA 0x%llx - 0x%llx to vm %p\n", va, 908 va + bo_size, vm); 909 910 if ((adev == bo_adev && !(mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) || 911 (amdgpu_ttm_tt_get_usermm(mem->bo->tbo.ttm) && reuse_dmamap(adev, bo_adev)) || 912 (mem->domain == AMDGPU_GEM_DOMAIN_GTT && reuse_dmamap(adev, bo_adev)) || 913 same_hive) { 914 /* Mappings on the local GPU, or VRAM mappings in the 915 * local hive, or userptr, or GTT mapping can reuse dma map 916 * address space share the original BO 917 */ 918 attachment[i]->type = KFD_MEM_ATT_SHARED; 919 bo[i] = mem->bo; 920 drm_gem_object_get(&bo[i]->tbo.base); 921 } else if (i > 0) { 922 /* Multiple mappings on the same GPU share the BO */ 923 attachment[i]->type = KFD_MEM_ATT_SHARED; 924 bo[i] = bo[0]; 925 drm_gem_object_get(&bo[i]->tbo.base); 926 } else if (amdgpu_ttm_tt_get_usermm(mem->bo->tbo.ttm)) { 927 /* Create an SG BO to DMA-map userptrs on other GPUs */ 928 attachment[i]->type = KFD_MEM_ATT_USERPTR; 929 ret = create_dmamap_sg_bo(adev, mem, &bo[i]); 930 if (ret) 931 goto unwind; 932 /* Handle DOORBELL BOs of peer devices and MMIO BOs of local and peer devices */ 933 } else if (mem->bo->tbo.type == ttm_bo_type_sg) { 934 WARN_ONCE(!(mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL || 935 mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP), 936 "Handing invalid SG BO in ATTACH request"); 937 attachment[i]->type = KFD_MEM_ATT_SG; 938 ret = create_dmamap_sg_bo(adev, mem, &bo[i]); 939 if (ret) 940 goto unwind; 941 /* Enable acces to GTT and VRAM BOs of peer devices */ 942 } else if (mem->domain == AMDGPU_GEM_DOMAIN_GTT || 943 mem->domain == AMDGPU_GEM_DOMAIN_VRAM) { 944 attachment[i]->type = KFD_MEM_ATT_DMABUF; 945 ret = kfd_mem_attach_dmabuf(adev, mem, &bo[i]); 946 if (ret) 947 goto unwind; 948 pr_debug("Employ DMABUF mechanism to enable peer GPU access\n"); 949 } else { 950 WARN_ONCE(true, "Handling invalid ATTACH request"); 951 ret = -EINVAL; 952 goto unwind; 953 } 954 955 /* Add BO to VM internal data structures */ 956 ret = amdgpu_bo_reserve(bo[i], false); 957 if (ret) { 958 pr_debug("Unable to reserve BO during memory attach"); 959 goto unwind; 960 } 961 bo_va = amdgpu_vm_bo_find(vm, bo[i]); 962 if (!bo_va) 963 bo_va = amdgpu_vm_bo_add(adev, vm, bo[i]); 964 else 965 ++bo_va->ref_count; 966 attachment[i]->bo_va = bo_va; 967 amdgpu_bo_unreserve(bo[i]); 968 if (unlikely(!attachment[i]->bo_va)) { 969 ret = -ENOMEM; 970 pr_err("Failed to add BO object to VM. ret == %d\n", 971 ret); 972 goto unwind; 973 } 974 attachment[i]->va = va; 975 attachment[i]->pte_flags = get_pte_flags(adev, mem); 976 attachment[i]->adev = adev; 977 list_add(&attachment[i]->list, &mem->attachments); 978 979 va += bo_size; 980 } 981 982 return 0; 983 984 unwind: 985 for (; i >= 0; i--) { 986 if (!attachment[i]) 987 continue; 988 if (attachment[i]->bo_va) { 989 amdgpu_bo_reserve(bo[i], true); 990 if (--attachment[i]->bo_va->ref_count == 0) 991 amdgpu_vm_bo_del(adev, attachment[i]->bo_va); 992 amdgpu_bo_unreserve(bo[i]); 993 list_del(&attachment[i]->list); 994 } 995 if (bo[i]) 996 drm_gem_object_put(&bo[i]->tbo.base); 997 kfree(attachment[i]); 998 } 999 return ret; 1000 } 1001 1002 static void kfd_mem_detach(struct kfd_mem_attachment *attachment) 1003 { 1004 struct amdgpu_bo *bo = attachment->bo_va->base.bo; 1005 1006 pr_debug("\t remove VA 0x%llx in entry %p\n", 1007 attachment->va, attachment); 1008 if (--attachment->bo_va->ref_count == 0) 1009 amdgpu_vm_bo_del(attachment->adev, attachment->bo_va); 1010 drm_gem_object_put(&bo->tbo.base); 1011 list_del(&attachment->list); 1012 kfree(attachment); 1013 } 1014 1015 static void add_kgd_mem_to_kfd_bo_list(struct kgd_mem *mem, 1016 struct amdkfd_process_info *process_info, 1017 bool userptr) 1018 { 1019 mutex_lock(&process_info->lock); 1020 if (userptr) 1021 list_add_tail(&mem->validate_list, 1022 &process_info->userptr_valid_list); 1023 else 1024 list_add_tail(&mem->validate_list, &process_info->kfd_bo_list); 1025 mutex_unlock(&process_info->lock); 1026 } 1027 1028 static void remove_kgd_mem_from_kfd_bo_list(struct kgd_mem *mem, 1029 struct amdkfd_process_info *process_info) 1030 { 1031 mutex_lock(&process_info->lock); 1032 list_del(&mem->validate_list); 1033 mutex_unlock(&process_info->lock); 1034 } 1035 1036 /* Initializes user pages. It registers the MMU notifier and validates 1037 * the userptr BO in the GTT domain. 1038 * 1039 * The BO must already be on the userptr_valid_list. Otherwise an 1040 * eviction and restore may happen that leaves the new BO unmapped 1041 * with the user mode queues running. 1042 * 1043 * Takes the process_info->lock to protect against concurrent restore 1044 * workers. 1045 * 1046 * Returns 0 for success, negative errno for errors. 1047 */ 1048 static int init_user_pages(struct kgd_mem *mem, uint64_t user_addr, 1049 bool criu_resume) 1050 { 1051 struct amdkfd_process_info *process_info = mem->process_info; 1052 struct amdgpu_bo *bo = mem->bo; 1053 struct ttm_operation_ctx ctx = { true, false }; 1054 struct hmm_range *range; 1055 int ret = 0; 1056 1057 mutex_lock(&process_info->lock); 1058 1059 ret = amdgpu_ttm_tt_set_userptr(&bo->tbo, user_addr, 0); 1060 if (ret) { 1061 pr_err("%s: Failed to set userptr: %d\n", __func__, ret); 1062 goto out; 1063 } 1064 1065 ret = amdgpu_hmm_register(bo, user_addr); 1066 if (ret) { 1067 pr_err("%s: Failed to register MMU notifier: %d\n", 1068 __func__, ret); 1069 goto out; 1070 } 1071 1072 if (criu_resume) { 1073 /* 1074 * During a CRIU restore operation, the userptr buffer objects 1075 * will be validated in the restore_userptr_work worker at a 1076 * later stage when it is scheduled by another ioctl called by 1077 * CRIU master process for the target pid for restore. 1078 */ 1079 mutex_lock(&process_info->notifier_lock); 1080 mem->invalid++; 1081 mutex_unlock(&process_info->notifier_lock); 1082 mutex_unlock(&process_info->lock); 1083 return 0; 1084 } 1085 1086 ret = amdgpu_ttm_tt_get_user_pages(bo, bo->tbo.ttm->pages, &range); 1087 if (ret) { 1088 pr_err("%s: Failed to get user pages: %d\n", __func__, ret); 1089 goto unregister_out; 1090 } 1091 1092 ret = amdgpu_bo_reserve(bo, true); 1093 if (ret) { 1094 pr_err("%s: Failed to reserve BO\n", __func__); 1095 goto release_out; 1096 } 1097 amdgpu_bo_placement_from_domain(bo, mem->domain); 1098 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 1099 if (ret) 1100 pr_err("%s: failed to validate BO\n", __func__); 1101 amdgpu_bo_unreserve(bo); 1102 1103 release_out: 1104 amdgpu_ttm_tt_get_user_pages_done(bo->tbo.ttm, range); 1105 unregister_out: 1106 if (ret) 1107 amdgpu_hmm_unregister(bo); 1108 out: 1109 mutex_unlock(&process_info->lock); 1110 return ret; 1111 } 1112 1113 /* Reserving a BO and its page table BOs must happen atomically to 1114 * avoid deadlocks. Some operations update multiple VMs at once. Track 1115 * all the reservation info in a context structure. Optionally a sync 1116 * object can track VM updates. 1117 */ 1118 struct bo_vm_reservation_context { 1119 /* DRM execution context for the reservation */ 1120 struct drm_exec exec; 1121 /* Number of VMs reserved */ 1122 unsigned int n_vms; 1123 /* Pointer to sync object */ 1124 struct amdgpu_sync *sync; 1125 }; 1126 1127 enum bo_vm_match { 1128 BO_VM_NOT_MAPPED = 0, /* Match VMs where a BO is not mapped */ 1129 BO_VM_MAPPED, /* Match VMs where a BO is mapped */ 1130 BO_VM_ALL, /* Match all VMs a BO was added to */ 1131 }; 1132 1133 /** 1134 * reserve_bo_and_vm - reserve a BO and a VM unconditionally. 1135 * @mem: KFD BO structure. 1136 * @vm: the VM to reserve. 1137 * @ctx: the struct that will be used in unreserve_bo_and_vms(). 1138 */ 1139 static int reserve_bo_and_vm(struct kgd_mem *mem, 1140 struct amdgpu_vm *vm, 1141 struct bo_vm_reservation_context *ctx) 1142 { 1143 struct amdgpu_bo *bo = mem->bo; 1144 int ret; 1145 1146 WARN_ON(!vm); 1147 1148 ctx->n_vms = 1; 1149 ctx->sync = &mem->sync; 1150 drm_exec_init(&ctx->exec, DRM_EXEC_INTERRUPTIBLE_WAIT, 0); 1151 drm_exec_until_all_locked(&ctx->exec) { 1152 ret = amdgpu_vm_lock_pd(vm, &ctx->exec, 2); 1153 drm_exec_retry_on_contention(&ctx->exec); 1154 if (unlikely(ret)) 1155 goto error; 1156 1157 ret = drm_exec_prepare_obj(&ctx->exec, &bo->tbo.base, 1); 1158 drm_exec_retry_on_contention(&ctx->exec); 1159 if (unlikely(ret)) 1160 goto error; 1161 } 1162 return 0; 1163 1164 error: 1165 pr_err("Failed to reserve buffers in ttm.\n"); 1166 drm_exec_fini(&ctx->exec); 1167 return ret; 1168 } 1169 1170 /** 1171 * reserve_bo_and_cond_vms - reserve a BO and some VMs conditionally 1172 * @mem: KFD BO structure. 1173 * @vm: the VM to reserve. If NULL, then all VMs associated with the BO 1174 * is used. Otherwise, a single VM associated with the BO. 1175 * @map_type: the mapping status that will be used to filter the VMs. 1176 * @ctx: the struct that will be used in unreserve_bo_and_vms(). 1177 * 1178 * Returns 0 for success, negative for failure. 1179 */ 1180 static int reserve_bo_and_cond_vms(struct kgd_mem *mem, 1181 struct amdgpu_vm *vm, enum bo_vm_match map_type, 1182 struct bo_vm_reservation_context *ctx) 1183 { 1184 struct kfd_mem_attachment *entry; 1185 struct amdgpu_bo *bo = mem->bo; 1186 int ret; 1187 1188 ctx->sync = &mem->sync; 1189 drm_exec_init(&ctx->exec, DRM_EXEC_INTERRUPTIBLE_WAIT, 0); 1190 drm_exec_until_all_locked(&ctx->exec) { 1191 ctx->n_vms = 0; 1192 list_for_each_entry(entry, &mem->attachments, list) { 1193 if ((vm && vm != entry->bo_va->base.vm) || 1194 (entry->is_mapped != map_type 1195 && map_type != BO_VM_ALL)) 1196 continue; 1197 1198 ret = amdgpu_vm_lock_pd(entry->bo_va->base.vm, 1199 &ctx->exec, 2); 1200 drm_exec_retry_on_contention(&ctx->exec); 1201 if (unlikely(ret)) 1202 goto error; 1203 ++ctx->n_vms; 1204 } 1205 1206 ret = drm_exec_prepare_obj(&ctx->exec, &bo->tbo.base, 1); 1207 drm_exec_retry_on_contention(&ctx->exec); 1208 if (unlikely(ret)) 1209 goto error; 1210 } 1211 return 0; 1212 1213 error: 1214 pr_err("Failed to reserve buffers in ttm.\n"); 1215 drm_exec_fini(&ctx->exec); 1216 return ret; 1217 } 1218 1219 /** 1220 * unreserve_bo_and_vms - Unreserve BO and VMs from a reservation context 1221 * @ctx: Reservation context to unreserve 1222 * @wait: Optionally wait for a sync object representing pending VM updates 1223 * @intr: Whether the wait is interruptible 1224 * 1225 * Also frees any resources allocated in 1226 * reserve_bo_and_(cond_)vm(s). Returns the status from 1227 * amdgpu_sync_wait. 1228 */ 1229 static int unreserve_bo_and_vms(struct bo_vm_reservation_context *ctx, 1230 bool wait, bool intr) 1231 { 1232 int ret = 0; 1233 1234 if (wait) 1235 ret = amdgpu_sync_wait(ctx->sync, intr); 1236 1237 drm_exec_fini(&ctx->exec); 1238 ctx->sync = NULL; 1239 return ret; 1240 } 1241 1242 static void unmap_bo_from_gpuvm(struct kgd_mem *mem, 1243 struct kfd_mem_attachment *entry, 1244 struct amdgpu_sync *sync) 1245 { 1246 struct amdgpu_bo_va *bo_va = entry->bo_va; 1247 struct amdgpu_device *adev = entry->adev; 1248 struct amdgpu_vm *vm = bo_va->base.vm; 1249 1250 amdgpu_vm_bo_unmap(adev, bo_va, entry->va); 1251 1252 amdgpu_vm_clear_freed(adev, vm, &bo_va->last_pt_update); 1253 1254 amdgpu_sync_fence(sync, bo_va->last_pt_update); 1255 } 1256 1257 static int update_gpuvm_pte(struct kgd_mem *mem, 1258 struct kfd_mem_attachment *entry, 1259 struct amdgpu_sync *sync) 1260 { 1261 struct amdgpu_bo_va *bo_va = entry->bo_va; 1262 struct amdgpu_device *adev = entry->adev; 1263 int ret; 1264 1265 ret = kfd_mem_dmamap_attachment(mem, entry); 1266 if (ret) 1267 return ret; 1268 1269 /* Update the page tables */ 1270 ret = amdgpu_vm_bo_update(adev, bo_va, false); 1271 if (ret) { 1272 pr_err("amdgpu_vm_bo_update failed\n"); 1273 return ret; 1274 } 1275 1276 return amdgpu_sync_fence(sync, bo_va->last_pt_update); 1277 } 1278 1279 static int map_bo_to_gpuvm(struct kgd_mem *mem, 1280 struct kfd_mem_attachment *entry, 1281 struct amdgpu_sync *sync, 1282 bool no_update_pte) 1283 { 1284 int ret; 1285 1286 /* Set virtual address for the allocation */ 1287 ret = amdgpu_vm_bo_map(entry->adev, entry->bo_va, entry->va, 0, 1288 amdgpu_bo_size(entry->bo_va->base.bo), 1289 entry->pte_flags); 1290 if (ret) { 1291 pr_err("Failed to map VA 0x%llx in vm. ret %d\n", 1292 entry->va, ret); 1293 return ret; 1294 } 1295 1296 if (no_update_pte) 1297 return 0; 1298 1299 ret = update_gpuvm_pte(mem, entry, sync); 1300 if (ret) { 1301 pr_err("update_gpuvm_pte() failed\n"); 1302 goto update_gpuvm_pte_failed; 1303 } 1304 1305 return 0; 1306 1307 update_gpuvm_pte_failed: 1308 unmap_bo_from_gpuvm(mem, entry, sync); 1309 kfd_mem_dmaunmap_attachment(mem, entry); 1310 return ret; 1311 } 1312 1313 static int process_validate_vms(struct amdkfd_process_info *process_info) 1314 { 1315 struct amdgpu_vm *peer_vm; 1316 int ret; 1317 1318 list_for_each_entry(peer_vm, &process_info->vm_list_head, 1319 vm_list_node) { 1320 ret = vm_validate_pt_pd_bos(peer_vm); 1321 if (ret) 1322 return ret; 1323 } 1324 1325 return 0; 1326 } 1327 1328 static int process_sync_pds_resv(struct amdkfd_process_info *process_info, 1329 struct amdgpu_sync *sync) 1330 { 1331 struct amdgpu_vm *peer_vm; 1332 int ret; 1333 1334 list_for_each_entry(peer_vm, &process_info->vm_list_head, 1335 vm_list_node) { 1336 struct amdgpu_bo *pd = peer_vm->root.bo; 1337 1338 ret = amdgpu_sync_resv(NULL, sync, pd->tbo.base.resv, 1339 AMDGPU_SYNC_NE_OWNER, 1340 AMDGPU_FENCE_OWNER_KFD); 1341 if (ret) 1342 return ret; 1343 } 1344 1345 return 0; 1346 } 1347 1348 static int process_update_pds(struct amdkfd_process_info *process_info, 1349 struct amdgpu_sync *sync) 1350 { 1351 struct amdgpu_vm *peer_vm; 1352 int ret; 1353 1354 list_for_each_entry(peer_vm, &process_info->vm_list_head, 1355 vm_list_node) { 1356 ret = vm_update_pds(peer_vm, sync); 1357 if (ret) 1358 return ret; 1359 } 1360 1361 return 0; 1362 } 1363 1364 static int init_kfd_vm(struct amdgpu_vm *vm, void **process_info, 1365 struct dma_fence **ef) 1366 { 1367 struct amdkfd_process_info *info = NULL; 1368 int ret; 1369 1370 if (!*process_info) { 1371 info = kzalloc(sizeof(*info), GFP_KERNEL); 1372 if (!info) 1373 return -ENOMEM; 1374 1375 mutex_init(&info->lock); 1376 mutex_init(&info->notifier_lock); 1377 INIT_LIST_HEAD(&info->vm_list_head); 1378 INIT_LIST_HEAD(&info->kfd_bo_list); 1379 INIT_LIST_HEAD(&info->userptr_valid_list); 1380 INIT_LIST_HEAD(&info->userptr_inval_list); 1381 1382 info->eviction_fence = 1383 amdgpu_amdkfd_fence_create(dma_fence_context_alloc(1), 1384 current->mm, 1385 NULL); 1386 if (!info->eviction_fence) { 1387 pr_err("Failed to create eviction fence\n"); 1388 ret = -ENOMEM; 1389 goto create_evict_fence_fail; 1390 } 1391 1392 info->pid = get_task_pid(current->group_leader, PIDTYPE_PID); 1393 INIT_DELAYED_WORK(&info->restore_userptr_work, 1394 amdgpu_amdkfd_restore_userptr_worker); 1395 1396 *process_info = info; 1397 } 1398 1399 vm->process_info = *process_info; 1400 1401 /* Validate page directory and attach eviction fence */ 1402 ret = amdgpu_bo_reserve(vm->root.bo, true); 1403 if (ret) 1404 goto reserve_pd_fail; 1405 ret = vm_validate_pt_pd_bos(vm); 1406 if (ret) { 1407 pr_err("validate_pt_pd_bos() failed\n"); 1408 goto validate_pd_fail; 1409 } 1410 ret = amdgpu_bo_sync_wait(vm->root.bo, 1411 AMDGPU_FENCE_OWNER_KFD, false); 1412 if (ret) 1413 goto wait_pd_fail; 1414 ret = dma_resv_reserve_fences(vm->root.bo->tbo.base.resv, 1); 1415 if (ret) 1416 goto reserve_shared_fail; 1417 dma_resv_add_fence(vm->root.bo->tbo.base.resv, 1418 &vm->process_info->eviction_fence->base, 1419 DMA_RESV_USAGE_BOOKKEEP); 1420 amdgpu_bo_unreserve(vm->root.bo); 1421 1422 /* Update process info */ 1423 mutex_lock(&vm->process_info->lock); 1424 list_add_tail(&vm->vm_list_node, 1425 &(vm->process_info->vm_list_head)); 1426 vm->process_info->n_vms++; 1427 1428 *ef = dma_fence_get(&vm->process_info->eviction_fence->base); 1429 mutex_unlock(&vm->process_info->lock); 1430 1431 return 0; 1432 1433 reserve_shared_fail: 1434 wait_pd_fail: 1435 validate_pd_fail: 1436 amdgpu_bo_unreserve(vm->root.bo); 1437 reserve_pd_fail: 1438 vm->process_info = NULL; 1439 if (info) { 1440 dma_fence_put(&info->eviction_fence->base); 1441 *process_info = NULL; 1442 put_pid(info->pid); 1443 create_evict_fence_fail: 1444 mutex_destroy(&info->lock); 1445 mutex_destroy(&info->notifier_lock); 1446 kfree(info); 1447 } 1448 return ret; 1449 } 1450 1451 /** 1452 * amdgpu_amdkfd_gpuvm_pin_bo() - Pins a BO using following criteria 1453 * @bo: Handle of buffer object being pinned 1454 * @domain: Domain into which BO should be pinned 1455 * 1456 * - USERPTR BOs are UNPINNABLE and will return error 1457 * - All other BO types (GTT, VRAM, MMIO and DOORBELL) will have their 1458 * PIN count incremented. It is valid to PIN a BO multiple times 1459 * 1460 * Return: ZERO if successful in pinning, Non-Zero in case of error. 1461 */ 1462 static int amdgpu_amdkfd_gpuvm_pin_bo(struct amdgpu_bo *bo, u32 domain) 1463 { 1464 int ret = 0; 1465 1466 ret = amdgpu_bo_reserve(bo, false); 1467 if (unlikely(ret)) 1468 return ret; 1469 1470 ret = amdgpu_bo_pin_restricted(bo, domain, 0, 0); 1471 if (ret) 1472 pr_err("Error in Pinning BO to domain: %d\n", domain); 1473 1474 amdgpu_bo_sync_wait(bo, AMDGPU_FENCE_OWNER_KFD, false); 1475 amdgpu_bo_unreserve(bo); 1476 1477 return ret; 1478 } 1479 1480 /** 1481 * amdgpu_amdkfd_gpuvm_unpin_bo() - Unpins BO using following criteria 1482 * @bo: Handle of buffer object being unpinned 1483 * 1484 * - Is a illegal request for USERPTR BOs and is ignored 1485 * - All other BO types (GTT, VRAM, MMIO and DOORBELL) will have their 1486 * PIN count decremented. Calls to UNPIN must balance calls to PIN 1487 */ 1488 static void amdgpu_amdkfd_gpuvm_unpin_bo(struct amdgpu_bo *bo) 1489 { 1490 int ret = 0; 1491 1492 ret = amdgpu_bo_reserve(bo, false); 1493 if (unlikely(ret)) 1494 return; 1495 1496 amdgpu_bo_unpin(bo); 1497 amdgpu_bo_unreserve(bo); 1498 } 1499 1500 int amdgpu_amdkfd_gpuvm_set_vm_pasid(struct amdgpu_device *adev, 1501 struct amdgpu_vm *avm, u32 pasid) 1502 1503 { 1504 int ret; 1505 1506 /* Free the original amdgpu allocated pasid, 1507 * will be replaced with kfd allocated pasid. 1508 */ 1509 if (avm->pasid) { 1510 amdgpu_pasid_free(avm->pasid); 1511 amdgpu_vm_set_pasid(adev, avm, 0); 1512 } 1513 1514 ret = amdgpu_vm_set_pasid(adev, avm, pasid); 1515 if (ret) 1516 return ret; 1517 1518 return 0; 1519 } 1520 1521 int amdgpu_amdkfd_gpuvm_acquire_process_vm(struct amdgpu_device *adev, 1522 struct amdgpu_vm *avm, 1523 void **process_info, 1524 struct dma_fence **ef) 1525 { 1526 int ret; 1527 1528 /* Already a compute VM? */ 1529 if (avm->process_info) 1530 return -EINVAL; 1531 1532 /* Convert VM into a compute VM */ 1533 ret = amdgpu_vm_make_compute(adev, avm); 1534 if (ret) 1535 return ret; 1536 1537 /* Initialize KFD part of the VM and process info */ 1538 ret = init_kfd_vm(avm, process_info, ef); 1539 if (ret) 1540 return ret; 1541 1542 amdgpu_vm_set_task_info(avm); 1543 1544 return 0; 1545 } 1546 1547 void amdgpu_amdkfd_gpuvm_destroy_cb(struct amdgpu_device *adev, 1548 struct amdgpu_vm *vm) 1549 { 1550 struct amdkfd_process_info *process_info = vm->process_info; 1551 1552 if (!process_info) 1553 return; 1554 1555 /* Update process info */ 1556 mutex_lock(&process_info->lock); 1557 process_info->n_vms--; 1558 list_del(&vm->vm_list_node); 1559 mutex_unlock(&process_info->lock); 1560 1561 vm->process_info = NULL; 1562 1563 /* Release per-process resources when last compute VM is destroyed */ 1564 if (!process_info->n_vms) { 1565 WARN_ON(!list_empty(&process_info->kfd_bo_list)); 1566 WARN_ON(!list_empty(&process_info->userptr_valid_list)); 1567 WARN_ON(!list_empty(&process_info->userptr_inval_list)); 1568 1569 dma_fence_put(&process_info->eviction_fence->base); 1570 cancel_delayed_work_sync(&process_info->restore_userptr_work); 1571 put_pid(process_info->pid); 1572 mutex_destroy(&process_info->lock); 1573 mutex_destroy(&process_info->notifier_lock); 1574 kfree(process_info); 1575 } 1576 } 1577 1578 void amdgpu_amdkfd_gpuvm_release_process_vm(struct amdgpu_device *adev, 1579 void *drm_priv) 1580 { 1581 struct amdgpu_vm *avm; 1582 1583 if (WARN_ON(!adev || !drm_priv)) 1584 return; 1585 1586 avm = drm_priv_to_vm(drm_priv); 1587 1588 pr_debug("Releasing process vm %p\n", avm); 1589 1590 /* The original pasid of amdgpu vm has already been 1591 * released during making a amdgpu vm to a compute vm 1592 * The current pasid is managed by kfd and will be 1593 * released on kfd process destroy. Set amdgpu pasid 1594 * to 0 to avoid duplicate release. 1595 */ 1596 amdgpu_vm_release_compute(adev, avm); 1597 } 1598 1599 uint64_t amdgpu_amdkfd_gpuvm_get_process_page_dir(void *drm_priv) 1600 { 1601 struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv); 1602 struct amdgpu_bo *pd = avm->root.bo; 1603 struct amdgpu_device *adev = amdgpu_ttm_adev(pd->tbo.bdev); 1604 1605 if (adev->asic_type < CHIP_VEGA10) 1606 return avm->pd_phys_addr >> AMDGPU_GPU_PAGE_SHIFT; 1607 return avm->pd_phys_addr; 1608 } 1609 1610 void amdgpu_amdkfd_block_mmu_notifications(void *p) 1611 { 1612 struct amdkfd_process_info *pinfo = (struct amdkfd_process_info *)p; 1613 1614 mutex_lock(&pinfo->lock); 1615 WRITE_ONCE(pinfo->block_mmu_notifications, true); 1616 mutex_unlock(&pinfo->lock); 1617 } 1618 1619 int amdgpu_amdkfd_criu_resume(void *p) 1620 { 1621 int ret = 0; 1622 struct amdkfd_process_info *pinfo = (struct amdkfd_process_info *)p; 1623 1624 mutex_lock(&pinfo->lock); 1625 pr_debug("scheduling work\n"); 1626 mutex_lock(&pinfo->notifier_lock); 1627 pinfo->evicted_bos++; 1628 mutex_unlock(&pinfo->notifier_lock); 1629 if (!READ_ONCE(pinfo->block_mmu_notifications)) { 1630 ret = -EINVAL; 1631 goto out_unlock; 1632 } 1633 WRITE_ONCE(pinfo->block_mmu_notifications, false); 1634 queue_delayed_work(system_freezable_wq, 1635 &pinfo->restore_userptr_work, 0); 1636 1637 out_unlock: 1638 mutex_unlock(&pinfo->lock); 1639 return ret; 1640 } 1641 1642 size_t amdgpu_amdkfd_get_available_memory(struct amdgpu_device *adev, 1643 uint8_t xcp_id) 1644 { 1645 uint64_t reserved_for_pt = 1646 ESTIMATE_PT_SIZE(amdgpu_amdkfd_total_mem_size); 1647 ssize_t available; 1648 uint64_t vram_available, system_mem_available, ttm_mem_available; 1649 1650 spin_lock(&kfd_mem_limit.mem_limit_lock); 1651 vram_available = KFD_XCP_MEMORY_SIZE(adev, xcp_id) 1652 - adev->kfd.vram_used_aligned[xcp_id] 1653 - atomic64_read(&adev->vram_pin_size) 1654 - reserved_for_pt; 1655 1656 if (adev->gmc.is_app_apu) { 1657 system_mem_available = no_system_mem_limit ? 1658 kfd_mem_limit.max_system_mem_limit : 1659 kfd_mem_limit.max_system_mem_limit - 1660 kfd_mem_limit.system_mem_used; 1661 1662 ttm_mem_available = kfd_mem_limit.max_ttm_mem_limit - 1663 kfd_mem_limit.ttm_mem_used; 1664 1665 available = min3(system_mem_available, ttm_mem_available, 1666 vram_available); 1667 available = ALIGN_DOWN(available, PAGE_SIZE); 1668 } else { 1669 available = ALIGN_DOWN(vram_available, VRAM_AVAILABLITY_ALIGN); 1670 } 1671 1672 spin_unlock(&kfd_mem_limit.mem_limit_lock); 1673 1674 if (available < 0) 1675 available = 0; 1676 1677 return available; 1678 } 1679 1680 int amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu( 1681 struct amdgpu_device *adev, uint64_t va, uint64_t size, 1682 void *drm_priv, struct kgd_mem **mem, 1683 uint64_t *offset, uint32_t flags, bool criu_resume) 1684 { 1685 struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv); 1686 struct amdgpu_fpriv *fpriv = container_of(avm, struct amdgpu_fpriv, vm); 1687 enum ttm_bo_type bo_type = ttm_bo_type_device; 1688 struct sg_table *sg = NULL; 1689 uint64_t user_addr = 0; 1690 struct amdgpu_bo *bo; 1691 struct drm_gem_object *gobj = NULL; 1692 u32 domain, alloc_domain; 1693 uint64_t aligned_size; 1694 int8_t xcp_id = -1; 1695 u64 alloc_flags; 1696 int ret; 1697 1698 /* 1699 * Check on which domain to allocate BO 1700 */ 1701 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) { 1702 domain = alloc_domain = AMDGPU_GEM_DOMAIN_VRAM; 1703 1704 if (adev->gmc.is_app_apu) { 1705 domain = AMDGPU_GEM_DOMAIN_GTT; 1706 alloc_domain = AMDGPU_GEM_DOMAIN_GTT; 1707 alloc_flags = 0; 1708 } else { 1709 alloc_flags = AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE; 1710 alloc_flags |= (flags & KFD_IOC_ALLOC_MEM_FLAGS_PUBLIC) ? 1711 AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED : 0; 1712 } 1713 xcp_id = fpriv->xcp_id == AMDGPU_XCP_NO_PARTITION ? 1714 0 : fpriv->xcp_id; 1715 } else if (flags & KFD_IOC_ALLOC_MEM_FLAGS_GTT) { 1716 domain = alloc_domain = AMDGPU_GEM_DOMAIN_GTT; 1717 alloc_flags = 0; 1718 } else { 1719 domain = AMDGPU_GEM_DOMAIN_GTT; 1720 alloc_domain = AMDGPU_GEM_DOMAIN_CPU; 1721 alloc_flags = AMDGPU_GEM_CREATE_PREEMPTIBLE; 1722 1723 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) { 1724 if (!offset || !*offset) 1725 return -EINVAL; 1726 user_addr = untagged_addr(*offset); 1727 } else if (flags & (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL | 1728 KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) { 1729 bo_type = ttm_bo_type_sg; 1730 if (size > UINT_MAX) 1731 return -EINVAL; 1732 sg = create_sg_table(*offset, size); 1733 if (!sg) 1734 return -ENOMEM; 1735 } else { 1736 return -EINVAL; 1737 } 1738 } 1739 1740 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_COHERENT) 1741 alloc_flags |= AMDGPU_GEM_CREATE_COHERENT; 1742 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_EXT_COHERENT) 1743 alloc_flags |= AMDGPU_GEM_CREATE_EXT_COHERENT; 1744 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_UNCACHED) 1745 alloc_flags |= AMDGPU_GEM_CREATE_UNCACHED; 1746 1747 *mem = kzalloc(sizeof(struct kgd_mem), GFP_KERNEL); 1748 if (!*mem) { 1749 ret = -ENOMEM; 1750 goto err; 1751 } 1752 INIT_LIST_HEAD(&(*mem)->attachments); 1753 mutex_init(&(*mem)->lock); 1754 (*mem)->aql_queue = !!(flags & KFD_IOC_ALLOC_MEM_FLAGS_AQL_QUEUE_MEM); 1755 1756 /* Workaround for AQL queue wraparound bug. Map the same 1757 * memory twice. That means we only actually allocate half 1758 * the memory. 1759 */ 1760 if ((*mem)->aql_queue) 1761 size >>= 1; 1762 aligned_size = PAGE_ALIGN(size); 1763 1764 (*mem)->alloc_flags = flags; 1765 1766 amdgpu_sync_create(&(*mem)->sync); 1767 1768 ret = amdgpu_amdkfd_reserve_mem_limit(adev, aligned_size, flags, 1769 xcp_id); 1770 if (ret) { 1771 pr_debug("Insufficient memory\n"); 1772 goto err_reserve_limit; 1773 } 1774 1775 pr_debug("\tcreate BO VA 0x%llx size 0x%llx domain %s xcp_id %d\n", 1776 va, (*mem)->aql_queue ? size << 1 : size, 1777 domain_string(alloc_domain), xcp_id); 1778 1779 ret = amdgpu_gem_object_create(adev, aligned_size, 1, alloc_domain, alloc_flags, 1780 bo_type, NULL, &gobj, xcp_id + 1); 1781 if (ret) { 1782 pr_debug("Failed to create BO on domain %s. ret %d\n", 1783 domain_string(alloc_domain), ret); 1784 goto err_bo_create; 1785 } 1786 ret = drm_vma_node_allow(&gobj->vma_node, drm_priv); 1787 if (ret) { 1788 pr_debug("Failed to allow vma node access. ret %d\n", ret); 1789 goto err_node_allow; 1790 } 1791 ret = drm_gem_handle_create(adev->kfd.client.file, gobj, &(*mem)->gem_handle); 1792 if (ret) 1793 goto err_gem_handle_create; 1794 bo = gem_to_amdgpu_bo(gobj); 1795 if (bo_type == ttm_bo_type_sg) { 1796 bo->tbo.sg = sg; 1797 bo->tbo.ttm->sg = sg; 1798 } 1799 bo->kfd_bo = *mem; 1800 (*mem)->bo = bo; 1801 if (user_addr) 1802 bo->flags |= AMDGPU_AMDKFD_CREATE_USERPTR_BO; 1803 1804 (*mem)->va = va; 1805 (*mem)->domain = domain; 1806 (*mem)->mapped_to_gpu_memory = 0; 1807 (*mem)->process_info = avm->process_info; 1808 1809 add_kgd_mem_to_kfd_bo_list(*mem, avm->process_info, user_addr); 1810 1811 if (user_addr) { 1812 pr_debug("creating userptr BO for user_addr = %llx\n", user_addr); 1813 ret = init_user_pages(*mem, user_addr, criu_resume); 1814 if (ret) 1815 goto allocate_init_user_pages_failed; 1816 } else if (flags & (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL | 1817 KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) { 1818 ret = amdgpu_amdkfd_gpuvm_pin_bo(bo, AMDGPU_GEM_DOMAIN_GTT); 1819 if (ret) { 1820 pr_err("Pinning MMIO/DOORBELL BO during ALLOC FAILED\n"); 1821 goto err_pin_bo; 1822 } 1823 bo->allowed_domains = AMDGPU_GEM_DOMAIN_GTT; 1824 bo->preferred_domains = AMDGPU_GEM_DOMAIN_GTT; 1825 } else { 1826 mutex_lock(&avm->process_info->lock); 1827 if (avm->process_info->eviction_fence && 1828 !dma_fence_is_signaled(&avm->process_info->eviction_fence->base)) 1829 ret = amdgpu_amdkfd_bo_validate_and_fence(bo, domain, 1830 &avm->process_info->eviction_fence->base); 1831 mutex_unlock(&avm->process_info->lock); 1832 if (ret) 1833 goto err_validate_bo; 1834 } 1835 1836 if (offset) 1837 *offset = amdgpu_bo_mmap_offset(bo); 1838 1839 return 0; 1840 1841 allocate_init_user_pages_failed: 1842 err_pin_bo: 1843 err_validate_bo: 1844 remove_kgd_mem_from_kfd_bo_list(*mem, avm->process_info); 1845 drm_gem_handle_delete(adev->kfd.client.file, (*mem)->gem_handle); 1846 err_gem_handle_create: 1847 drm_vma_node_revoke(&gobj->vma_node, drm_priv); 1848 err_node_allow: 1849 /* Don't unreserve system mem limit twice */ 1850 goto err_reserve_limit; 1851 err_bo_create: 1852 amdgpu_amdkfd_unreserve_mem_limit(adev, aligned_size, flags, xcp_id); 1853 err_reserve_limit: 1854 mutex_destroy(&(*mem)->lock); 1855 if (gobj) 1856 drm_gem_object_put(gobj); 1857 else 1858 kfree(*mem); 1859 err: 1860 if (sg) { 1861 sg_free_table(sg); 1862 kfree(sg); 1863 } 1864 return ret; 1865 } 1866 1867 int amdgpu_amdkfd_gpuvm_free_memory_of_gpu( 1868 struct amdgpu_device *adev, struct kgd_mem *mem, void *drm_priv, 1869 uint64_t *size) 1870 { 1871 struct amdkfd_process_info *process_info = mem->process_info; 1872 unsigned long bo_size = mem->bo->tbo.base.size; 1873 bool use_release_notifier = (mem->bo->kfd_bo == mem); 1874 struct kfd_mem_attachment *entry, *tmp; 1875 struct bo_vm_reservation_context ctx; 1876 unsigned int mapped_to_gpu_memory; 1877 int ret; 1878 bool is_imported = false; 1879 1880 mutex_lock(&mem->lock); 1881 1882 /* Unpin MMIO/DOORBELL BO's that were pinned during allocation */ 1883 if (mem->alloc_flags & 1884 (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL | 1885 KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) { 1886 amdgpu_amdkfd_gpuvm_unpin_bo(mem->bo); 1887 } 1888 1889 mapped_to_gpu_memory = mem->mapped_to_gpu_memory; 1890 is_imported = mem->is_imported; 1891 mutex_unlock(&mem->lock); 1892 /* lock is not needed after this, since mem is unused and will 1893 * be freed anyway 1894 */ 1895 1896 if (mapped_to_gpu_memory > 0) { 1897 pr_debug("BO VA 0x%llx size 0x%lx is still mapped.\n", 1898 mem->va, bo_size); 1899 return -EBUSY; 1900 } 1901 1902 /* Make sure restore workers don't access the BO any more */ 1903 mutex_lock(&process_info->lock); 1904 list_del(&mem->validate_list); 1905 mutex_unlock(&process_info->lock); 1906 1907 /* Cleanup user pages and MMU notifiers */ 1908 if (amdgpu_ttm_tt_get_usermm(mem->bo->tbo.ttm)) { 1909 amdgpu_hmm_unregister(mem->bo); 1910 mutex_lock(&process_info->notifier_lock); 1911 amdgpu_ttm_tt_discard_user_pages(mem->bo->tbo.ttm, mem->range); 1912 mutex_unlock(&process_info->notifier_lock); 1913 } 1914 1915 ret = reserve_bo_and_cond_vms(mem, NULL, BO_VM_ALL, &ctx); 1916 if (unlikely(ret)) 1917 return ret; 1918 1919 amdgpu_amdkfd_remove_eviction_fence(mem->bo, 1920 process_info->eviction_fence); 1921 pr_debug("Release VA 0x%llx - 0x%llx\n", mem->va, 1922 mem->va + bo_size * (1 + mem->aql_queue)); 1923 1924 /* Remove from VM internal data structures */ 1925 list_for_each_entry_safe(entry, tmp, &mem->attachments, list) { 1926 kfd_mem_dmaunmap_attachment(mem, entry); 1927 kfd_mem_detach(entry); 1928 } 1929 1930 ret = unreserve_bo_and_vms(&ctx, false, false); 1931 1932 /* Free the sync object */ 1933 amdgpu_sync_free(&mem->sync); 1934 1935 /* If the SG is not NULL, it's one we created for a doorbell or mmio 1936 * remap BO. We need to free it. 1937 */ 1938 if (mem->bo->tbo.sg) { 1939 sg_free_table(mem->bo->tbo.sg); 1940 kfree(mem->bo->tbo.sg); 1941 } 1942 1943 /* Update the size of the BO being freed if it was allocated from 1944 * VRAM and is not imported. For APP APU VRAM allocations are done 1945 * in GTT domain 1946 */ 1947 if (size) { 1948 if (!is_imported && 1949 (mem->bo->preferred_domains == AMDGPU_GEM_DOMAIN_VRAM || 1950 (adev->gmc.is_app_apu && 1951 mem->bo->preferred_domains == AMDGPU_GEM_DOMAIN_GTT))) 1952 *size = bo_size; 1953 else 1954 *size = 0; 1955 } 1956 1957 /* Free the BO*/ 1958 drm_vma_node_revoke(&mem->bo->tbo.base.vma_node, drm_priv); 1959 drm_gem_handle_delete(adev->kfd.client.file, mem->gem_handle); 1960 if (mem->dmabuf) { 1961 dma_buf_put(mem->dmabuf); 1962 mem->dmabuf = NULL; 1963 } 1964 mutex_destroy(&mem->lock); 1965 1966 /* If this releases the last reference, it will end up calling 1967 * amdgpu_amdkfd_release_notify and kfree the mem struct. That's why 1968 * this needs to be the last call here. 1969 */ 1970 drm_gem_object_put(&mem->bo->tbo.base); 1971 1972 /* 1973 * For kgd_mem allocated in amdgpu_amdkfd_gpuvm_import_dmabuf(), 1974 * explicitly free it here. 1975 */ 1976 if (!use_release_notifier) 1977 kfree(mem); 1978 1979 return ret; 1980 } 1981 1982 int amdgpu_amdkfd_gpuvm_map_memory_to_gpu( 1983 struct amdgpu_device *adev, struct kgd_mem *mem, 1984 void *drm_priv) 1985 { 1986 struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv); 1987 int ret; 1988 struct amdgpu_bo *bo; 1989 uint32_t domain; 1990 struct kfd_mem_attachment *entry; 1991 struct bo_vm_reservation_context ctx; 1992 unsigned long bo_size; 1993 bool is_invalid_userptr = false; 1994 1995 bo = mem->bo; 1996 if (!bo) { 1997 pr_err("Invalid BO when mapping memory to GPU\n"); 1998 return -EINVAL; 1999 } 2000 2001 /* Make sure restore is not running concurrently. Since we 2002 * don't map invalid userptr BOs, we rely on the next restore 2003 * worker to do the mapping 2004 */ 2005 mutex_lock(&mem->process_info->lock); 2006 2007 /* Lock notifier lock. If we find an invalid userptr BO, we can be 2008 * sure that the MMU notifier is no longer running 2009 * concurrently and the queues are actually stopped 2010 */ 2011 if (amdgpu_ttm_tt_get_usermm(bo->tbo.ttm)) { 2012 mutex_lock(&mem->process_info->notifier_lock); 2013 is_invalid_userptr = !!mem->invalid; 2014 mutex_unlock(&mem->process_info->notifier_lock); 2015 } 2016 2017 mutex_lock(&mem->lock); 2018 2019 domain = mem->domain; 2020 bo_size = bo->tbo.base.size; 2021 2022 pr_debug("Map VA 0x%llx - 0x%llx to vm %p domain %s\n", 2023 mem->va, 2024 mem->va + bo_size * (1 + mem->aql_queue), 2025 avm, domain_string(domain)); 2026 2027 if (!kfd_mem_is_attached(avm, mem)) { 2028 ret = kfd_mem_attach(adev, mem, avm, mem->aql_queue); 2029 if (ret) 2030 goto out; 2031 } 2032 2033 ret = reserve_bo_and_vm(mem, avm, &ctx); 2034 if (unlikely(ret)) 2035 goto out; 2036 2037 /* Userptr can be marked as "not invalid", but not actually be 2038 * validated yet (still in the system domain). In that case 2039 * the queues are still stopped and we can leave mapping for 2040 * the next restore worker 2041 */ 2042 if (amdgpu_ttm_tt_get_usermm(bo->tbo.ttm) && 2043 bo->tbo.resource->mem_type == TTM_PL_SYSTEM) 2044 is_invalid_userptr = true; 2045 2046 ret = vm_validate_pt_pd_bos(avm); 2047 if (unlikely(ret)) 2048 goto out_unreserve; 2049 2050 list_for_each_entry(entry, &mem->attachments, list) { 2051 if (entry->bo_va->base.vm != avm || entry->is_mapped) 2052 continue; 2053 2054 pr_debug("\t map VA 0x%llx - 0x%llx in entry %p\n", 2055 entry->va, entry->va + bo_size, entry); 2056 2057 ret = map_bo_to_gpuvm(mem, entry, ctx.sync, 2058 is_invalid_userptr); 2059 if (ret) { 2060 pr_err("Failed to map bo to gpuvm\n"); 2061 goto out_unreserve; 2062 } 2063 2064 ret = vm_update_pds(avm, ctx.sync); 2065 if (ret) { 2066 pr_err("Failed to update page directories\n"); 2067 goto out_unreserve; 2068 } 2069 2070 entry->is_mapped = true; 2071 mem->mapped_to_gpu_memory++; 2072 pr_debug("\t INC mapping count %d\n", 2073 mem->mapped_to_gpu_memory); 2074 } 2075 2076 ret = unreserve_bo_and_vms(&ctx, false, false); 2077 2078 goto out; 2079 2080 out_unreserve: 2081 unreserve_bo_and_vms(&ctx, false, false); 2082 out: 2083 mutex_unlock(&mem->process_info->lock); 2084 mutex_unlock(&mem->lock); 2085 return ret; 2086 } 2087 2088 int amdgpu_amdkfd_gpuvm_dmaunmap_mem(struct kgd_mem *mem, void *drm_priv) 2089 { 2090 struct kfd_mem_attachment *entry; 2091 struct amdgpu_vm *vm; 2092 int ret; 2093 2094 vm = drm_priv_to_vm(drm_priv); 2095 2096 mutex_lock(&mem->lock); 2097 2098 ret = amdgpu_bo_reserve(mem->bo, true); 2099 if (ret) 2100 goto out; 2101 2102 list_for_each_entry(entry, &mem->attachments, list) { 2103 if (entry->bo_va->base.vm != vm) 2104 continue; 2105 if (entry->bo_va->base.bo->tbo.ttm && 2106 !entry->bo_va->base.bo->tbo.ttm->sg) 2107 continue; 2108 2109 kfd_mem_dmaunmap_attachment(mem, entry); 2110 } 2111 2112 amdgpu_bo_unreserve(mem->bo); 2113 out: 2114 mutex_unlock(&mem->lock); 2115 2116 return ret; 2117 } 2118 2119 int amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu( 2120 struct amdgpu_device *adev, struct kgd_mem *mem, void *drm_priv) 2121 { 2122 struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv); 2123 unsigned long bo_size = mem->bo->tbo.base.size; 2124 struct kfd_mem_attachment *entry; 2125 struct bo_vm_reservation_context ctx; 2126 int ret; 2127 2128 mutex_lock(&mem->lock); 2129 2130 ret = reserve_bo_and_cond_vms(mem, avm, BO_VM_MAPPED, &ctx); 2131 if (unlikely(ret)) 2132 goto out; 2133 /* If no VMs were reserved, it means the BO wasn't actually mapped */ 2134 if (ctx.n_vms == 0) { 2135 ret = -EINVAL; 2136 goto unreserve_out; 2137 } 2138 2139 ret = vm_validate_pt_pd_bos(avm); 2140 if (unlikely(ret)) 2141 goto unreserve_out; 2142 2143 pr_debug("Unmap VA 0x%llx - 0x%llx from vm %p\n", 2144 mem->va, 2145 mem->va + bo_size * (1 + mem->aql_queue), 2146 avm); 2147 2148 list_for_each_entry(entry, &mem->attachments, list) { 2149 if (entry->bo_va->base.vm != avm || !entry->is_mapped) 2150 continue; 2151 2152 pr_debug("\t unmap VA 0x%llx - 0x%llx from entry %p\n", 2153 entry->va, entry->va + bo_size, entry); 2154 2155 unmap_bo_from_gpuvm(mem, entry, ctx.sync); 2156 entry->is_mapped = false; 2157 2158 mem->mapped_to_gpu_memory--; 2159 pr_debug("\t DEC mapping count %d\n", 2160 mem->mapped_to_gpu_memory); 2161 } 2162 2163 unreserve_out: 2164 unreserve_bo_and_vms(&ctx, false, false); 2165 out: 2166 mutex_unlock(&mem->lock); 2167 return ret; 2168 } 2169 2170 int amdgpu_amdkfd_gpuvm_sync_memory( 2171 struct amdgpu_device *adev, struct kgd_mem *mem, bool intr) 2172 { 2173 struct amdgpu_sync sync; 2174 int ret; 2175 2176 amdgpu_sync_create(&sync); 2177 2178 mutex_lock(&mem->lock); 2179 amdgpu_sync_clone(&mem->sync, &sync); 2180 mutex_unlock(&mem->lock); 2181 2182 ret = amdgpu_sync_wait(&sync, intr); 2183 amdgpu_sync_free(&sync); 2184 return ret; 2185 } 2186 2187 /** 2188 * amdgpu_amdkfd_map_gtt_bo_to_gart - Map BO to GART and increment reference count 2189 * @adev: Device to which allocated BO belongs 2190 * @bo: Buffer object to be mapped 2191 * 2192 * Before return, bo reference count is incremented. To release the reference and unpin/ 2193 * unmap the BO, call amdgpu_amdkfd_free_gtt_mem. 2194 */ 2195 int amdgpu_amdkfd_map_gtt_bo_to_gart(struct amdgpu_device *adev, struct amdgpu_bo *bo) 2196 { 2197 int ret; 2198 2199 ret = amdgpu_bo_reserve(bo, true); 2200 if (ret) { 2201 pr_err("Failed to reserve bo. ret %d\n", ret); 2202 goto err_reserve_bo_failed; 2203 } 2204 2205 ret = amdgpu_bo_pin(bo, AMDGPU_GEM_DOMAIN_GTT); 2206 if (ret) { 2207 pr_err("Failed to pin bo. ret %d\n", ret); 2208 goto err_pin_bo_failed; 2209 } 2210 2211 ret = amdgpu_ttm_alloc_gart(&bo->tbo); 2212 if (ret) { 2213 pr_err("Failed to bind bo to GART. ret %d\n", ret); 2214 goto err_map_bo_gart_failed; 2215 } 2216 2217 amdgpu_amdkfd_remove_eviction_fence( 2218 bo, bo->vm_bo->vm->process_info->eviction_fence); 2219 2220 amdgpu_bo_unreserve(bo); 2221 2222 bo = amdgpu_bo_ref(bo); 2223 2224 return 0; 2225 2226 err_map_bo_gart_failed: 2227 amdgpu_bo_unpin(bo); 2228 err_pin_bo_failed: 2229 amdgpu_bo_unreserve(bo); 2230 err_reserve_bo_failed: 2231 2232 return ret; 2233 } 2234 2235 /** amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel() - Map a GTT BO for kernel CPU access 2236 * 2237 * @mem: Buffer object to be mapped for CPU access 2238 * @kptr[out]: pointer in kernel CPU address space 2239 * @size[out]: size of the buffer 2240 * 2241 * Pins the BO and maps it for kernel CPU access. The eviction fence is removed 2242 * from the BO, since pinned BOs cannot be evicted. The bo must remain on the 2243 * validate_list, so the GPU mapping can be restored after a page table was 2244 * evicted. 2245 * 2246 * Return: 0 on success, error code on failure 2247 */ 2248 int amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(struct kgd_mem *mem, 2249 void **kptr, uint64_t *size) 2250 { 2251 int ret; 2252 struct amdgpu_bo *bo = mem->bo; 2253 2254 if (amdgpu_ttm_tt_get_usermm(bo->tbo.ttm)) { 2255 pr_err("userptr can't be mapped to kernel\n"); 2256 return -EINVAL; 2257 } 2258 2259 mutex_lock(&mem->process_info->lock); 2260 2261 ret = amdgpu_bo_reserve(bo, true); 2262 if (ret) { 2263 pr_err("Failed to reserve bo. ret %d\n", ret); 2264 goto bo_reserve_failed; 2265 } 2266 2267 ret = amdgpu_bo_pin(bo, AMDGPU_GEM_DOMAIN_GTT); 2268 if (ret) { 2269 pr_err("Failed to pin bo. ret %d\n", ret); 2270 goto pin_failed; 2271 } 2272 2273 ret = amdgpu_bo_kmap(bo, kptr); 2274 if (ret) { 2275 pr_err("Failed to map bo to kernel. ret %d\n", ret); 2276 goto kmap_failed; 2277 } 2278 2279 amdgpu_amdkfd_remove_eviction_fence( 2280 bo, mem->process_info->eviction_fence); 2281 2282 if (size) 2283 *size = amdgpu_bo_size(bo); 2284 2285 amdgpu_bo_unreserve(bo); 2286 2287 mutex_unlock(&mem->process_info->lock); 2288 return 0; 2289 2290 kmap_failed: 2291 amdgpu_bo_unpin(bo); 2292 pin_failed: 2293 amdgpu_bo_unreserve(bo); 2294 bo_reserve_failed: 2295 mutex_unlock(&mem->process_info->lock); 2296 2297 return ret; 2298 } 2299 2300 /** amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel() - Unmap a GTT BO for kernel CPU access 2301 * 2302 * @mem: Buffer object to be unmapped for CPU access 2303 * 2304 * Removes the kernel CPU mapping and unpins the BO. It does not restore the 2305 * eviction fence, so this function should only be used for cleanup before the 2306 * BO is destroyed. 2307 */ 2308 void amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(struct kgd_mem *mem) 2309 { 2310 struct amdgpu_bo *bo = mem->bo; 2311 2312 amdgpu_bo_reserve(bo, true); 2313 amdgpu_bo_kunmap(bo); 2314 amdgpu_bo_unpin(bo); 2315 amdgpu_bo_unreserve(bo); 2316 } 2317 2318 int amdgpu_amdkfd_gpuvm_get_vm_fault_info(struct amdgpu_device *adev, 2319 struct kfd_vm_fault_info *mem) 2320 { 2321 if (atomic_read(&adev->gmc.vm_fault_info_updated) == 1) { 2322 *mem = *adev->gmc.vm_fault_info; 2323 mb(); /* make sure read happened */ 2324 atomic_set(&adev->gmc.vm_fault_info_updated, 0); 2325 } 2326 return 0; 2327 } 2328 2329 static int import_obj_create(struct amdgpu_device *adev, 2330 struct dma_buf *dma_buf, 2331 struct drm_gem_object *obj, 2332 uint64_t va, void *drm_priv, 2333 struct kgd_mem **mem, uint64_t *size, 2334 uint64_t *mmap_offset) 2335 { 2336 struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv); 2337 struct amdgpu_bo *bo; 2338 int ret; 2339 2340 bo = gem_to_amdgpu_bo(obj); 2341 if (!(bo->preferred_domains & (AMDGPU_GEM_DOMAIN_VRAM | 2342 AMDGPU_GEM_DOMAIN_GTT))) 2343 /* Only VRAM and GTT BOs are supported */ 2344 return -EINVAL; 2345 2346 *mem = kzalloc(sizeof(struct kgd_mem), GFP_KERNEL); 2347 if (!*mem) 2348 return -ENOMEM; 2349 2350 ret = drm_vma_node_allow(&obj->vma_node, drm_priv); 2351 if (ret) 2352 goto err_free_mem; 2353 2354 if (size) 2355 *size = amdgpu_bo_size(bo); 2356 2357 if (mmap_offset) 2358 *mmap_offset = amdgpu_bo_mmap_offset(bo); 2359 2360 INIT_LIST_HEAD(&(*mem)->attachments); 2361 mutex_init(&(*mem)->lock); 2362 2363 (*mem)->alloc_flags = 2364 ((bo->preferred_domains & AMDGPU_GEM_DOMAIN_VRAM) ? 2365 KFD_IOC_ALLOC_MEM_FLAGS_VRAM : KFD_IOC_ALLOC_MEM_FLAGS_GTT) 2366 | KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE 2367 | KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE; 2368 2369 get_dma_buf(dma_buf); 2370 (*mem)->dmabuf = dma_buf; 2371 (*mem)->bo = bo; 2372 (*mem)->va = va; 2373 (*mem)->domain = (bo->preferred_domains & AMDGPU_GEM_DOMAIN_VRAM) && !adev->gmc.is_app_apu ? 2374 AMDGPU_GEM_DOMAIN_VRAM : AMDGPU_GEM_DOMAIN_GTT; 2375 2376 (*mem)->mapped_to_gpu_memory = 0; 2377 (*mem)->process_info = avm->process_info; 2378 add_kgd_mem_to_kfd_bo_list(*mem, avm->process_info, false); 2379 amdgpu_sync_create(&(*mem)->sync); 2380 (*mem)->is_imported = true; 2381 2382 mutex_lock(&avm->process_info->lock); 2383 if (avm->process_info->eviction_fence && 2384 !dma_fence_is_signaled(&avm->process_info->eviction_fence->base)) 2385 ret = amdgpu_amdkfd_bo_validate_and_fence(bo, (*mem)->domain, 2386 &avm->process_info->eviction_fence->base); 2387 mutex_unlock(&avm->process_info->lock); 2388 if (ret) 2389 goto err_remove_mem; 2390 2391 return 0; 2392 2393 err_remove_mem: 2394 remove_kgd_mem_from_kfd_bo_list(*mem, avm->process_info); 2395 drm_vma_node_revoke(&obj->vma_node, drm_priv); 2396 err_free_mem: 2397 kfree(*mem); 2398 return ret; 2399 } 2400 2401 int amdgpu_amdkfd_gpuvm_import_dmabuf_fd(struct amdgpu_device *adev, int fd, 2402 uint64_t va, void *drm_priv, 2403 struct kgd_mem **mem, uint64_t *size, 2404 uint64_t *mmap_offset) 2405 { 2406 struct drm_gem_object *obj; 2407 uint32_t handle; 2408 int ret; 2409 2410 ret = drm_gem_prime_fd_to_handle(&adev->ddev, adev->kfd.client.file, fd, 2411 &handle); 2412 if (ret) 2413 return ret; 2414 obj = drm_gem_object_lookup(adev->kfd.client.file, handle); 2415 if (!obj) { 2416 ret = -EINVAL; 2417 goto err_release_handle; 2418 } 2419 2420 ret = import_obj_create(adev, obj->dma_buf, obj, va, drm_priv, mem, size, 2421 mmap_offset); 2422 if (ret) 2423 goto err_put_obj; 2424 2425 (*mem)->gem_handle = handle; 2426 2427 return 0; 2428 2429 err_put_obj: 2430 drm_gem_object_put(obj); 2431 err_release_handle: 2432 drm_gem_handle_delete(adev->kfd.client.file, handle); 2433 return ret; 2434 } 2435 2436 int amdgpu_amdkfd_gpuvm_export_dmabuf(struct kgd_mem *mem, 2437 struct dma_buf **dma_buf) 2438 { 2439 int ret; 2440 2441 mutex_lock(&mem->lock); 2442 ret = kfd_mem_export_dmabuf(mem); 2443 if (ret) 2444 goto out; 2445 2446 get_dma_buf(mem->dmabuf); 2447 *dma_buf = mem->dmabuf; 2448 out: 2449 mutex_unlock(&mem->lock); 2450 return ret; 2451 } 2452 2453 /* Evict a userptr BO by stopping the queues if necessary 2454 * 2455 * Runs in MMU notifier, may be in RECLAIM_FS context. This means it 2456 * cannot do any memory allocations, and cannot take any locks that 2457 * are held elsewhere while allocating memory. 2458 * 2459 * It doesn't do anything to the BO itself. The real work happens in 2460 * restore, where we get updated page addresses. This function only 2461 * ensures that GPU access to the BO is stopped. 2462 */ 2463 int amdgpu_amdkfd_evict_userptr(struct mmu_interval_notifier *mni, 2464 unsigned long cur_seq, struct kgd_mem *mem) 2465 { 2466 struct amdkfd_process_info *process_info = mem->process_info; 2467 int r = 0; 2468 2469 /* Do not process MMU notifications during CRIU restore until 2470 * KFD_CRIU_OP_RESUME IOCTL is received 2471 */ 2472 if (READ_ONCE(process_info->block_mmu_notifications)) 2473 return 0; 2474 2475 mutex_lock(&process_info->notifier_lock); 2476 mmu_interval_set_seq(mni, cur_seq); 2477 2478 mem->invalid++; 2479 if (++process_info->evicted_bos == 1) { 2480 /* First eviction, stop the queues */ 2481 r = kgd2kfd_quiesce_mm(mni->mm, 2482 KFD_QUEUE_EVICTION_TRIGGER_USERPTR); 2483 if (r) 2484 pr_err("Failed to quiesce KFD\n"); 2485 queue_delayed_work(system_freezable_wq, 2486 &process_info->restore_userptr_work, 2487 msecs_to_jiffies(AMDGPU_USERPTR_RESTORE_DELAY_MS)); 2488 } 2489 mutex_unlock(&process_info->notifier_lock); 2490 2491 return r; 2492 } 2493 2494 /* Update invalid userptr BOs 2495 * 2496 * Moves invalidated (evicted) userptr BOs from userptr_valid_list to 2497 * userptr_inval_list and updates user pages for all BOs that have 2498 * been invalidated since their last update. 2499 */ 2500 static int update_invalid_user_pages(struct amdkfd_process_info *process_info, 2501 struct mm_struct *mm) 2502 { 2503 struct kgd_mem *mem, *tmp_mem; 2504 struct amdgpu_bo *bo; 2505 struct ttm_operation_ctx ctx = { false, false }; 2506 uint32_t invalid; 2507 int ret = 0; 2508 2509 mutex_lock(&process_info->notifier_lock); 2510 2511 /* Move all invalidated BOs to the userptr_inval_list */ 2512 list_for_each_entry_safe(mem, tmp_mem, 2513 &process_info->userptr_valid_list, 2514 validate_list) 2515 if (mem->invalid) 2516 list_move_tail(&mem->validate_list, 2517 &process_info->userptr_inval_list); 2518 2519 /* Go through userptr_inval_list and update any invalid user_pages */ 2520 list_for_each_entry(mem, &process_info->userptr_inval_list, 2521 validate_list) { 2522 invalid = mem->invalid; 2523 if (!invalid) 2524 /* BO hasn't been invalidated since the last 2525 * revalidation attempt. Keep its page list. 2526 */ 2527 continue; 2528 2529 bo = mem->bo; 2530 2531 amdgpu_ttm_tt_discard_user_pages(bo->tbo.ttm, mem->range); 2532 mem->range = NULL; 2533 2534 /* BO reservations and getting user pages (hmm_range_fault) 2535 * must happen outside the notifier lock 2536 */ 2537 mutex_unlock(&process_info->notifier_lock); 2538 2539 /* Move the BO to system (CPU) domain if necessary to unmap 2540 * and free the SG table 2541 */ 2542 if (bo->tbo.resource->mem_type != TTM_PL_SYSTEM) { 2543 if (amdgpu_bo_reserve(bo, true)) 2544 return -EAGAIN; 2545 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_CPU); 2546 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 2547 amdgpu_bo_unreserve(bo); 2548 if (ret) { 2549 pr_err("%s: Failed to invalidate userptr BO\n", 2550 __func__); 2551 return -EAGAIN; 2552 } 2553 } 2554 2555 /* Get updated user pages */ 2556 ret = amdgpu_ttm_tt_get_user_pages(bo, bo->tbo.ttm->pages, 2557 &mem->range); 2558 if (ret) { 2559 pr_debug("Failed %d to get user pages\n", ret); 2560 2561 /* Return -EFAULT bad address error as success. It will 2562 * fail later with a VM fault if the GPU tries to access 2563 * it. Better than hanging indefinitely with stalled 2564 * user mode queues. 2565 * 2566 * Return other error -EBUSY or -ENOMEM to retry restore 2567 */ 2568 if (ret != -EFAULT) 2569 return ret; 2570 2571 ret = 0; 2572 } 2573 2574 mutex_lock(&process_info->notifier_lock); 2575 2576 /* Mark the BO as valid unless it was invalidated 2577 * again concurrently. 2578 */ 2579 if (mem->invalid != invalid) { 2580 ret = -EAGAIN; 2581 goto unlock_out; 2582 } 2583 /* set mem valid if mem has hmm range associated */ 2584 if (mem->range) 2585 mem->invalid = 0; 2586 } 2587 2588 unlock_out: 2589 mutex_unlock(&process_info->notifier_lock); 2590 2591 return ret; 2592 } 2593 2594 /* Validate invalid userptr BOs 2595 * 2596 * Validates BOs on the userptr_inval_list. Also updates GPUVM page tables 2597 * with new page addresses and waits for the page table updates to complete. 2598 */ 2599 static int validate_invalid_user_pages(struct amdkfd_process_info *process_info) 2600 { 2601 struct ttm_operation_ctx ctx = { false, false }; 2602 struct amdgpu_sync sync; 2603 struct drm_exec exec; 2604 2605 struct amdgpu_vm *peer_vm; 2606 struct kgd_mem *mem, *tmp_mem; 2607 struct amdgpu_bo *bo; 2608 int ret; 2609 2610 amdgpu_sync_create(&sync); 2611 2612 drm_exec_init(&exec, 0, 0); 2613 /* Reserve all BOs and page tables for validation */ 2614 drm_exec_until_all_locked(&exec) { 2615 /* Reserve all the page directories */ 2616 list_for_each_entry(peer_vm, &process_info->vm_list_head, 2617 vm_list_node) { 2618 ret = amdgpu_vm_lock_pd(peer_vm, &exec, 2); 2619 drm_exec_retry_on_contention(&exec); 2620 if (unlikely(ret)) 2621 goto unreserve_out; 2622 } 2623 2624 /* Reserve the userptr_inval_list entries to resv_list */ 2625 list_for_each_entry(mem, &process_info->userptr_inval_list, 2626 validate_list) { 2627 struct drm_gem_object *gobj; 2628 2629 gobj = &mem->bo->tbo.base; 2630 ret = drm_exec_prepare_obj(&exec, gobj, 1); 2631 drm_exec_retry_on_contention(&exec); 2632 if (unlikely(ret)) 2633 goto unreserve_out; 2634 } 2635 } 2636 2637 ret = process_validate_vms(process_info); 2638 if (ret) 2639 goto unreserve_out; 2640 2641 /* Validate BOs and update GPUVM page tables */ 2642 list_for_each_entry_safe(mem, tmp_mem, 2643 &process_info->userptr_inval_list, 2644 validate_list) { 2645 struct kfd_mem_attachment *attachment; 2646 2647 bo = mem->bo; 2648 2649 /* Validate the BO if we got user pages */ 2650 if (bo->tbo.ttm->pages[0]) { 2651 amdgpu_bo_placement_from_domain(bo, mem->domain); 2652 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 2653 if (ret) { 2654 pr_err("%s: failed to validate BO\n", __func__); 2655 goto unreserve_out; 2656 } 2657 } 2658 2659 /* Update mapping. If the BO was not validated 2660 * (because we couldn't get user pages), this will 2661 * clear the page table entries, which will result in 2662 * VM faults if the GPU tries to access the invalid 2663 * memory. 2664 */ 2665 list_for_each_entry(attachment, &mem->attachments, list) { 2666 if (!attachment->is_mapped) 2667 continue; 2668 2669 kfd_mem_dmaunmap_attachment(mem, attachment); 2670 ret = update_gpuvm_pte(mem, attachment, &sync); 2671 if (ret) { 2672 pr_err("%s: update PTE failed\n", __func__); 2673 /* make sure this gets validated again */ 2674 mutex_lock(&process_info->notifier_lock); 2675 mem->invalid++; 2676 mutex_unlock(&process_info->notifier_lock); 2677 goto unreserve_out; 2678 } 2679 } 2680 } 2681 2682 /* Update page directories */ 2683 ret = process_update_pds(process_info, &sync); 2684 2685 unreserve_out: 2686 drm_exec_fini(&exec); 2687 amdgpu_sync_wait(&sync, false); 2688 amdgpu_sync_free(&sync); 2689 2690 return ret; 2691 } 2692 2693 /* Confirm that all user pages are valid while holding the notifier lock 2694 * 2695 * Moves valid BOs from the userptr_inval_list back to userptr_val_list. 2696 */ 2697 static int confirm_valid_user_pages_locked(struct amdkfd_process_info *process_info) 2698 { 2699 struct kgd_mem *mem, *tmp_mem; 2700 int ret = 0; 2701 2702 list_for_each_entry_safe(mem, tmp_mem, 2703 &process_info->userptr_inval_list, 2704 validate_list) { 2705 bool valid; 2706 2707 /* keep mem without hmm range at userptr_inval_list */ 2708 if (!mem->range) 2709 continue; 2710 2711 /* Only check mem with hmm range associated */ 2712 valid = amdgpu_ttm_tt_get_user_pages_done( 2713 mem->bo->tbo.ttm, mem->range); 2714 2715 mem->range = NULL; 2716 if (!valid) { 2717 WARN(!mem->invalid, "Invalid BO not marked invalid"); 2718 ret = -EAGAIN; 2719 continue; 2720 } 2721 2722 if (mem->invalid) { 2723 WARN(1, "Valid BO is marked invalid"); 2724 ret = -EAGAIN; 2725 continue; 2726 } 2727 2728 list_move_tail(&mem->validate_list, 2729 &process_info->userptr_valid_list); 2730 } 2731 2732 return ret; 2733 } 2734 2735 /* Worker callback to restore evicted userptr BOs 2736 * 2737 * Tries to update and validate all userptr BOs. If successful and no 2738 * concurrent evictions happened, the queues are restarted. Otherwise, 2739 * reschedule for another attempt later. 2740 */ 2741 static void amdgpu_amdkfd_restore_userptr_worker(struct work_struct *work) 2742 { 2743 struct delayed_work *dwork = to_delayed_work(work); 2744 struct amdkfd_process_info *process_info = 2745 container_of(dwork, struct amdkfd_process_info, 2746 restore_userptr_work); 2747 struct task_struct *usertask; 2748 struct mm_struct *mm; 2749 uint32_t evicted_bos; 2750 2751 mutex_lock(&process_info->notifier_lock); 2752 evicted_bos = process_info->evicted_bos; 2753 mutex_unlock(&process_info->notifier_lock); 2754 if (!evicted_bos) 2755 return; 2756 2757 /* Reference task and mm in case of concurrent process termination */ 2758 usertask = get_pid_task(process_info->pid, PIDTYPE_PID); 2759 if (!usertask) 2760 return; 2761 mm = get_task_mm(usertask); 2762 if (!mm) { 2763 put_task_struct(usertask); 2764 return; 2765 } 2766 2767 mutex_lock(&process_info->lock); 2768 2769 if (update_invalid_user_pages(process_info, mm)) 2770 goto unlock_out; 2771 /* userptr_inval_list can be empty if all evicted userptr BOs 2772 * have been freed. In that case there is nothing to validate 2773 * and we can just restart the queues. 2774 */ 2775 if (!list_empty(&process_info->userptr_inval_list)) { 2776 if (validate_invalid_user_pages(process_info)) 2777 goto unlock_out; 2778 } 2779 /* Final check for concurrent evicton and atomic update. If 2780 * another eviction happens after successful update, it will 2781 * be a first eviction that calls quiesce_mm. The eviction 2782 * reference counting inside KFD will handle this case. 2783 */ 2784 mutex_lock(&process_info->notifier_lock); 2785 if (process_info->evicted_bos != evicted_bos) 2786 goto unlock_notifier_out; 2787 2788 if (confirm_valid_user_pages_locked(process_info)) { 2789 WARN(1, "User pages unexpectedly invalid"); 2790 goto unlock_notifier_out; 2791 } 2792 2793 process_info->evicted_bos = evicted_bos = 0; 2794 2795 if (kgd2kfd_resume_mm(mm)) { 2796 pr_err("%s: Failed to resume KFD\n", __func__); 2797 /* No recovery from this failure. Probably the CP is 2798 * hanging. No point trying again. 2799 */ 2800 } 2801 2802 unlock_notifier_out: 2803 mutex_unlock(&process_info->notifier_lock); 2804 unlock_out: 2805 mutex_unlock(&process_info->lock); 2806 2807 /* If validation failed, reschedule another attempt */ 2808 if (evicted_bos) { 2809 queue_delayed_work(system_freezable_wq, 2810 &process_info->restore_userptr_work, 2811 msecs_to_jiffies(AMDGPU_USERPTR_RESTORE_DELAY_MS)); 2812 2813 kfd_smi_event_queue_restore_rescheduled(mm); 2814 } 2815 mmput(mm); 2816 put_task_struct(usertask); 2817 } 2818 2819 static void replace_eviction_fence(struct dma_fence __rcu **ef, 2820 struct dma_fence *new_ef) 2821 { 2822 struct dma_fence *old_ef = rcu_replace_pointer(*ef, new_ef, true 2823 /* protected by process_info->lock */); 2824 2825 /* If we're replacing an unsignaled eviction fence, that fence will 2826 * never be signaled, and if anyone is still waiting on that fence, 2827 * they will hang forever. This should never happen. We should only 2828 * replace the fence in restore_work that only gets scheduled after 2829 * eviction work signaled the fence. 2830 */ 2831 WARN_ONCE(!dma_fence_is_signaled(old_ef), 2832 "Replacing unsignaled eviction fence"); 2833 dma_fence_put(old_ef); 2834 } 2835 2836 /** amdgpu_amdkfd_gpuvm_restore_process_bos - Restore all BOs for the given 2837 * KFD process identified by process_info 2838 * 2839 * @process_info: amdkfd_process_info of the KFD process 2840 * 2841 * After memory eviction, restore thread calls this function. The function 2842 * should be called when the Process is still valid. BO restore involves - 2843 * 2844 * 1. Release old eviction fence and create new one 2845 * 2. Get two copies of PD BO list from all the VMs. Keep one copy as pd_list. 2846 * 3 Use the second PD list and kfd_bo_list to create a list (ctx.list) of 2847 * BOs that need to be reserved. 2848 * 4. Reserve all the BOs 2849 * 5. Validate of PD and PT BOs. 2850 * 6. Validate all KFD BOs using kfd_bo_list and Map them and add new fence 2851 * 7. Add fence to all PD and PT BOs. 2852 * 8. Unreserve all BOs 2853 */ 2854 int amdgpu_amdkfd_gpuvm_restore_process_bos(void *info, struct dma_fence __rcu **ef) 2855 { 2856 struct amdkfd_process_info *process_info = info; 2857 struct amdgpu_vm *peer_vm; 2858 struct kgd_mem *mem; 2859 struct list_head duplicate_save; 2860 struct amdgpu_sync sync_obj; 2861 unsigned long failed_size = 0; 2862 unsigned long total_size = 0; 2863 struct drm_exec exec; 2864 int ret; 2865 2866 INIT_LIST_HEAD(&duplicate_save); 2867 2868 mutex_lock(&process_info->lock); 2869 2870 drm_exec_init(&exec, 0, 0); 2871 drm_exec_until_all_locked(&exec) { 2872 list_for_each_entry(peer_vm, &process_info->vm_list_head, 2873 vm_list_node) { 2874 ret = amdgpu_vm_lock_pd(peer_vm, &exec, 2); 2875 drm_exec_retry_on_contention(&exec); 2876 if (unlikely(ret)) 2877 goto ttm_reserve_fail; 2878 } 2879 2880 /* Reserve all BOs and page tables/directory. Add all BOs from 2881 * kfd_bo_list to ctx.list 2882 */ 2883 list_for_each_entry(mem, &process_info->kfd_bo_list, 2884 validate_list) { 2885 struct drm_gem_object *gobj; 2886 2887 gobj = &mem->bo->tbo.base; 2888 ret = drm_exec_prepare_obj(&exec, gobj, 1); 2889 drm_exec_retry_on_contention(&exec); 2890 if (unlikely(ret)) 2891 goto ttm_reserve_fail; 2892 } 2893 } 2894 2895 amdgpu_sync_create(&sync_obj); 2896 2897 /* Validate PDs and PTs */ 2898 ret = process_validate_vms(process_info); 2899 if (ret) 2900 goto validate_map_fail; 2901 2902 /* Validate BOs and map them to GPUVM (update VM page tables). */ 2903 list_for_each_entry(mem, &process_info->kfd_bo_list, 2904 validate_list) { 2905 2906 struct amdgpu_bo *bo = mem->bo; 2907 uint32_t domain = mem->domain; 2908 struct kfd_mem_attachment *attachment; 2909 struct dma_resv_iter cursor; 2910 struct dma_fence *fence; 2911 2912 total_size += amdgpu_bo_size(bo); 2913 2914 ret = amdgpu_amdkfd_bo_validate(bo, domain, false); 2915 if (ret) { 2916 pr_debug("Memory eviction: Validate BOs failed\n"); 2917 failed_size += amdgpu_bo_size(bo); 2918 ret = amdgpu_amdkfd_bo_validate(bo, 2919 AMDGPU_GEM_DOMAIN_GTT, false); 2920 if (ret) { 2921 pr_debug("Memory eviction: Try again\n"); 2922 goto validate_map_fail; 2923 } 2924 } 2925 dma_resv_for_each_fence(&cursor, bo->tbo.base.resv, 2926 DMA_RESV_USAGE_KERNEL, fence) { 2927 ret = amdgpu_sync_fence(&sync_obj, fence); 2928 if (ret) { 2929 pr_debug("Memory eviction: Sync BO fence failed. Try again\n"); 2930 goto validate_map_fail; 2931 } 2932 } 2933 list_for_each_entry(attachment, &mem->attachments, list) { 2934 if (!attachment->is_mapped) 2935 continue; 2936 2937 if (attachment->bo_va->base.bo->tbo.pin_count) 2938 continue; 2939 2940 kfd_mem_dmaunmap_attachment(mem, attachment); 2941 ret = update_gpuvm_pte(mem, attachment, &sync_obj); 2942 if (ret) { 2943 pr_debug("Memory eviction: update PTE failed. Try again\n"); 2944 goto validate_map_fail; 2945 } 2946 } 2947 } 2948 2949 if (failed_size) 2950 pr_debug("0x%lx/0x%lx in system\n", failed_size, total_size); 2951 2952 /* Update mappings not managed by KFD */ 2953 list_for_each_entry(peer_vm, &process_info->vm_list_head, 2954 vm_list_node) { 2955 struct amdgpu_device *adev = amdgpu_ttm_adev( 2956 peer_vm->root.bo->tbo.bdev); 2957 2958 ret = amdgpu_vm_handle_moved(adev, peer_vm, &exec.ticket); 2959 if (ret) { 2960 pr_debug("Memory eviction: handle moved failed. Try again\n"); 2961 goto validate_map_fail; 2962 } 2963 } 2964 2965 /* Update page directories */ 2966 ret = process_update_pds(process_info, &sync_obj); 2967 if (ret) { 2968 pr_debug("Memory eviction: update PDs failed. Try again\n"); 2969 goto validate_map_fail; 2970 } 2971 2972 /* Sync with fences on all the page tables. They implicitly depend on any 2973 * move fences from amdgpu_vm_handle_moved above. 2974 */ 2975 ret = process_sync_pds_resv(process_info, &sync_obj); 2976 if (ret) { 2977 pr_debug("Memory eviction: Failed to sync to PD BO moving fence. Try again\n"); 2978 goto validate_map_fail; 2979 } 2980 2981 /* Wait for validate and PT updates to finish */ 2982 amdgpu_sync_wait(&sync_obj, false); 2983 2984 /* The old eviction fence may be unsignaled if restore happens 2985 * after a GPU reset or suspend/resume. Keep the old fence in that 2986 * case. Otherwise release the old eviction fence and create new 2987 * one, because fence only goes from unsignaled to signaled once 2988 * and cannot be reused. Use context and mm from the old fence. 2989 * 2990 * If an old eviction fence signals after this check, that's OK. 2991 * Anyone signaling an eviction fence must stop the queues first 2992 * and schedule another restore worker. 2993 */ 2994 if (dma_fence_is_signaled(&process_info->eviction_fence->base)) { 2995 struct amdgpu_amdkfd_fence *new_fence = 2996 amdgpu_amdkfd_fence_create( 2997 process_info->eviction_fence->base.context, 2998 process_info->eviction_fence->mm, 2999 NULL); 3000 3001 if (!new_fence) { 3002 pr_err("Failed to create eviction fence\n"); 3003 ret = -ENOMEM; 3004 goto validate_map_fail; 3005 } 3006 dma_fence_put(&process_info->eviction_fence->base); 3007 process_info->eviction_fence = new_fence; 3008 replace_eviction_fence(ef, dma_fence_get(&new_fence->base)); 3009 } else { 3010 WARN_ONCE(*ef != &process_info->eviction_fence->base, 3011 "KFD eviction fence doesn't match KGD process_info"); 3012 } 3013 3014 /* Attach new eviction fence to all BOs except pinned ones */ 3015 list_for_each_entry(mem, &process_info->kfd_bo_list, validate_list) { 3016 if (mem->bo->tbo.pin_count) 3017 continue; 3018 3019 dma_resv_add_fence(mem->bo->tbo.base.resv, 3020 &process_info->eviction_fence->base, 3021 DMA_RESV_USAGE_BOOKKEEP); 3022 } 3023 /* Attach eviction fence to PD / PT BOs */ 3024 list_for_each_entry(peer_vm, &process_info->vm_list_head, 3025 vm_list_node) { 3026 struct amdgpu_bo *bo = peer_vm->root.bo; 3027 3028 dma_resv_add_fence(bo->tbo.base.resv, 3029 &process_info->eviction_fence->base, 3030 DMA_RESV_USAGE_BOOKKEEP); 3031 } 3032 3033 validate_map_fail: 3034 amdgpu_sync_free(&sync_obj); 3035 ttm_reserve_fail: 3036 drm_exec_fini(&exec); 3037 mutex_unlock(&process_info->lock); 3038 return ret; 3039 } 3040 3041 int amdgpu_amdkfd_add_gws_to_process(void *info, void *gws, struct kgd_mem **mem) 3042 { 3043 struct amdkfd_process_info *process_info = (struct amdkfd_process_info *)info; 3044 struct amdgpu_bo *gws_bo = (struct amdgpu_bo *)gws; 3045 int ret; 3046 3047 if (!info || !gws) 3048 return -EINVAL; 3049 3050 *mem = kzalloc(sizeof(struct kgd_mem), GFP_KERNEL); 3051 if (!*mem) 3052 return -ENOMEM; 3053 3054 mutex_init(&(*mem)->lock); 3055 INIT_LIST_HEAD(&(*mem)->attachments); 3056 (*mem)->bo = amdgpu_bo_ref(gws_bo); 3057 (*mem)->domain = AMDGPU_GEM_DOMAIN_GWS; 3058 (*mem)->process_info = process_info; 3059 add_kgd_mem_to_kfd_bo_list(*mem, process_info, false); 3060 amdgpu_sync_create(&(*mem)->sync); 3061 3062 3063 /* Validate gws bo the first time it is added to process */ 3064 mutex_lock(&(*mem)->process_info->lock); 3065 ret = amdgpu_bo_reserve(gws_bo, false); 3066 if (unlikely(ret)) { 3067 pr_err("Reserve gws bo failed %d\n", ret); 3068 goto bo_reservation_failure; 3069 } 3070 3071 ret = amdgpu_amdkfd_bo_validate(gws_bo, AMDGPU_GEM_DOMAIN_GWS, true); 3072 if (ret) { 3073 pr_err("GWS BO validate failed %d\n", ret); 3074 goto bo_validation_failure; 3075 } 3076 /* GWS resource is shared b/t amdgpu and amdkfd 3077 * Add process eviction fence to bo so they can 3078 * evict each other. 3079 */ 3080 ret = dma_resv_reserve_fences(gws_bo->tbo.base.resv, 1); 3081 if (ret) 3082 goto reserve_shared_fail; 3083 dma_resv_add_fence(gws_bo->tbo.base.resv, 3084 &process_info->eviction_fence->base, 3085 DMA_RESV_USAGE_BOOKKEEP); 3086 amdgpu_bo_unreserve(gws_bo); 3087 mutex_unlock(&(*mem)->process_info->lock); 3088 3089 return ret; 3090 3091 reserve_shared_fail: 3092 bo_validation_failure: 3093 amdgpu_bo_unreserve(gws_bo); 3094 bo_reservation_failure: 3095 mutex_unlock(&(*mem)->process_info->lock); 3096 amdgpu_sync_free(&(*mem)->sync); 3097 remove_kgd_mem_from_kfd_bo_list(*mem, process_info); 3098 amdgpu_bo_unref(&gws_bo); 3099 mutex_destroy(&(*mem)->lock); 3100 kfree(*mem); 3101 *mem = NULL; 3102 return ret; 3103 } 3104 3105 int amdgpu_amdkfd_remove_gws_from_process(void *info, void *mem) 3106 { 3107 int ret; 3108 struct amdkfd_process_info *process_info = (struct amdkfd_process_info *)info; 3109 struct kgd_mem *kgd_mem = (struct kgd_mem *)mem; 3110 struct amdgpu_bo *gws_bo = kgd_mem->bo; 3111 3112 /* Remove BO from process's validate list so restore worker won't touch 3113 * it anymore 3114 */ 3115 remove_kgd_mem_from_kfd_bo_list(kgd_mem, process_info); 3116 3117 ret = amdgpu_bo_reserve(gws_bo, false); 3118 if (unlikely(ret)) { 3119 pr_err("Reserve gws bo failed %d\n", ret); 3120 //TODO add BO back to validate_list? 3121 return ret; 3122 } 3123 amdgpu_amdkfd_remove_eviction_fence(gws_bo, 3124 process_info->eviction_fence); 3125 amdgpu_bo_unreserve(gws_bo); 3126 amdgpu_sync_free(&kgd_mem->sync); 3127 amdgpu_bo_unref(&gws_bo); 3128 mutex_destroy(&kgd_mem->lock); 3129 kfree(mem); 3130 return 0; 3131 } 3132 3133 /* Returns GPU-specific tiling mode information */ 3134 int amdgpu_amdkfd_get_tile_config(struct amdgpu_device *adev, 3135 struct tile_config *config) 3136 { 3137 config->gb_addr_config = adev->gfx.config.gb_addr_config; 3138 config->tile_config_ptr = adev->gfx.config.tile_mode_array; 3139 config->num_tile_configs = 3140 ARRAY_SIZE(adev->gfx.config.tile_mode_array); 3141 config->macro_tile_config_ptr = 3142 adev->gfx.config.macrotile_mode_array; 3143 config->num_macro_tile_configs = 3144 ARRAY_SIZE(adev->gfx.config.macrotile_mode_array); 3145 3146 /* Those values are not set from GFX9 onwards */ 3147 config->num_banks = adev->gfx.config.num_banks; 3148 config->num_ranks = adev->gfx.config.num_ranks; 3149 3150 return 0; 3151 } 3152 3153 bool amdgpu_amdkfd_bo_mapped_to_dev(struct amdgpu_device *adev, struct kgd_mem *mem) 3154 { 3155 struct kfd_mem_attachment *entry; 3156 3157 list_for_each_entry(entry, &mem->attachments, list) { 3158 if (entry->is_mapped && entry->adev == adev) 3159 return true; 3160 } 3161 return false; 3162 } 3163 3164 #if defined(CONFIG_DEBUG_FS) 3165 3166 int kfd_debugfs_kfd_mem_limits(struct seq_file *m, void *data) 3167 { 3168 3169 spin_lock(&kfd_mem_limit.mem_limit_lock); 3170 seq_printf(m, "System mem used %lldM out of %lluM\n", 3171 (kfd_mem_limit.system_mem_used >> 20), 3172 (kfd_mem_limit.max_system_mem_limit >> 20)); 3173 seq_printf(m, "TTM mem used %lldM out of %lluM\n", 3174 (kfd_mem_limit.ttm_mem_used >> 20), 3175 (kfd_mem_limit.max_ttm_mem_limit >> 20)); 3176 spin_unlock(&kfd_mem_limit.mem_limit_lock); 3177 3178 return 0; 3179 } 3180 3181 #endif 3182