xref: /linux/drivers/gpu/drm/amd/amdgpu/amdgpu_amdkfd_gpuvm.c (revision 4b660dbd9ee2059850fd30e0df420ca7a38a1856)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright 2014-2018 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23 #include <linux/dma-buf.h>
24 #include <linux/list.h>
25 #include <linux/pagemap.h>
26 #include <linux/sched/mm.h>
27 #include <linux/sched/task.h>
28 #include <linux/fdtable.h>
29 #include <drm/ttm/ttm_tt.h>
30 
31 #include <drm/drm_exec.h>
32 
33 #include "amdgpu_object.h"
34 #include "amdgpu_gem.h"
35 #include "amdgpu_vm.h"
36 #include "amdgpu_hmm.h"
37 #include "amdgpu_amdkfd.h"
38 #include "amdgpu_dma_buf.h"
39 #include <uapi/linux/kfd_ioctl.h>
40 #include "amdgpu_xgmi.h"
41 #include "kfd_priv.h"
42 #include "kfd_smi_events.h"
43 
44 /* Userptr restore delay, just long enough to allow consecutive VM
45  * changes to accumulate
46  */
47 #define AMDGPU_USERPTR_RESTORE_DELAY_MS 1
48 #define AMDGPU_RESERVE_MEM_LIMIT			(3UL << 29)
49 
50 /*
51  * Align VRAM availability to 2MB to avoid fragmentation caused by 4K allocations in the tail 2MB
52  * BO chunk
53  */
54 #define VRAM_AVAILABLITY_ALIGN (1 << 21)
55 
56 /* Impose limit on how much memory KFD can use */
57 static struct {
58 	uint64_t max_system_mem_limit;
59 	uint64_t max_ttm_mem_limit;
60 	int64_t system_mem_used;
61 	int64_t ttm_mem_used;
62 	spinlock_t mem_limit_lock;
63 } kfd_mem_limit;
64 
65 static const char * const domain_bit_to_string[] = {
66 		"CPU",
67 		"GTT",
68 		"VRAM",
69 		"GDS",
70 		"GWS",
71 		"OA"
72 };
73 
74 #define domain_string(domain) domain_bit_to_string[ffs(domain)-1]
75 
76 static void amdgpu_amdkfd_restore_userptr_worker(struct work_struct *work);
77 
78 static bool kfd_mem_is_attached(struct amdgpu_vm *avm,
79 		struct kgd_mem *mem)
80 {
81 	struct kfd_mem_attachment *entry;
82 
83 	list_for_each_entry(entry, &mem->attachments, list)
84 		if (entry->bo_va->base.vm == avm)
85 			return true;
86 
87 	return false;
88 }
89 
90 /**
91  * reuse_dmamap() - Check whether adev can share the original
92  * userptr BO
93  *
94  * If both adev and bo_adev are in direct mapping or
95  * in the same iommu group, they can share the original BO.
96  *
97  * @adev: Device to which can or cannot share the original BO
98  * @bo_adev: Device to which allocated BO belongs to
99  *
100  * Return: returns true if adev can share original userptr BO,
101  * false otherwise.
102  */
103 static bool reuse_dmamap(struct amdgpu_device *adev, struct amdgpu_device *bo_adev)
104 {
105 	return (adev->ram_is_direct_mapped && bo_adev->ram_is_direct_mapped) ||
106 			(adev->dev->iommu_group == bo_adev->dev->iommu_group);
107 }
108 
109 /* Set memory usage limits. Current, limits are
110  *  System (TTM + userptr) memory - 15/16th System RAM
111  *  TTM memory - 3/8th System RAM
112  */
113 void amdgpu_amdkfd_gpuvm_init_mem_limits(void)
114 {
115 	struct sysinfo si;
116 	uint64_t mem;
117 
118 	if (kfd_mem_limit.max_system_mem_limit)
119 		return;
120 
121 	si_meminfo(&si);
122 	mem = si.totalram - si.totalhigh;
123 	mem *= si.mem_unit;
124 
125 	spin_lock_init(&kfd_mem_limit.mem_limit_lock);
126 	kfd_mem_limit.max_system_mem_limit = mem - (mem >> 6);
127 	if (kfd_mem_limit.max_system_mem_limit < 2 * AMDGPU_RESERVE_MEM_LIMIT)
128 		kfd_mem_limit.max_system_mem_limit >>= 1;
129 	else
130 		kfd_mem_limit.max_system_mem_limit -= AMDGPU_RESERVE_MEM_LIMIT;
131 
132 	kfd_mem_limit.max_ttm_mem_limit = ttm_tt_pages_limit() << PAGE_SHIFT;
133 	pr_debug("Kernel memory limit %lluM, TTM limit %lluM\n",
134 		(kfd_mem_limit.max_system_mem_limit >> 20),
135 		(kfd_mem_limit.max_ttm_mem_limit >> 20));
136 }
137 
138 void amdgpu_amdkfd_reserve_system_mem(uint64_t size)
139 {
140 	kfd_mem_limit.system_mem_used += size;
141 }
142 
143 /* Estimate page table size needed to represent a given memory size
144  *
145  * With 4KB pages, we need one 8 byte PTE for each 4KB of memory
146  * (factor 512, >> 9). With 2MB pages, we need one 8 byte PTE for 2MB
147  * of memory (factor 256K, >> 18). ROCm user mode tries to optimize
148  * for 2MB pages for TLB efficiency. However, small allocations and
149  * fragmented system memory still need some 4KB pages. We choose a
150  * compromise that should work in most cases without reserving too
151  * much memory for page tables unnecessarily (factor 16K, >> 14).
152  */
153 
154 #define ESTIMATE_PT_SIZE(mem_size) max(((mem_size) >> 14), AMDGPU_VM_RESERVED_VRAM)
155 
156 /**
157  * amdgpu_amdkfd_reserve_mem_limit() - Decrease available memory by size
158  * of buffer.
159  *
160  * @adev: Device to which allocated BO belongs to
161  * @size: Size of buffer, in bytes, encapsulated by B0. This should be
162  * equivalent to amdgpu_bo_size(BO)
163  * @alloc_flag: Flag used in allocating a BO as noted above
164  * @xcp_id: xcp_id is used to get xcp from xcp manager, one xcp is
165  * managed as one compute node in driver for app
166  *
167  * Return:
168  *	returns -ENOMEM in case of error, ZERO otherwise
169  */
170 int amdgpu_amdkfd_reserve_mem_limit(struct amdgpu_device *adev,
171 		uint64_t size, u32 alloc_flag, int8_t xcp_id)
172 {
173 	uint64_t reserved_for_pt =
174 		ESTIMATE_PT_SIZE(amdgpu_amdkfd_total_mem_size);
175 	size_t system_mem_needed, ttm_mem_needed, vram_needed;
176 	int ret = 0;
177 	uint64_t vram_size = 0;
178 
179 	system_mem_needed = 0;
180 	ttm_mem_needed = 0;
181 	vram_needed = 0;
182 	if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_GTT) {
183 		system_mem_needed = size;
184 		ttm_mem_needed = size;
185 	} else if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) {
186 		/*
187 		 * Conservatively round up the allocation requirement to 2 MB
188 		 * to avoid fragmentation caused by 4K allocations in the tail
189 		 * 2M BO chunk.
190 		 */
191 		vram_needed = size;
192 		/*
193 		 * For GFX 9.4.3, get the VRAM size from XCP structs
194 		 */
195 		if (WARN_ONCE(xcp_id < 0, "invalid XCP ID %d", xcp_id))
196 			return -EINVAL;
197 
198 		vram_size = KFD_XCP_MEMORY_SIZE(adev, xcp_id);
199 		if (adev->gmc.is_app_apu) {
200 			system_mem_needed = size;
201 			ttm_mem_needed = size;
202 		}
203 	} else if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) {
204 		system_mem_needed = size;
205 	} else if (!(alloc_flag &
206 				(KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL |
207 				 KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP))) {
208 		pr_err("%s: Invalid BO type %#x\n", __func__, alloc_flag);
209 		return -ENOMEM;
210 	}
211 
212 	spin_lock(&kfd_mem_limit.mem_limit_lock);
213 
214 	if (kfd_mem_limit.system_mem_used + system_mem_needed >
215 	    kfd_mem_limit.max_system_mem_limit)
216 		pr_debug("Set no_system_mem_limit=1 if using shared memory\n");
217 
218 	if ((kfd_mem_limit.system_mem_used + system_mem_needed >
219 	     kfd_mem_limit.max_system_mem_limit && !no_system_mem_limit) ||
220 	    (kfd_mem_limit.ttm_mem_used + ttm_mem_needed >
221 	     kfd_mem_limit.max_ttm_mem_limit) ||
222 	    (adev && xcp_id >= 0 && adev->kfd.vram_used[xcp_id] + vram_needed >
223 	     vram_size - reserved_for_pt)) {
224 		ret = -ENOMEM;
225 		goto release;
226 	}
227 
228 	/* Update memory accounting by decreasing available system
229 	 * memory, TTM memory and GPU memory as computed above
230 	 */
231 	WARN_ONCE(vram_needed && !adev,
232 		  "adev reference can't be null when vram is used");
233 	if (adev && xcp_id >= 0) {
234 		adev->kfd.vram_used[xcp_id] += vram_needed;
235 		adev->kfd.vram_used_aligned[xcp_id] += adev->gmc.is_app_apu ?
236 				vram_needed :
237 				ALIGN(vram_needed, VRAM_AVAILABLITY_ALIGN);
238 	}
239 	kfd_mem_limit.system_mem_used += system_mem_needed;
240 	kfd_mem_limit.ttm_mem_used += ttm_mem_needed;
241 
242 release:
243 	spin_unlock(&kfd_mem_limit.mem_limit_lock);
244 	return ret;
245 }
246 
247 void amdgpu_amdkfd_unreserve_mem_limit(struct amdgpu_device *adev,
248 		uint64_t size, u32 alloc_flag, int8_t xcp_id)
249 {
250 	spin_lock(&kfd_mem_limit.mem_limit_lock);
251 
252 	if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_GTT) {
253 		kfd_mem_limit.system_mem_used -= size;
254 		kfd_mem_limit.ttm_mem_used -= size;
255 	} else if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) {
256 		WARN_ONCE(!adev,
257 			  "adev reference can't be null when alloc mem flags vram is set");
258 		if (WARN_ONCE(xcp_id < 0, "invalid XCP ID %d", xcp_id))
259 			goto release;
260 
261 		if (adev) {
262 			adev->kfd.vram_used[xcp_id] -= size;
263 			if (adev->gmc.is_app_apu) {
264 				adev->kfd.vram_used_aligned[xcp_id] -= size;
265 				kfd_mem_limit.system_mem_used -= size;
266 				kfd_mem_limit.ttm_mem_used -= size;
267 			} else {
268 				adev->kfd.vram_used_aligned[xcp_id] -=
269 					ALIGN(size, VRAM_AVAILABLITY_ALIGN);
270 			}
271 		}
272 	} else if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) {
273 		kfd_mem_limit.system_mem_used -= size;
274 	} else if (!(alloc_flag &
275 				(KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL |
276 				 KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP))) {
277 		pr_err("%s: Invalid BO type %#x\n", __func__, alloc_flag);
278 		goto release;
279 	}
280 	WARN_ONCE(adev && xcp_id >= 0 && adev->kfd.vram_used[xcp_id] < 0,
281 		  "KFD VRAM memory accounting unbalanced for xcp: %d", xcp_id);
282 	WARN_ONCE(kfd_mem_limit.ttm_mem_used < 0,
283 		  "KFD TTM memory accounting unbalanced");
284 	WARN_ONCE(kfd_mem_limit.system_mem_used < 0,
285 		  "KFD system memory accounting unbalanced");
286 
287 release:
288 	spin_unlock(&kfd_mem_limit.mem_limit_lock);
289 }
290 
291 void amdgpu_amdkfd_release_notify(struct amdgpu_bo *bo)
292 {
293 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
294 	u32 alloc_flags = bo->kfd_bo->alloc_flags;
295 	u64 size = amdgpu_bo_size(bo);
296 
297 	amdgpu_amdkfd_unreserve_mem_limit(adev, size, alloc_flags,
298 					  bo->xcp_id);
299 
300 	kfree(bo->kfd_bo);
301 }
302 
303 /**
304  * create_dmamap_sg_bo() - Creates a amdgpu_bo object to reflect information
305  * about USERPTR or DOOREBELL or MMIO BO.
306  *
307  * @adev: Device for which dmamap BO is being created
308  * @mem: BO of peer device that is being DMA mapped. Provides parameters
309  *	 in building the dmamap BO
310  * @bo_out: Output parameter updated with handle of dmamap BO
311  */
312 static int
313 create_dmamap_sg_bo(struct amdgpu_device *adev,
314 		 struct kgd_mem *mem, struct amdgpu_bo **bo_out)
315 {
316 	struct drm_gem_object *gem_obj;
317 	int ret;
318 	uint64_t flags = 0;
319 
320 	ret = amdgpu_bo_reserve(mem->bo, false);
321 	if (ret)
322 		return ret;
323 
324 	if (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR)
325 		flags |= mem->bo->flags & (AMDGPU_GEM_CREATE_COHERENT |
326 					AMDGPU_GEM_CREATE_UNCACHED);
327 
328 	ret = amdgpu_gem_object_create(adev, mem->bo->tbo.base.size, 1,
329 			AMDGPU_GEM_DOMAIN_CPU, AMDGPU_GEM_CREATE_PREEMPTIBLE | flags,
330 			ttm_bo_type_sg, mem->bo->tbo.base.resv, &gem_obj, 0);
331 
332 	amdgpu_bo_unreserve(mem->bo);
333 
334 	if (ret) {
335 		pr_err("Error in creating DMA mappable SG BO on domain: %d\n", ret);
336 		return -EINVAL;
337 	}
338 
339 	*bo_out = gem_to_amdgpu_bo(gem_obj);
340 	(*bo_out)->parent = amdgpu_bo_ref(mem->bo);
341 	return ret;
342 }
343 
344 /* amdgpu_amdkfd_remove_eviction_fence - Removes eviction fence from BO's
345  *  reservation object.
346  *
347  * @bo: [IN] Remove eviction fence(s) from this BO
348  * @ef: [IN] This eviction fence is removed if it
349  *  is present in the shared list.
350  *
351  * NOTE: Must be called with BO reserved i.e. bo->tbo.resv->lock held.
352  */
353 static int amdgpu_amdkfd_remove_eviction_fence(struct amdgpu_bo *bo,
354 					struct amdgpu_amdkfd_fence *ef)
355 {
356 	struct dma_fence *replacement;
357 
358 	if (!ef)
359 		return -EINVAL;
360 
361 	/* TODO: Instead of block before we should use the fence of the page
362 	 * table update and TLB flush here directly.
363 	 */
364 	replacement = dma_fence_get_stub();
365 	dma_resv_replace_fences(bo->tbo.base.resv, ef->base.context,
366 				replacement, DMA_RESV_USAGE_BOOKKEEP);
367 	dma_fence_put(replacement);
368 	return 0;
369 }
370 
371 int amdgpu_amdkfd_remove_fence_on_pt_pd_bos(struct amdgpu_bo *bo)
372 {
373 	struct amdgpu_bo *root = bo;
374 	struct amdgpu_vm_bo_base *vm_bo;
375 	struct amdgpu_vm *vm;
376 	struct amdkfd_process_info *info;
377 	struct amdgpu_amdkfd_fence *ef;
378 	int ret;
379 
380 	/* we can always get vm_bo from root PD bo.*/
381 	while (root->parent)
382 		root = root->parent;
383 
384 	vm_bo = root->vm_bo;
385 	if (!vm_bo)
386 		return 0;
387 
388 	vm = vm_bo->vm;
389 	if (!vm)
390 		return 0;
391 
392 	info = vm->process_info;
393 	if (!info || !info->eviction_fence)
394 		return 0;
395 
396 	ef = container_of(dma_fence_get(&info->eviction_fence->base),
397 			struct amdgpu_amdkfd_fence, base);
398 
399 	BUG_ON(!dma_resv_trylock(bo->tbo.base.resv));
400 	ret = amdgpu_amdkfd_remove_eviction_fence(bo, ef);
401 	dma_resv_unlock(bo->tbo.base.resv);
402 
403 	dma_fence_put(&ef->base);
404 	return ret;
405 }
406 
407 static int amdgpu_amdkfd_bo_validate(struct amdgpu_bo *bo, uint32_t domain,
408 				     bool wait)
409 {
410 	struct ttm_operation_ctx ctx = { false, false };
411 	int ret;
412 
413 	if (WARN(amdgpu_ttm_tt_get_usermm(bo->tbo.ttm),
414 		 "Called with userptr BO"))
415 		return -EINVAL;
416 
417 	amdgpu_bo_placement_from_domain(bo, domain);
418 
419 	ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
420 	if (ret)
421 		goto validate_fail;
422 	if (wait)
423 		amdgpu_bo_sync_wait(bo, AMDGPU_FENCE_OWNER_KFD, false);
424 
425 validate_fail:
426 	return ret;
427 }
428 
429 int amdgpu_amdkfd_bo_validate_and_fence(struct amdgpu_bo *bo,
430 					uint32_t domain,
431 					struct dma_fence *fence)
432 {
433 	int ret = amdgpu_bo_reserve(bo, false);
434 
435 	if (ret)
436 		return ret;
437 
438 	ret = amdgpu_amdkfd_bo_validate(bo, domain, true);
439 	if (ret)
440 		goto unreserve_out;
441 
442 	ret = dma_resv_reserve_fences(bo->tbo.base.resv, 1);
443 	if (ret)
444 		goto unreserve_out;
445 
446 	dma_resv_add_fence(bo->tbo.base.resv, fence,
447 			   DMA_RESV_USAGE_BOOKKEEP);
448 
449 unreserve_out:
450 	amdgpu_bo_unreserve(bo);
451 
452 	return ret;
453 }
454 
455 static int amdgpu_amdkfd_validate_vm_bo(void *_unused, struct amdgpu_bo *bo)
456 {
457 	return amdgpu_amdkfd_bo_validate(bo, bo->allowed_domains, false);
458 }
459 
460 /* vm_validate_pt_pd_bos - Validate page table and directory BOs
461  *
462  * Page directories are not updated here because huge page handling
463  * during page table updates can invalidate page directory entries
464  * again. Page directories are only updated after updating page
465  * tables.
466  */
467 static int vm_validate_pt_pd_bos(struct amdgpu_vm *vm,
468 				 struct ww_acquire_ctx *ticket)
469 {
470 	struct amdgpu_bo *pd = vm->root.bo;
471 	struct amdgpu_device *adev = amdgpu_ttm_adev(pd->tbo.bdev);
472 	int ret;
473 
474 	ret = amdgpu_vm_validate(adev, vm, ticket,
475 				 amdgpu_amdkfd_validate_vm_bo, NULL);
476 	if (ret) {
477 		pr_err("failed to validate PT BOs\n");
478 		return ret;
479 	}
480 
481 	vm->pd_phys_addr = amdgpu_gmc_pd_addr(vm->root.bo);
482 
483 	return 0;
484 }
485 
486 static int vm_update_pds(struct amdgpu_vm *vm, struct amdgpu_sync *sync)
487 {
488 	struct amdgpu_bo *pd = vm->root.bo;
489 	struct amdgpu_device *adev = amdgpu_ttm_adev(pd->tbo.bdev);
490 	int ret;
491 
492 	ret = amdgpu_vm_update_pdes(adev, vm, false);
493 	if (ret)
494 		return ret;
495 
496 	return amdgpu_sync_fence(sync, vm->last_update);
497 }
498 
499 static uint64_t get_pte_flags(struct amdgpu_device *adev, struct kgd_mem *mem)
500 {
501 	uint32_t mapping_flags = AMDGPU_VM_PAGE_READABLE |
502 				 AMDGPU_VM_MTYPE_DEFAULT;
503 
504 	if (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE)
505 		mapping_flags |= AMDGPU_VM_PAGE_WRITEABLE;
506 	if (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE)
507 		mapping_flags |= AMDGPU_VM_PAGE_EXECUTABLE;
508 
509 	return amdgpu_gem_va_map_flags(adev, mapping_flags);
510 }
511 
512 /**
513  * create_sg_table() - Create an sg_table for a contiguous DMA addr range
514  * @addr: The starting address to point to
515  * @size: Size of memory area in bytes being pointed to
516  *
517  * Allocates an instance of sg_table and initializes it to point to memory
518  * area specified by input parameters. The address used to build is assumed
519  * to be DMA mapped, if needed.
520  *
521  * DOORBELL or MMIO BOs use only one scatterlist node in their sg_table
522  * because they are physically contiguous.
523  *
524  * Return: Initialized instance of SG Table or NULL
525  */
526 static struct sg_table *create_sg_table(uint64_t addr, uint32_t size)
527 {
528 	struct sg_table *sg = kmalloc(sizeof(*sg), GFP_KERNEL);
529 
530 	if (!sg)
531 		return NULL;
532 	if (sg_alloc_table(sg, 1, GFP_KERNEL)) {
533 		kfree(sg);
534 		return NULL;
535 	}
536 	sg_dma_address(sg->sgl) = addr;
537 	sg->sgl->length = size;
538 #ifdef CONFIG_NEED_SG_DMA_LENGTH
539 	sg->sgl->dma_length = size;
540 #endif
541 	return sg;
542 }
543 
544 static int
545 kfd_mem_dmamap_userptr(struct kgd_mem *mem,
546 		       struct kfd_mem_attachment *attachment)
547 {
548 	enum dma_data_direction direction =
549 		mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ?
550 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
551 	struct ttm_operation_ctx ctx = {.interruptible = true};
552 	struct amdgpu_bo *bo = attachment->bo_va->base.bo;
553 	struct amdgpu_device *adev = attachment->adev;
554 	struct ttm_tt *src_ttm = mem->bo->tbo.ttm;
555 	struct ttm_tt *ttm = bo->tbo.ttm;
556 	int ret;
557 
558 	if (WARN_ON(ttm->num_pages != src_ttm->num_pages))
559 		return -EINVAL;
560 
561 	ttm->sg = kmalloc(sizeof(*ttm->sg), GFP_KERNEL);
562 	if (unlikely(!ttm->sg))
563 		return -ENOMEM;
564 
565 	/* Same sequence as in amdgpu_ttm_tt_pin_userptr */
566 	ret = sg_alloc_table_from_pages(ttm->sg, src_ttm->pages,
567 					ttm->num_pages, 0,
568 					(u64)ttm->num_pages << PAGE_SHIFT,
569 					GFP_KERNEL);
570 	if (unlikely(ret))
571 		goto free_sg;
572 
573 	ret = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
574 	if (unlikely(ret))
575 		goto release_sg;
576 
577 	amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_GTT);
578 	ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
579 	if (ret)
580 		goto unmap_sg;
581 
582 	return 0;
583 
584 unmap_sg:
585 	dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
586 release_sg:
587 	pr_err("DMA map userptr failed: %d\n", ret);
588 	sg_free_table(ttm->sg);
589 free_sg:
590 	kfree(ttm->sg);
591 	ttm->sg = NULL;
592 	return ret;
593 }
594 
595 static int
596 kfd_mem_dmamap_dmabuf(struct kfd_mem_attachment *attachment)
597 {
598 	struct ttm_operation_ctx ctx = {.interruptible = true};
599 	struct amdgpu_bo *bo = attachment->bo_va->base.bo;
600 	int ret;
601 
602 	amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_CPU);
603 	ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
604 	if (ret)
605 		return ret;
606 
607 	amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_GTT);
608 	return ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
609 }
610 
611 /**
612  * kfd_mem_dmamap_sg_bo() - Create DMA mapped sg_table to access DOORBELL or MMIO BO
613  * @mem: SG BO of the DOORBELL or MMIO resource on the owning device
614  * @attachment: Virtual address attachment of the BO on accessing device
615  *
616  * An access request from the device that owns DOORBELL does not require DMA mapping.
617  * This is because the request doesn't go through PCIe root complex i.e. it instead
618  * loops back. The need to DMA map arises only when accessing peer device's DOORBELL
619  *
620  * In contrast, all access requests for MMIO need to be DMA mapped without regard to
621  * device ownership. This is because access requests for MMIO go through PCIe root
622  * complex.
623  *
624  * This is accomplished in two steps:
625  *   - Obtain DMA mapped address of DOORBELL or MMIO memory that could be used
626  *         in updating requesting device's page table
627  *   - Signal TTM to mark memory pointed to by requesting device's BO as GPU
628  *         accessible. This allows an update of requesting device's page table
629  *         with entries associated with DOOREBELL or MMIO memory
630  *
631  * This method is invoked in the following contexts:
632  *   - Mapping of DOORBELL or MMIO BO of same or peer device
633  *   - Validating an evicted DOOREBELL or MMIO BO on device seeking access
634  *
635  * Return: ZERO if successful, NON-ZERO otherwise
636  */
637 static int
638 kfd_mem_dmamap_sg_bo(struct kgd_mem *mem,
639 		     struct kfd_mem_attachment *attachment)
640 {
641 	struct ttm_operation_ctx ctx = {.interruptible = true};
642 	struct amdgpu_bo *bo = attachment->bo_va->base.bo;
643 	struct amdgpu_device *adev = attachment->adev;
644 	struct ttm_tt *ttm = bo->tbo.ttm;
645 	enum dma_data_direction dir;
646 	dma_addr_t dma_addr;
647 	bool mmio;
648 	int ret;
649 
650 	/* Expect SG Table of dmapmap BO to be NULL */
651 	mmio = (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP);
652 	if (unlikely(ttm->sg)) {
653 		pr_err("SG Table of %d BO for peer device is UNEXPECTEDLY NON-NULL", mmio);
654 		return -EINVAL;
655 	}
656 
657 	dir = mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ?
658 			DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
659 	dma_addr = mem->bo->tbo.sg->sgl->dma_address;
660 	pr_debug("%d BO size: %d\n", mmio, mem->bo->tbo.sg->sgl->length);
661 	pr_debug("%d BO address before DMA mapping: %llx\n", mmio, dma_addr);
662 	dma_addr = dma_map_resource(adev->dev, dma_addr,
663 			mem->bo->tbo.sg->sgl->length, dir, DMA_ATTR_SKIP_CPU_SYNC);
664 	ret = dma_mapping_error(adev->dev, dma_addr);
665 	if (unlikely(ret))
666 		return ret;
667 	pr_debug("%d BO address after DMA mapping: %llx\n", mmio, dma_addr);
668 
669 	ttm->sg = create_sg_table(dma_addr, mem->bo->tbo.sg->sgl->length);
670 	if (unlikely(!ttm->sg)) {
671 		ret = -ENOMEM;
672 		goto unmap_sg;
673 	}
674 
675 	amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_GTT);
676 	ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
677 	if (unlikely(ret))
678 		goto free_sg;
679 
680 	return ret;
681 
682 free_sg:
683 	sg_free_table(ttm->sg);
684 	kfree(ttm->sg);
685 	ttm->sg = NULL;
686 unmap_sg:
687 	dma_unmap_resource(adev->dev, dma_addr, mem->bo->tbo.sg->sgl->length,
688 			   dir, DMA_ATTR_SKIP_CPU_SYNC);
689 	return ret;
690 }
691 
692 static int
693 kfd_mem_dmamap_attachment(struct kgd_mem *mem,
694 			  struct kfd_mem_attachment *attachment)
695 {
696 	switch (attachment->type) {
697 	case KFD_MEM_ATT_SHARED:
698 		return 0;
699 	case KFD_MEM_ATT_USERPTR:
700 		return kfd_mem_dmamap_userptr(mem, attachment);
701 	case KFD_MEM_ATT_DMABUF:
702 		return kfd_mem_dmamap_dmabuf(attachment);
703 	case KFD_MEM_ATT_SG:
704 		return kfd_mem_dmamap_sg_bo(mem, attachment);
705 	default:
706 		WARN_ON_ONCE(1);
707 	}
708 	return -EINVAL;
709 }
710 
711 static void
712 kfd_mem_dmaunmap_userptr(struct kgd_mem *mem,
713 			 struct kfd_mem_attachment *attachment)
714 {
715 	enum dma_data_direction direction =
716 		mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ?
717 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
718 	struct ttm_operation_ctx ctx = {.interruptible = false};
719 	struct amdgpu_bo *bo = attachment->bo_va->base.bo;
720 	struct amdgpu_device *adev = attachment->adev;
721 	struct ttm_tt *ttm = bo->tbo.ttm;
722 
723 	if (unlikely(!ttm->sg))
724 		return;
725 
726 	amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_CPU);
727 	ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
728 
729 	dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
730 	sg_free_table(ttm->sg);
731 	kfree(ttm->sg);
732 	ttm->sg = NULL;
733 }
734 
735 static void
736 kfd_mem_dmaunmap_dmabuf(struct kfd_mem_attachment *attachment)
737 {
738 	/* This is a no-op. We don't want to trigger eviction fences when
739 	 * unmapping DMABufs. Therefore the invalidation (moving to system
740 	 * domain) is done in kfd_mem_dmamap_dmabuf.
741 	 */
742 }
743 
744 /**
745  * kfd_mem_dmaunmap_sg_bo() - Free DMA mapped sg_table of DOORBELL or MMIO BO
746  * @mem: SG BO of the DOORBELL or MMIO resource on the owning device
747  * @attachment: Virtual address attachment of the BO on accessing device
748  *
749  * The method performs following steps:
750  *   - Signal TTM to mark memory pointed to by BO as GPU inaccessible
751  *   - Free SG Table that is used to encapsulate DMA mapped memory of
752  *          peer device's DOORBELL or MMIO memory
753  *
754  * This method is invoked in the following contexts:
755  *     UNMapping of DOORBELL or MMIO BO on a device having access to its memory
756  *     Eviction of DOOREBELL or MMIO BO on device having access to its memory
757  *
758  * Return: void
759  */
760 static void
761 kfd_mem_dmaunmap_sg_bo(struct kgd_mem *mem,
762 		       struct kfd_mem_attachment *attachment)
763 {
764 	struct ttm_operation_ctx ctx = {.interruptible = true};
765 	struct amdgpu_bo *bo = attachment->bo_va->base.bo;
766 	struct amdgpu_device *adev = attachment->adev;
767 	struct ttm_tt *ttm = bo->tbo.ttm;
768 	enum dma_data_direction dir;
769 
770 	if (unlikely(!ttm->sg)) {
771 		pr_debug("SG Table of BO is NULL");
772 		return;
773 	}
774 
775 	amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_CPU);
776 	ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
777 
778 	dir = mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ?
779 				DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
780 	dma_unmap_resource(adev->dev, ttm->sg->sgl->dma_address,
781 			ttm->sg->sgl->length, dir, DMA_ATTR_SKIP_CPU_SYNC);
782 	sg_free_table(ttm->sg);
783 	kfree(ttm->sg);
784 	ttm->sg = NULL;
785 	bo->tbo.sg = NULL;
786 }
787 
788 static void
789 kfd_mem_dmaunmap_attachment(struct kgd_mem *mem,
790 			    struct kfd_mem_attachment *attachment)
791 {
792 	switch (attachment->type) {
793 	case KFD_MEM_ATT_SHARED:
794 		break;
795 	case KFD_MEM_ATT_USERPTR:
796 		kfd_mem_dmaunmap_userptr(mem, attachment);
797 		break;
798 	case KFD_MEM_ATT_DMABUF:
799 		kfd_mem_dmaunmap_dmabuf(attachment);
800 		break;
801 	case KFD_MEM_ATT_SG:
802 		kfd_mem_dmaunmap_sg_bo(mem, attachment);
803 		break;
804 	default:
805 		WARN_ON_ONCE(1);
806 	}
807 }
808 
809 static int kfd_mem_export_dmabuf(struct kgd_mem *mem)
810 {
811 	if (!mem->dmabuf) {
812 		struct amdgpu_device *bo_adev;
813 		struct dma_buf *dmabuf;
814 		int r, fd;
815 
816 		bo_adev = amdgpu_ttm_adev(mem->bo->tbo.bdev);
817 		r = drm_gem_prime_handle_to_fd(&bo_adev->ddev, bo_adev->kfd.client.file,
818 					       mem->gem_handle,
819 			mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ?
820 					       DRM_RDWR : 0, &fd);
821 		if (r)
822 			return r;
823 		dmabuf = dma_buf_get(fd);
824 		close_fd(fd);
825 		if (WARN_ON_ONCE(IS_ERR(dmabuf)))
826 			return PTR_ERR(dmabuf);
827 		mem->dmabuf = dmabuf;
828 	}
829 
830 	return 0;
831 }
832 
833 static int
834 kfd_mem_attach_dmabuf(struct amdgpu_device *adev, struct kgd_mem *mem,
835 		      struct amdgpu_bo **bo)
836 {
837 	struct drm_gem_object *gobj;
838 	int ret;
839 
840 	ret = kfd_mem_export_dmabuf(mem);
841 	if (ret)
842 		return ret;
843 
844 	gobj = amdgpu_gem_prime_import(adev_to_drm(adev), mem->dmabuf);
845 	if (IS_ERR(gobj))
846 		return PTR_ERR(gobj);
847 
848 	*bo = gem_to_amdgpu_bo(gobj);
849 	(*bo)->flags |= AMDGPU_GEM_CREATE_PREEMPTIBLE;
850 
851 	return 0;
852 }
853 
854 /* kfd_mem_attach - Add a BO to a VM
855  *
856  * Everything that needs to bo done only once when a BO is first added
857  * to a VM. It can later be mapped and unmapped many times without
858  * repeating these steps.
859  *
860  * 0. Create BO for DMA mapping, if needed
861  * 1. Allocate and initialize BO VA entry data structure
862  * 2. Add BO to the VM
863  * 3. Determine ASIC-specific PTE flags
864  * 4. Alloc page tables and directories if needed
865  * 4a.  Validate new page tables and directories
866  */
867 static int kfd_mem_attach(struct amdgpu_device *adev, struct kgd_mem *mem,
868 		struct amdgpu_vm *vm, bool is_aql)
869 {
870 	struct amdgpu_device *bo_adev = amdgpu_ttm_adev(mem->bo->tbo.bdev);
871 	unsigned long bo_size = mem->bo->tbo.base.size;
872 	uint64_t va = mem->va;
873 	struct kfd_mem_attachment *attachment[2] = {NULL, NULL};
874 	struct amdgpu_bo *bo[2] = {NULL, NULL};
875 	struct amdgpu_bo_va *bo_va;
876 	bool same_hive = false;
877 	int i, ret;
878 
879 	if (!va) {
880 		pr_err("Invalid VA when adding BO to VM\n");
881 		return -EINVAL;
882 	}
883 
884 	/* Determine access to VRAM, MMIO and DOORBELL BOs of peer devices
885 	 *
886 	 * The access path of MMIO and DOORBELL BOs of is always over PCIe.
887 	 * In contrast the access path of VRAM BOs depens upon the type of
888 	 * link that connects the peer device. Access over PCIe is allowed
889 	 * if peer device has large BAR. In contrast, access over xGMI is
890 	 * allowed for both small and large BAR configurations of peer device
891 	 */
892 	if ((adev != bo_adev && !adev->gmc.is_app_apu) &&
893 	    ((mem->domain == AMDGPU_GEM_DOMAIN_VRAM) ||
894 	     (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) ||
895 	     (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP))) {
896 		if (mem->domain == AMDGPU_GEM_DOMAIN_VRAM)
897 			same_hive = amdgpu_xgmi_same_hive(adev, bo_adev);
898 		if (!same_hive && !amdgpu_device_is_peer_accessible(bo_adev, adev))
899 			return -EINVAL;
900 	}
901 
902 	for (i = 0; i <= is_aql; i++) {
903 		attachment[i] = kzalloc(sizeof(*attachment[i]), GFP_KERNEL);
904 		if (unlikely(!attachment[i])) {
905 			ret = -ENOMEM;
906 			goto unwind;
907 		}
908 
909 		pr_debug("\t add VA 0x%llx - 0x%llx to vm %p\n", va,
910 			 va + bo_size, vm);
911 
912 		if ((adev == bo_adev && !(mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) ||
913 		    (amdgpu_ttm_tt_get_usermm(mem->bo->tbo.ttm) && reuse_dmamap(adev, bo_adev)) ||
914 		    (mem->domain == AMDGPU_GEM_DOMAIN_GTT && reuse_dmamap(adev, bo_adev)) ||
915 		    same_hive) {
916 			/* Mappings on the local GPU, or VRAM mappings in the
917 			 * local hive, or userptr, or GTT mapping can reuse dma map
918 			 * address space share the original BO
919 			 */
920 			attachment[i]->type = KFD_MEM_ATT_SHARED;
921 			bo[i] = mem->bo;
922 			drm_gem_object_get(&bo[i]->tbo.base);
923 		} else if (i > 0) {
924 			/* Multiple mappings on the same GPU share the BO */
925 			attachment[i]->type = KFD_MEM_ATT_SHARED;
926 			bo[i] = bo[0];
927 			drm_gem_object_get(&bo[i]->tbo.base);
928 		} else if (amdgpu_ttm_tt_get_usermm(mem->bo->tbo.ttm)) {
929 			/* Create an SG BO to DMA-map userptrs on other GPUs */
930 			attachment[i]->type = KFD_MEM_ATT_USERPTR;
931 			ret = create_dmamap_sg_bo(adev, mem, &bo[i]);
932 			if (ret)
933 				goto unwind;
934 		/* Handle DOORBELL BOs of peer devices and MMIO BOs of local and peer devices */
935 		} else if (mem->bo->tbo.type == ttm_bo_type_sg) {
936 			WARN_ONCE(!(mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL ||
937 				    mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP),
938 				  "Handing invalid SG BO in ATTACH request");
939 			attachment[i]->type = KFD_MEM_ATT_SG;
940 			ret = create_dmamap_sg_bo(adev, mem, &bo[i]);
941 			if (ret)
942 				goto unwind;
943 		/* Enable acces to GTT and VRAM BOs of peer devices */
944 		} else if (mem->domain == AMDGPU_GEM_DOMAIN_GTT ||
945 			   mem->domain == AMDGPU_GEM_DOMAIN_VRAM) {
946 			attachment[i]->type = KFD_MEM_ATT_DMABUF;
947 			ret = kfd_mem_attach_dmabuf(adev, mem, &bo[i]);
948 			if (ret)
949 				goto unwind;
950 			pr_debug("Employ DMABUF mechanism to enable peer GPU access\n");
951 		} else {
952 			WARN_ONCE(true, "Handling invalid ATTACH request");
953 			ret = -EINVAL;
954 			goto unwind;
955 		}
956 
957 		/* Add BO to VM internal data structures */
958 		ret = amdgpu_bo_reserve(bo[i], false);
959 		if (ret) {
960 			pr_debug("Unable to reserve BO during memory attach");
961 			goto unwind;
962 		}
963 		bo_va = amdgpu_vm_bo_find(vm, bo[i]);
964 		if (!bo_va)
965 			bo_va = amdgpu_vm_bo_add(adev, vm, bo[i]);
966 		else
967 			++bo_va->ref_count;
968 		attachment[i]->bo_va = bo_va;
969 		amdgpu_bo_unreserve(bo[i]);
970 		if (unlikely(!attachment[i]->bo_va)) {
971 			ret = -ENOMEM;
972 			pr_err("Failed to add BO object to VM. ret == %d\n",
973 			       ret);
974 			goto unwind;
975 		}
976 		attachment[i]->va = va;
977 		attachment[i]->pte_flags = get_pte_flags(adev, mem);
978 		attachment[i]->adev = adev;
979 		list_add(&attachment[i]->list, &mem->attachments);
980 
981 		va += bo_size;
982 	}
983 
984 	return 0;
985 
986 unwind:
987 	for (; i >= 0; i--) {
988 		if (!attachment[i])
989 			continue;
990 		if (attachment[i]->bo_va) {
991 			amdgpu_bo_reserve(bo[i], true);
992 			if (--attachment[i]->bo_va->ref_count == 0)
993 				amdgpu_vm_bo_del(adev, attachment[i]->bo_va);
994 			amdgpu_bo_unreserve(bo[i]);
995 			list_del(&attachment[i]->list);
996 		}
997 		if (bo[i])
998 			drm_gem_object_put(&bo[i]->tbo.base);
999 		kfree(attachment[i]);
1000 	}
1001 	return ret;
1002 }
1003 
1004 static void kfd_mem_detach(struct kfd_mem_attachment *attachment)
1005 {
1006 	struct amdgpu_bo *bo = attachment->bo_va->base.bo;
1007 
1008 	pr_debug("\t remove VA 0x%llx in entry %p\n",
1009 			attachment->va, attachment);
1010 	if (--attachment->bo_va->ref_count == 0)
1011 		amdgpu_vm_bo_del(attachment->adev, attachment->bo_va);
1012 	drm_gem_object_put(&bo->tbo.base);
1013 	list_del(&attachment->list);
1014 	kfree(attachment);
1015 }
1016 
1017 static void add_kgd_mem_to_kfd_bo_list(struct kgd_mem *mem,
1018 				struct amdkfd_process_info *process_info,
1019 				bool userptr)
1020 {
1021 	mutex_lock(&process_info->lock);
1022 	if (userptr)
1023 		list_add_tail(&mem->validate_list,
1024 			      &process_info->userptr_valid_list);
1025 	else
1026 		list_add_tail(&mem->validate_list, &process_info->kfd_bo_list);
1027 	mutex_unlock(&process_info->lock);
1028 }
1029 
1030 static void remove_kgd_mem_from_kfd_bo_list(struct kgd_mem *mem,
1031 		struct amdkfd_process_info *process_info)
1032 {
1033 	mutex_lock(&process_info->lock);
1034 	list_del(&mem->validate_list);
1035 	mutex_unlock(&process_info->lock);
1036 }
1037 
1038 /* Initializes user pages. It registers the MMU notifier and validates
1039  * the userptr BO in the GTT domain.
1040  *
1041  * The BO must already be on the userptr_valid_list. Otherwise an
1042  * eviction and restore may happen that leaves the new BO unmapped
1043  * with the user mode queues running.
1044  *
1045  * Takes the process_info->lock to protect against concurrent restore
1046  * workers.
1047  *
1048  * Returns 0 for success, negative errno for errors.
1049  */
1050 static int init_user_pages(struct kgd_mem *mem, uint64_t user_addr,
1051 			   bool criu_resume)
1052 {
1053 	struct amdkfd_process_info *process_info = mem->process_info;
1054 	struct amdgpu_bo *bo = mem->bo;
1055 	struct ttm_operation_ctx ctx = { true, false };
1056 	struct hmm_range *range;
1057 	int ret = 0;
1058 
1059 	mutex_lock(&process_info->lock);
1060 
1061 	ret = amdgpu_ttm_tt_set_userptr(&bo->tbo, user_addr, 0);
1062 	if (ret) {
1063 		pr_err("%s: Failed to set userptr: %d\n", __func__, ret);
1064 		goto out;
1065 	}
1066 
1067 	ret = amdgpu_hmm_register(bo, user_addr);
1068 	if (ret) {
1069 		pr_err("%s: Failed to register MMU notifier: %d\n",
1070 		       __func__, ret);
1071 		goto out;
1072 	}
1073 
1074 	if (criu_resume) {
1075 		/*
1076 		 * During a CRIU restore operation, the userptr buffer objects
1077 		 * will be validated in the restore_userptr_work worker at a
1078 		 * later stage when it is scheduled by another ioctl called by
1079 		 * CRIU master process for the target pid for restore.
1080 		 */
1081 		mutex_lock(&process_info->notifier_lock);
1082 		mem->invalid++;
1083 		mutex_unlock(&process_info->notifier_lock);
1084 		mutex_unlock(&process_info->lock);
1085 		return 0;
1086 	}
1087 
1088 	ret = amdgpu_ttm_tt_get_user_pages(bo, bo->tbo.ttm->pages, &range);
1089 	if (ret) {
1090 		pr_err("%s: Failed to get user pages: %d\n", __func__, ret);
1091 		goto unregister_out;
1092 	}
1093 
1094 	ret = amdgpu_bo_reserve(bo, true);
1095 	if (ret) {
1096 		pr_err("%s: Failed to reserve BO\n", __func__);
1097 		goto release_out;
1098 	}
1099 	amdgpu_bo_placement_from_domain(bo, mem->domain);
1100 	ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
1101 	if (ret)
1102 		pr_err("%s: failed to validate BO\n", __func__);
1103 	amdgpu_bo_unreserve(bo);
1104 
1105 release_out:
1106 	amdgpu_ttm_tt_get_user_pages_done(bo->tbo.ttm, range);
1107 unregister_out:
1108 	if (ret)
1109 		amdgpu_hmm_unregister(bo);
1110 out:
1111 	mutex_unlock(&process_info->lock);
1112 	return ret;
1113 }
1114 
1115 /* Reserving a BO and its page table BOs must happen atomically to
1116  * avoid deadlocks. Some operations update multiple VMs at once. Track
1117  * all the reservation info in a context structure. Optionally a sync
1118  * object can track VM updates.
1119  */
1120 struct bo_vm_reservation_context {
1121 	/* DRM execution context for the reservation */
1122 	struct drm_exec exec;
1123 	/* Number of VMs reserved */
1124 	unsigned int n_vms;
1125 	/* Pointer to sync object */
1126 	struct amdgpu_sync *sync;
1127 };
1128 
1129 enum bo_vm_match {
1130 	BO_VM_NOT_MAPPED = 0,	/* Match VMs where a BO is not mapped */
1131 	BO_VM_MAPPED,		/* Match VMs where a BO is mapped     */
1132 	BO_VM_ALL,		/* Match all VMs a BO was added to    */
1133 };
1134 
1135 /**
1136  * reserve_bo_and_vm - reserve a BO and a VM unconditionally.
1137  * @mem: KFD BO structure.
1138  * @vm: the VM to reserve.
1139  * @ctx: the struct that will be used in unreserve_bo_and_vms().
1140  */
1141 static int reserve_bo_and_vm(struct kgd_mem *mem,
1142 			      struct amdgpu_vm *vm,
1143 			      struct bo_vm_reservation_context *ctx)
1144 {
1145 	struct amdgpu_bo *bo = mem->bo;
1146 	int ret;
1147 
1148 	WARN_ON(!vm);
1149 
1150 	ctx->n_vms = 1;
1151 	ctx->sync = &mem->sync;
1152 	drm_exec_init(&ctx->exec, DRM_EXEC_INTERRUPTIBLE_WAIT, 0);
1153 	drm_exec_until_all_locked(&ctx->exec) {
1154 		ret = amdgpu_vm_lock_pd(vm, &ctx->exec, 2);
1155 		drm_exec_retry_on_contention(&ctx->exec);
1156 		if (unlikely(ret))
1157 			goto error;
1158 
1159 		ret = drm_exec_prepare_obj(&ctx->exec, &bo->tbo.base, 1);
1160 		drm_exec_retry_on_contention(&ctx->exec);
1161 		if (unlikely(ret))
1162 			goto error;
1163 	}
1164 	return 0;
1165 
1166 error:
1167 	pr_err("Failed to reserve buffers in ttm.\n");
1168 	drm_exec_fini(&ctx->exec);
1169 	return ret;
1170 }
1171 
1172 /**
1173  * reserve_bo_and_cond_vms - reserve a BO and some VMs conditionally
1174  * @mem: KFD BO structure.
1175  * @vm: the VM to reserve. If NULL, then all VMs associated with the BO
1176  * is used. Otherwise, a single VM associated with the BO.
1177  * @map_type: the mapping status that will be used to filter the VMs.
1178  * @ctx: the struct that will be used in unreserve_bo_and_vms().
1179  *
1180  * Returns 0 for success, negative for failure.
1181  */
1182 static int reserve_bo_and_cond_vms(struct kgd_mem *mem,
1183 				struct amdgpu_vm *vm, enum bo_vm_match map_type,
1184 				struct bo_vm_reservation_context *ctx)
1185 {
1186 	struct kfd_mem_attachment *entry;
1187 	struct amdgpu_bo *bo = mem->bo;
1188 	int ret;
1189 
1190 	ctx->sync = &mem->sync;
1191 	drm_exec_init(&ctx->exec, DRM_EXEC_INTERRUPTIBLE_WAIT, 0);
1192 	drm_exec_until_all_locked(&ctx->exec) {
1193 		ctx->n_vms = 0;
1194 		list_for_each_entry(entry, &mem->attachments, list) {
1195 			if ((vm && vm != entry->bo_va->base.vm) ||
1196 				(entry->is_mapped != map_type
1197 				&& map_type != BO_VM_ALL))
1198 				continue;
1199 
1200 			ret = amdgpu_vm_lock_pd(entry->bo_va->base.vm,
1201 						&ctx->exec, 2);
1202 			drm_exec_retry_on_contention(&ctx->exec);
1203 			if (unlikely(ret))
1204 				goto error;
1205 			++ctx->n_vms;
1206 		}
1207 
1208 		ret = drm_exec_prepare_obj(&ctx->exec, &bo->tbo.base, 1);
1209 		drm_exec_retry_on_contention(&ctx->exec);
1210 		if (unlikely(ret))
1211 			goto error;
1212 	}
1213 	return 0;
1214 
1215 error:
1216 	pr_err("Failed to reserve buffers in ttm.\n");
1217 	drm_exec_fini(&ctx->exec);
1218 	return ret;
1219 }
1220 
1221 /**
1222  * unreserve_bo_and_vms - Unreserve BO and VMs from a reservation context
1223  * @ctx: Reservation context to unreserve
1224  * @wait: Optionally wait for a sync object representing pending VM updates
1225  * @intr: Whether the wait is interruptible
1226  *
1227  * Also frees any resources allocated in
1228  * reserve_bo_and_(cond_)vm(s). Returns the status from
1229  * amdgpu_sync_wait.
1230  */
1231 static int unreserve_bo_and_vms(struct bo_vm_reservation_context *ctx,
1232 				 bool wait, bool intr)
1233 {
1234 	int ret = 0;
1235 
1236 	if (wait)
1237 		ret = amdgpu_sync_wait(ctx->sync, intr);
1238 
1239 	drm_exec_fini(&ctx->exec);
1240 	ctx->sync = NULL;
1241 	return ret;
1242 }
1243 
1244 static void unmap_bo_from_gpuvm(struct kgd_mem *mem,
1245 				struct kfd_mem_attachment *entry,
1246 				struct amdgpu_sync *sync)
1247 {
1248 	struct amdgpu_bo_va *bo_va = entry->bo_va;
1249 	struct amdgpu_device *adev = entry->adev;
1250 	struct amdgpu_vm *vm = bo_va->base.vm;
1251 
1252 	amdgpu_vm_bo_unmap(adev, bo_va, entry->va);
1253 
1254 	amdgpu_vm_clear_freed(adev, vm, &bo_va->last_pt_update);
1255 
1256 	amdgpu_sync_fence(sync, bo_va->last_pt_update);
1257 }
1258 
1259 static int update_gpuvm_pte(struct kgd_mem *mem,
1260 			    struct kfd_mem_attachment *entry,
1261 			    struct amdgpu_sync *sync)
1262 {
1263 	struct amdgpu_bo_va *bo_va = entry->bo_va;
1264 	struct amdgpu_device *adev = entry->adev;
1265 	int ret;
1266 
1267 	ret = kfd_mem_dmamap_attachment(mem, entry);
1268 	if (ret)
1269 		return ret;
1270 
1271 	/* Update the page tables  */
1272 	ret = amdgpu_vm_bo_update(adev, bo_va, false);
1273 	if (ret) {
1274 		pr_err("amdgpu_vm_bo_update failed\n");
1275 		return ret;
1276 	}
1277 
1278 	return amdgpu_sync_fence(sync, bo_va->last_pt_update);
1279 }
1280 
1281 static int map_bo_to_gpuvm(struct kgd_mem *mem,
1282 			   struct kfd_mem_attachment *entry,
1283 			   struct amdgpu_sync *sync,
1284 			   bool no_update_pte)
1285 {
1286 	int ret;
1287 
1288 	/* Set virtual address for the allocation */
1289 	ret = amdgpu_vm_bo_map(entry->adev, entry->bo_va, entry->va, 0,
1290 			       amdgpu_bo_size(entry->bo_va->base.bo),
1291 			       entry->pte_flags);
1292 	if (ret) {
1293 		pr_err("Failed to map VA 0x%llx in vm. ret %d\n",
1294 				entry->va, ret);
1295 		return ret;
1296 	}
1297 
1298 	if (no_update_pte)
1299 		return 0;
1300 
1301 	ret = update_gpuvm_pte(mem, entry, sync);
1302 	if (ret) {
1303 		pr_err("update_gpuvm_pte() failed\n");
1304 		goto update_gpuvm_pte_failed;
1305 	}
1306 
1307 	return 0;
1308 
1309 update_gpuvm_pte_failed:
1310 	unmap_bo_from_gpuvm(mem, entry, sync);
1311 	kfd_mem_dmaunmap_attachment(mem, entry);
1312 	return ret;
1313 }
1314 
1315 static int process_validate_vms(struct amdkfd_process_info *process_info,
1316 				struct ww_acquire_ctx *ticket)
1317 {
1318 	struct amdgpu_vm *peer_vm;
1319 	int ret;
1320 
1321 	list_for_each_entry(peer_vm, &process_info->vm_list_head,
1322 			    vm_list_node) {
1323 		ret = vm_validate_pt_pd_bos(peer_vm, ticket);
1324 		if (ret)
1325 			return ret;
1326 	}
1327 
1328 	return 0;
1329 }
1330 
1331 static int process_sync_pds_resv(struct amdkfd_process_info *process_info,
1332 				 struct amdgpu_sync *sync)
1333 {
1334 	struct amdgpu_vm *peer_vm;
1335 	int ret;
1336 
1337 	list_for_each_entry(peer_vm, &process_info->vm_list_head,
1338 			    vm_list_node) {
1339 		struct amdgpu_bo *pd = peer_vm->root.bo;
1340 
1341 		ret = amdgpu_sync_resv(NULL, sync, pd->tbo.base.resv,
1342 				       AMDGPU_SYNC_NE_OWNER,
1343 				       AMDGPU_FENCE_OWNER_KFD);
1344 		if (ret)
1345 			return ret;
1346 	}
1347 
1348 	return 0;
1349 }
1350 
1351 static int process_update_pds(struct amdkfd_process_info *process_info,
1352 			      struct amdgpu_sync *sync)
1353 {
1354 	struct amdgpu_vm *peer_vm;
1355 	int ret;
1356 
1357 	list_for_each_entry(peer_vm, &process_info->vm_list_head,
1358 			    vm_list_node) {
1359 		ret = vm_update_pds(peer_vm, sync);
1360 		if (ret)
1361 			return ret;
1362 	}
1363 
1364 	return 0;
1365 }
1366 
1367 static int init_kfd_vm(struct amdgpu_vm *vm, void **process_info,
1368 		       struct dma_fence **ef)
1369 {
1370 	struct amdkfd_process_info *info = NULL;
1371 	int ret;
1372 
1373 	if (!*process_info) {
1374 		info = kzalloc(sizeof(*info), GFP_KERNEL);
1375 		if (!info)
1376 			return -ENOMEM;
1377 
1378 		mutex_init(&info->lock);
1379 		mutex_init(&info->notifier_lock);
1380 		INIT_LIST_HEAD(&info->vm_list_head);
1381 		INIT_LIST_HEAD(&info->kfd_bo_list);
1382 		INIT_LIST_HEAD(&info->userptr_valid_list);
1383 		INIT_LIST_HEAD(&info->userptr_inval_list);
1384 
1385 		info->eviction_fence =
1386 			amdgpu_amdkfd_fence_create(dma_fence_context_alloc(1),
1387 						   current->mm,
1388 						   NULL);
1389 		if (!info->eviction_fence) {
1390 			pr_err("Failed to create eviction fence\n");
1391 			ret = -ENOMEM;
1392 			goto create_evict_fence_fail;
1393 		}
1394 
1395 		info->pid = get_task_pid(current->group_leader, PIDTYPE_PID);
1396 		INIT_DELAYED_WORK(&info->restore_userptr_work,
1397 				  amdgpu_amdkfd_restore_userptr_worker);
1398 
1399 		*process_info = info;
1400 	}
1401 
1402 	vm->process_info = *process_info;
1403 
1404 	/* Validate page directory and attach eviction fence */
1405 	ret = amdgpu_bo_reserve(vm->root.bo, true);
1406 	if (ret)
1407 		goto reserve_pd_fail;
1408 	ret = vm_validate_pt_pd_bos(vm, NULL);
1409 	if (ret) {
1410 		pr_err("validate_pt_pd_bos() failed\n");
1411 		goto validate_pd_fail;
1412 	}
1413 	ret = amdgpu_bo_sync_wait(vm->root.bo,
1414 				  AMDGPU_FENCE_OWNER_KFD, false);
1415 	if (ret)
1416 		goto wait_pd_fail;
1417 	ret = dma_resv_reserve_fences(vm->root.bo->tbo.base.resv, 1);
1418 	if (ret)
1419 		goto reserve_shared_fail;
1420 	dma_resv_add_fence(vm->root.bo->tbo.base.resv,
1421 			   &vm->process_info->eviction_fence->base,
1422 			   DMA_RESV_USAGE_BOOKKEEP);
1423 	amdgpu_bo_unreserve(vm->root.bo);
1424 
1425 	/* Update process info */
1426 	mutex_lock(&vm->process_info->lock);
1427 	list_add_tail(&vm->vm_list_node,
1428 			&(vm->process_info->vm_list_head));
1429 	vm->process_info->n_vms++;
1430 
1431 	*ef = dma_fence_get(&vm->process_info->eviction_fence->base);
1432 	mutex_unlock(&vm->process_info->lock);
1433 
1434 	return 0;
1435 
1436 reserve_shared_fail:
1437 wait_pd_fail:
1438 validate_pd_fail:
1439 	amdgpu_bo_unreserve(vm->root.bo);
1440 reserve_pd_fail:
1441 	vm->process_info = NULL;
1442 	if (info) {
1443 		dma_fence_put(&info->eviction_fence->base);
1444 		*process_info = NULL;
1445 		put_pid(info->pid);
1446 create_evict_fence_fail:
1447 		mutex_destroy(&info->lock);
1448 		mutex_destroy(&info->notifier_lock);
1449 		kfree(info);
1450 	}
1451 	return ret;
1452 }
1453 
1454 /**
1455  * amdgpu_amdkfd_gpuvm_pin_bo() - Pins a BO using following criteria
1456  * @bo: Handle of buffer object being pinned
1457  * @domain: Domain into which BO should be pinned
1458  *
1459  *   - USERPTR BOs are UNPINNABLE and will return error
1460  *   - All other BO types (GTT, VRAM, MMIO and DOORBELL) will have their
1461  *     PIN count incremented. It is valid to PIN a BO multiple times
1462  *
1463  * Return: ZERO if successful in pinning, Non-Zero in case of error.
1464  */
1465 static int amdgpu_amdkfd_gpuvm_pin_bo(struct amdgpu_bo *bo, u32 domain)
1466 {
1467 	int ret = 0;
1468 
1469 	ret = amdgpu_bo_reserve(bo, false);
1470 	if (unlikely(ret))
1471 		return ret;
1472 
1473 	ret = amdgpu_bo_pin_restricted(bo, domain, 0, 0);
1474 	if (ret)
1475 		pr_err("Error in Pinning BO to domain: %d\n", domain);
1476 
1477 	amdgpu_bo_sync_wait(bo, AMDGPU_FENCE_OWNER_KFD, false);
1478 	amdgpu_bo_unreserve(bo);
1479 
1480 	return ret;
1481 }
1482 
1483 /**
1484  * amdgpu_amdkfd_gpuvm_unpin_bo() - Unpins BO using following criteria
1485  * @bo: Handle of buffer object being unpinned
1486  *
1487  *   - Is a illegal request for USERPTR BOs and is ignored
1488  *   - All other BO types (GTT, VRAM, MMIO and DOORBELL) will have their
1489  *     PIN count decremented. Calls to UNPIN must balance calls to PIN
1490  */
1491 static void amdgpu_amdkfd_gpuvm_unpin_bo(struct amdgpu_bo *bo)
1492 {
1493 	int ret = 0;
1494 
1495 	ret = amdgpu_bo_reserve(bo, false);
1496 	if (unlikely(ret))
1497 		return;
1498 
1499 	amdgpu_bo_unpin(bo);
1500 	amdgpu_bo_unreserve(bo);
1501 }
1502 
1503 int amdgpu_amdkfd_gpuvm_set_vm_pasid(struct amdgpu_device *adev,
1504 				     struct amdgpu_vm *avm, u32 pasid)
1505 
1506 {
1507 	int ret;
1508 
1509 	/* Free the original amdgpu allocated pasid,
1510 	 * will be replaced with kfd allocated pasid.
1511 	 */
1512 	if (avm->pasid) {
1513 		amdgpu_pasid_free(avm->pasid);
1514 		amdgpu_vm_set_pasid(adev, avm, 0);
1515 	}
1516 
1517 	ret = amdgpu_vm_set_pasid(adev, avm, pasid);
1518 	if (ret)
1519 		return ret;
1520 
1521 	return 0;
1522 }
1523 
1524 int amdgpu_amdkfd_gpuvm_acquire_process_vm(struct amdgpu_device *adev,
1525 					   struct amdgpu_vm *avm,
1526 					   void **process_info,
1527 					   struct dma_fence **ef)
1528 {
1529 	int ret;
1530 
1531 	/* Already a compute VM? */
1532 	if (avm->process_info)
1533 		return -EINVAL;
1534 
1535 	/* Convert VM into a compute VM */
1536 	ret = amdgpu_vm_make_compute(adev, avm);
1537 	if (ret)
1538 		return ret;
1539 
1540 	/* Initialize KFD part of the VM and process info */
1541 	ret = init_kfd_vm(avm, process_info, ef);
1542 	if (ret)
1543 		return ret;
1544 
1545 	amdgpu_vm_set_task_info(avm);
1546 
1547 	return 0;
1548 }
1549 
1550 void amdgpu_amdkfd_gpuvm_destroy_cb(struct amdgpu_device *adev,
1551 				    struct amdgpu_vm *vm)
1552 {
1553 	struct amdkfd_process_info *process_info = vm->process_info;
1554 
1555 	if (!process_info)
1556 		return;
1557 
1558 	/* Update process info */
1559 	mutex_lock(&process_info->lock);
1560 	process_info->n_vms--;
1561 	list_del(&vm->vm_list_node);
1562 	mutex_unlock(&process_info->lock);
1563 
1564 	vm->process_info = NULL;
1565 
1566 	/* Release per-process resources when last compute VM is destroyed */
1567 	if (!process_info->n_vms) {
1568 		WARN_ON(!list_empty(&process_info->kfd_bo_list));
1569 		WARN_ON(!list_empty(&process_info->userptr_valid_list));
1570 		WARN_ON(!list_empty(&process_info->userptr_inval_list));
1571 
1572 		dma_fence_put(&process_info->eviction_fence->base);
1573 		cancel_delayed_work_sync(&process_info->restore_userptr_work);
1574 		put_pid(process_info->pid);
1575 		mutex_destroy(&process_info->lock);
1576 		mutex_destroy(&process_info->notifier_lock);
1577 		kfree(process_info);
1578 	}
1579 }
1580 
1581 void amdgpu_amdkfd_gpuvm_release_process_vm(struct amdgpu_device *adev,
1582 					    void *drm_priv)
1583 {
1584 	struct amdgpu_vm *avm;
1585 
1586 	if (WARN_ON(!adev || !drm_priv))
1587 		return;
1588 
1589 	avm = drm_priv_to_vm(drm_priv);
1590 
1591 	pr_debug("Releasing process vm %p\n", avm);
1592 
1593 	/* The original pasid of amdgpu vm has already been
1594 	 * released during making a amdgpu vm to a compute vm
1595 	 * The current pasid is managed by kfd and will be
1596 	 * released on kfd process destroy. Set amdgpu pasid
1597 	 * to 0 to avoid duplicate release.
1598 	 */
1599 	amdgpu_vm_release_compute(adev, avm);
1600 }
1601 
1602 uint64_t amdgpu_amdkfd_gpuvm_get_process_page_dir(void *drm_priv)
1603 {
1604 	struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv);
1605 	struct amdgpu_bo *pd = avm->root.bo;
1606 	struct amdgpu_device *adev = amdgpu_ttm_adev(pd->tbo.bdev);
1607 
1608 	if (adev->asic_type < CHIP_VEGA10)
1609 		return avm->pd_phys_addr >> AMDGPU_GPU_PAGE_SHIFT;
1610 	return avm->pd_phys_addr;
1611 }
1612 
1613 void amdgpu_amdkfd_block_mmu_notifications(void *p)
1614 {
1615 	struct amdkfd_process_info *pinfo = (struct amdkfd_process_info *)p;
1616 
1617 	mutex_lock(&pinfo->lock);
1618 	WRITE_ONCE(pinfo->block_mmu_notifications, true);
1619 	mutex_unlock(&pinfo->lock);
1620 }
1621 
1622 int amdgpu_amdkfd_criu_resume(void *p)
1623 {
1624 	int ret = 0;
1625 	struct amdkfd_process_info *pinfo = (struct amdkfd_process_info *)p;
1626 
1627 	mutex_lock(&pinfo->lock);
1628 	pr_debug("scheduling work\n");
1629 	mutex_lock(&pinfo->notifier_lock);
1630 	pinfo->evicted_bos++;
1631 	mutex_unlock(&pinfo->notifier_lock);
1632 	if (!READ_ONCE(pinfo->block_mmu_notifications)) {
1633 		ret = -EINVAL;
1634 		goto out_unlock;
1635 	}
1636 	WRITE_ONCE(pinfo->block_mmu_notifications, false);
1637 	queue_delayed_work(system_freezable_wq,
1638 			   &pinfo->restore_userptr_work, 0);
1639 
1640 out_unlock:
1641 	mutex_unlock(&pinfo->lock);
1642 	return ret;
1643 }
1644 
1645 size_t amdgpu_amdkfd_get_available_memory(struct amdgpu_device *adev,
1646 					  uint8_t xcp_id)
1647 {
1648 	uint64_t reserved_for_pt =
1649 		ESTIMATE_PT_SIZE(amdgpu_amdkfd_total_mem_size);
1650 	ssize_t available;
1651 	uint64_t vram_available, system_mem_available, ttm_mem_available;
1652 
1653 	spin_lock(&kfd_mem_limit.mem_limit_lock);
1654 	vram_available = KFD_XCP_MEMORY_SIZE(adev, xcp_id)
1655 		- adev->kfd.vram_used_aligned[xcp_id]
1656 		- atomic64_read(&adev->vram_pin_size)
1657 		- reserved_for_pt;
1658 
1659 	if (adev->gmc.is_app_apu) {
1660 		system_mem_available = no_system_mem_limit ?
1661 					kfd_mem_limit.max_system_mem_limit :
1662 					kfd_mem_limit.max_system_mem_limit -
1663 					kfd_mem_limit.system_mem_used;
1664 
1665 		ttm_mem_available = kfd_mem_limit.max_ttm_mem_limit -
1666 				kfd_mem_limit.ttm_mem_used;
1667 
1668 		available = min3(system_mem_available, ttm_mem_available,
1669 				 vram_available);
1670 		available = ALIGN_DOWN(available, PAGE_SIZE);
1671 	} else {
1672 		available = ALIGN_DOWN(vram_available, VRAM_AVAILABLITY_ALIGN);
1673 	}
1674 
1675 	spin_unlock(&kfd_mem_limit.mem_limit_lock);
1676 
1677 	if (available < 0)
1678 		available = 0;
1679 
1680 	return available;
1681 }
1682 
1683 int amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(
1684 		struct amdgpu_device *adev, uint64_t va, uint64_t size,
1685 		void *drm_priv, struct kgd_mem **mem,
1686 		uint64_t *offset, uint32_t flags, bool criu_resume)
1687 {
1688 	struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv);
1689 	struct amdgpu_fpriv *fpriv = container_of(avm, struct amdgpu_fpriv, vm);
1690 	enum ttm_bo_type bo_type = ttm_bo_type_device;
1691 	struct sg_table *sg = NULL;
1692 	uint64_t user_addr = 0;
1693 	struct amdgpu_bo *bo;
1694 	struct drm_gem_object *gobj = NULL;
1695 	u32 domain, alloc_domain;
1696 	uint64_t aligned_size;
1697 	int8_t xcp_id = -1;
1698 	u64 alloc_flags;
1699 	int ret;
1700 
1701 	/*
1702 	 * Check on which domain to allocate BO
1703 	 */
1704 	if (flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) {
1705 		domain = alloc_domain = AMDGPU_GEM_DOMAIN_VRAM;
1706 
1707 		if (adev->gmc.is_app_apu) {
1708 			domain = AMDGPU_GEM_DOMAIN_GTT;
1709 			alloc_domain = AMDGPU_GEM_DOMAIN_GTT;
1710 			alloc_flags = 0;
1711 		} else {
1712 			alloc_flags = AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE;
1713 			alloc_flags |= (flags & KFD_IOC_ALLOC_MEM_FLAGS_PUBLIC) ?
1714 			AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED : 0;
1715 		}
1716 		xcp_id = fpriv->xcp_id == AMDGPU_XCP_NO_PARTITION ?
1717 					0 : fpriv->xcp_id;
1718 	} else if (flags & KFD_IOC_ALLOC_MEM_FLAGS_GTT) {
1719 		domain = alloc_domain = AMDGPU_GEM_DOMAIN_GTT;
1720 		alloc_flags = 0;
1721 	} else {
1722 		domain = AMDGPU_GEM_DOMAIN_GTT;
1723 		alloc_domain = AMDGPU_GEM_DOMAIN_CPU;
1724 		alloc_flags = AMDGPU_GEM_CREATE_PREEMPTIBLE;
1725 
1726 		if (flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) {
1727 			if (!offset || !*offset)
1728 				return -EINVAL;
1729 			user_addr = untagged_addr(*offset);
1730 		} else if (flags & (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL |
1731 				    KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) {
1732 			bo_type = ttm_bo_type_sg;
1733 			if (size > UINT_MAX)
1734 				return -EINVAL;
1735 			sg = create_sg_table(*offset, size);
1736 			if (!sg)
1737 				return -ENOMEM;
1738 		} else {
1739 			return -EINVAL;
1740 		}
1741 	}
1742 
1743 	if (flags & KFD_IOC_ALLOC_MEM_FLAGS_COHERENT)
1744 		alloc_flags |= AMDGPU_GEM_CREATE_COHERENT;
1745 	if (flags & KFD_IOC_ALLOC_MEM_FLAGS_EXT_COHERENT)
1746 		alloc_flags |= AMDGPU_GEM_CREATE_EXT_COHERENT;
1747 	if (flags & KFD_IOC_ALLOC_MEM_FLAGS_UNCACHED)
1748 		alloc_flags |= AMDGPU_GEM_CREATE_UNCACHED;
1749 
1750 	*mem = kzalloc(sizeof(struct kgd_mem), GFP_KERNEL);
1751 	if (!*mem) {
1752 		ret = -ENOMEM;
1753 		goto err;
1754 	}
1755 	INIT_LIST_HEAD(&(*mem)->attachments);
1756 	mutex_init(&(*mem)->lock);
1757 	(*mem)->aql_queue = !!(flags & KFD_IOC_ALLOC_MEM_FLAGS_AQL_QUEUE_MEM);
1758 
1759 	/* Workaround for AQL queue wraparound bug. Map the same
1760 	 * memory twice. That means we only actually allocate half
1761 	 * the memory.
1762 	 */
1763 	if ((*mem)->aql_queue)
1764 		size >>= 1;
1765 	aligned_size = PAGE_ALIGN(size);
1766 
1767 	(*mem)->alloc_flags = flags;
1768 
1769 	amdgpu_sync_create(&(*mem)->sync);
1770 
1771 	ret = amdgpu_amdkfd_reserve_mem_limit(adev, aligned_size, flags,
1772 					      xcp_id);
1773 	if (ret) {
1774 		pr_debug("Insufficient memory\n");
1775 		goto err_reserve_limit;
1776 	}
1777 
1778 	pr_debug("\tcreate BO VA 0x%llx size 0x%llx domain %s xcp_id %d\n",
1779 		 va, (*mem)->aql_queue ? size << 1 : size,
1780 		 domain_string(alloc_domain), xcp_id);
1781 
1782 	ret = amdgpu_gem_object_create(adev, aligned_size, 1, alloc_domain, alloc_flags,
1783 				       bo_type, NULL, &gobj, xcp_id + 1);
1784 	if (ret) {
1785 		pr_debug("Failed to create BO on domain %s. ret %d\n",
1786 			 domain_string(alloc_domain), ret);
1787 		goto err_bo_create;
1788 	}
1789 	ret = drm_vma_node_allow(&gobj->vma_node, drm_priv);
1790 	if (ret) {
1791 		pr_debug("Failed to allow vma node access. ret %d\n", ret);
1792 		goto err_node_allow;
1793 	}
1794 	ret = drm_gem_handle_create(adev->kfd.client.file, gobj, &(*mem)->gem_handle);
1795 	if (ret)
1796 		goto err_gem_handle_create;
1797 	bo = gem_to_amdgpu_bo(gobj);
1798 	if (bo_type == ttm_bo_type_sg) {
1799 		bo->tbo.sg = sg;
1800 		bo->tbo.ttm->sg = sg;
1801 	}
1802 	bo->kfd_bo = *mem;
1803 	(*mem)->bo = bo;
1804 	if (user_addr)
1805 		bo->flags |= AMDGPU_AMDKFD_CREATE_USERPTR_BO;
1806 
1807 	(*mem)->va = va;
1808 	(*mem)->domain = domain;
1809 	(*mem)->mapped_to_gpu_memory = 0;
1810 	(*mem)->process_info = avm->process_info;
1811 
1812 	add_kgd_mem_to_kfd_bo_list(*mem, avm->process_info, user_addr);
1813 
1814 	if (user_addr) {
1815 		pr_debug("creating userptr BO for user_addr = %llx\n", user_addr);
1816 		ret = init_user_pages(*mem, user_addr, criu_resume);
1817 		if (ret)
1818 			goto allocate_init_user_pages_failed;
1819 	} else  if (flags & (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL |
1820 				KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) {
1821 		ret = amdgpu_amdkfd_gpuvm_pin_bo(bo, AMDGPU_GEM_DOMAIN_GTT);
1822 		if (ret) {
1823 			pr_err("Pinning MMIO/DOORBELL BO during ALLOC FAILED\n");
1824 			goto err_pin_bo;
1825 		}
1826 		bo->allowed_domains = AMDGPU_GEM_DOMAIN_GTT;
1827 		bo->preferred_domains = AMDGPU_GEM_DOMAIN_GTT;
1828 	} else {
1829 		mutex_lock(&avm->process_info->lock);
1830 		if (avm->process_info->eviction_fence &&
1831 		    !dma_fence_is_signaled(&avm->process_info->eviction_fence->base))
1832 			ret = amdgpu_amdkfd_bo_validate_and_fence(bo, domain,
1833 				&avm->process_info->eviction_fence->base);
1834 		mutex_unlock(&avm->process_info->lock);
1835 		if (ret)
1836 			goto err_validate_bo;
1837 	}
1838 
1839 	if (offset)
1840 		*offset = amdgpu_bo_mmap_offset(bo);
1841 
1842 	return 0;
1843 
1844 allocate_init_user_pages_failed:
1845 err_pin_bo:
1846 err_validate_bo:
1847 	remove_kgd_mem_from_kfd_bo_list(*mem, avm->process_info);
1848 	drm_gem_handle_delete(adev->kfd.client.file, (*mem)->gem_handle);
1849 err_gem_handle_create:
1850 	drm_vma_node_revoke(&gobj->vma_node, drm_priv);
1851 err_node_allow:
1852 	/* Don't unreserve system mem limit twice */
1853 	goto err_reserve_limit;
1854 err_bo_create:
1855 	amdgpu_amdkfd_unreserve_mem_limit(adev, aligned_size, flags, xcp_id);
1856 err_reserve_limit:
1857 	mutex_destroy(&(*mem)->lock);
1858 	if (gobj)
1859 		drm_gem_object_put(gobj);
1860 	else
1861 		kfree(*mem);
1862 err:
1863 	if (sg) {
1864 		sg_free_table(sg);
1865 		kfree(sg);
1866 	}
1867 	return ret;
1868 }
1869 
1870 int amdgpu_amdkfd_gpuvm_free_memory_of_gpu(
1871 		struct amdgpu_device *adev, struct kgd_mem *mem, void *drm_priv,
1872 		uint64_t *size)
1873 {
1874 	struct amdkfd_process_info *process_info = mem->process_info;
1875 	unsigned long bo_size = mem->bo->tbo.base.size;
1876 	bool use_release_notifier = (mem->bo->kfd_bo == mem);
1877 	struct kfd_mem_attachment *entry, *tmp;
1878 	struct bo_vm_reservation_context ctx;
1879 	unsigned int mapped_to_gpu_memory;
1880 	int ret;
1881 	bool is_imported = false;
1882 
1883 	mutex_lock(&mem->lock);
1884 
1885 	/* Unpin MMIO/DOORBELL BO's that were pinned during allocation */
1886 	if (mem->alloc_flags &
1887 	    (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL |
1888 	     KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) {
1889 		amdgpu_amdkfd_gpuvm_unpin_bo(mem->bo);
1890 	}
1891 
1892 	mapped_to_gpu_memory = mem->mapped_to_gpu_memory;
1893 	is_imported = mem->is_imported;
1894 	mutex_unlock(&mem->lock);
1895 	/* lock is not needed after this, since mem is unused and will
1896 	 * be freed anyway
1897 	 */
1898 
1899 	if (mapped_to_gpu_memory > 0) {
1900 		pr_debug("BO VA 0x%llx size 0x%lx is still mapped.\n",
1901 				mem->va, bo_size);
1902 		return -EBUSY;
1903 	}
1904 
1905 	/* Make sure restore workers don't access the BO any more */
1906 	mutex_lock(&process_info->lock);
1907 	list_del(&mem->validate_list);
1908 	mutex_unlock(&process_info->lock);
1909 
1910 	/* Cleanup user pages and MMU notifiers */
1911 	if (amdgpu_ttm_tt_get_usermm(mem->bo->tbo.ttm)) {
1912 		amdgpu_hmm_unregister(mem->bo);
1913 		mutex_lock(&process_info->notifier_lock);
1914 		amdgpu_ttm_tt_discard_user_pages(mem->bo->tbo.ttm, mem->range);
1915 		mutex_unlock(&process_info->notifier_lock);
1916 	}
1917 
1918 	ret = reserve_bo_and_cond_vms(mem, NULL, BO_VM_ALL, &ctx);
1919 	if (unlikely(ret))
1920 		return ret;
1921 
1922 	amdgpu_amdkfd_remove_eviction_fence(mem->bo,
1923 					process_info->eviction_fence);
1924 	pr_debug("Release VA 0x%llx - 0x%llx\n", mem->va,
1925 		mem->va + bo_size * (1 + mem->aql_queue));
1926 
1927 	/* Remove from VM internal data structures */
1928 	list_for_each_entry_safe(entry, tmp, &mem->attachments, list) {
1929 		kfd_mem_dmaunmap_attachment(mem, entry);
1930 		kfd_mem_detach(entry);
1931 	}
1932 
1933 	ret = unreserve_bo_and_vms(&ctx, false, false);
1934 
1935 	/* Free the sync object */
1936 	amdgpu_sync_free(&mem->sync);
1937 
1938 	/* If the SG is not NULL, it's one we created for a doorbell or mmio
1939 	 * remap BO. We need to free it.
1940 	 */
1941 	if (mem->bo->tbo.sg) {
1942 		sg_free_table(mem->bo->tbo.sg);
1943 		kfree(mem->bo->tbo.sg);
1944 	}
1945 
1946 	/* Update the size of the BO being freed if it was allocated from
1947 	 * VRAM and is not imported. For APP APU VRAM allocations are done
1948 	 * in GTT domain
1949 	 */
1950 	if (size) {
1951 		if (!is_imported &&
1952 		   (mem->bo->preferred_domains == AMDGPU_GEM_DOMAIN_VRAM ||
1953 		   (adev->gmc.is_app_apu &&
1954 		    mem->bo->preferred_domains == AMDGPU_GEM_DOMAIN_GTT)))
1955 			*size = bo_size;
1956 		else
1957 			*size = 0;
1958 	}
1959 
1960 	/* Free the BO*/
1961 	drm_vma_node_revoke(&mem->bo->tbo.base.vma_node, drm_priv);
1962 	drm_gem_handle_delete(adev->kfd.client.file, mem->gem_handle);
1963 	if (mem->dmabuf) {
1964 		dma_buf_put(mem->dmabuf);
1965 		mem->dmabuf = NULL;
1966 	}
1967 	mutex_destroy(&mem->lock);
1968 
1969 	/* If this releases the last reference, it will end up calling
1970 	 * amdgpu_amdkfd_release_notify and kfree the mem struct. That's why
1971 	 * this needs to be the last call here.
1972 	 */
1973 	drm_gem_object_put(&mem->bo->tbo.base);
1974 
1975 	/*
1976 	 * For kgd_mem allocated in amdgpu_amdkfd_gpuvm_import_dmabuf(),
1977 	 * explicitly free it here.
1978 	 */
1979 	if (!use_release_notifier)
1980 		kfree(mem);
1981 
1982 	return ret;
1983 }
1984 
1985 int amdgpu_amdkfd_gpuvm_map_memory_to_gpu(
1986 		struct amdgpu_device *adev, struct kgd_mem *mem,
1987 		void *drm_priv)
1988 {
1989 	struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv);
1990 	int ret;
1991 	struct amdgpu_bo *bo;
1992 	uint32_t domain;
1993 	struct kfd_mem_attachment *entry;
1994 	struct bo_vm_reservation_context ctx;
1995 	unsigned long bo_size;
1996 	bool is_invalid_userptr = false;
1997 
1998 	bo = mem->bo;
1999 	if (!bo) {
2000 		pr_err("Invalid BO when mapping memory to GPU\n");
2001 		return -EINVAL;
2002 	}
2003 
2004 	/* Make sure restore is not running concurrently. Since we
2005 	 * don't map invalid userptr BOs, we rely on the next restore
2006 	 * worker to do the mapping
2007 	 */
2008 	mutex_lock(&mem->process_info->lock);
2009 
2010 	/* Lock notifier lock. If we find an invalid userptr BO, we can be
2011 	 * sure that the MMU notifier is no longer running
2012 	 * concurrently and the queues are actually stopped
2013 	 */
2014 	if (amdgpu_ttm_tt_get_usermm(bo->tbo.ttm)) {
2015 		mutex_lock(&mem->process_info->notifier_lock);
2016 		is_invalid_userptr = !!mem->invalid;
2017 		mutex_unlock(&mem->process_info->notifier_lock);
2018 	}
2019 
2020 	mutex_lock(&mem->lock);
2021 
2022 	domain = mem->domain;
2023 	bo_size = bo->tbo.base.size;
2024 
2025 	pr_debug("Map VA 0x%llx - 0x%llx to vm %p domain %s\n",
2026 			mem->va,
2027 			mem->va + bo_size * (1 + mem->aql_queue),
2028 			avm, domain_string(domain));
2029 
2030 	if (!kfd_mem_is_attached(avm, mem)) {
2031 		ret = kfd_mem_attach(adev, mem, avm, mem->aql_queue);
2032 		if (ret)
2033 			goto out;
2034 	}
2035 
2036 	ret = reserve_bo_and_vm(mem, avm, &ctx);
2037 	if (unlikely(ret))
2038 		goto out;
2039 
2040 	/* Userptr can be marked as "not invalid", but not actually be
2041 	 * validated yet (still in the system domain). In that case
2042 	 * the queues are still stopped and we can leave mapping for
2043 	 * the next restore worker
2044 	 */
2045 	if (amdgpu_ttm_tt_get_usermm(bo->tbo.ttm) &&
2046 	    bo->tbo.resource->mem_type == TTM_PL_SYSTEM)
2047 		is_invalid_userptr = true;
2048 
2049 	ret = vm_validate_pt_pd_bos(avm, NULL);
2050 	if (unlikely(ret))
2051 		goto out_unreserve;
2052 
2053 	list_for_each_entry(entry, &mem->attachments, list) {
2054 		if (entry->bo_va->base.vm != avm || entry->is_mapped)
2055 			continue;
2056 
2057 		pr_debug("\t map VA 0x%llx - 0x%llx in entry %p\n",
2058 			 entry->va, entry->va + bo_size, entry);
2059 
2060 		ret = map_bo_to_gpuvm(mem, entry, ctx.sync,
2061 				      is_invalid_userptr);
2062 		if (ret) {
2063 			pr_err("Failed to map bo to gpuvm\n");
2064 			goto out_unreserve;
2065 		}
2066 
2067 		ret = vm_update_pds(avm, ctx.sync);
2068 		if (ret) {
2069 			pr_err("Failed to update page directories\n");
2070 			goto out_unreserve;
2071 		}
2072 
2073 		entry->is_mapped = true;
2074 		mem->mapped_to_gpu_memory++;
2075 		pr_debug("\t INC mapping count %d\n",
2076 			 mem->mapped_to_gpu_memory);
2077 	}
2078 
2079 	ret = unreserve_bo_and_vms(&ctx, false, false);
2080 
2081 	goto out;
2082 
2083 out_unreserve:
2084 	unreserve_bo_and_vms(&ctx, false, false);
2085 out:
2086 	mutex_unlock(&mem->process_info->lock);
2087 	mutex_unlock(&mem->lock);
2088 	return ret;
2089 }
2090 
2091 int amdgpu_amdkfd_gpuvm_dmaunmap_mem(struct kgd_mem *mem, void *drm_priv)
2092 {
2093 	struct kfd_mem_attachment *entry;
2094 	struct amdgpu_vm *vm;
2095 	int ret;
2096 
2097 	vm = drm_priv_to_vm(drm_priv);
2098 
2099 	mutex_lock(&mem->lock);
2100 
2101 	ret = amdgpu_bo_reserve(mem->bo, true);
2102 	if (ret)
2103 		goto out;
2104 
2105 	list_for_each_entry(entry, &mem->attachments, list) {
2106 		if (entry->bo_va->base.vm != vm)
2107 			continue;
2108 		if (entry->bo_va->base.bo->tbo.ttm &&
2109 		    !entry->bo_va->base.bo->tbo.ttm->sg)
2110 			continue;
2111 
2112 		kfd_mem_dmaunmap_attachment(mem, entry);
2113 	}
2114 
2115 	amdgpu_bo_unreserve(mem->bo);
2116 out:
2117 	mutex_unlock(&mem->lock);
2118 
2119 	return ret;
2120 }
2121 
2122 int amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
2123 		struct amdgpu_device *adev, struct kgd_mem *mem, void *drm_priv)
2124 {
2125 	struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv);
2126 	unsigned long bo_size = mem->bo->tbo.base.size;
2127 	struct kfd_mem_attachment *entry;
2128 	struct bo_vm_reservation_context ctx;
2129 	int ret;
2130 
2131 	mutex_lock(&mem->lock);
2132 
2133 	ret = reserve_bo_and_cond_vms(mem, avm, BO_VM_MAPPED, &ctx);
2134 	if (unlikely(ret))
2135 		goto out;
2136 	/* If no VMs were reserved, it means the BO wasn't actually mapped */
2137 	if (ctx.n_vms == 0) {
2138 		ret = -EINVAL;
2139 		goto unreserve_out;
2140 	}
2141 
2142 	ret = vm_validate_pt_pd_bos(avm, NULL);
2143 	if (unlikely(ret))
2144 		goto unreserve_out;
2145 
2146 	pr_debug("Unmap VA 0x%llx - 0x%llx from vm %p\n",
2147 		mem->va,
2148 		mem->va + bo_size * (1 + mem->aql_queue),
2149 		avm);
2150 
2151 	list_for_each_entry(entry, &mem->attachments, list) {
2152 		if (entry->bo_va->base.vm != avm || !entry->is_mapped)
2153 			continue;
2154 
2155 		pr_debug("\t unmap VA 0x%llx - 0x%llx from entry %p\n",
2156 			 entry->va, entry->va + bo_size, entry);
2157 
2158 		unmap_bo_from_gpuvm(mem, entry, ctx.sync);
2159 		entry->is_mapped = false;
2160 
2161 		mem->mapped_to_gpu_memory--;
2162 		pr_debug("\t DEC mapping count %d\n",
2163 			 mem->mapped_to_gpu_memory);
2164 	}
2165 
2166 unreserve_out:
2167 	unreserve_bo_and_vms(&ctx, false, false);
2168 out:
2169 	mutex_unlock(&mem->lock);
2170 	return ret;
2171 }
2172 
2173 int amdgpu_amdkfd_gpuvm_sync_memory(
2174 		struct amdgpu_device *adev, struct kgd_mem *mem, bool intr)
2175 {
2176 	struct amdgpu_sync sync;
2177 	int ret;
2178 
2179 	amdgpu_sync_create(&sync);
2180 
2181 	mutex_lock(&mem->lock);
2182 	amdgpu_sync_clone(&mem->sync, &sync);
2183 	mutex_unlock(&mem->lock);
2184 
2185 	ret = amdgpu_sync_wait(&sync, intr);
2186 	amdgpu_sync_free(&sync);
2187 	return ret;
2188 }
2189 
2190 /**
2191  * amdgpu_amdkfd_map_gtt_bo_to_gart - Map BO to GART and increment reference count
2192  * @bo: Buffer object to be mapped
2193  *
2194  * Before return, bo reference count is incremented. To release the reference and unpin/
2195  * unmap the BO, call amdgpu_amdkfd_free_gtt_mem.
2196  */
2197 int amdgpu_amdkfd_map_gtt_bo_to_gart(struct amdgpu_bo *bo)
2198 {
2199 	int ret;
2200 
2201 	ret = amdgpu_bo_reserve(bo, true);
2202 	if (ret) {
2203 		pr_err("Failed to reserve bo. ret %d\n", ret);
2204 		goto err_reserve_bo_failed;
2205 	}
2206 
2207 	ret = amdgpu_bo_pin(bo, AMDGPU_GEM_DOMAIN_GTT);
2208 	if (ret) {
2209 		pr_err("Failed to pin bo. ret %d\n", ret);
2210 		goto err_pin_bo_failed;
2211 	}
2212 
2213 	ret = amdgpu_ttm_alloc_gart(&bo->tbo);
2214 	if (ret) {
2215 		pr_err("Failed to bind bo to GART. ret %d\n", ret);
2216 		goto err_map_bo_gart_failed;
2217 	}
2218 
2219 	amdgpu_amdkfd_remove_eviction_fence(
2220 		bo, bo->vm_bo->vm->process_info->eviction_fence);
2221 
2222 	amdgpu_bo_unreserve(bo);
2223 
2224 	bo = amdgpu_bo_ref(bo);
2225 
2226 	return 0;
2227 
2228 err_map_bo_gart_failed:
2229 	amdgpu_bo_unpin(bo);
2230 err_pin_bo_failed:
2231 	amdgpu_bo_unreserve(bo);
2232 err_reserve_bo_failed:
2233 
2234 	return ret;
2235 }
2236 
2237 /** amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel() - Map a GTT BO for kernel CPU access
2238  *
2239  * @mem: Buffer object to be mapped for CPU access
2240  * @kptr[out]: pointer in kernel CPU address space
2241  * @size[out]: size of the buffer
2242  *
2243  * Pins the BO and maps it for kernel CPU access. The eviction fence is removed
2244  * from the BO, since pinned BOs cannot be evicted. The bo must remain on the
2245  * validate_list, so the GPU mapping can be restored after a page table was
2246  * evicted.
2247  *
2248  * Return: 0 on success, error code on failure
2249  */
2250 int amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(struct kgd_mem *mem,
2251 					     void **kptr, uint64_t *size)
2252 {
2253 	int ret;
2254 	struct amdgpu_bo *bo = mem->bo;
2255 
2256 	if (amdgpu_ttm_tt_get_usermm(bo->tbo.ttm)) {
2257 		pr_err("userptr can't be mapped to kernel\n");
2258 		return -EINVAL;
2259 	}
2260 
2261 	mutex_lock(&mem->process_info->lock);
2262 
2263 	ret = amdgpu_bo_reserve(bo, true);
2264 	if (ret) {
2265 		pr_err("Failed to reserve bo. ret %d\n", ret);
2266 		goto bo_reserve_failed;
2267 	}
2268 
2269 	ret = amdgpu_bo_pin(bo, AMDGPU_GEM_DOMAIN_GTT);
2270 	if (ret) {
2271 		pr_err("Failed to pin bo. ret %d\n", ret);
2272 		goto pin_failed;
2273 	}
2274 
2275 	ret = amdgpu_bo_kmap(bo, kptr);
2276 	if (ret) {
2277 		pr_err("Failed to map bo to kernel. ret %d\n", ret);
2278 		goto kmap_failed;
2279 	}
2280 
2281 	amdgpu_amdkfd_remove_eviction_fence(
2282 		bo, mem->process_info->eviction_fence);
2283 
2284 	if (size)
2285 		*size = amdgpu_bo_size(bo);
2286 
2287 	amdgpu_bo_unreserve(bo);
2288 
2289 	mutex_unlock(&mem->process_info->lock);
2290 	return 0;
2291 
2292 kmap_failed:
2293 	amdgpu_bo_unpin(bo);
2294 pin_failed:
2295 	amdgpu_bo_unreserve(bo);
2296 bo_reserve_failed:
2297 	mutex_unlock(&mem->process_info->lock);
2298 
2299 	return ret;
2300 }
2301 
2302 /** amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel() - Unmap a GTT BO for kernel CPU access
2303  *
2304  * @mem: Buffer object to be unmapped for CPU access
2305  *
2306  * Removes the kernel CPU mapping and unpins the BO. It does not restore the
2307  * eviction fence, so this function should only be used for cleanup before the
2308  * BO is destroyed.
2309  */
2310 void amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(struct kgd_mem *mem)
2311 {
2312 	struct amdgpu_bo *bo = mem->bo;
2313 
2314 	amdgpu_bo_reserve(bo, true);
2315 	amdgpu_bo_kunmap(bo);
2316 	amdgpu_bo_unpin(bo);
2317 	amdgpu_bo_unreserve(bo);
2318 }
2319 
2320 int amdgpu_amdkfd_gpuvm_get_vm_fault_info(struct amdgpu_device *adev,
2321 					  struct kfd_vm_fault_info *mem)
2322 {
2323 	if (atomic_read(&adev->gmc.vm_fault_info_updated) == 1) {
2324 		*mem = *adev->gmc.vm_fault_info;
2325 		mb(); /* make sure read happened */
2326 		atomic_set(&adev->gmc.vm_fault_info_updated, 0);
2327 	}
2328 	return 0;
2329 }
2330 
2331 static int import_obj_create(struct amdgpu_device *adev,
2332 			     struct dma_buf *dma_buf,
2333 			     struct drm_gem_object *obj,
2334 			     uint64_t va, void *drm_priv,
2335 			     struct kgd_mem **mem, uint64_t *size,
2336 			     uint64_t *mmap_offset)
2337 {
2338 	struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv);
2339 	struct amdgpu_bo *bo;
2340 	int ret;
2341 
2342 	bo = gem_to_amdgpu_bo(obj);
2343 	if (!(bo->preferred_domains & (AMDGPU_GEM_DOMAIN_VRAM |
2344 				    AMDGPU_GEM_DOMAIN_GTT)))
2345 		/* Only VRAM and GTT BOs are supported */
2346 		return -EINVAL;
2347 
2348 	*mem = kzalloc(sizeof(struct kgd_mem), GFP_KERNEL);
2349 	if (!*mem)
2350 		return -ENOMEM;
2351 
2352 	ret = drm_vma_node_allow(&obj->vma_node, drm_priv);
2353 	if (ret)
2354 		goto err_free_mem;
2355 
2356 	if (size)
2357 		*size = amdgpu_bo_size(bo);
2358 
2359 	if (mmap_offset)
2360 		*mmap_offset = amdgpu_bo_mmap_offset(bo);
2361 
2362 	INIT_LIST_HEAD(&(*mem)->attachments);
2363 	mutex_init(&(*mem)->lock);
2364 
2365 	(*mem)->alloc_flags =
2366 		((bo->preferred_domains & AMDGPU_GEM_DOMAIN_VRAM) ?
2367 		KFD_IOC_ALLOC_MEM_FLAGS_VRAM : KFD_IOC_ALLOC_MEM_FLAGS_GTT)
2368 		| KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE
2369 		| KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
2370 
2371 	get_dma_buf(dma_buf);
2372 	(*mem)->dmabuf = dma_buf;
2373 	(*mem)->bo = bo;
2374 	(*mem)->va = va;
2375 	(*mem)->domain = (bo->preferred_domains & AMDGPU_GEM_DOMAIN_VRAM) && !adev->gmc.is_app_apu ?
2376 		AMDGPU_GEM_DOMAIN_VRAM : AMDGPU_GEM_DOMAIN_GTT;
2377 
2378 	(*mem)->mapped_to_gpu_memory = 0;
2379 	(*mem)->process_info = avm->process_info;
2380 	add_kgd_mem_to_kfd_bo_list(*mem, avm->process_info, false);
2381 	amdgpu_sync_create(&(*mem)->sync);
2382 	(*mem)->is_imported = true;
2383 
2384 	mutex_lock(&avm->process_info->lock);
2385 	if (avm->process_info->eviction_fence &&
2386 	    !dma_fence_is_signaled(&avm->process_info->eviction_fence->base))
2387 		ret = amdgpu_amdkfd_bo_validate_and_fence(bo, (*mem)->domain,
2388 				&avm->process_info->eviction_fence->base);
2389 	mutex_unlock(&avm->process_info->lock);
2390 	if (ret)
2391 		goto err_remove_mem;
2392 
2393 	return 0;
2394 
2395 err_remove_mem:
2396 	remove_kgd_mem_from_kfd_bo_list(*mem, avm->process_info);
2397 	drm_vma_node_revoke(&obj->vma_node, drm_priv);
2398 err_free_mem:
2399 	kfree(*mem);
2400 	return ret;
2401 }
2402 
2403 int amdgpu_amdkfd_gpuvm_import_dmabuf_fd(struct amdgpu_device *adev, int fd,
2404 					 uint64_t va, void *drm_priv,
2405 					 struct kgd_mem **mem, uint64_t *size,
2406 					 uint64_t *mmap_offset)
2407 {
2408 	struct drm_gem_object *obj;
2409 	uint32_t handle;
2410 	int ret;
2411 
2412 	ret = drm_gem_prime_fd_to_handle(&adev->ddev, adev->kfd.client.file, fd,
2413 					 &handle);
2414 	if (ret)
2415 		return ret;
2416 	obj = drm_gem_object_lookup(adev->kfd.client.file, handle);
2417 	if (!obj) {
2418 		ret = -EINVAL;
2419 		goto err_release_handle;
2420 	}
2421 
2422 	ret = import_obj_create(adev, obj->dma_buf, obj, va, drm_priv, mem, size,
2423 				mmap_offset);
2424 	if (ret)
2425 		goto err_put_obj;
2426 
2427 	(*mem)->gem_handle = handle;
2428 
2429 	return 0;
2430 
2431 err_put_obj:
2432 	drm_gem_object_put(obj);
2433 err_release_handle:
2434 	drm_gem_handle_delete(adev->kfd.client.file, handle);
2435 	return ret;
2436 }
2437 
2438 int amdgpu_amdkfd_gpuvm_export_dmabuf(struct kgd_mem *mem,
2439 				      struct dma_buf **dma_buf)
2440 {
2441 	int ret;
2442 
2443 	mutex_lock(&mem->lock);
2444 	ret = kfd_mem_export_dmabuf(mem);
2445 	if (ret)
2446 		goto out;
2447 
2448 	get_dma_buf(mem->dmabuf);
2449 	*dma_buf = mem->dmabuf;
2450 out:
2451 	mutex_unlock(&mem->lock);
2452 	return ret;
2453 }
2454 
2455 /* Evict a userptr BO by stopping the queues if necessary
2456  *
2457  * Runs in MMU notifier, may be in RECLAIM_FS context. This means it
2458  * cannot do any memory allocations, and cannot take any locks that
2459  * are held elsewhere while allocating memory.
2460  *
2461  * It doesn't do anything to the BO itself. The real work happens in
2462  * restore, where we get updated page addresses. This function only
2463  * ensures that GPU access to the BO is stopped.
2464  */
2465 int amdgpu_amdkfd_evict_userptr(struct mmu_interval_notifier *mni,
2466 				unsigned long cur_seq, struct kgd_mem *mem)
2467 {
2468 	struct amdkfd_process_info *process_info = mem->process_info;
2469 	int r = 0;
2470 
2471 	/* Do not process MMU notifications during CRIU restore until
2472 	 * KFD_CRIU_OP_RESUME IOCTL is received
2473 	 */
2474 	if (READ_ONCE(process_info->block_mmu_notifications))
2475 		return 0;
2476 
2477 	mutex_lock(&process_info->notifier_lock);
2478 	mmu_interval_set_seq(mni, cur_seq);
2479 
2480 	mem->invalid++;
2481 	if (++process_info->evicted_bos == 1) {
2482 		/* First eviction, stop the queues */
2483 		r = kgd2kfd_quiesce_mm(mni->mm,
2484 				       KFD_QUEUE_EVICTION_TRIGGER_USERPTR);
2485 		if (r)
2486 			pr_err("Failed to quiesce KFD\n");
2487 		queue_delayed_work(system_freezable_wq,
2488 			&process_info->restore_userptr_work,
2489 			msecs_to_jiffies(AMDGPU_USERPTR_RESTORE_DELAY_MS));
2490 	}
2491 	mutex_unlock(&process_info->notifier_lock);
2492 
2493 	return r;
2494 }
2495 
2496 /* Update invalid userptr BOs
2497  *
2498  * Moves invalidated (evicted) userptr BOs from userptr_valid_list to
2499  * userptr_inval_list and updates user pages for all BOs that have
2500  * been invalidated since their last update.
2501  */
2502 static int update_invalid_user_pages(struct amdkfd_process_info *process_info,
2503 				     struct mm_struct *mm)
2504 {
2505 	struct kgd_mem *mem, *tmp_mem;
2506 	struct amdgpu_bo *bo;
2507 	struct ttm_operation_ctx ctx = { false, false };
2508 	uint32_t invalid;
2509 	int ret = 0;
2510 
2511 	mutex_lock(&process_info->notifier_lock);
2512 
2513 	/* Move all invalidated BOs to the userptr_inval_list */
2514 	list_for_each_entry_safe(mem, tmp_mem,
2515 				 &process_info->userptr_valid_list,
2516 				 validate_list)
2517 		if (mem->invalid)
2518 			list_move_tail(&mem->validate_list,
2519 				       &process_info->userptr_inval_list);
2520 
2521 	/* Go through userptr_inval_list and update any invalid user_pages */
2522 	list_for_each_entry(mem, &process_info->userptr_inval_list,
2523 			    validate_list) {
2524 		invalid = mem->invalid;
2525 		if (!invalid)
2526 			/* BO hasn't been invalidated since the last
2527 			 * revalidation attempt. Keep its page list.
2528 			 */
2529 			continue;
2530 
2531 		bo = mem->bo;
2532 
2533 		amdgpu_ttm_tt_discard_user_pages(bo->tbo.ttm, mem->range);
2534 		mem->range = NULL;
2535 
2536 		/* BO reservations and getting user pages (hmm_range_fault)
2537 		 * must happen outside the notifier lock
2538 		 */
2539 		mutex_unlock(&process_info->notifier_lock);
2540 
2541 		/* Move the BO to system (CPU) domain if necessary to unmap
2542 		 * and free the SG table
2543 		 */
2544 		if (bo->tbo.resource->mem_type != TTM_PL_SYSTEM) {
2545 			if (amdgpu_bo_reserve(bo, true))
2546 				return -EAGAIN;
2547 			amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_CPU);
2548 			ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
2549 			amdgpu_bo_unreserve(bo);
2550 			if (ret) {
2551 				pr_err("%s: Failed to invalidate userptr BO\n",
2552 				       __func__);
2553 				return -EAGAIN;
2554 			}
2555 		}
2556 
2557 		/* Get updated user pages */
2558 		ret = amdgpu_ttm_tt_get_user_pages(bo, bo->tbo.ttm->pages,
2559 						   &mem->range);
2560 		if (ret) {
2561 			pr_debug("Failed %d to get user pages\n", ret);
2562 
2563 			/* Return -EFAULT bad address error as success. It will
2564 			 * fail later with a VM fault if the GPU tries to access
2565 			 * it. Better than hanging indefinitely with stalled
2566 			 * user mode queues.
2567 			 *
2568 			 * Return other error -EBUSY or -ENOMEM to retry restore
2569 			 */
2570 			if (ret != -EFAULT)
2571 				return ret;
2572 
2573 			ret = 0;
2574 		}
2575 
2576 		mutex_lock(&process_info->notifier_lock);
2577 
2578 		/* Mark the BO as valid unless it was invalidated
2579 		 * again concurrently.
2580 		 */
2581 		if (mem->invalid != invalid) {
2582 			ret = -EAGAIN;
2583 			goto unlock_out;
2584 		}
2585 		 /* set mem valid if mem has hmm range associated */
2586 		if (mem->range)
2587 			mem->invalid = 0;
2588 	}
2589 
2590 unlock_out:
2591 	mutex_unlock(&process_info->notifier_lock);
2592 
2593 	return ret;
2594 }
2595 
2596 /* Validate invalid userptr BOs
2597  *
2598  * Validates BOs on the userptr_inval_list. Also updates GPUVM page tables
2599  * with new page addresses and waits for the page table updates to complete.
2600  */
2601 static int validate_invalid_user_pages(struct amdkfd_process_info *process_info)
2602 {
2603 	struct ttm_operation_ctx ctx = { false, false };
2604 	struct amdgpu_sync sync;
2605 	struct drm_exec exec;
2606 
2607 	struct amdgpu_vm *peer_vm;
2608 	struct kgd_mem *mem, *tmp_mem;
2609 	struct amdgpu_bo *bo;
2610 	int ret;
2611 
2612 	amdgpu_sync_create(&sync);
2613 
2614 	drm_exec_init(&exec, 0, 0);
2615 	/* Reserve all BOs and page tables for validation */
2616 	drm_exec_until_all_locked(&exec) {
2617 		/* Reserve all the page directories */
2618 		list_for_each_entry(peer_vm, &process_info->vm_list_head,
2619 				    vm_list_node) {
2620 			ret = amdgpu_vm_lock_pd(peer_vm, &exec, 2);
2621 			drm_exec_retry_on_contention(&exec);
2622 			if (unlikely(ret))
2623 				goto unreserve_out;
2624 		}
2625 
2626 		/* Reserve the userptr_inval_list entries to resv_list */
2627 		list_for_each_entry(mem, &process_info->userptr_inval_list,
2628 				    validate_list) {
2629 			struct drm_gem_object *gobj;
2630 
2631 			gobj = &mem->bo->tbo.base;
2632 			ret = drm_exec_prepare_obj(&exec, gobj, 1);
2633 			drm_exec_retry_on_contention(&exec);
2634 			if (unlikely(ret))
2635 				goto unreserve_out;
2636 		}
2637 	}
2638 
2639 	ret = process_validate_vms(process_info, NULL);
2640 	if (ret)
2641 		goto unreserve_out;
2642 
2643 	/* Validate BOs and update GPUVM page tables */
2644 	list_for_each_entry_safe(mem, tmp_mem,
2645 				 &process_info->userptr_inval_list,
2646 				 validate_list) {
2647 		struct kfd_mem_attachment *attachment;
2648 
2649 		bo = mem->bo;
2650 
2651 		/* Validate the BO if we got user pages */
2652 		if (bo->tbo.ttm->pages[0]) {
2653 			amdgpu_bo_placement_from_domain(bo, mem->domain);
2654 			ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
2655 			if (ret) {
2656 				pr_err("%s: failed to validate BO\n", __func__);
2657 				goto unreserve_out;
2658 			}
2659 		}
2660 
2661 		/* Update mapping. If the BO was not validated
2662 		 * (because we couldn't get user pages), this will
2663 		 * clear the page table entries, which will result in
2664 		 * VM faults if the GPU tries to access the invalid
2665 		 * memory.
2666 		 */
2667 		list_for_each_entry(attachment, &mem->attachments, list) {
2668 			if (!attachment->is_mapped)
2669 				continue;
2670 
2671 			kfd_mem_dmaunmap_attachment(mem, attachment);
2672 			ret = update_gpuvm_pte(mem, attachment, &sync);
2673 			if (ret) {
2674 				pr_err("%s: update PTE failed\n", __func__);
2675 				/* make sure this gets validated again */
2676 				mutex_lock(&process_info->notifier_lock);
2677 				mem->invalid++;
2678 				mutex_unlock(&process_info->notifier_lock);
2679 				goto unreserve_out;
2680 			}
2681 		}
2682 	}
2683 
2684 	/* Update page directories */
2685 	ret = process_update_pds(process_info, &sync);
2686 
2687 unreserve_out:
2688 	drm_exec_fini(&exec);
2689 	amdgpu_sync_wait(&sync, false);
2690 	amdgpu_sync_free(&sync);
2691 
2692 	return ret;
2693 }
2694 
2695 /* Confirm that all user pages are valid while holding the notifier lock
2696  *
2697  * Moves valid BOs from the userptr_inval_list back to userptr_val_list.
2698  */
2699 static int confirm_valid_user_pages_locked(struct amdkfd_process_info *process_info)
2700 {
2701 	struct kgd_mem *mem, *tmp_mem;
2702 	int ret = 0;
2703 
2704 	list_for_each_entry_safe(mem, tmp_mem,
2705 				 &process_info->userptr_inval_list,
2706 				 validate_list) {
2707 		bool valid;
2708 
2709 		/* keep mem without hmm range at userptr_inval_list */
2710 		if (!mem->range)
2711 			 continue;
2712 
2713 		/* Only check mem with hmm range associated */
2714 		valid = amdgpu_ttm_tt_get_user_pages_done(
2715 					mem->bo->tbo.ttm, mem->range);
2716 
2717 		mem->range = NULL;
2718 		if (!valid) {
2719 			WARN(!mem->invalid, "Invalid BO not marked invalid");
2720 			ret = -EAGAIN;
2721 			continue;
2722 		}
2723 
2724 		if (mem->invalid) {
2725 			WARN(1, "Valid BO is marked invalid");
2726 			ret = -EAGAIN;
2727 			continue;
2728 		}
2729 
2730 		list_move_tail(&mem->validate_list,
2731 			       &process_info->userptr_valid_list);
2732 	}
2733 
2734 	return ret;
2735 }
2736 
2737 /* Worker callback to restore evicted userptr BOs
2738  *
2739  * Tries to update and validate all userptr BOs. If successful and no
2740  * concurrent evictions happened, the queues are restarted. Otherwise,
2741  * reschedule for another attempt later.
2742  */
2743 static void amdgpu_amdkfd_restore_userptr_worker(struct work_struct *work)
2744 {
2745 	struct delayed_work *dwork = to_delayed_work(work);
2746 	struct amdkfd_process_info *process_info =
2747 		container_of(dwork, struct amdkfd_process_info,
2748 			     restore_userptr_work);
2749 	struct task_struct *usertask;
2750 	struct mm_struct *mm;
2751 	uint32_t evicted_bos;
2752 
2753 	mutex_lock(&process_info->notifier_lock);
2754 	evicted_bos = process_info->evicted_bos;
2755 	mutex_unlock(&process_info->notifier_lock);
2756 	if (!evicted_bos)
2757 		return;
2758 
2759 	/* Reference task and mm in case of concurrent process termination */
2760 	usertask = get_pid_task(process_info->pid, PIDTYPE_PID);
2761 	if (!usertask)
2762 		return;
2763 	mm = get_task_mm(usertask);
2764 	if (!mm) {
2765 		put_task_struct(usertask);
2766 		return;
2767 	}
2768 
2769 	mutex_lock(&process_info->lock);
2770 
2771 	if (update_invalid_user_pages(process_info, mm))
2772 		goto unlock_out;
2773 	/* userptr_inval_list can be empty if all evicted userptr BOs
2774 	 * have been freed. In that case there is nothing to validate
2775 	 * and we can just restart the queues.
2776 	 */
2777 	if (!list_empty(&process_info->userptr_inval_list)) {
2778 		if (validate_invalid_user_pages(process_info))
2779 			goto unlock_out;
2780 	}
2781 	/* Final check for concurrent evicton and atomic update. If
2782 	 * another eviction happens after successful update, it will
2783 	 * be a first eviction that calls quiesce_mm. The eviction
2784 	 * reference counting inside KFD will handle this case.
2785 	 */
2786 	mutex_lock(&process_info->notifier_lock);
2787 	if (process_info->evicted_bos != evicted_bos)
2788 		goto unlock_notifier_out;
2789 
2790 	if (confirm_valid_user_pages_locked(process_info)) {
2791 		WARN(1, "User pages unexpectedly invalid");
2792 		goto unlock_notifier_out;
2793 	}
2794 
2795 	process_info->evicted_bos = evicted_bos = 0;
2796 
2797 	if (kgd2kfd_resume_mm(mm)) {
2798 		pr_err("%s: Failed to resume KFD\n", __func__);
2799 		/* No recovery from this failure. Probably the CP is
2800 		 * hanging. No point trying again.
2801 		 */
2802 	}
2803 
2804 unlock_notifier_out:
2805 	mutex_unlock(&process_info->notifier_lock);
2806 unlock_out:
2807 	mutex_unlock(&process_info->lock);
2808 
2809 	/* If validation failed, reschedule another attempt */
2810 	if (evicted_bos) {
2811 		queue_delayed_work(system_freezable_wq,
2812 			&process_info->restore_userptr_work,
2813 			msecs_to_jiffies(AMDGPU_USERPTR_RESTORE_DELAY_MS));
2814 
2815 		kfd_smi_event_queue_restore_rescheduled(mm);
2816 	}
2817 	mmput(mm);
2818 	put_task_struct(usertask);
2819 }
2820 
2821 static void replace_eviction_fence(struct dma_fence __rcu **ef,
2822 				   struct dma_fence *new_ef)
2823 {
2824 	struct dma_fence *old_ef = rcu_replace_pointer(*ef, new_ef, true
2825 		/* protected by process_info->lock */);
2826 
2827 	/* If we're replacing an unsignaled eviction fence, that fence will
2828 	 * never be signaled, and if anyone is still waiting on that fence,
2829 	 * they will hang forever. This should never happen. We should only
2830 	 * replace the fence in restore_work that only gets scheduled after
2831 	 * eviction work signaled the fence.
2832 	 */
2833 	WARN_ONCE(!dma_fence_is_signaled(old_ef),
2834 		  "Replacing unsignaled eviction fence");
2835 	dma_fence_put(old_ef);
2836 }
2837 
2838 /** amdgpu_amdkfd_gpuvm_restore_process_bos - Restore all BOs for the given
2839  *   KFD process identified by process_info
2840  *
2841  * @process_info: amdkfd_process_info of the KFD process
2842  *
2843  * After memory eviction, restore thread calls this function. The function
2844  * should be called when the Process is still valid. BO restore involves -
2845  *
2846  * 1.  Release old eviction fence and create new one
2847  * 2.  Get two copies of PD BO list from all the VMs. Keep one copy as pd_list.
2848  * 3   Use the second PD list and kfd_bo_list to create a list (ctx.list) of
2849  *     BOs that need to be reserved.
2850  * 4.  Reserve all the BOs
2851  * 5.  Validate of PD and PT BOs.
2852  * 6.  Validate all KFD BOs using kfd_bo_list and Map them and add new fence
2853  * 7.  Add fence to all PD and PT BOs.
2854  * 8.  Unreserve all BOs
2855  */
2856 int amdgpu_amdkfd_gpuvm_restore_process_bos(void *info, struct dma_fence __rcu **ef)
2857 {
2858 	struct amdkfd_process_info *process_info = info;
2859 	struct amdgpu_vm *peer_vm;
2860 	struct kgd_mem *mem;
2861 	struct list_head duplicate_save;
2862 	struct amdgpu_sync sync_obj;
2863 	unsigned long failed_size = 0;
2864 	unsigned long total_size = 0;
2865 	struct drm_exec exec;
2866 	int ret;
2867 
2868 	INIT_LIST_HEAD(&duplicate_save);
2869 
2870 	mutex_lock(&process_info->lock);
2871 
2872 	drm_exec_init(&exec, DRM_EXEC_IGNORE_DUPLICATES, 0);
2873 	drm_exec_until_all_locked(&exec) {
2874 		list_for_each_entry(peer_vm, &process_info->vm_list_head,
2875 				    vm_list_node) {
2876 			ret = amdgpu_vm_lock_pd(peer_vm, &exec, 2);
2877 			drm_exec_retry_on_contention(&exec);
2878 			if (unlikely(ret)) {
2879 				pr_err("Locking VM PD failed, ret: %d\n", ret);
2880 				goto ttm_reserve_fail;
2881 			}
2882 		}
2883 
2884 		/* Reserve all BOs and page tables/directory. Add all BOs from
2885 		 * kfd_bo_list to ctx.list
2886 		 */
2887 		list_for_each_entry(mem, &process_info->kfd_bo_list,
2888 				    validate_list) {
2889 			struct drm_gem_object *gobj;
2890 
2891 			gobj = &mem->bo->tbo.base;
2892 			ret = drm_exec_prepare_obj(&exec, gobj, 1);
2893 			drm_exec_retry_on_contention(&exec);
2894 			if (unlikely(ret)) {
2895 				pr_err("drm_exec_prepare_obj failed, ret: %d\n", ret);
2896 				goto ttm_reserve_fail;
2897 			}
2898 		}
2899 	}
2900 
2901 	amdgpu_sync_create(&sync_obj);
2902 
2903 	/* Validate BOs and map them to GPUVM (update VM page tables). */
2904 	list_for_each_entry(mem, &process_info->kfd_bo_list,
2905 			    validate_list) {
2906 
2907 		struct amdgpu_bo *bo = mem->bo;
2908 		uint32_t domain = mem->domain;
2909 		struct kfd_mem_attachment *attachment;
2910 		struct dma_resv_iter cursor;
2911 		struct dma_fence *fence;
2912 
2913 		total_size += amdgpu_bo_size(bo);
2914 
2915 		ret = amdgpu_amdkfd_bo_validate(bo, domain, false);
2916 		if (ret) {
2917 			pr_debug("Memory eviction: Validate BOs failed\n");
2918 			failed_size += amdgpu_bo_size(bo);
2919 			ret = amdgpu_amdkfd_bo_validate(bo,
2920 						AMDGPU_GEM_DOMAIN_GTT, false);
2921 			if (ret) {
2922 				pr_debug("Memory eviction: Try again\n");
2923 				goto validate_map_fail;
2924 			}
2925 		}
2926 		dma_resv_for_each_fence(&cursor, bo->tbo.base.resv,
2927 					DMA_RESV_USAGE_KERNEL, fence) {
2928 			ret = amdgpu_sync_fence(&sync_obj, fence);
2929 			if (ret) {
2930 				pr_debug("Memory eviction: Sync BO fence failed. Try again\n");
2931 				goto validate_map_fail;
2932 			}
2933 		}
2934 		list_for_each_entry(attachment, &mem->attachments, list) {
2935 			if (!attachment->is_mapped)
2936 				continue;
2937 
2938 			if (attachment->bo_va->base.bo->tbo.pin_count)
2939 				continue;
2940 
2941 			kfd_mem_dmaunmap_attachment(mem, attachment);
2942 			ret = update_gpuvm_pte(mem, attachment, &sync_obj);
2943 			if (ret) {
2944 				pr_debug("Memory eviction: update PTE failed. Try again\n");
2945 				goto validate_map_fail;
2946 			}
2947 		}
2948 	}
2949 
2950 	if (failed_size)
2951 		pr_debug("0x%lx/0x%lx in system\n", failed_size, total_size);
2952 
2953 	/* Validate PDs, PTs and evicted DMABuf imports last. Otherwise BO
2954 	 * validations above would invalidate DMABuf imports again.
2955 	 */
2956 	ret = process_validate_vms(process_info, &exec.ticket);
2957 	if (ret) {
2958 		pr_debug("Validating VMs failed, ret: %d\n", ret);
2959 		goto validate_map_fail;
2960 	}
2961 
2962 	/* Update mappings not managed by KFD */
2963 	list_for_each_entry(peer_vm, &process_info->vm_list_head,
2964 			vm_list_node) {
2965 		struct amdgpu_device *adev = amdgpu_ttm_adev(
2966 			peer_vm->root.bo->tbo.bdev);
2967 
2968 		ret = amdgpu_vm_handle_moved(adev, peer_vm, &exec.ticket);
2969 		if (ret) {
2970 			pr_debug("Memory eviction: handle moved failed. Try again\n");
2971 			goto validate_map_fail;
2972 		}
2973 	}
2974 
2975 	/* Update page directories */
2976 	ret = process_update_pds(process_info, &sync_obj);
2977 	if (ret) {
2978 		pr_debug("Memory eviction: update PDs failed. Try again\n");
2979 		goto validate_map_fail;
2980 	}
2981 
2982 	/* Sync with fences on all the page tables. They implicitly depend on any
2983 	 * move fences from amdgpu_vm_handle_moved above.
2984 	 */
2985 	ret = process_sync_pds_resv(process_info, &sync_obj);
2986 	if (ret) {
2987 		pr_debug("Memory eviction: Failed to sync to PD BO moving fence. Try again\n");
2988 		goto validate_map_fail;
2989 	}
2990 
2991 	/* Wait for validate and PT updates to finish */
2992 	amdgpu_sync_wait(&sync_obj, false);
2993 
2994 	/* The old eviction fence may be unsignaled if restore happens
2995 	 * after a GPU reset or suspend/resume. Keep the old fence in that
2996 	 * case. Otherwise release the old eviction fence and create new
2997 	 * one, because fence only goes from unsignaled to signaled once
2998 	 * and cannot be reused. Use context and mm from the old fence.
2999 	 *
3000 	 * If an old eviction fence signals after this check, that's OK.
3001 	 * Anyone signaling an eviction fence must stop the queues first
3002 	 * and schedule another restore worker.
3003 	 */
3004 	if (dma_fence_is_signaled(&process_info->eviction_fence->base)) {
3005 		struct amdgpu_amdkfd_fence *new_fence =
3006 			amdgpu_amdkfd_fence_create(
3007 				process_info->eviction_fence->base.context,
3008 				process_info->eviction_fence->mm,
3009 				NULL);
3010 
3011 		if (!new_fence) {
3012 			pr_err("Failed to create eviction fence\n");
3013 			ret = -ENOMEM;
3014 			goto validate_map_fail;
3015 		}
3016 		dma_fence_put(&process_info->eviction_fence->base);
3017 		process_info->eviction_fence = new_fence;
3018 		replace_eviction_fence(ef, dma_fence_get(&new_fence->base));
3019 	} else {
3020 		WARN_ONCE(*ef != &process_info->eviction_fence->base,
3021 			  "KFD eviction fence doesn't match KGD process_info");
3022 	}
3023 
3024 	/* Attach new eviction fence to all BOs except pinned ones */
3025 	list_for_each_entry(mem, &process_info->kfd_bo_list, validate_list) {
3026 		if (mem->bo->tbo.pin_count)
3027 			continue;
3028 
3029 		dma_resv_add_fence(mem->bo->tbo.base.resv,
3030 				   &process_info->eviction_fence->base,
3031 				   DMA_RESV_USAGE_BOOKKEEP);
3032 	}
3033 	/* Attach eviction fence to PD / PT BOs and DMABuf imports */
3034 	list_for_each_entry(peer_vm, &process_info->vm_list_head,
3035 			    vm_list_node) {
3036 		struct amdgpu_bo *bo = peer_vm->root.bo;
3037 
3038 		dma_resv_add_fence(bo->tbo.base.resv,
3039 				   &process_info->eviction_fence->base,
3040 				   DMA_RESV_USAGE_BOOKKEEP);
3041 	}
3042 
3043 validate_map_fail:
3044 	amdgpu_sync_free(&sync_obj);
3045 ttm_reserve_fail:
3046 	drm_exec_fini(&exec);
3047 	mutex_unlock(&process_info->lock);
3048 	return ret;
3049 }
3050 
3051 int amdgpu_amdkfd_add_gws_to_process(void *info, void *gws, struct kgd_mem **mem)
3052 {
3053 	struct amdkfd_process_info *process_info = (struct amdkfd_process_info *)info;
3054 	struct amdgpu_bo *gws_bo = (struct amdgpu_bo *)gws;
3055 	int ret;
3056 
3057 	if (!info || !gws)
3058 		return -EINVAL;
3059 
3060 	*mem = kzalloc(sizeof(struct kgd_mem), GFP_KERNEL);
3061 	if (!*mem)
3062 		return -ENOMEM;
3063 
3064 	mutex_init(&(*mem)->lock);
3065 	INIT_LIST_HEAD(&(*mem)->attachments);
3066 	(*mem)->bo = amdgpu_bo_ref(gws_bo);
3067 	(*mem)->domain = AMDGPU_GEM_DOMAIN_GWS;
3068 	(*mem)->process_info = process_info;
3069 	add_kgd_mem_to_kfd_bo_list(*mem, process_info, false);
3070 	amdgpu_sync_create(&(*mem)->sync);
3071 
3072 
3073 	/* Validate gws bo the first time it is added to process */
3074 	mutex_lock(&(*mem)->process_info->lock);
3075 	ret = amdgpu_bo_reserve(gws_bo, false);
3076 	if (unlikely(ret)) {
3077 		pr_err("Reserve gws bo failed %d\n", ret);
3078 		goto bo_reservation_failure;
3079 	}
3080 
3081 	ret = amdgpu_amdkfd_bo_validate(gws_bo, AMDGPU_GEM_DOMAIN_GWS, true);
3082 	if (ret) {
3083 		pr_err("GWS BO validate failed %d\n", ret);
3084 		goto bo_validation_failure;
3085 	}
3086 	/* GWS resource is shared b/t amdgpu and amdkfd
3087 	 * Add process eviction fence to bo so they can
3088 	 * evict each other.
3089 	 */
3090 	ret = dma_resv_reserve_fences(gws_bo->tbo.base.resv, 1);
3091 	if (ret)
3092 		goto reserve_shared_fail;
3093 	dma_resv_add_fence(gws_bo->tbo.base.resv,
3094 			   &process_info->eviction_fence->base,
3095 			   DMA_RESV_USAGE_BOOKKEEP);
3096 	amdgpu_bo_unreserve(gws_bo);
3097 	mutex_unlock(&(*mem)->process_info->lock);
3098 
3099 	return ret;
3100 
3101 reserve_shared_fail:
3102 bo_validation_failure:
3103 	amdgpu_bo_unreserve(gws_bo);
3104 bo_reservation_failure:
3105 	mutex_unlock(&(*mem)->process_info->lock);
3106 	amdgpu_sync_free(&(*mem)->sync);
3107 	remove_kgd_mem_from_kfd_bo_list(*mem, process_info);
3108 	amdgpu_bo_unref(&gws_bo);
3109 	mutex_destroy(&(*mem)->lock);
3110 	kfree(*mem);
3111 	*mem = NULL;
3112 	return ret;
3113 }
3114 
3115 int amdgpu_amdkfd_remove_gws_from_process(void *info, void *mem)
3116 {
3117 	int ret;
3118 	struct amdkfd_process_info *process_info = (struct amdkfd_process_info *)info;
3119 	struct kgd_mem *kgd_mem = (struct kgd_mem *)mem;
3120 	struct amdgpu_bo *gws_bo = kgd_mem->bo;
3121 
3122 	/* Remove BO from process's validate list so restore worker won't touch
3123 	 * it anymore
3124 	 */
3125 	remove_kgd_mem_from_kfd_bo_list(kgd_mem, process_info);
3126 
3127 	ret = amdgpu_bo_reserve(gws_bo, false);
3128 	if (unlikely(ret)) {
3129 		pr_err("Reserve gws bo failed %d\n", ret);
3130 		//TODO add BO back to validate_list?
3131 		return ret;
3132 	}
3133 	amdgpu_amdkfd_remove_eviction_fence(gws_bo,
3134 			process_info->eviction_fence);
3135 	amdgpu_bo_unreserve(gws_bo);
3136 	amdgpu_sync_free(&kgd_mem->sync);
3137 	amdgpu_bo_unref(&gws_bo);
3138 	mutex_destroy(&kgd_mem->lock);
3139 	kfree(mem);
3140 	return 0;
3141 }
3142 
3143 /* Returns GPU-specific tiling mode information */
3144 int amdgpu_amdkfd_get_tile_config(struct amdgpu_device *adev,
3145 				struct tile_config *config)
3146 {
3147 	config->gb_addr_config = adev->gfx.config.gb_addr_config;
3148 	config->tile_config_ptr = adev->gfx.config.tile_mode_array;
3149 	config->num_tile_configs =
3150 			ARRAY_SIZE(adev->gfx.config.tile_mode_array);
3151 	config->macro_tile_config_ptr =
3152 			adev->gfx.config.macrotile_mode_array;
3153 	config->num_macro_tile_configs =
3154 			ARRAY_SIZE(adev->gfx.config.macrotile_mode_array);
3155 
3156 	/* Those values are not set from GFX9 onwards */
3157 	config->num_banks = adev->gfx.config.num_banks;
3158 	config->num_ranks = adev->gfx.config.num_ranks;
3159 
3160 	return 0;
3161 }
3162 
3163 bool amdgpu_amdkfd_bo_mapped_to_dev(struct amdgpu_device *adev, struct kgd_mem *mem)
3164 {
3165 	struct kfd_mem_attachment *entry;
3166 
3167 	list_for_each_entry(entry, &mem->attachments, list) {
3168 		if (entry->is_mapped && entry->adev == adev)
3169 			return true;
3170 	}
3171 	return false;
3172 }
3173 
3174 #if defined(CONFIG_DEBUG_FS)
3175 
3176 int kfd_debugfs_kfd_mem_limits(struct seq_file *m, void *data)
3177 {
3178 
3179 	spin_lock(&kfd_mem_limit.mem_limit_lock);
3180 	seq_printf(m, "System mem used %lldM out of %lluM\n",
3181 		  (kfd_mem_limit.system_mem_used >> 20),
3182 		  (kfd_mem_limit.max_system_mem_limit >> 20));
3183 	seq_printf(m, "TTM mem used %lldM out of %lluM\n",
3184 		  (kfd_mem_limit.ttm_mem_used >> 20),
3185 		  (kfd_mem_limit.max_ttm_mem_limit >> 20));
3186 	spin_unlock(&kfd_mem_limit.mem_limit_lock);
3187 
3188 	return 0;
3189 }
3190 
3191 #endif
3192