xref: /linux/drivers/gpu/drm/amd/amdgpu/amdgpu_amdkfd_gpuvm.c (revision 382fc1f681324bb38bedfe763107a60256c4ddc8)
1 /*
2  * Copyright 2014-2018 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 #include <linux/dma-buf.h>
23 #include <linux/list.h>
24 #include <linux/pagemap.h>
25 #include <linux/sched/mm.h>
26 #include <linux/sched/task.h>
27 
28 #include "amdgpu_object.h"
29 #include "amdgpu_gem.h"
30 #include "amdgpu_vm.h"
31 #include "amdgpu_amdkfd.h"
32 #include "amdgpu_dma_buf.h"
33 #include <uapi/linux/kfd_ioctl.h>
34 #include "amdgpu_xgmi.h"
35 #include "kfd_smi_events.h"
36 
37 /* Userptr restore delay, just long enough to allow consecutive VM
38  * changes to accumulate
39  */
40 #define AMDGPU_USERPTR_RESTORE_DELAY_MS 1
41 
42 /*
43  * Align VRAM allocations to 2MB to avoid fragmentation caused by 4K allocations in the tail 2MB
44  * BO chunk
45  */
46 #define VRAM_ALLOCATION_ALIGN (1 << 21)
47 
48 /* Impose limit on how much memory KFD can use */
49 static struct {
50 	uint64_t max_system_mem_limit;
51 	uint64_t max_ttm_mem_limit;
52 	int64_t system_mem_used;
53 	int64_t ttm_mem_used;
54 	spinlock_t mem_limit_lock;
55 } kfd_mem_limit;
56 
57 static const char * const domain_bit_to_string[] = {
58 		"CPU",
59 		"GTT",
60 		"VRAM",
61 		"GDS",
62 		"GWS",
63 		"OA"
64 };
65 
66 #define domain_string(domain) domain_bit_to_string[ffs(domain)-1]
67 
68 static void amdgpu_amdkfd_restore_userptr_worker(struct work_struct *work);
69 
70 static bool kfd_mem_is_attached(struct amdgpu_vm *avm,
71 		struct kgd_mem *mem)
72 {
73 	struct kfd_mem_attachment *entry;
74 
75 	list_for_each_entry(entry, &mem->attachments, list)
76 		if (entry->bo_va->base.vm == avm)
77 			return true;
78 
79 	return false;
80 }
81 
82 /* Set memory usage limits. Current, limits are
83  *  System (TTM + userptr) memory - 15/16th System RAM
84  *  TTM memory - 3/8th System RAM
85  */
86 void amdgpu_amdkfd_gpuvm_init_mem_limits(void)
87 {
88 	struct sysinfo si;
89 	uint64_t mem;
90 
91 	si_meminfo(&si);
92 	mem = si.freeram - si.freehigh;
93 	mem *= si.mem_unit;
94 
95 	spin_lock_init(&kfd_mem_limit.mem_limit_lock);
96 	kfd_mem_limit.max_system_mem_limit = mem - (mem >> 4);
97 	kfd_mem_limit.max_ttm_mem_limit = (mem >> 1) - (mem >> 3);
98 	pr_debug("Kernel memory limit %lluM, TTM limit %lluM\n",
99 		(kfd_mem_limit.max_system_mem_limit >> 20),
100 		(kfd_mem_limit.max_ttm_mem_limit >> 20));
101 }
102 
103 void amdgpu_amdkfd_reserve_system_mem(uint64_t size)
104 {
105 	kfd_mem_limit.system_mem_used += size;
106 }
107 
108 /* Estimate page table size needed to represent a given memory size
109  *
110  * With 4KB pages, we need one 8 byte PTE for each 4KB of memory
111  * (factor 512, >> 9). With 2MB pages, we need one 8 byte PTE for 2MB
112  * of memory (factor 256K, >> 18). ROCm user mode tries to optimize
113  * for 2MB pages for TLB efficiency. However, small allocations and
114  * fragmented system memory still need some 4KB pages. We choose a
115  * compromise that should work in most cases without reserving too
116  * much memory for page tables unnecessarily (factor 16K, >> 14).
117  */
118 #define ESTIMATE_PT_SIZE(mem_size) max(((mem_size) >> 14), AMDGPU_VM_RESERVED_VRAM)
119 
120 static size_t amdgpu_amdkfd_acc_size(uint64_t size)
121 {
122 	size >>= PAGE_SHIFT;
123 	size *= sizeof(dma_addr_t) + sizeof(void *);
124 
125 	return __roundup_pow_of_two(sizeof(struct amdgpu_bo)) +
126 		__roundup_pow_of_two(sizeof(struct ttm_tt)) +
127 		PAGE_ALIGN(size);
128 }
129 
130 /**
131  * amdgpu_amdkfd_reserve_mem_limit() - Decrease available memory by size
132  * of buffer including any reserved for control structures
133  *
134  * @adev: Device to which allocated BO belongs to
135  * @size: Size of buffer, in bytes, encapsulated by B0. This should be
136  * equivalent to amdgpu_bo_size(BO)
137  * @alloc_flag: Flag used in allocating a BO as noted above
138  *
139  * Return: returns -ENOMEM in case of error, ZERO otherwise
140  */
141 static int amdgpu_amdkfd_reserve_mem_limit(struct amdgpu_device *adev,
142 		uint64_t size, u32 alloc_flag)
143 {
144 	uint64_t reserved_for_pt =
145 		ESTIMATE_PT_SIZE(amdgpu_amdkfd_total_mem_size);
146 	size_t acc_size, system_mem_needed, ttm_mem_needed, vram_needed;
147 	int ret = 0;
148 
149 	acc_size = amdgpu_amdkfd_acc_size(size);
150 
151 	vram_needed = 0;
152 	if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_GTT) {
153 		system_mem_needed = acc_size + size;
154 		ttm_mem_needed = acc_size + size;
155 	} else if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) {
156 		system_mem_needed = acc_size;
157 		ttm_mem_needed = acc_size;
158 
159 		/*
160 		 * Conservatively round up the allocation requirement to 2 MB
161 		 * to avoid fragmentation caused by 4K allocations in the tail
162 		 * 2M BO chunk.
163 		 */
164 		vram_needed = ALIGN(size, VRAM_ALLOCATION_ALIGN);
165 	} else if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) {
166 		system_mem_needed = acc_size + size;
167 		ttm_mem_needed = acc_size;
168 	} else if (alloc_flag &
169 		   (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL |
170 		    KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) {
171 		system_mem_needed = acc_size;
172 		ttm_mem_needed = acc_size;
173 	} else {
174 		pr_err("%s: Invalid BO type %#x\n", __func__, alloc_flag);
175 		return -ENOMEM;
176 	}
177 
178 	spin_lock(&kfd_mem_limit.mem_limit_lock);
179 
180 	if (kfd_mem_limit.system_mem_used + system_mem_needed >
181 	    kfd_mem_limit.max_system_mem_limit)
182 		pr_debug("Set no_system_mem_limit=1 if using shared memory\n");
183 
184 	if ((kfd_mem_limit.system_mem_used + system_mem_needed >
185 	     kfd_mem_limit.max_system_mem_limit && !no_system_mem_limit) ||
186 	    (kfd_mem_limit.ttm_mem_used + ttm_mem_needed >
187 	     kfd_mem_limit.max_ttm_mem_limit) ||
188 	    (adev->kfd.vram_used + vram_needed >
189 	     adev->gmc.real_vram_size -
190 	     atomic64_read(&adev->vram_pin_size) -
191 	     reserved_for_pt)) {
192 		ret = -ENOMEM;
193 		goto release;
194 	}
195 
196 	/* Update memory accounting by decreasing available system
197 	 * memory, TTM memory and GPU memory as computed above
198 	 */
199 	adev->kfd.vram_used += vram_needed;
200 	kfd_mem_limit.system_mem_used += system_mem_needed;
201 	kfd_mem_limit.ttm_mem_used += ttm_mem_needed;
202 
203 release:
204 	spin_unlock(&kfd_mem_limit.mem_limit_lock);
205 	return ret;
206 }
207 
208 static void unreserve_mem_limit(struct amdgpu_device *adev,
209 		uint64_t size, u32 alloc_flag)
210 {
211 	size_t acc_size;
212 
213 	acc_size = amdgpu_amdkfd_acc_size(size);
214 
215 	spin_lock(&kfd_mem_limit.mem_limit_lock);
216 
217 	if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_GTT) {
218 		kfd_mem_limit.system_mem_used -= (acc_size + size);
219 		kfd_mem_limit.ttm_mem_used -= (acc_size + size);
220 	} else if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) {
221 		kfd_mem_limit.system_mem_used -= acc_size;
222 		kfd_mem_limit.ttm_mem_used -= acc_size;
223 		adev->kfd.vram_used -= ALIGN(size, VRAM_ALLOCATION_ALIGN);
224 	} else if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) {
225 		kfd_mem_limit.system_mem_used -= (acc_size + size);
226 		kfd_mem_limit.ttm_mem_used -= acc_size;
227 	} else if (alloc_flag &
228 		   (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL |
229 		    KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) {
230 		kfd_mem_limit.system_mem_used -= acc_size;
231 		kfd_mem_limit.ttm_mem_used -= acc_size;
232 	} else {
233 		pr_err("%s: Invalid BO type %#x\n", __func__, alloc_flag);
234 		goto release;
235 	}
236 
237 	WARN_ONCE(adev->kfd.vram_used < 0,
238 		  "KFD VRAM memory accounting unbalanced");
239 	WARN_ONCE(kfd_mem_limit.ttm_mem_used < 0,
240 		  "KFD TTM memory accounting unbalanced");
241 	WARN_ONCE(kfd_mem_limit.system_mem_used < 0,
242 		  "KFD system memory accounting unbalanced");
243 
244 release:
245 	spin_unlock(&kfd_mem_limit.mem_limit_lock);
246 }
247 
248 void amdgpu_amdkfd_release_notify(struct amdgpu_bo *bo)
249 {
250 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
251 	u32 alloc_flags = bo->kfd_bo->alloc_flags;
252 	u64 size = amdgpu_bo_size(bo);
253 
254 	unreserve_mem_limit(adev, size, alloc_flags);
255 
256 	kfree(bo->kfd_bo);
257 }
258 
259 /**
260  * @create_dmamap_sg_bo: Creates a amdgpu_bo object to reflect information
261  * about USERPTR or DOOREBELL or MMIO BO.
262  * @adev: Device for which dmamap BO is being created
263  * @mem: BO of peer device that is being DMA mapped. Provides parameters
264  *	 in building the dmamap BO
265  * @bo_out: Output parameter updated with handle of dmamap BO
266  */
267 static int
268 create_dmamap_sg_bo(struct amdgpu_device *adev,
269 		 struct kgd_mem *mem, struct amdgpu_bo **bo_out)
270 {
271 	struct drm_gem_object *gem_obj;
272 	int ret, align;
273 
274 	ret = amdgpu_bo_reserve(mem->bo, false);
275 	if (ret)
276 		return ret;
277 
278 	align = 1;
279 	ret = amdgpu_gem_object_create(adev, mem->bo->tbo.base.size, align,
280 			AMDGPU_GEM_DOMAIN_CPU, AMDGPU_GEM_CREATE_PREEMPTIBLE,
281 			ttm_bo_type_sg, mem->bo->tbo.base.resv, &gem_obj);
282 
283 	amdgpu_bo_unreserve(mem->bo);
284 
285 	if (ret) {
286 		pr_err("Error in creating DMA mappable SG BO on domain: %d\n", ret);
287 		return -EINVAL;
288 	}
289 
290 	*bo_out = gem_to_amdgpu_bo(gem_obj);
291 	(*bo_out)->parent = amdgpu_bo_ref(mem->bo);
292 	return ret;
293 }
294 
295 /* amdgpu_amdkfd_remove_eviction_fence - Removes eviction fence from BO's
296  *  reservation object.
297  *
298  * @bo: [IN] Remove eviction fence(s) from this BO
299  * @ef: [IN] This eviction fence is removed if it
300  *  is present in the shared list.
301  *
302  * NOTE: Must be called with BO reserved i.e. bo->tbo.resv->lock held.
303  */
304 static int amdgpu_amdkfd_remove_eviction_fence(struct amdgpu_bo *bo,
305 					struct amdgpu_amdkfd_fence *ef)
306 {
307 	struct dma_fence *replacement;
308 
309 	if (!ef)
310 		return -EINVAL;
311 
312 	/* TODO: Instead of block before we should use the fence of the page
313 	 * table update and TLB flush here directly.
314 	 */
315 	replacement = dma_fence_get_stub();
316 	dma_resv_replace_fences(bo->tbo.base.resv, ef->base.context,
317 				replacement, DMA_RESV_USAGE_READ);
318 	dma_fence_put(replacement);
319 	return 0;
320 }
321 
322 int amdgpu_amdkfd_remove_fence_on_pt_pd_bos(struct amdgpu_bo *bo)
323 {
324 	struct amdgpu_bo *root = bo;
325 	struct amdgpu_vm_bo_base *vm_bo;
326 	struct amdgpu_vm *vm;
327 	struct amdkfd_process_info *info;
328 	struct amdgpu_amdkfd_fence *ef;
329 	int ret;
330 
331 	/* we can always get vm_bo from root PD bo.*/
332 	while (root->parent)
333 		root = root->parent;
334 
335 	vm_bo = root->vm_bo;
336 	if (!vm_bo)
337 		return 0;
338 
339 	vm = vm_bo->vm;
340 	if (!vm)
341 		return 0;
342 
343 	info = vm->process_info;
344 	if (!info || !info->eviction_fence)
345 		return 0;
346 
347 	ef = container_of(dma_fence_get(&info->eviction_fence->base),
348 			struct amdgpu_amdkfd_fence, base);
349 
350 	BUG_ON(!dma_resv_trylock(bo->tbo.base.resv));
351 	ret = amdgpu_amdkfd_remove_eviction_fence(bo, ef);
352 	dma_resv_unlock(bo->tbo.base.resv);
353 
354 	dma_fence_put(&ef->base);
355 	return ret;
356 }
357 
358 static int amdgpu_amdkfd_bo_validate(struct amdgpu_bo *bo, uint32_t domain,
359 				     bool wait)
360 {
361 	struct ttm_operation_ctx ctx = { false, false };
362 	int ret;
363 
364 	if (WARN(amdgpu_ttm_tt_get_usermm(bo->tbo.ttm),
365 		 "Called with userptr BO"))
366 		return -EINVAL;
367 
368 	amdgpu_bo_placement_from_domain(bo, domain);
369 
370 	ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
371 	if (ret)
372 		goto validate_fail;
373 	if (wait)
374 		amdgpu_bo_sync_wait(bo, AMDGPU_FENCE_OWNER_KFD, false);
375 
376 validate_fail:
377 	return ret;
378 }
379 
380 static int amdgpu_amdkfd_validate_vm_bo(void *_unused, struct amdgpu_bo *bo)
381 {
382 	return amdgpu_amdkfd_bo_validate(bo, bo->allowed_domains, false);
383 }
384 
385 /* vm_validate_pt_pd_bos - Validate page table and directory BOs
386  *
387  * Page directories are not updated here because huge page handling
388  * during page table updates can invalidate page directory entries
389  * again. Page directories are only updated after updating page
390  * tables.
391  */
392 static int vm_validate_pt_pd_bos(struct amdgpu_vm *vm)
393 {
394 	struct amdgpu_bo *pd = vm->root.bo;
395 	struct amdgpu_device *adev = amdgpu_ttm_adev(pd->tbo.bdev);
396 	int ret;
397 
398 	ret = amdgpu_vm_validate_pt_bos(adev, vm, amdgpu_amdkfd_validate_vm_bo, NULL);
399 	if (ret) {
400 		pr_err("failed to validate PT BOs\n");
401 		return ret;
402 	}
403 
404 	ret = amdgpu_amdkfd_validate_vm_bo(NULL, pd);
405 	if (ret) {
406 		pr_err("failed to validate PD\n");
407 		return ret;
408 	}
409 
410 	vm->pd_phys_addr = amdgpu_gmc_pd_addr(vm->root.bo);
411 
412 	if (vm->use_cpu_for_update) {
413 		ret = amdgpu_bo_kmap(pd, NULL);
414 		if (ret) {
415 			pr_err("failed to kmap PD, ret=%d\n", ret);
416 			return ret;
417 		}
418 	}
419 
420 	return 0;
421 }
422 
423 static int vm_update_pds(struct amdgpu_vm *vm, struct amdgpu_sync *sync)
424 {
425 	struct amdgpu_bo *pd = vm->root.bo;
426 	struct amdgpu_device *adev = amdgpu_ttm_adev(pd->tbo.bdev);
427 	int ret;
428 
429 	ret = amdgpu_vm_update_pdes(adev, vm, false);
430 	if (ret)
431 		return ret;
432 
433 	return amdgpu_sync_fence(sync, vm->last_update);
434 }
435 
436 static uint64_t get_pte_flags(struct amdgpu_device *adev, struct kgd_mem *mem)
437 {
438 	struct amdgpu_device *bo_adev = amdgpu_ttm_adev(mem->bo->tbo.bdev);
439 	bool coherent = mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_COHERENT;
440 	bool uncached = mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_UNCACHED;
441 	uint32_t mapping_flags;
442 	uint64_t pte_flags;
443 	bool snoop = false;
444 
445 	mapping_flags = AMDGPU_VM_PAGE_READABLE;
446 	if (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE)
447 		mapping_flags |= AMDGPU_VM_PAGE_WRITEABLE;
448 	if (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE)
449 		mapping_flags |= AMDGPU_VM_PAGE_EXECUTABLE;
450 
451 	switch (adev->asic_type) {
452 	case CHIP_ARCTURUS:
453 		if (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) {
454 			if (bo_adev == adev)
455 				mapping_flags |= coherent ?
456 					AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW;
457 			else
458 				mapping_flags |= coherent ?
459 					AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
460 		} else {
461 			mapping_flags |= coherent ?
462 				AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
463 		}
464 		break;
465 	case CHIP_ALDEBARAN:
466 		if (coherent && uncached) {
467 			if (adev->gmc.xgmi.connected_to_cpu ||
468 				!(mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM))
469 				snoop = true;
470 			mapping_flags |= AMDGPU_VM_MTYPE_UC;
471 		} else if (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) {
472 			if (bo_adev == adev) {
473 				mapping_flags |= coherent ?
474 					AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW;
475 				if (adev->gmc.xgmi.connected_to_cpu)
476 					snoop = true;
477 			} else {
478 				mapping_flags |= coherent ?
479 					AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
480 				if (amdgpu_xgmi_same_hive(adev, bo_adev))
481 					snoop = true;
482 			}
483 		} else {
484 			snoop = true;
485 			mapping_flags |= coherent ?
486 				AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
487 		}
488 		break;
489 	default:
490 		mapping_flags |= coherent ?
491 			AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
492 	}
493 
494 	pte_flags = amdgpu_gem_va_map_flags(adev, mapping_flags);
495 	pte_flags |= snoop ? AMDGPU_PTE_SNOOPED : 0;
496 
497 	return pte_flags;
498 }
499 
500 /**
501  * create_sg_table() - Create an sg_table for a contiguous DMA addr range
502  * @addr: The starting address to point to
503  * @size: Size of memory area in bytes being pointed to
504  *
505  * Allocates an instance of sg_table and initializes it to point to memory
506  * area specified by input parameters. The address used to build is assumed
507  * to be DMA mapped, if needed.
508  *
509  * DOORBELL or MMIO BOs use only one scatterlist node in their sg_table
510  * because they are physically contiguous.
511  *
512  * Return: Initialized instance of SG Table or NULL
513  */
514 static struct sg_table *create_sg_table(uint64_t addr, uint32_t size)
515 {
516 	struct sg_table *sg = kmalloc(sizeof(*sg), GFP_KERNEL);
517 
518 	if (!sg)
519 		return NULL;
520 	if (sg_alloc_table(sg, 1, GFP_KERNEL)) {
521 		kfree(sg);
522 		return NULL;
523 	}
524 	sg_dma_address(sg->sgl) = addr;
525 	sg->sgl->length = size;
526 #ifdef CONFIG_NEED_SG_DMA_LENGTH
527 	sg->sgl->dma_length = size;
528 #endif
529 	return sg;
530 }
531 
532 static int
533 kfd_mem_dmamap_userptr(struct kgd_mem *mem,
534 		       struct kfd_mem_attachment *attachment)
535 {
536 	enum dma_data_direction direction =
537 		mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ?
538 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
539 	struct ttm_operation_ctx ctx = {.interruptible = true};
540 	struct amdgpu_bo *bo = attachment->bo_va->base.bo;
541 	struct amdgpu_device *adev = attachment->adev;
542 	struct ttm_tt *src_ttm = mem->bo->tbo.ttm;
543 	struct ttm_tt *ttm = bo->tbo.ttm;
544 	int ret;
545 
546 	ttm->sg = kmalloc(sizeof(*ttm->sg), GFP_KERNEL);
547 	if (unlikely(!ttm->sg))
548 		return -ENOMEM;
549 
550 	if (WARN_ON(ttm->num_pages != src_ttm->num_pages))
551 		return -EINVAL;
552 
553 	/* Same sequence as in amdgpu_ttm_tt_pin_userptr */
554 	ret = sg_alloc_table_from_pages(ttm->sg, src_ttm->pages,
555 					ttm->num_pages, 0,
556 					(u64)ttm->num_pages << PAGE_SHIFT,
557 					GFP_KERNEL);
558 	if (unlikely(ret))
559 		goto free_sg;
560 
561 	ret = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
562 	if (unlikely(ret))
563 		goto release_sg;
564 
565 	drm_prime_sg_to_dma_addr_array(ttm->sg, ttm->dma_address,
566 				       ttm->num_pages);
567 
568 	amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_GTT);
569 	ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
570 	if (ret)
571 		goto unmap_sg;
572 
573 	return 0;
574 
575 unmap_sg:
576 	dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
577 release_sg:
578 	pr_err("DMA map userptr failed: %d\n", ret);
579 	sg_free_table(ttm->sg);
580 free_sg:
581 	kfree(ttm->sg);
582 	ttm->sg = NULL;
583 	return ret;
584 }
585 
586 static int
587 kfd_mem_dmamap_dmabuf(struct kfd_mem_attachment *attachment)
588 {
589 	struct ttm_operation_ctx ctx = {.interruptible = true};
590 	struct amdgpu_bo *bo = attachment->bo_va->base.bo;
591 
592 	amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_GTT);
593 	return ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
594 }
595 
596 /**
597  * kfd_mem_dmamap_sg_bo() - Create DMA mapped sg_table to access DOORBELL or MMIO BO
598  * @mem: SG BO of the DOORBELL or MMIO resource on the owning device
599  * @attachment: Virtual address attachment of the BO on accessing device
600  *
601  * An access request from the device that owns DOORBELL does not require DMA mapping.
602  * This is because the request doesn't go through PCIe root complex i.e. it instead
603  * loops back. The need to DMA map arises only when accessing peer device's DOORBELL
604  *
605  * In contrast, all access requests for MMIO need to be DMA mapped without regard to
606  * device ownership. This is because access requests for MMIO go through PCIe root
607  * complex.
608  *
609  * This is accomplished in two steps:
610  *   - Obtain DMA mapped address of DOORBELL or MMIO memory that could be used
611  *         in updating requesting device's page table
612  *   - Signal TTM to mark memory pointed to by requesting device's BO as GPU
613  *         accessible. This allows an update of requesting device's page table
614  *         with entries associated with DOOREBELL or MMIO memory
615  *
616  * This method is invoked in the following contexts:
617  *   - Mapping of DOORBELL or MMIO BO of same or peer device
618  *   - Validating an evicted DOOREBELL or MMIO BO on device seeking access
619  *
620  * Return: ZERO if successful, NON-ZERO otherwise
621  */
622 static int
623 kfd_mem_dmamap_sg_bo(struct kgd_mem *mem,
624 		     struct kfd_mem_attachment *attachment)
625 {
626 	struct ttm_operation_ctx ctx = {.interruptible = true};
627 	struct amdgpu_bo *bo = attachment->bo_va->base.bo;
628 	struct amdgpu_device *adev = attachment->adev;
629 	struct ttm_tt *ttm = bo->tbo.ttm;
630 	enum dma_data_direction dir;
631 	dma_addr_t dma_addr;
632 	bool mmio;
633 	int ret;
634 
635 	/* Expect SG Table of dmapmap BO to be NULL */
636 	mmio = (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP);
637 	if (unlikely(ttm->sg)) {
638 		pr_err("SG Table of %d BO for peer device is UNEXPECTEDLY NON-NULL", mmio);
639 		return -EINVAL;
640 	}
641 
642 	dir = mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ?
643 			DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
644 	dma_addr = mem->bo->tbo.sg->sgl->dma_address;
645 	pr_debug("%d BO size: %d\n", mmio, mem->bo->tbo.sg->sgl->length);
646 	pr_debug("%d BO address before DMA mapping: %llx\n", mmio, dma_addr);
647 	dma_addr = dma_map_resource(adev->dev, dma_addr,
648 			mem->bo->tbo.sg->sgl->length, dir, DMA_ATTR_SKIP_CPU_SYNC);
649 	ret = dma_mapping_error(adev->dev, dma_addr);
650 	if (unlikely(ret))
651 		return ret;
652 	pr_debug("%d BO address after DMA mapping: %llx\n", mmio, dma_addr);
653 
654 	ttm->sg = create_sg_table(dma_addr, mem->bo->tbo.sg->sgl->length);
655 	if (unlikely(!ttm->sg)) {
656 		ret = -ENOMEM;
657 		goto unmap_sg;
658 	}
659 
660 	amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_GTT);
661 	ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
662 	if (unlikely(ret))
663 		goto free_sg;
664 
665 	return ret;
666 
667 free_sg:
668 	sg_free_table(ttm->sg);
669 	kfree(ttm->sg);
670 	ttm->sg = NULL;
671 unmap_sg:
672 	dma_unmap_resource(adev->dev, dma_addr, mem->bo->tbo.sg->sgl->length,
673 			   dir, DMA_ATTR_SKIP_CPU_SYNC);
674 	return ret;
675 }
676 
677 static int
678 kfd_mem_dmamap_attachment(struct kgd_mem *mem,
679 			  struct kfd_mem_attachment *attachment)
680 {
681 	switch (attachment->type) {
682 	case KFD_MEM_ATT_SHARED:
683 		return 0;
684 	case KFD_MEM_ATT_USERPTR:
685 		return kfd_mem_dmamap_userptr(mem, attachment);
686 	case KFD_MEM_ATT_DMABUF:
687 		return kfd_mem_dmamap_dmabuf(attachment);
688 	case KFD_MEM_ATT_SG:
689 		return kfd_mem_dmamap_sg_bo(mem, attachment);
690 	default:
691 		WARN_ON_ONCE(1);
692 	}
693 	return -EINVAL;
694 }
695 
696 static void
697 kfd_mem_dmaunmap_userptr(struct kgd_mem *mem,
698 			 struct kfd_mem_attachment *attachment)
699 {
700 	enum dma_data_direction direction =
701 		mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ?
702 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
703 	struct ttm_operation_ctx ctx = {.interruptible = false};
704 	struct amdgpu_bo *bo = attachment->bo_va->base.bo;
705 	struct amdgpu_device *adev = attachment->adev;
706 	struct ttm_tt *ttm = bo->tbo.ttm;
707 
708 	if (unlikely(!ttm->sg))
709 		return;
710 
711 	amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_CPU);
712 	ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
713 
714 	dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
715 	sg_free_table(ttm->sg);
716 	kfree(ttm->sg);
717 	ttm->sg = NULL;
718 }
719 
720 static void
721 kfd_mem_dmaunmap_dmabuf(struct kfd_mem_attachment *attachment)
722 {
723 	struct ttm_operation_ctx ctx = {.interruptible = true};
724 	struct amdgpu_bo *bo = attachment->bo_va->base.bo;
725 
726 	amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_CPU);
727 	ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
728 }
729 
730 /**
731  * kfd_mem_dmaunmap_sg_bo() - Free DMA mapped sg_table of DOORBELL or MMIO BO
732  * @mem: SG BO of the DOORBELL or MMIO resource on the owning device
733  * @attachment: Virtual address attachment of the BO on accessing device
734  *
735  * The method performs following steps:
736  *   - Signal TTM to mark memory pointed to by BO as GPU inaccessible
737  *   - Free SG Table that is used to encapsulate DMA mapped memory of
738  *          peer device's DOORBELL or MMIO memory
739  *
740  * This method is invoked in the following contexts:
741  *     UNMapping of DOORBELL or MMIO BO on a device having access to its memory
742  *     Eviction of DOOREBELL or MMIO BO on device having access to its memory
743  *
744  * Return: void
745  */
746 static void
747 kfd_mem_dmaunmap_sg_bo(struct kgd_mem *mem,
748 		       struct kfd_mem_attachment *attachment)
749 {
750 	struct ttm_operation_ctx ctx = {.interruptible = true};
751 	struct amdgpu_bo *bo = attachment->bo_va->base.bo;
752 	struct amdgpu_device *adev = attachment->adev;
753 	struct ttm_tt *ttm = bo->tbo.ttm;
754 	enum dma_data_direction dir;
755 
756 	if (unlikely(!ttm->sg)) {
757 		pr_err("SG Table of BO is UNEXPECTEDLY NULL");
758 		return;
759 	}
760 
761 	amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_CPU);
762 	ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
763 
764 	dir = mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ?
765 				DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
766 	dma_unmap_resource(adev->dev, ttm->sg->sgl->dma_address,
767 			ttm->sg->sgl->length, dir, DMA_ATTR_SKIP_CPU_SYNC);
768 	sg_free_table(ttm->sg);
769 	kfree(ttm->sg);
770 	ttm->sg = NULL;
771 	bo->tbo.sg = NULL;
772 }
773 
774 static void
775 kfd_mem_dmaunmap_attachment(struct kgd_mem *mem,
776 			    struct kfd_mem_attachment *attachment)
777 {
778 	switch (attachment->type) {
779 	case KFD_MEM_ATT_SHARED:
780 		break;
781 	case KFD_MEM_ATT_USERPTR:
782 		kfd_mem_dmaunmap_userptr(mem, attachment);
783 		break;
784 	case KFD_MEM_ATT_DMABUF:
785 		kfd_mem_dmaunmap_dmabuf(attachment);
786 		break;
787 	case KFD_MEM_ATT_SG:
788 		kfd_mem_dmaunmap_sg_bo(mem, attachment);
789 		break;
790 	default:
791 		WARN_ON_ONCE(1);
792 	}
793 }
794 
795 static int
796 kfd_mem_attach_dmabuf(struct amdgpu_device *adev, struct kgd_mem *mem,
797 		      struct amdgpu_bo **bo)
798 {
799 	struct drm_gem_object *gobj;
800 	int ret;
801 
802 	if (!mem->dmabuf) {
803 		mem->dmabuf = amdgpu_gem_prime_export(&mem->bo->tbo.base,
804 			mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ?
805 				DRM_RDWR : 0);
806 		if (IS_ERR(mem->dmabuf)) {
807 			ret = PTR_ERR(mem->dmabuf);
808 			mem->dmabuf = NULL;
809 			return ret;
810 		}
811 	}
812 
813 	gobj = amdgpu_gem_prime_import(adev_to_drm(adev), mem->dmabuf);
814 	if (IS_ERR(gobj))
815 		return PTR_ERR(gobj);
816 
817 	*bo = gem_to_amdgpu_bo(gobj);
818 	(*bo)->flags |= AMDGPU_GEM_CREATE_PREEMPTIBLE;
819 	(*bo)->parent = amdgpu_bo_ref(mem->bo);
820 
821 	return 0;
822 }
823 
824 /* kfd_mem_attach - Add a BO to a VM
825  *
826  * Everything that needs to bo done only once when a BO is first added
827  * to a VM. It can later be mapped and unmapped many times without
828  * repeating these steps.
829  *
830  * 0. Create BO for DMA mapping, if needed
831  * 1. Allocate and initialize BO VA entry data structure
832  * 2. Add BO to the VM
833  * 3. Determine ASIC-specific PTE flags
834  * 4. Alloc page tables and directories if needed
835  * 4a.  Validate new page tables and directories
836  */
837 static int kfd_mem_attach(struct amdgpu_device *adev, struct kgd_mem *mem,
838 		struct amdgpu_vm *vm, bool is_aql)
839 {
840 	struct amdgpu_device *bo_adev = amdgpu_ttm_adev(mem->bo->tbo.bdev);
841 	unsigned long bo_size = mem->bo->tbo.base.size;
842 	uint64_t va = mem->va;
843 	struct kfd_mem_attachment *attachment[2] = {NULL, NULL};
844 	struct amdgpu_bo *bo[2] = {NULL, NULL};
845 	bool same_hive = false;
846 	int i, ret;
847 
848 	if (!va) {
849 		pr_err("Invalid VA when adding BO to VM\n");
850 		return -EINVAL;
851 	}
852 
853 	/* Determine access to VRAM, MMIO and DOORBELL BOs of peer devices
854 	 *
855 	 * The access path of MMIO and DOORBELL BOs of is always over PCIe.
856 	 * In contrast the access path of VRAM BOs depens upon the type of
857 	 * link that connects the peer device. Access over PCIe is allowed
858 	 * if peer device has large BAR. In contrast, access over xGMI is
859 	 * allowed for both small and large BAR configurations of peer device
860 	 */
861 	if ((adev != bo_adev) &&
862 	    ((mem->domain == AMDGPU_GEM_DOMAIN_VRAM) ||
863 	     (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) ||
864 	     (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP))) {
865 		if (mem->domain == AMDGPU_GEM_DOMAIN_VRAM)
866 			same_hive = amdgpu_xgmi_same_hive(adev, bo_adev);
867 		if (!same_hive && !amdgpu_device_is_peer_accessible(bo_adev, adev))
868 			return -EINVAL;
869 	}
870 
871 	for (i = 0; i <= is_aql; i++) {
872 		attachment[i] = kzalloc(sizeof(*attachment[i]), GFP_KERNEL);
873 		if (unlikely(!attachment[i])) {
874 			ret = -ENOMEM;
875 			goto unwind;
876 		}
877 
878 		pr_debug("\t add VA 0x%llx - 0x%llx to vm %p\n", va,
879 			 va + bo_size, vm);
880 
881 		if ((adev == bo_adev && !(mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) ||
882 		    (amdgpu_ttm_tt_get_usermm(mem->bo->tbo.ttm) && adev->ram_is_direct_mapped) ||
883 		    same_hive) {
884 			/* Mappings on the local GPU, or VRAM mappings in the
885 			 * local hive, or userptr mapping IOMMU direct map mode
886 			 * share the original BO
887 			 */
888 			attachment[i]->type = KFD_MEM_ATT_SHARED;
889 			bo[i] = mem->bo;
890 			drm_gem_object_get(&bo[i]->tbo.base);
891 		} else if (i > 0) {
892 			/* Multiple mappings on the same GPU share the BO */
893 			attachment[i]->type = KFD_MEM_ATT_SHARED;
894 			bo[i] = bo[0];
895 			drm_gem_object_get(&bo[i]->tbo.base);
896 		} else if (amdgpu_ttm_tt_get_usermm(mem->bo->tbo.ttm)) {
897 			/* Create an SG BO to DMA-map userptrs on other GPUs */
898 			attachment[i]->type = KFD_MEM_ATT_USERPTR;
899 			ret = create_dmamap_sg_bo(adev, mem, &bo[i]);
900 			if (ret)
901 				goto unwind;
902 		/* Handle DOORBELL BOs of peer devices and MMIO BOs of local and peer devices */
903 		} else if (mem->bo->tbo.type == ttm_bo_type_sg) {
904 			WARN_ONCE(!(mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL ||
905 				    mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP),
906 				  "Handing invalid SG BO in ATTACH request");
907 			attachment[i]->type = KFD_MEM_ATT_SG;
908 			ret = create_dmamap_sg_bo(adev, mem, &bo[i]);
909 			if (ret)
910 				goto unwind;
911 		/* Enable acces to GTT and VRAM BOs of peer devices */
912 		} else if (mem->domain == AMDGPU_GEM_DOMAIN_GTT ||
913 			   mem->domain == AMDGPU_GEM_DOMAIN_VRAM) {
914 			attachment[i]->type = KFD_MEM_ATT_DMABUF;
915 			ret = kfd_mem_attach_dmabuf(adev, mem, &bo[i]);
916 			if (ret)
917 				goto unwind;
918 			pr_debug("Employ DMABUF mechanism to enable peer GPU access\n");
919 		} else {
920 			WARN_ONCE(true, "Handling invalid ATTACH request");
921 			ret = -EINVAL;
922 			goto unwind;
923 		}
924 
925 		/* Add BO to VM internal data structures */
926 		ret = amdgpu_bo_reserve(bo[i], false);
927 		if (ret) {
928 			pr_debug("Unable to reserve BO during memory attach");
929 			goto unwind;
930 		}
931 		attachment[i]->bo_va = amdgpu_vm_bo_add(adev, vm, bo[i]);
932 		amdgpu_bo_unreserve(bo[i]);
933 		if (unlikely(!attachment[i]->bo_va)) {
934 			ret = -ENOMEM;
935 			pr_err("Failed to add BO object to VM. ret == %d\n",
936 			       ret);
937 			goto unwind;
938 		}
939 		attachment[i]->va = va;
940 		attachment[i]->pte_flags = get_pte_flags(adev, mem);
941 		attachment[i]->adev = adev;
942 		list_add(&attachment[i]->list, &mem->attachments);
943 
944 		va += bo_size;
945 	}
946 
947 	return 0;
948 
949 unwind:
950 	for (; i >= 0; i--) {
951 		if (!attachment[i])
952 			continue;
953 		if (attachment[i]->bo_va) {
954 			amdgpu_bo_reserve(bo[i], true);
955 			amdgpu_vm_bo_del(adev, attachment[i]->bo_va);
956 			amdgpu_bo_unreserve(bo[i]);
957 			list_del(&attachment[i]->list);
958 		}
959 		if (bo[i])
960 			drm_gem_object_put(&bo[i]->tbo.base);
961 		kfree(attachment[i]);
962 	}
963 	return ret;
964 }
965 
966 static void kfd_mem_detach(struct kfd_mem_attachment *attachment)
967 {
968 	struct amdgpu_bo *bo = attachment->bo_va->base.bo;
969 
970 	pr_debug("\t remove VA 0x%llx in entry %p\n",
971 			attachment->va, attachment);
972 	amdgpu_vm_bo_del(attachment->adev, attachment->bo_va);
973 	drm_gem_object_put(&bo->tbo.base);
974 	list_del(&attachment->list);
975 	kfree(attachment);
976 }
977 
978 static void add_kgd_mem_to_kfd_bo_list(struct kgd_mem *mem,
979 				struct amdkfd_process_info *process_info,
980 				bool userptr)
981 {
982 	struct ttm_validate_buffer *entry = &mem->validate_list;
983 	struct amdgpu_bo *bo = mem->bo;
984 
985 	INIT_LIST_HEAD(&entry->head);
986 	entry->num_shared = 1;
987 	entry->bo = &bo->tbo;
988 	mutex_lock(&process_info->lock);
989 	if (userptr)
990 		list_add_tail(&entry->head, &process_info->userptr_valid_list);
991 	else
992 		list_add_tail(&entry->head, &process_info->kfd_bo_list);
993 	mutex_unlock(&process_info->lock);
994 }
995 
996 static void remove_kgd_mem_from_kfd_bo_list(struct kgd_mem *mem,
997 		struct amdkfd_process_info *process_info)
998 {
999 	struct ttm_validate_buffer *bo_list_entry;
1000 
1001 	bo_list_entry = &mem->validate_list;
1002 	mutex_lock(&process_info->lock);
1003 	list_del(&bo_list_entry->head);
1004 	mutex_unlock(&process_info->lock);
1005 }
1006 
1007 /* Initializes user pages. It registers the MMU notifier and validates
1008  * the userptr BO in the GTT domain.
1009  *
1010  * The BO must already be on the userptr_valid_list. Otherwise an
1011  * eviction and restore may happen that leaves the new BO unmapped
1012  * with the user mode queues running.
1013  *
1014  * Takes the process_info->lock to protect against concurrent restore
1015  * workers.
1016  *
1017  * Returns 0 for success, negative errno for errors.
1018  */
1019 static int init_user_pages(struct kgd_mem *mem, uint64_t user_addr,
1020 			   bool criu_resume)
1021 {
1022 	struct amdkfd_process_info *process_info = mem->process_info;
1023 	struct amdgpu_bo *bo = mem->bo;
1024 	struct ttm_operation_ctx ctx = { true, false };
1025 	int ret = 0;
1026 
1027 	mutex_lock(&process_info->lock);
1028 
1029 	ret = amdgpu_ttm_tt_set_userptr(&bo->tbo, user_addr, 0);
1030 	if (ret) {
1031 		pr_err("%s: Failed to set userptr: %d\n", __func__, ret);
1032 		goto out;
1033 	}
1034 
1035 	ret = amdgpu_mn_register(bo, user_addr);
1036 	if (ret) {
1037 		pr_err("%s: Failed to register MMU notifier: %d\n",
1038 		       __func__, ret);
1039 		goto out;
1040 	}
1041 
1042 	if (criu_resume) {
1043 		/*
1044 		 * During a CRIU restore operation, the userptr buffer objects
1045 		 * will be validated in the restore_userptr_work worker at a
1046 		 * later stage when it is scheduled by another ioctl called by
1047 		 * CRIU master process for the target pid for restore.
1048 		 */
1049 		atomic_inc(&mem->invalid);
1050 		mutex_unlock(&process_info->lock);
1051 		return 0;
1052 	}
1053 
1054 	ret = amdgpu_ttm_tt_get_user_pages(bo, bo->tbo.ttm->pages);
1055 	if (ret) {
1056 		pr_err("%s: Failed to get user pages: %d\n", __func__, ret);
1057 		goto unregister_out;
1058 	}
1059 
1060 	ret = amdgpu_bo_reserve(bo, true);
1061 	if (ret) {
1062 		pr_err("%s: Failed to reserve BO\n", __func__);
1063 		goto release_out;
1064 	}
1065 	amdgpu_bo_placement_from_domain(bo, mem->domain);
1066 	ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
1067 	if (ret)
1068 		pr_err("%s: failed to validate BO\n", __func__);
1069 	amdgpu_bo_unreserve(bo);
1070 
1071 release_out:
1072 	amdgpu_ttm_tt_get_user_pages_done(bo->tbo.ttm);
1073 unregister_out:
1074 	if (ret)
1075 		amdgpu_mn_unregister(bo);
1076 out:
1077 	mutex_unlock(&process_info->lock);
1078 	return ret;
1079 }
1080 
1081 /* Reserving a BO and its page table BOs must happen atomically to
1082  * avoid deadlocks. Some operations update multiple VMs at once. Track
1083  * all the reservation info in a context structure. Optionally a sync
1084  * object can track VM updates.
1085  */
1086 struct bo_vm_reservation_context {
1087 	struct amdgpu_bo_list_entry kfd_bo; /* BO list entry for the KFD BO */
1088 	unsigned int n_vms;		    /* Number of VMs reserved	    */
1089 	struct amdgpu_bo_list_entry *vm_pd; /* Array of VM BO list entries  */
1090 	struct ww_acquire_ctx ticket;	    /* Reservation ticket	    */
1091 	struct list_head list, duplicates;  /* BO lists			    */
1092 	struct amdgpu_sync *sync;	    /* Pointer to sync object	    */
1093 	bool reserved;			    /* Whether BOs are reserved	    */
1094 };
1095 
1096 enum bo_vm_match {
1097 	BO_VM_NOT_MAPPED = 0,	/* Match VMs where a BO is not mapped */
1098 	BO_VM_MAPPED,		/* Match VMs where a BO is mapped     */
1099 	BO_VM_ALL,		/* Match all VMs a BO was added to    */
1100 };
1101 
1102 /**
1103  * reserve_bo_and_vm - reserve a BO and a VM unconditionally.
1104  * @mem: KFD BO structure.
1105  * @vm: the VM to reserve.
1106  * @ctx: the struct that will be used in unreserve_bo_and_vms().
1107  */
1108 static int reserve_bo_and_vm(struct kgd_mem *mem,
1109 			      struct amdgpu_vm *vm,
1110 			      struct bo_vm_reservation_context *ctx)
1111 {
1112 	struct amdgpu_bo *bo = mem->bo;
1113 	int ret;
1114 
1115 	WARN_ON(!vm);
1116 
1117 	ctx->reserved = false;
1118 	ctx->n_vms = 1;
1119 	ctx->sync = &mem->sync;
1120 
1121 	INIT_LIST_HEAD(&ctx->list);
1122 	INIT_LIST_HEAD(&ctx->duplicates);
1123 
1124 	ctx->vm_pd = kcalloc(ctx->n_vms, sizeof(*ctx->vm_pd), GFP_KERNEL);
1125 	if (!ctx->vm_pd)
1126 		return -ENOMEM;
1127 
1128 	ctx->kfd_bo.priority = 0;
1129 	ctx->kfd_bo.tv.bo = &bo->tbo;
1130 	ctx->kfd_bo.tv.num_shared = 1;
1131 	list_add(&ctx->kfd_bo.tv.head, &ctx->list);
1132 
1133 	amdgpu_vm_get_pd_bo(vm, &ctx->list, &ctx->vm_pd[0]);
1134 
1135 	ret = ttm_eu_reserve_buffers(&ctx->ticket, &ctx->list,
1136 				     false, &ctx->duplicates);
1137 	if (ret) {
1138 		pr_err("Failed to reserve buffers in ttm.\n");
1139 		kfree(ctx->vm_pd);
1140 		ctx->vm_pd = NULL;
1141 		return ret;
1142 	}
1143 
1144 	ctx->reserved = true;
1145 	return 0;
1146 }
1147 
1148 /**
1149  * reserve_bo_and_cond_vms - reserve a BO and some VMs conditionally
1150  * @mem: KFD BO structure.
1151  * @vm: the VM to reserve. If NULL, then all VMs associated with the BO
1152  * is used. Otherwise, a single VM associated with the BO.
1153  * @map_type: the mapping status that will be used to filter the VMs.
1154  * @ctx: the struct that will be used in unreserve_bo_and_vms().
1155  *
1156  * Returns 0 for success, negative for failure.
1157  */
1158 static int reserve_bo_and_cond_vms(struct kgd_mem *mem,
1159 				struct amdgpu_vm *vm, enum bo_vm_match map_type,
1160 				struct bo_vm_reservation_context *ctx)
1161 {
1162 	struct amdgpu_bo *bo = mem->bo;
1163 	struct kfd_mem_attachment *entry;
1164 	unsigned int i;
1165 	int ret;
1166 
1167 	ctx->reserved = false;
1168 	ctx->n_vms = 0;
1169 	ctx->vm_pd = NULL;
1170 	ctx->sync = &mem->sync;
1171 
1172 	INIT_LIST_HEAD(&ctx->list);
1173 	INIT_LIST_HEAD(&ctx->duplicates);
1174 
1175 	list_for_each_entry(entry, &mem->attachments, list) {
1176 		if ((vm && vm != entry->bo_va->base.vm) ||
1177 			(entry->is_mapped != map_type
1178 			&& map_type != BO_VM_ALL))
1179 			continue;
1180 
1181 		ctx->n_vms++;
1182 	}
1183 
1184 	if (ctx->n_vms != 0) {
1185 		ctx->vm_pd = kcalloc(ctx->n_vms, sizeof(*ctx->vm_pd),
1186 				     GFP_KERNEL);
1187 		if (!ctx->vm_pd)
1188 			return -ENOMEM;
1189 	}
1190 
1191 	ctx->kfd_bo.priority = 0;
1192 	ctx->kfd_bo.tv.bo = &bo->tbo;
1193 	ctx->kfd_bo.tv.num_shared = 1;
1194 	list_add(&ctx->kfd_bo.tv.head, &ctx->list);
1195 
1196 	i = 0;
1197 	list_for_each_entry(entry, &mem->attachments, list) {
1198 		if ((vm && vm != entry->bo_va->base.vm) ||
1199 			(entry->is_mapped != map_type
1200 			&& map_type != BO_VM_ALL))
1201 			continue;
1202 
1203 		amdgpu_vm_get_pd_bo(entry->bo_va->base.vm, &ctx->list,
1204 				&ctx->vm_pd[i]);
1205 		i++;
1206 	}
1207 
1208 	ret = ttm_eu_reserve_buffers(&ctx->ticket, &ctx->list,
1209 				     false, &ctx->duplicates);
1210 	if (ret) {
1211 		pr_err("Failed to reserve buffers in ttm.\n");
1212 		kfree(ctx->vm_pd);
1213 		ctx->vm_pd = NULL;
1214 		return ret;
1215 	}
1216 
1217 	ctx->reserved = true;
1218 	return 0;
1219 }
1220 
1221 /**
1222  * unreserve_bo_and_vms - Unreserve BO and VMs from a reservation context
1223  * @ctx: Reservation context to unreserve
1224  * @wait: Optionally wait for a sync object representing pending VM updates
1225  * @intr: Whether the wait is interruptible
1226  *
1227  * Also frees any resources allocated in
1228  * reserve_bo_and_(cond_)vm(s). Returns the status from
1229  * amdgpu_sync_wait.
1230  */
1231 static int unreserve_bo_and_vms(struct bo_vm_reservation_context *ctx,
1232 				 bool wait, bool intr)
1233 {
1234 	int ret = 0;
1235 
1236 	if (wait)
1237 		ret = amdgpu_sync_wait(ctx->sync, intr);
1238 
1239 	if (ctx->reserved)
1240 		ttm_eu_backoff_reservation(&ctx->ticket, &ctx->list);
1241 	kfree(ctx->vm_pd);
1242 
1243 	ctx->sync = NULL;
1244 
1245 	ctx->reserved = false;
1246 	ctx->vm_pd = NULL;
1247 
1248 	return ret;
1249 }
1250 
1251 static void unmap_bo_from_gpuvm(struct kgd_mem *mem,
1252 				struct kfd_mem_attachment *entry,
1253 				struct amdgpu_sync *sync)
1254 {
1255 	struct amdgpu_bo_va *bo_va = entry->bo_va;
1256 	struct amdgpu_device *adev = entry->adev;
1257 	struct amdgpu_vm *vm = bo_va->base.vm;
1258 
1259 	amdgpu_vm_bo_unmap(adev, bo_va, entry->va);
1260 
1261 	amdgpu_vm_clear_freed(adev, vm, &bo_va->last_pt_update);
1262 
1263 	amdgpu_sync_fence(sync, bo_va->last_pt_update);
1264 
1265 	kfd_mem_dmaunmap_attachment(mem, entry);
1266 }
1267 
1268 static int update_gpuvm_pte(struct kgd_mem *mem,
1269 			    struct kfd_mem_attachment *entry,
1270 			    struct amdgpu_sync *sync)
1271 {
1272 	struct amdgpu_bo_va *bo_va = entry->bo_va;
1273 	struct amdgpu_device *adev = entry->adev;
1274 	int ret;
1275 
1276 	ret = kfd_mem_dmamap_attachment(mem, entry);
1277 	if (ret)
1278 		return ret;
1279 
1280 	/* Update the page tables  */
1281 	ret = amdgpu_vm_bo_update(adev, bo_va, false);
1282 	if (ret) {
1283 		pr_err("amdgpu_vm_bo_update failed\n");
1284 		return ret;
1285 	}
1286 
1287 	return amdgpu_sync_fence(sync, bo_va->last_pt_update);
1288 }
1289 
1290 static int map_bo_to_gpuvm(struct kgd_mem *mem,
1291 			   struct kfd_mem_attachment *entry,
1292 			   struct amdgpu_sync *sync,
1293 			   bool no_update_pte)
1294 {
1295 	int ret;
1296 
1297 	/* Set virtual address for the allocation */
1298 	ret = amdgpu_vm_bo_map(entry->adev, entry->bo_va, entry->va, 0,
1299 			       amdgpu_bo_size(entry->bo_va->base.bo),
1300 			       entry->pte_flags);
1301 	if (ret) {
1302 		pr_err("Failed to map VA 0x%llx in vm. ret %d\n",
1303 				entry->va, ret);
1304 		return ret;
1305 	}
1306 
1307 	if (no_update_pte)
1308 		return 0;
1309 
1310 	ret = update_gpuvm_pte(mem, entry, sync);
1311 	if (ret) {
1312 		pr_err("update_gpuvm_pte() failed\n");
1313 		goto update_gpuvm_pte_failed;
1314 	}
1315 
1316 	return 0;
1317 
1318 update_gpuvm_pte_failed:
1319 	unmap_bo_from_gpuvm(mem, entry, sync);
1320 	return ret;
1321 }
1322 
1323 static int process_validate_vms(struct amdkfd_process_info *process_info)
1324 {
1325 	struct amdgpu_vm *peer_vm;
1326 	int ret;
1327 
1328 	list_for_each_entry(peer_vm, &process_info->vm_list_head,
1329 			    vm_list_node) {
1330 		ret = vm_validate_pt_pd_bos(peer_vm);
1331 		if (ret)
1332 			return ret;
1333 	}
1334 
1335 	return 0;
1336 }
1337 
1338 static int process_sync_pds_resv(struct amdkfd_process_info *process_info,
1339 				 struct amdgpu_sync *sync)
1340 {
1341 	struct amdgpu_vm *peer_vm;
1342 	int ret;
1343 
1344 	list_for_each_entry(peer_vm, &process_info->vm_list_head,
1345 			    vm_list_node) {
1346 		struct amdgpu_bo *pd = peer_vm->root.bo;
1347 
1348 		ret = amdgpu_sync_resv(NULL, sync, pd->tbo.base.resv,
1349 				       AMDGPU_SYNC_NE_OWNER,
1350 				       AMDGPU_FENCE_OWNER_KFD);
1351 		if (ret)
1352 			return ret;
1353 	}
1354 
1355 	return 0;
1356 }
1357 
1358 static int process_update_pds(struct amdkfd_process_info *process_info,
1359 			      struct amdgpu_sync *sync)
1360 {
1361 	struct amdgpu_vm *peer_vm;
1362 	int ret;
1363 
1364 	list_for_each_entry(peer_vm, &process_info->vm_list_head,
1365 			    vm_list_node) {
1366 		ret = vm_update_pds(peer_vm, sync);
1367 		if (ret)
1368 			return ret;
1369 	}
1370 
1371 	return 0;
1372 }
1373 
1374 static int init_kfd_vm(struct amdgpu_vm *vm, void **process_info,
1375 		       struct dma_fence **ef)
1376 {
1377 	struct amdkfd_process_info *info = NULL;
1378 	int ret;
1379 
1380 	if (!*process_info) {
1381 		info = kzalloc(sizeof(*info), GFP_KERNEL);
1382 		if (!info)
1383 			return -ENOMEM;
1384 
1385 		mutex_init(&info->lock);
1386 		INIT_LIST_HEAD(&info->vm_list_head);
1387 		INIT_LIST_HEAD(&info->kfd_bo_list);
1388 		INIT_LIST_HEAD(&info->userptr_valid_list);
1389 		INIT_LIST_HEAD(&info->userptr_inval_list);
1390 
1391 		info->eviction_fence =
1392 			amdgpu_amdkfd_fence_create(dma_fence_context_alloc(1),
1393 						   current->mm,
1394 						   NULL);
1395 		if (!info->eviction_fence) {
1396 			pr_err("Failed to create eviction fence\n");
1397 			ret = -ENOMEM;
1398 			goto create_evict_fence_fail;
1399 		}
1400 
1401 		info->pid = get_task_pid(current->group_leader, PIDTYPE_PID);
1402 		atomic_set(&info->evicted_bos, 0);
1403 		INIT_DELAYED_WORK(&info->restore_userptr_work,
1404 				  amdgpu_amdkfd_restore_userptr_worker);
1405 
1406 		*process_info = info;
1407 		*ef = dma_fence_get(&info->eviction_fence->base);
1408 	}
1409 
1410 	vm->process_info = *process_info;
1411 
1412 	/* Validate page directory and attach eviction fence */
1413 	ret = amdgpu_bo_reserve(vm->root.bo, true);
1414 	if (ret)
1415 		goto reserve_pd_fail;
1416 	ret = vm_validate_pt_pd_bos(vm);
1417 	if (ret) {
1418 		pr_err("validate_pt_pd_bos() failed\n");
1419 		goto validate_pd_fail;
1420 	}
1421 	ret = amdgpu_bo_sync_wait(vm->root.bo,
1422 				  AMDGPU_FENCE_OWNER_KFD, false);
1423 	if (ret)
1424 		goto wait_pd_fail;
1425 	ret = dma_resv_reserve_fences(vm->root.bo->tbo.base.resv, 1);
1426 	if (ret)
1427 		goto reserve_shared_fail;
1428 	amdgpu_bo_fence(vm->root.bo,
1429 			&vm->process_info->eviction_fence->base, true);
1430 	amdgpu_bo_unreserve(vm->root.bo);
1431 
1432 	/* Update process info */
1433 	mutex_lock(&vm->process_info->lock);
1434 	list_add_tail(&vm->vm_list_node,
1435 			&(vm->process_info->vm_list_head));
1436 	vm->process_info->n_vms++;
1437 	mutex_unlock(&vm->process_info->lock);
1438 
1439 	return 0;
1440 
1441 reserve_shared_fail:
1442 wait_pd_fail:
1443 validate_pd_fail:
1444 	amdgpu_bo_unreserve(vm->root.bo);
1445 reserve_pd_fail:
1446 	vm->process_info = NULL;
1447 	if (info) {
1448 		/* Two fence references: one in info and one in *ef */
1449 		dma_fence_put(&info->eviction_fence->base);
1450 		dma_fence_put(*ef);
1451 		*ef = NULL;
1452 		*process_info = NULL;
1453 		put_pid(info->pid);
1454 create_evict_fence_fail:
1455 		mutex_destroy(&info->lock);
1456 		kfree(info);
1457 	}
1458 	return ret;
1459 }
1460 
1461 /**
1462  * amdgpu_amdkfd_gpuvm_pin_bo() - Pins a BO using following criteria
1463  * @bo: Handle of buffer object being pinned
1464  * @domain: Domain into which BO should be pinned
1465  *
1466  *   - USERPTR BOs are UNPINNABLE and will return error
1467  *   - All other BO types (GTT, VRAM, MMIO and DOORBELL) will have their
1468  *     PIN count incremented. It is valid to PIN a BO multiple times
1469  *
1470  * Return: ZERO if successful in pinning, Non-Zero in case of error.
1471  */
1472 static int amdgpu_amdkfd_gpuvm_pin_bo(struct amdgpu_bo *bo, u32 domain)
1473 {
1474 	int ret = 0;
1475 
1476 	ret = amdgpu_bo_reserve(bo, false);
1477 	if (unlikely(ret))
1478 		return ret;
1479 
1480 	ret = amdgpu_bo_pin_restricted(bo, domain, 0, 0);
1481 	if (ret)
1482 		pr_err("Error in Pinning BO to domain: %d\n", domain);
1483 
1484 	amdgpu_bo_sync_wait(bo, AMDGPU_FENCE_OWNER_KFD, false);
1485 	amdgpu_bo_unreserve(bo);
1486 
1487 	return ret;
1488 }
1489 
1490 /**
1491  * amdgpu_amdkfd_gpuvm_unpin_bo() - Unpins BO using following criteria
1492  * @bo: Handle of buffer object being unpinned
1493  *
1494  *   - Is a illegal request for USERPTR BOs and is ignored
1495  *   - All other BO types (GTT, VRAM, MMIO and DOORBELL) will have their
1496  *     PIN count decremented. Calls to UNPIN must balance calls to PIN
1497  */
1498 static void amdgpu_amdkfd_gpuvm_unpin_bo(struct amdgpu_bo *bo)
1499 {
1500 	int ret = 0;
1501 
1502 	ret = amdgpu_bo_reserve(bo, false);
1503 	if (unlikely(ret))
1504 		return;
1505 
1506 	amdgpu_bo_unpin(bo);
1507 	amdgpu_bo_unreserve(bo);
1508 }
1509 
1510 int amdgpu_amdkfd_gpuvm_acquire_process_vm(struct amdgpu_device *adev,
1511 					   struct file *filp, u32 pasid,
1512 					   void **process_info,
1513 					   struct dma_fence **ef)
1514 {
1515 	struct amdgpu_fpriv *drv_priv;
1516 	struct amdgpu_vm *avm;
1517 	int ret;
1518 
1519 	ret = amdgpu_file_to_fpriv(filp, &drv_priv);
1520 	if (ret)
1521 		return ret;
1522 	avm = &drv_priv->vm;
1523 
1524 	/* Already a compute VM? */
1525 	if (avm->process_info)
1526 		return -EINVAL;
1527 
1528 	/* Free the original amdgpu allocated pasid,
1529 	 * will be replaced with kfd allocated pasid.
1530 	 */
1531 	if (avm->pasid) {
1532 		amdgpu_pasid_free(avm->pasid);
1533 		amdgpu_vm_set_pasid(adev, avm, 0);
1534 	}
1535 
1536 	/* Convert VM into a compute VM */
1537 	ret = amdgpu_vm_make_compute(adev, avm);
1538 	if (ret)
1539 		return ret;
1540 
1541 	ret = amdgpu_vm_set_pasid(adev, avm, pasid);
1542 	if (ret)
1543 		return ret;
1544 	/* Initialize KFD part of the VM and process info */
1545 	ret = init_kfd_vm(avm, process_info, ef);
1546 	if (ret)
1547 		return ret;
1548 
1549 	amdgpu_vm_set_task_info(avm);
1550 
1551 	return 0;
1552 }
1553 
1554 void amdgpu_amdkfd_gpuvm_destroy_cb(struct amdgpu_device *adev,
1555 				    struct amdgpu_vm *vm)
1556 {
1557 	struct amdkfd_process_info *process_info = vm->process_info;
1558 	struct amdgpu_bo *pd = vm->root.bo;
1559 
1560 	if (!process_info)
1561 		return;
1562 
1563 	/* Release eviction fence from PD */
1564 	amdgpu_bo_reserve(pd, false);
1565 	amdgpu_bo_fence(pd, NULL, false);
1566 	amdgpu_bo_unreserve(pd);
1567 
1568 	/* Update process info */
1569 	mutex_lock(&process_info->lock);
1570 	process_info->n_vms--;
1571 	list_del(&vm->vm_list_node);
1572 	mutex_unlock(&process_info->lock);
1573 
1574 	vm->process_info = NULL;
1575 
1576 	/* Release per-process resources when last compute VM is destroyed */
1577 	if (!process_info->n_vms) {
1578 		WARN_ON(!list_empty(&process_info->kfd_bo_list));
1579 		WARN_ON(!list_empty(&process_info->userptr_valid_list));
1580 		WARN_ON(!list_empty(&process_info->userptr_inval_list));
1581 
1582 		dma_fence_put(&process_info->eviction_fence->base);
1583 		cancel_delayed_work_sync(&process_info->restore_userptr_work);
1584 		put_pid(process_info->pid);
1585 		mutex_destroy(&process_info->lock);
1586 		kfree(process_info);
1587 	}
1588 }
1589 
1590 void amdgpu_amdkfd_gpuvm_release_process_vm(struct amdgpu_device *adev,
1591 					    void *drm_priv)
1592 {
1593 	struct amdgpu_vm *avm;
1594 
1595 	if (WARN_ON(!adev || !drm_priv))
1596 		return;
1597 
1598 	avm = drm_priv_to_vm(drm_priv);
1599 
1600 	pr_debug("Releasing process vm %p\n", avm);
1601 
1602 	/* The original pasid of amdgpu vm has already been
1603 	 * released during making a amdgpu vm to a compute vm
1604 	 * The current pasid is managed by kfd and will be
1605 	 * released on kfd process destroy. Set amdgpu pasid
1606 	 * to 0 to avoid duplicate release.
1607 	 */
1608 	amdgpu_vm_release_compute(adev, avm);
1609 }
1610 
1611 uint64_t amdgpu_amdkfd_gpuvm_get_process_page_dir(void *drm_priv)
1612 {
1613 	struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv);
1614 	struct amdgpu_bo *pd = avm->root.bo;
1615 	struct amdgpu_device *adev = amdgpu_ttm_adev(pd->tbo.bdev);
1616 
1617 	if (adev->asic_type < CHIP_VEGA10)
1618 		return avm->pd_phys_addr >> AMDGPU_GPU_PAGE_SHIFT;
1619 	return avm->pd_phys_addr;
1620 }
1621 
1622 void amdgpu_amdkfd_block_mmu_notifications(void *p)
1623 {
1624 	struct amdkfd_process_info *pinfo = (struct amdkfd_process_info *)p;
1625 
1626 	mutex_lock(&pinfo->lock);
1627 	WRITE_ONCE(pinfo->block_mmu_notifications, true);
1628 	mutex_unlock(&pinfo->lock);
1629 }
1630 
1631 int amdgpu_amdkfd_criu_resume(void *p)
1632 {
1633 	int ret = 0;
1634 	struct amdkfd_process_info *pinfo = (struct amdkfd_process_info *)p;
1635 
1636 	mutex_lock(&pinfo->lock);
1637 	pr_debug("scheduling work\n");
1638 	atomic_inc(&pinfo->evicted_bos);
1639 	if (!READ_ONCE(pinfo->block_mmu_notifications)) {
1640 		ret = -EINVAL;
1641 		goto out_unlock;
1642 	}
1643 	WRITE_ONCE(pinfo->block_mmu_notifications, false);
1644 	schedule_delayed_work(&pinfo->restore_userptr_work, 0);
1645 
1646 out_unlock:
1647 	mutex_unlock(&pinfo->lock);
1648 	return ret;
1649 }
1650 
1651 size_t amdgpu_amdkfd_get_available_memory(struct amdgpu_device *adev)
1652 {
1653 	uint64_t reserved_for_pt =
1654 		ESTIMATE_PT_SIZE(amdgpu_amdkfd_total_mem_size);
1655 	size_t available;
1656 
1657 	spin_lock(&kfd_mem_limit.mem_limit_lock);
1658 	available = adev->gmc.real_vram_size
1659 		- adev->kfd.vram_used
1660 		- atomic64_read(&adev->vram_pin_size)
1661 		- reserved_for_pt;
1662 	spin_unlock(&kfd_mem_limit.mem_limit_lock);
1663 
1664 	return ALIGN_DOWN(available, VRAM_ALLOCATION_ALIGN);
1665 }
1666 
1667 int amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(
1668 		struct amdgpu_device *adev, uint64_t va, uint64_t size,
1669 		void *drm_priv, struct kgd_mem **mem,
1670 		uint64_t *offset, uint32_t flags, bool criu_resume)
1671 {
1672 	struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv);
1673 	enum ttm_bo_type bo_type = ttm_bo_type_device;
1674 	struct sg_table *sg = NULL;
1675 	uint64_t user_addr = 0;
1676 	struct amdgpu_bo *bo;
1677 	struct drm_gem_object *gobj = NULL;
1678 	u32 domain, alloc_domain;
1679 	u64 alloc_flags;
1680 	int ret;
1681 
1682 	/*
1683 	 * Check on which domain to allocate BO
1684 	 */
1685 	if (flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) {
1686 		domain = alloc_domain = AMDGPU_GEM_DOMAIN_VRAM;
1687 		alloc_flags = AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE;
1688 		alloc_flags |= (flags & KFD_IOC_ALLOC_MEM_FLAGS_PUBLIC) ?
1689 			AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED : 0;
1690 	} else if (flags & KFD_IOC_ALLOC_MEM_FLAGS_GTT) {
1691 		domain = alloc_domain = AMDGPU_GEM_DOMAIN_GTT;
1692 		alloc_flags = 0;
1693 	} else {
1694 		domain = AMDGPU_GEM_DOMAIN_GTT;
1695 		alloc_domain = AMDGPU_GEM_DOMAIN_CPU;
1696 		alloc_flags = AMDGPU_GEM_CREATE_PREEMPTIBLE;
1697 
1698 		if (flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) {
1699 			if (!offset || !*offset)
1700 				return -EINVAL;
1701 			user_addr = untagged_addr(*offset);
1702 		} else if (flags & (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL |
1703 				    KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) {
1704 			bo_type = ttm_bo_type_sg;
1705 			if (size > UINT_MAX)
1706 				return -EINVAL;
1707 			sg = create_sg_table(*offset, size);
1708 			if (!sg)
1709 				return -ENOMEM;
1710 		} else {
1711 			return -EINVAL;
1712 		}
1713 	}
1714 
1715 	*mem = kzalloc(sizeof(struct kgd_mem), GFP_KERNEL);
1716 	if (!*mem) {
1717 		ret = -ENOMEM;
1718 		goto err;
1719 	}
1720 	INIT_LIST_HEAD(&(*mem)->attachments);
1721 	mutex_init(&(*mem)->lock);
1722 	(*mem)->aql_queue = !!(flags & KFD_IOC_ALLOC_MEM_FLAGS_AQL_QUEUE_MEM);
1723 
1724 	/* Workaround for AQL queue wraparound bug. Map the same
1725 	 * memory twice. That means we only actually allocate half
1726 	 * the memory.
1727 	 */
1728 	if ((*mem)->aql_queue)
1729 		size = size >> 1;
1730 
1731 	(*mem)->alloc_flags = flags;
1732 
1733 	amdgpu_sync_create(&(*mem)->sync);
1734 
1735 	ret = amdgpu_amdkfd_reserve_mem_limit(adev, size, flags);
1736 	if (ret) {
1737 		pr_debug("Insufficient memory\n");
1738 		goto err_reserve_limit;
1739 	}
1740 
1741 	pr_debug("\tcreate BO VA 0x%llx size 0x%llx domain %s\n",
1742 			va, size, domain_string(alloc_domain));
1743 
1744 	ret = amdgpu_gem_object_create(adev, size, 1, alloc_domain, alloc_flags,
1745 				       bo_type, NULL, &gobj);
1746 	if (ret) {
1747 		pr_debug("Failed to create BO on domain %s. ret %d\n",
1748 			 domain_string(alloc_domain), ret);
1749 		goto err_bo_create;
1750 	}
1751 	ret = drm_vma_node_allow(&gobj->vma_node, drm_priv);
1752 	if (ret) {
1753 		pr_debug("Failed to allow vma node access. ret %d\n", ret);
1754 		goto err_node_allow;
1755 	}
1756 	bo = gem_to_amdgpu_bo(gobj);
1757 	if (bo_type == ttm_bo_type_sg) {
1758 		bo->tbo.sg = sg;
1759 		bo->tbo.ttm->sg = sg;
1760 	}
1761 	bo->kfd_bo = *mem;
1762 	(*mem)->bo = bo;
1763 	if (user_addr)
1764 		bo->flags |= AMDGPU_AMDKFD_CREATE_USERPTR_BO;
1765 
1766 	(*mem)->va = va;
1767 	(*mem)->domain = domain;
1768 	(*mem)->mapped_to_gpu_memory = 0;
1769 	(*mem)->process_info = avm->process_info;
1770 	add_kgd_mem_to_kfd_bo_list(*mem, avm->process_info, user_addr);
1771 
1772 	if (user_addr) {
1773 		pr_debug("creating userptr BO for user_addr = %llu\n", user_addr);
1774 		ret = init_user_pages(*mem, user_addr, criu_resume);
1775 		if (ret)
1776 			goto allocate_init_user_pages_failed;
1777 	} else  if (flags & (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL |
1778 				KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) {
1779 		ret = amdgpu_amdkfd_gpuvm_pin_bo(bo, AMDGPU_GEM_DOMAIN_GTT);
1780 		if (ret) {
1781 			pr_err("Pinning MMIO/DOORBELL BO during ALLOC FAILED\n");
1782 			goto err_pin_bo;
1783 		}
1784 		bo->allowed_domains = AMDGPU_GEM_DOMAIN_GTT;
1785 		bo->preferred_domains = AMDGPU_GEM_DOMAIN_GTT;
1786 	}
1787 
1788 	if (offset)
1789 		*offset = amdgpu_bo_mmap_offset(bo);
1790 
1791 	return 0;
1792 
1793 allocate_init_user_pages_failed:
1794 err_pin_bo:
1795 	remove_kgd_mem_from_kfd_bo_list(*mem, avm->process_info);
1796 	drm_vma_node_revoke(&gobj->vma_node, drm_priv);
1797 err_node_allow:
1798 	/* Don't unreserve system mem limit twice */
1799 	goto err_reserve_limit;
1800 err_bo_create:
1801 	unreserve_mem_limit(adev, size, flags);
1802 err_reserve_limit:
1803 	mutex_destroy(&(*mem)->lock);
1804 	if (gobj)
1805 		drm_gem_object_put(gobj);
1806 	else
1807 		kfree(*mem);
1808 err:
1809 	if (sg) {
1810 		sg_free_table(sg);
1811 		kfree(sg);
1812 	}
1813 	return ret;
1814 }
1815 
1816 int amdgpu_amdkfd_gpuvm_free_memory_of_gpu(
1817 		struct amdgpu_device *adev, struct kgd_mem *mem, void *drm_priv,
1818 		uint64_t *size)
1819 {
1820 	struct amdkfd_process_info *process_info = mem->process_info;
1821 	unsigned long bo_size = mem->bo->tbo.base.size;
1822 	struct kfd_mem_attachment *entry, *tmp;
1823 	struct bo_vm_reservation_context ctx;
1824 	struct ttm_validate_buffer *bo_list_entry;
1825 	unsigned int mapped_to_gpu_memory;
1826 	int ret;
1827 	bool is_imported = false;
1828 
1829 	mutex_lock(&mem->lock);
1830 
1831 	/* Unpin MMIO/DOORBELL BO's that were pinned during allocation */
1832 	if (mem->alloc_flags &
1833 	    (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL |
1834 	     KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) {
1835 		amdgpu_amdkfd_gpuvm_unpin_bo(mem->bo);
1836 	}
1837 
1838 	mapped_to_gpu_memory = mem->mapped_to_gpu_memory;
1839 	is_imported = mem->is_imported;
1840 	mutex_unlock(&mem->lock);
1841 	/* lock is not needed after this, since mem is unused and will
1842 	 * be freed anyway
1843 	 */
1844 
1845 	if (mapped_to_gpu_memory > 0) {
1846 		pr_debug("BO VA 0x%llx size 0x%lx is still mapped.\n",
1847 				mem->va, bo_size);
1848 		return -EBUSY;
1849 	}
1850 
1851 	/* Make sure restore workers don't access the BO any more */
1852 	bo_list_entry = &mem->validate_list;
1853 	mutex_lock(&process_info->lock);
1854 	list_del(&bo_list_entry->head);
1855 	mutex_unlock(&process_info->lock);
1856 
1857 	/* No more MMU notifiers */
1858 	amdgpu_mn_unregister(mem->bo);
1859 
1860 	ret = reserve_bo_and_cond_vms(mem, NULL, BO_VM_ALL, &ctx);
1861 	if (unlikely(ret))
1862 		return ret;
1863 
1864 	/* The eviction fence should be removed by the last unmap.
1865 	 * TODO: Log an error condition if the bo still has the eviction fence
1866 	 * attached
1867 	 */
1868 	amdgpu_amdkfd_remove_eviction_fence(mem->bo,
1869 					process_info->eviction_fence);
1870 	pr_debug("Release VA 0x%llx - 0x%llx\n", mem->va,
1871 		mem->va + bo_size * (1 + mem->aql_queue));
1872 
1873 	/* Remove from VM internal data structures */
1874 	list_for_each_entry_safe(entry, tmp, &mem->attachments, list)
1875 		kfd_mem_detach(entry);
1876 
1877 	ret = unreserve_bo_and_vms(&ctx, false, false);
1878 
1879 	/* Free the sync object */
1880 	amdgpu_sync_free(&mem->sync);
1881 
1882 	/* If the SG is not NULL, it's one we created for a doorbell or mmio
1883 	 * remap BO. We need to free it.
1884 	 */
1885 	if (mem->bo->tbo.sg) {
1886 		sg_free_table(mem->bo->tbo.sg);
1887 		kfree(mem->bo->tbo.sg);
1888 	}
1889 
1890 	/* Update the size of the BO being freed if it was allocated from
1891 	 * VRAM and is not imported.
1892 	 */
1893 	if (size) {
1894 		if ((mem->bo->preferred_domains == AMDGPU_GEM_DOMAIN_VRAM) &&
1895 		    (!is_imported))
1896 			*size = bo_size;
1897 		else
1898 			*size = 0;
1899 	}
1900 
1901 	/* Free the BO*/
1902 	drm_vma_node_revoke(&mem->bo->tbo.base.vma_node, drm_priv);
1903 	if (mem->dmabuf)
1904 		dma_buf_put(mem->dmabuf);
1905 	mutex_destroy(&mem->lock);
1906 
1907 	/* If this releases the last reference, it will end up calling
1908 	 * amdgpu_amdkfd_release_notify and kfree the mem struct. That's why
1909 	 * this needs to be the last call here.
1910 	 */
1911 	drm_gem_object_put(&mem->bo->tbo.base);
1912 
1913 	return ret;
1914 }
1915 
1916 int amdgpu_amdkfd_gpuvm_map_memory_to_gpu(
1917 		struct amdgpu_device *adev, struct kgd_mem *mem,
1918 		void *drm_priv)
1919 {
1920 	struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv);
1921 	int ret;
1922 	struct amdgpu_bo *bo;
1923 	uint32_t domain;
1924 	struct kfd_mem_attachment *entry;
1925 	struct bo_vm_reservation_context ctx;
1926 	unsigned long bo_size;
1927 	bool is_invalid_userptr = false;
1928 
1929 	bo = mem->bo;
1930 	if (!bo) {
1931 		pr_err("Invalid BO when mapping memory to GPU\n");
1932 		return -EINVAL;
1933 	}
1934 
1935 	/* Make sure restore is not running concurrently. Since we
1936 	 * don't map invalid userptr BOs, we rely on the next restore
1937 	 * worker to do the mapping
1938 	 */
1939 	mutex_lock(&mem->process_info->lock);
1940 
1941 	/* Lock mmap-sem. If we find an invalid userptr BO, we can be
1942 	 * sure that the MMU notifier is no longer running
1943 	 * concurrently and the queues are actually stopped
1944 	 */
1945 	if (amdgpu_ttm_tt_get_usermm(bo->tbo.ttm)) {
1946 		mmap_write_lock(current->mm);
1947 		is_invalid_userptr = atomic_read(&mem->invalid);
1948 		mmap_write_unlock(current->mm);
1949 	}
1950 
1951 	mutex_lock(&mem->lock);
1952 
1953 	domain = mem->domain;
1954 	bo_size = bo->tbo.base.size;
1955 
1956 	pr_debug("Map VA 0x%llx - 0x%llx to vm %p domain %s\n",
1957 			mem->va,
1958 			mem->va + bo_size * (1 + mem->aql_queue),
1959 			avm, domain_string(domain));
1960 
1961 	if (!kfd_mem_is_attached(avm, mem)) {
1962 		ret = kfd_mem_attach(adev, mem, avm, mem->aql_queue);
1963 		if (ret)
1964 			goto out;
1965 	}
1966 
1967 	ret = reserve_bo_and_vm(mem, avm, &ctx);
1968 	if (unlikely(ret))
1969 		goto out;
1970 
1971 	/* Userptr can be marked as "not invalid", but not actually be
1972 	 * validated yet (still in the system domain). In that case
1973 	 * the queues are still stopped and we can leave mapping for
1974 	 * the next restore worker
1975 	 */
1976 	if (amdgpu_ttm_tt_get_usermm(bo->tbo.ttm) &&
1977 	    bo->tbo.resource->mem_type == TTM_PL_SYSTEM)
1978 		is_invalid_userptr = true;
1979 
1980 	ret = vm_validate_pt_pd_bos(avm);
1981 	if (unlikely(ret))
1982 		goto out_unreserve;
1983 
1984 	if (mem->mapped_to_gpu_memory == 0 &&
1985 	    !amdgpu_ttm_tt_get_usermm(bo->tbo.ttm)) {
1986 		/* Validate BO only once. The eviction fence gets added to BO
1987 		 * the first time it is mapped. Validate will wait for all
1988 		 * background evictions to complete.
1989 		 */
1990 		ret = amdgpu_amdkfd_bo_validate(bo, domain, true);
1991 		if (ret) {
1992 			pr_debug("Validate failed\n");
1993 			goto out_unreserve;
1994 		}
1995 	}
1996 
1997 	list_for_each_entry(entry, &mem->attachments, list) {
1998 		if (entry->bo_va->base.vm != avm || entry->is_mapped)
1999 			continue;
2000 
2001 		pr_debug("\t map VA 0x%llx - 0x%llx in entry %p\n",
2002 			 entry->va, entry->va + bo_size, entry);
2003 
2004 		ret = map_bo_to_gpuvm(mem, entry, ctx.sync,
2005 				      is_invalid_userptr);
2006 		if (ret) {
2007 			pr_err("Failed to map bo to gpuvm\n");
2008 			goto out_unreserve;
2009 		}
2010 
2011 		ret = vm_update_pds(avm, ctx.sync);
2012 		if (ret) {
2013 			pr_err("Failed to update page directories\n");
2014 			goto out_unreserve;
2015 		}
2016 
2017 		entry->is_mapped = true;
2018 		mem->mapped_to_gpu_memory++;
2019 		pr_debug("\t INC mapping count %d\n",
2020 			 mem->mapped_to_gpu_memory);
2021 	}
2022 
2023 	if (!amdgpu_ttm_tt_get_usermm(bo->tbo.ttm) && !bo->tbo.pin_count)
2024 		amdgpu_bo_fence(bo,
2025 				&avm->process_info->eviction_fence->base,
2026 				true);
2027 	ret = unreserve_bo_and_vms(&ctx, false, false);
2028 
2029 	goto out;
2030 
2031 out_unreserve:
2032 	unreserve_bo_and_vms(&ctx, false, false);
2033 out:
2034 	mutex_unlock(&mem->process_info->lock);
2035 	mutex_unlock(&mem->lock);
2036 	return ret;
2037 }
2038 
2039 int amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
2040 		struct amdgpu_device *adev, struct kgd_mem *mem, void *drm_priv)
2041 {
2042 	struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv);
2043 	struct amdkfd_process_info *process_info = avm->process_info;
2044 	unsigned long bo_size = mem->bo->tbo.base.size;
2045 	struct kfd_mem_attachment *entry;
2046 	struct bo_vm_reservation_context ctx;
2047 	int ret;
2048 
2049 	mutex_lock(&mem->lock);
2050 
2051 	ret = reserve_bo_and_cond_vms(mem, avm, BO_VM_MAPPED, &ctx);
2052 	if (unlikely(ret))
2053 		goto out;
2054 	/* If no VMs were reserved, it means the BO wasn't actually mapped */
2055 	if (ctx.n_vms == 0) {
2056 		ret = -EINVAL;
2057 		goto unreserve_out;
2058 	}
2059 
2060 	ret = vm_validate_pt_pd_bos(avm);
2061 	if (unlikely(ret))
2062 		goto unreserve_out;
2063 
2064 	pr_debug("Unmap VA 0x%llx - 0x%llx from vm %p\n",
2065 		mem->va,
2066 		mem->va + bo_size * (1 + mem->aql_queue),
2067 		avm);
2068 
2069 	list_for_each_entry(entry, &mem->attachments, list) {
2070 		if (entry->bo_va->base.vm != avm || !entry->is_mapped)
2071 			continue;
2072 
2073 		pr_debug("\t unmap VA 0x%llx - 0x%llx from entry %p\n",
2074 			 entry->va, entry->va + bo_size, entry);
2075 
2076 		unmap_bo_from_gpuvm(mem, entry, ctx.sync);
2077 		entry->is_mapped = false;
2078 
2079 		mem->mapped_to_gpu_memory--;
2080 		pr_debug("\t DEC mapping count %d\n",
2081 			 mem->mapped_to_gpu_memory);
2082 	}
2083 
2084 	/* If BO is unmapped from all VMs, unfence it. It can be evicted if
2085 	 * required.
2086 	 */
2087 	if (mem->mapped_to_gpu_memory == 0 &&
2088 	    !amdgpu_ttm_tt_get_usermm(mem->bo->tbo.ttm) &&
2089 	    !mem->bo->tbo.pin_count)
2090 		amdgpu_amdkfd_remove_eviction_fence(mem->bo,
2091 						process_info->eviction_fence);
2092 
2093 unreserve_out:
2094 	unreserve_bo_and_vms(&ctx, false, false);
2095 out:
2096 	mutex_unlock(&mem->lock);
2097 	return ret;
2098 }
2099 
2100 int amdgpu_amdkfd_gpuvm_sync_memory(
2101 		struct amdgpu_device *adev, struct kgd_mem *mem, bool intr)
2102 {
2103 	struct amdgpu_sync sync;
2104 	int ret;
2105 
2106 	amdgpu_sync_create(&sync);
2107 
2108 	mutex_lock(&mem->lock);
2109 	amdgpu_sync_clone(&mem->sync, &sync);
2110 	mutex_unlock(&mem->lock);
2111 
2112 	ret = amdgpu_sync_wait(&sync, intr);
2113 	amdgpu_sync_free(&sync);
2114 	return ret;
2115 }
2116 
2117 /**
2118  * amdgpu_amdkfd_map_gtt_bo_to_gart - Map BO to GART and increment reference count
2119  * @adev: Device to which allocated BO belongs
2120  * @bo: Buffer object to be mapped
2121  *
2122  * Before return, bo reference count is incremented. To release the reference and unpin/
2123  * unmap the BO, call amdgpu_amdkfd_free_gtt_mem.
2124  */
2125 int amdgpu_amdkfd_map_gtt_bo_to_gart(struct amdgpu_device *adev, struct amdgpu_bo *bo)
2126 {
2127 	int ret;
2128 
2129 	ret = amdgpu_bo_reserve(bo, true);
2130 	if (ret) {
2131 		pr_err("Failed to reserve bo. ret %d\n", ret);
2132 		goto err_reserve_bo_failed;
2133 	}
2134 
2135 	ret = amdgpu_bo_pin(bo, AMDGPU_GEM_DOMAIN_GTT);
2136 	if (ret) {
2137 		pr_err("Failed to pin bo. ret %d\n", ret);
2138 		goto err_pin_bo_failed;
2139 	}
2140 
2141 	ret = amdgpu_ttm_alloc_gart(&bo->tbo);
2142 	if (ret) {
2143 		pr_err("Failed to bind bo to GART. ret %d\n", ret);
2144 		goto err_map_bo_gart_failed;
2145 	}
2146 
2147 	amdgpu_amdkfd_remove_eviction_fence(
2148 		bo, bo->kfd_bo->process_info->eviction_fence);
2149 
2150 	amdgpu_bo_unreserve(bo);
2151 
2152 	bo = amdgpu_bo_ref(bo);
2153 
2154 	return 0;
2155 
2156 err_map_bo_gart_failed:
2157 	amdgpu_bo_unpin(bo);
2158 err_pin_bo_failed:
2159 	amdgpu_bo_unreserve(bo);
2160 err_reserve_bo_failed:
2161 
2162 	return ret;
2163 }
2164 
2165 /** amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel() - Map a GTT BO for kernel CPU access
2166  *
2167  * @mem: Buffer object to be mapped for CPU access
2168  * @kptr[out]: pointer in kernel CPU address space
2169  * @size[out]: size of the buffer
2170  *
2171  * Pins the BO and maps it for kernel CPU access. The eviction fence is removed
2172  * from the BO, since pinned BOs cannot be evicted. The bo must remain on the
2173  * validate_list, so the GPU mapping can be restored after a page table was
2174  * evicted.
2175  *
2176  * Return: 0 on success, error code on failure
2177  */
2178 int amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(struct kgd_mem *mem,
2179 					     void **kptr, uint64_t *size)
2180 {
2181 	int ret;
2182 	struct amdgpu_bo *bo = mem->bo;
2183 
2184 	if (amdgpu_ttm_tt_get_usermm(bo->tbo.ttm)) {
2185 		pr_err("userptr can't be mapped to kernel\n");
2186 		return -EINVAL;
2187 	}
2188 
2189 	mutex_lock(&mem->process_info->lock);
2190 
2191 	ret = amdgpu_bo_reserve(bo, true);
2192 	if (ret) {
2193 		pr_err("Failed to reserve bo. ret %d\n", ret);
2194 		goto bo_reserve_failed;
2195 	}
2196 
2197 	ret = amdgpu_bo_pin(bo, AMDGPU_GEM_DOMAIN_GTT);
2198 	if (ret) {
2199 		pr_err("Failed to pin bo. ret %d\n", ret);
2200 		goto pin_failed;
2201 	}
2202 
2203 	ret = amdgpu_bo_kmap(bo, kptr);
2204 	if (ret) {
2205 		pr_err("Failed to map bo to kernel. ret %d\n", ret);
2206 		goto kmap_failed;
2207 	}
2208 
2209 	amdgpu_amdkfd_remove_eviction_fence(
2210 		bo, mem->process_info->eviction_fence);
2211 
2212 	if (size)
2213 		*size = amdgpu_bo_size(bo);
2214 
2215 	amdgpu_bo_unreserve(bo);
2216 
2217 	mutex_unlock(&mem->process_info->lock);
2218 	return 0;
2219 
2220 kmap_failed:
2221 	amdgpu_bo_unpin(bo);
2222 pin_failed:
2223 	amdgpu_bo_unreserve(bo);
2224 bo_reserve_failed:
2225 	mutex_unlock(&mem->process_info->lock);
2226 
2227 	return ret;
2228 }
2229 
2230 /** amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel() - Unmap a GTT BO for kernel CPU access
2231  *
2232  * @mem: Buffer object to be unmapped for CPU access
2233  *
2234  * Removes the kernel CPU mapping and unpins the BO. It does not restore the
2235  * eviction fence, so this function should only be used for cleanup before the
2236  * BO is destroyed.
2237  */
2238 void amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(struct kgd_mem *mem)
2239 {
2240 	struct amdgpu_bo *bo = mem->bo;
2241 
2242 	amdgpu_bo_reserve(bo, true);
2243 	amdgpu_bo_kunmap(bo);
2244 	amdgpu_bo_unpin(bo);
2245 	amdgpu_bo_unreserve(bo);
2246 }
2247 
2248 int amdgpu_amdkfd_gpuvm_get_vm_fault_info(struct amdgpu_device *adev,
2249 					  struct kfd_vm_fault_info *mem)
2250 {
2251 	if (atomic_read(&adev->gmc.vm_fault_info_updated) == 1) {
2252 		*mem = *adev->gmc.vm_fault_info;
2253 		mb();
2254 		atomic_set(&adev->gmc.vm_fault_info_updated, 0);
2255 	}
2256 	return 0;
2257 }
2258 
2259 int amdgpu_amdkfd_gpuvm_import_dmabuf(struct amdgpu_device *adev,
2260 				      struct dma_buf *dma_buf,
2261 				      uint64_t va, void *drm_priv,
2262 				      struct kgd_mem **mem, uint64_t *size,
2263 				      uint64_t *mmap_offset)
2264 {
2265 	struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv);
2266 	struct drm_gem_object *obj;
2267 	struct amdgpu_bo *bo;
2268 	int ret;
2269 
2270 	if (dma_buf->ops != &amdgpu_dmabuf_ops)
2271 		/* Can't handle non-graphics buffers */
2272 		return -EINVAL;
2273 
2274 	obj = dma_buf->priv;
2275 	if (drm_to_adev(obj->dev) != adev)
2276 		/* Can't handle buffers from other devices */
2277 		return -EINVAL;
2278 
2279 	bo = gem_to_amdgpu_bo(obj);
2280 	if (!(bo->preferred_domains & (AMDGPU_GEM_DOMAIN_VRAM |
2281 				    AMDGPU_GEM_DOMAIN_GTT)))
2282 		/* Only VRAM and GTT BOs are supported */
2283 		return -EINVAL;
2284 
2285 	*mem = kzalloc(sizeof(struct kgd_mem), GFP_KERNEL);
2286 	if (!*mem)
2287 		return -ENOMEM;
2288 
2289 	ret = drm_vma_node_allow(&obj->vma_node, drm_priv);
2290 	if (ret) {
2291 		kfree(mem);
2292 		return ret;
2293 	}
2294 
2295 	if (size)
2296 		*size = amdgpu_bo_size(bo);
2297 
2298 	if (mmap_offset)
2299 		*mmap_offset = amdgpu_bo_mmap_offset(bo);
2300 
2301 	INIT_LIST_HEAD(&(*mem)->attachments);
2302 	mutex_init(&(*mem)->lock);
2303 
2304 	(*mem)->alloc_flags =
2305 		((bo->preferred_domains & AMDGPU_GEM_DOMAIN_VRAM) ?
2306 		KFD_IOC_ALLOC_MEM_FLAGS_VRAM : KFD_IOC_ALLOC_MEM_FLAGS_GTT)
2307 		| KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE
2308 		| KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
2309 
2310 	drm_gem_object_get(&bo->tbo.base);
2311 	(*mem)->bo = bo;
2312 	(*mem)->va = va;
2313 	(*mem)->domain = (bo->preferred_domains & AMDGPU_GEM_DOMAIN_VRAM) ?
2314 		AMDGPU_GEM_DOMAIN_VRAM : AMDGPU_GEM_DOMAIN_GTT;
2315 	(*mem)->mapped_to_gpu_memory = 0;
2316 	(*mem)->process_info = avm->process_info;
2317 	add_kgd_mem_to_kfd_bo_list(*mem, avm->process_info, false);
2318 	amdgpu_sync_create(&(*mem)->sync);
2319 	(*mem)->is_imported = true;
2320 
2321 	return 0;
2322 }
2323 
2324 /* Evict a userptr BO by stopping the queues if necessary
2325  *
2326  * Runs in MMU notifier, may be in RECLAIM_FS context. This means it
2327  * cannot do any memory allocations, and cannot take any locks that
2328  * are held elsewhere while allocating memory. Therefore this is as
2329  * simple as possible, using atomic counters.
2330  *
2331  * It doesn't do anything to the BO itself. The real work happens in
2332  * restore, where we get updated page addresses. This function only
2333  * ensures that GPU access to the BO is stopped.
2334  */
2335 int amdgpu_amdkfd_evict_userptr(struct kgd_mem *mem,
2336 				struct mm_struct *mm)
2337 {
2338 	struct amdkfd_process_info *process_info = mem->process_info;
2339 	int evicted_bos;
2340 	int r = 0;
2341 
2342 	/* Do not process MMU notifications until stage-4 IOCTL is received */
2343 	if (READ_ONCE(process_info->block_mmu_notifications))
2344 		return 0;
2345 
2346 	atomic_inc(&mem->invalid);
2347 	evicted_bos = atomic_inc_return(&process_info->evicted_bos);
2348 	if (evicted_bos == 1) {
2349 		/* First eviction, stop the queues */
2350 		r = kgd2kfd_quiesce_mm(mm, KFD_QUEUE_EVICTION_TRIGGER_USERPTR);
2351 		if (r)
2352 			pr_err("Failed to quiesce KFD\n");
2353 		schedule_delayed_work(&process_info->restore_userptr_work,
2354 			msecs_to_jiffies(AMDGPU_USERPTR_RESTORE_DELAY_MS));
2355 	}
2356 
2357 	return r;
2358 }
2359 
2360 /* Update invalid userptr BOs
2361  *
2362  * Moves invalidated (evicted) userptr BOs from userptr_valid_list to
2363  * userptr_inval_list and updates user pages for all BOs that have
2364  * been invalidated since their last update.
2365  */
2366 static int update_invalid_user_pages(struct amdkfd_process_info *process_info,
2367 				     struct mm_struct *mm)
2368 {
2369 	struct kgd_mem *mem, *tmp_mem;
2370 	struct amdgpu_bo *bo;
2371 	struct ttm_operation_ctx ctx = { false, false };
2372 	int invalid, ret;
2373 
2374 	/* Move all invalidated BOs to the userptr_inval_list and
2375 	 * release their user pages by migration to the CPU domain
2376 	 */
2377 	list_for_each_entry_safe(mem, tmp_mem,
2378 				 &process_info->userptr_valid_list,
2379 				 validate_list.head) {
2380 		if (!atomic_read(&mem->invalid))
2381 			continue; /* BO is still valid */
2382 
2383 		bo = mem->bo;
2384 
2385 		if (amdgpu_bo_reserve(bo, true))
2386 			return -EAGAIN;
2387 		amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_CPU);
2388 		ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
2389 		amdgpu_bo_unreserve(bo);
2390 		if (ret) {
2391 			pr_err("%s: Failed to invalidate userptr BO\n",
2392 			       __func__);
2393 			return -EAGAIN;
2394 		}
2395 
2396 		list_move_tail(&mem->validate_list.head,
2397 			       &process_info->userptr_inval_list);
2398 	}
2399 
2400 	if (list_empty(&process_info->userptr_inval_list))
2401 		return 0; /* All evicted userptr BOs were freed */
2402 
2403 	/* Go through userptr_inval_list and update any invalid user_pages */
2404 	list_for_each_entry(mem, &process_info->userptr_inval_list,
2405 			    validate_list.head) {
2406 		invalid = atomic_read(&mem->invalid);
2407 		if (!invalid)
2408 			/* BO hasn't been invalidated since the last
2409 			 * revalidation attempt. Keep its BO list.
2410 			 */
2411 			continue;
2412 
2413 		bo = mem->bo;
2414 
2415 		/* Get updated user pages */
2416 		ret = amdgpu_ttm_tt_get_user_pages(bo, bo->tbo.ttm->pages);
2417 		if (ret) {
2418 			pr_debug("Failed %d to get user pages\n", ret);
2419 
2420 			/* Return -EFAULT bad address error as success. It will
2421 			 * fail later with a VM fault if the GPU tries to access
2422 			 * it. Better than hanging indefinitely with stalled
2423 			 * user mode queues.
2424 			 *
2425 			 * Return other error -EBUSY or -ENOMEM to retry restore
2426 			 */
2427 			if (ret != -EFAULT)
2428 				return ret;
2429 		} else {
2430 
2431 			/*
2432 			 * FIXME: Cannot ignore the return code, must hold
2433 			 * notifier_lock
2434 			 */
2435 			amdgpu_ttm_tt_get_user_pages_done(bo->tbo.ttm);
2436 		}
2437 
2438 		/* Mark the BO as valid unless it was invalidated
2439 		 * again concurrently.
2440 		 */
2441 		if (atomic_cmpxchg(&mem->invalid, invalid, 0) != invalid)
2442 			return -EAGAIN;
2443 	}
2444 
2445 	return 0;
2446 }
2447 
2448 /* Validate invalid userptr BOs
2449  *
2450  * Validates BOs on the userptr_inval_list, and moves them back to the
2451  * userptr_valid_list. Also updates GPUVM page tables with new page
2452  * addresses and waits for the page table updates to complete.
2453  */
2454 static int validate_invalid_user_pages(struct amdkfd_process_info *process_info)
2455 {
2456 	struct amdgpu_bo_list_entry *pd_bo_list_entries;
2457 	struct list_head resv_list, duplicates;
2458 	struct ww_acquire_ctx ticket;
2459 	struct amdgpu_sync sync;
2460 
2461 	struct amdgpu_vm *peer_vm;
2462 	struct kgd_mem *mem, *tmp_mem;
2463 	struct amdgpu_bo *bo;
2464 	struct ttm_operation_ctx ctx = { false, false };
2465 	int i, ret;
2466 
2467 	pd_bo_list_entries = kcalloc(process_info->n_vms,
2468 				     sizeof(struct amdgpu_bo_list_entry),
2469 				     GFP_KERNEL);
2470 	if (!pd_bo_list_entries) {
2471 		pr_err("%s: Failed to allocate PD BO list entries\n", __func__);
2472 		ret = -ENOMEM;
2473 		goto out_no_mem;
2474 	}
2475 
2476 	INIT_LIST_HEAD(&resv_list);
2477 	INIT_LIST_HEAD(&duplicates);
2478 
2479 	/* Get all the page directory BOs that need to be reserved */
2480 	i = 0;
2481 	list_for_each_entry(peer_vm, &process_info->vm_list_head,
2482 			    vm_list_node)
2483 		amdgpu_vm_get_pd_bo(peer_vm, &resv_list,
2484 				    &pd_bo_list_entries[i++]);
2485 	/* Add the userptr_inval_list entries to resv_list */
2486 	list_for_each_entry(mem, &process_info->userptr_inval_list,
2487 			    validate_list.head) {
2488 		list_add_tail(&mem->resv_list.head, &resv_list);
2489 		mem->resv_list.bo = mem->validate_list.bo;
2490 		mem->resv_list.num_shared = mem->validate_list.num_shared;
2491 	}
2492 
2493 	/* Reserve all BOs and page tables for validation */
2494 	ret = ttm_eu_reserve_buffers(&ticket, &resv_list, false, &duplicates);
2495 	WARN(!list_empty(&duplicates), "Duplicates should be empty");
2496 	if (ret)
2497 		goto out_free;
2498 
2499 	amdgpu_sync_create(&sync);
2500 
2501 	ret = process_validate_vms(process_info);
2502 	if (ret)
2503 		goto unreserve_out;
2504 
2505 	/* Validate BOs and update GPUVM page tables */
2506 	list_for_each_entry_safe(mem, tmp_mem,
2507 				 &process_info->userptr_inval_list,
2508 				 validate_list.head) {
2509 		struct kfd_mem_attachment *attachment;
2510 
2511 		bo = mem->bo;
2512 
2513 		/* Validate the BO if we got user pages */
2514 		if (bo->tbo.ttm->pages[0]) {
2515 			amdgpu_bo_placement_from_domain(bo, mem->domain);
2516 			ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
2517 			if (ret) {
2518 				pr_err("%s: failed to validate BO\n", __func__);
2519 				goto unreserve_out;
2520 			}
2521 		}
2522 
2523 		list_move_tail(&mem->validate_list.head,
2524 			       &process_info->userptr_valid_list);
2525 
2526 		/* Update mapping. If the BO was not validated
2527 		 * (because we couldn't get user pages), this will
2528 		 * clear the page table entries, which will result in
2529 		 * VM faults if the GPU tries to access the invalid
2530 		 * memory.
2531 		 */
2532 		list_for_each_entry(attachment, &mem->attachments, list) {
2533 			if (!attachment->is_mapped)
2534 				continue;
2535 
2536 			kfd_mem_dmaunmap_attachment(mem, attachment);
2537 			ret = update_gpuvm_pte(mem, attachment, &sync);
2538 			if (ret) {
2539 				pr_err("%s: update PTE failed\n", __func__);
2540 				/* make sure this gets validated again */
2541 				atomic_inc(&mem->invalid);
2542 				goto unreserve_out;
2543 			}
2544 		}
2545 	}
2546 
2547 	/* Update page directories */
2548 	ret = process_update_pds(process_info, &sync);
2549 
2550 unreserve_out:
2551 	ttm_eu_backoff_reservation(&ticket, &resv_list);
2552 	amdgpu_sync_wait(&sync, false);
2553 	amdgpu_sync_free(&sync);
2554 out_free:
2555 	kfree(pd_bo_list_entries);
2556 out_no_mem:
2557 
2558 	return ret;
2559 }
2560 
2561 /* Worker callback to restore evicted userptr BOs
2562  *
2563  * Tries to update and validate all userptr BOs. If successful and no
2564  * concurrent evictions happened, the queues are restarted. Otherwise,
2565  * reschedule for another attempt later.
2566  */
2567 static void amdgpu_amdkfd_restore_userptr_worker(struct work_struct *work)
2568 {
2569 	struct delayed_work *dwork = to_delayed_work(work);
2570 	struct amdkfd_process_info *process_info =
2571 		container_of(dwork, struct amdkfd_process_info,
2572 			     restore_userptr_work);
2573 	struct task_struct *usertask;
2574 	struct mm_struct *mm;
2575 	int evicted_bos;
2576 
2577 	evicted_bos = atomic_read(&process_info->evicted_bos);
2578 	if (!evicted_bos)
2579 		return;
2580 
2581 	/* Reference task and mm in case of concurrent process termination */
2582 	usertask = get_pid_task(process_info->pid, PIDTYPE_PID);
2583 	if (!usertask)
2584 		return;
2585 	mm = get_task_mm(usertask);
2586 	if (!mm) {
2587 		put_task_struct(usertask);
2588 		return;
2589 	}
2590 
2591 	mutex_lock(&process_info->lock);
2592 
2593 	if (update_invalid_user_pages(process_info, mm))
2594 		goto unlock_out;
2595 	/* userptr_inval_list can be empty if all evicted userptr BOs
2596 	 * have been freed. In that case there is nothing to validate
2597 	 * and we can just restart the queues.
2598 	 */
2599 	if (!list_empty(&process_info->userptr_inval_list)) {
2600 		if (atomic_read(&process_info->evicted_bos) != evicted_bos)
2601 			goto unlock_out; /* Concurrent eviction, try again */
2602 
2603 		if (validate_invalid_user_pages(process_info))
2604 			goto unlock_out;
2605 	}
2606 	/* Final check for concurrent evicton and atomic update. If
2607 	 * another eviction happens after successful update, it will
2608 	 * be a first eviction that calls quiesce_mm. The eviction
2609 	 * reference counting inside KFD will handle this case.
2610 	 */
2611 	if (atomic_cmpxchg(&process_info->evicted_bos, evicted_bos, 0) !=
2612 	    evicted_bos)
2613 		goto unlock_out;
2614 	evicted_bos = 0;
2615 	if (kgd2kfd_resume_mm(mm)) {
2616 		pr_err("%s: Failed to resume KFD\n", __func__);
2617 		/* No recovery from this failure. Probably the CP is
2618 		 * hanging. No point trying again.
2619 		 */
2620 	}
2621 
2622 unlock_out:
2623 	mutex_unlock(&process_info->lock);
2624 
2625 	/* If validation failed, reschedule another attempt */
2626 	if (evicted_bos) {
2627 		schedule_delayed_work(&process_info->restore_userptr_work,
2628 			msecs_to_jiffies(AMDGPU_USERPTR_RESTORE_DELAY_MS));
2629 
2630 		kfd_smi_event_queue_restore_rescheduled(mm);
2631 	}
2632 	mmput(mm);
2633 	put_task_struct(usertask);
2634 }
2635 
2636 /** amdgpu_amdkfd_gpuvm_restore_process_bos - Restore all BOs for the given
2637  *   KFD process identified by process_info
2638  *
2639  * @process_info: amdkfd_process_info of the KFD process
2640  *
2641  * After memory eviction, restore thread calls this function. The function
2642  * should be called when the Process is still valid. BO restore involves -
2643  *
2644  * 1.  Release old eviction fence and create new one
2645  * 2.  Get two copies of PD BO list from all the VMs. Keep one copy as pd_list.
2646  * 3   Use the second PD list and kfd_bo_list to create a list (ctx.list) of
2647  *     BOs that need to be reserved.
2648  * 4.  Reserve all the BOs
2649  * 5.  Validate of PD and PT BOs.
2650  * 6.  Validate all KFD BOs using kfd_bo_list and Map them and add new fence
2651  * 7.  Add fence to all PD and PT BOs.
2652  * 8.  Unreserve all BOs
2653  */
2654 int amdgpu_amdkfd_gpuvm_restore_process_bos(void *info, struct dma_fence **ef)
2655 {
2656 	struct amdgpu_bo_list_entry *pd_bo_list;
2657 	struct amdkfd_process_info *process_info = info;
2658 	struct amdgpu_vm *peer_vm;
2659 	struct kgd_mem *mem;
2660 	struct bo_vm_reservation_context ctx;
2661 	struct amdgpu_amdkfd_fence *new_fence;
2662 	int ret = 0, i;
2663 	struct list_head duplicate_save;
2664 	struct amdgpu_sync sync_obj;
2665 	unsigned long failed_size = 0;
2666 	unsigned long total_size = 0;
2667 
2668 	INIT_LIST_HEAD(&duplicate_save);
2669 	INIT_LIST_HEAD(&ctx.list);
2670 	INIT_LIST_HEAD(&ctx.duplicates);
2671 
2672 	pd_bo_list = kcalloc(process_info->n_vms,
2673 			     sizeof(struct amdgpu_bo_list_entry),
2674 			     GFP_KERNEL);
2675 	if (!pd_bo_list)
2676 		return -ENOMEM;
2677 
2678 	i = 0;
2679 	mutex_lock(&process_info->lock);
2680 	list_for_each_entry(peer_vm, &process_info->vm_list_head,
2681 			vm_list_node)
2682 		amdgpu_vm_get_pd_bo(peer_vm, &ctx.list, &pd_bo_list[i++]);
2683 
2684 	/* Reserve all BOs and page tables/directory. Add all BOs from
2685 	 * kfd_bo_list to ctx.list
2686 	 */
2687 	list_for_each_entry(mem, &process_info->kfd_bo_list,
2688 			    validate_list.head) {
2689 
2690 		list_add_tail(&mem->resv_list.head, &ctx.list);
2691 		mem->resv_list.bo = mem->validate_list.bo;
2692 		mem->resv_list.num_shared = mem->validate_list.num_shared;
2693 	}
2694 
2695 	ret = ttm_eu_reserve_buffers(&ctx.ticket, &ctx.list,
2696 				     false, &duplicate_save);
2697 	if (ret) {
2698 		pr_debug("Memory eviction: TTM Reserve Failed. Try again\n");
2699 		goto ttm_reserve_fail;
2700 	}
2701 
2702 	amdgpu_sync_create(&sync_obj);
2703 
2704 	/* Validate PDs and PTs */
2705 	ret = process_validate_vms(process_info);
2706 	if (ret)
2707 		goto validate_map_fail;
2708 
2709 	ret = process_sync_pds_resv(process_info, &sync_obj);
2710 	if (ret) {
2711 		pr_debug("Memory eviction: Failed to sync to PD BO moving fence. Try again\n");
2712 		goto validate_map_fail;
2713 	}
2714 
2715 	/* Validate BOs and map them to GPUVM (update VM page tables). */
2716 	list_for_each_entry(mem, &process_info->kfd_bo_list,
2717 			    validate_list.head) {
2718 
2719 		struct amdgpu_bo *bo = mem->bo;
2720 		uint32_t domain = mem->domain;
2721 		struct kfd_mem_attachment *attachment;
2722 		struct dma_resv_iter cursor;
2723 		struct dma_fence *fence;
2724 
2725 		total_size += amdgpu_bo_size(bo);
2726 
2727 		ret = amdgpu_amdkfd_bo_validate(bo, domain, false);
2728 		if (ret) {
2729 			pr_debug("Memory eviction: Validate BOs failed\n");
2730 			failed_size += amdgpu_bo_size(bo);
2731 			ret = amdgpu_amdkfd_bo_validate(bo,
2732 						AMDGPU_GEM_DOMAIN_GTT, false);
2733 			if (ret) {
2734 				pr_debug("Memory eviction: Try again\n");
2735 				goto validate_map_fail;
2736 			}
2737 		}
2738 		dma_resv_for_each_fence(&cursor, bo->tbo.base.resv,
2739 					DMA_RESV_USAGE_KERNEL, fence) {
2740 			ret = amdgpu_sync_fence(&sync_obj, fence);
2741 			if (ret) {
2742 				pr_debug("Memory eviction: Sync BO fence failed. Try again\n");
2743 				goto validate_map_fail;
2744 			}
2745 		}
2746 		list_for_each_entry(attachment, &mem->attachments, list) {
2747 			if (!attachment->is_mapped)
2748 				continue;
2749 
2750 			kfd_mem_dmaunmap_attachment(mem, attachment);
2751 			ret = update_gpuvm_pte(mem, attachment, &sync_obj);
2752 			if (ret) {
2753 				pr_debug("Memory eviction: update PTE failed. Try again\n");
2754 				goto validate_map_fail;
2755 			}
2756 		}
2757 	}
2758 
2759 	if (failed_size)
2760 		pr_debug("0x%lx/0x%lx in system\n", failed_size, total_size);
2761 
2762 	/* Update page directories */
2763 	ret = process_update_pds(process_info, &sync_obj);
2764 	if (ret) {
2765 		pr_debug("Memory eviction: update PDs failed. Try again\n");
2766 		goto validate_map_fail;
2767 	}
2768 
2769 	/* Wait for validate and PT updates to finish */
2770 	amdgpu_sync_wait(&sync_obj, false);
2771 
2772 	/* Release old eviction fence and create new one, because fence only
2773 	 * goes from unsignaled to signaled, fence cannot be reused.
2774 	 * Use context and mm from the old fence.
2775 	 */
2776 	new_fence = amdgpu_amdkfd_fence_create(
2777 				process_info->eviction_fence->base.context,
2778 				process_info->eviction_fence->mm,
2779 				NULL);
2780 	if (!new_fence) {
2781 		pr_err("Failed to create eviction fence\n");
2782 		ret = -ENOMEM;
2783 		goto validate_map_fail;
2784 	}
2785 	dma_fence_put(&process_info->eviction_fence->base);
2786 	process_info->eviction_fence = new_fence;
2787 	*ef = dma_fence_get(&new_fence->base);
2788 
2789 	/* Attach new eviction fence to all BOs except pinned ones */
2790 	list_for_each_entry(mem, &process_info->kfd_bo_list,
2791 		validate_list.head) {
2792 		if (mem->bo->tbo.pin_count)
2793 			continue;
2794 
2795 		amdgpu_bo_fence(mem->bo,
2796 			&process_info->eviction_fence->base, true);
2797 	}
2798 	/* Attach eviction fence to PD / PT BOs */
2799 	list_for_each_entry(peer_vm, &process_info->vm_list_head,
2800 			    vm_list_node) {
2801 		struct amdgpu_bo *bo = peer_vm->root.bo;
2802 
2803 		amdgpu_bo_fence(bo, &process_info->eviction_fence->base, true);
2804 	}
2805 
2806 validate_map_fail:
2807 	ttm_eu_backoff_reservation(&ctx.ticket, &ctx.list);
2808 	amdgpu_sync_free(&sync_obj);
2809 ttm_reserve_fail:
2810 	mutex_unlock(&process_info->lock);
2811 	kfree(pd_bo_list);
2812 	return ret;
2813 }
2814 
2815 int amdgpu_amdkfd_add_gws_to_process(void *info, void *gws, struct kgd_mem **mem)
2816 {
2817 	struct amdkfd_process_info *process_info = (struct amdkfd_process_info *)info;
2818 	struct amdgpu_bo *gws_bo = (struct amdgpu_bo *)gws;
2819 	int ret;
2820 
2821 	if (!info || !gws)
2822 		return -EINVAL;
2823 
2824 	*mem = kzalloc(sizeof(struct kgd_mem), GFP_KERNEL);
2825 	if (!*mem)
2826 		return -ENOMEM;
2827 
2828 	mutex_init(&(*mem)->lock);
2829 	INIT_LIST_HEAD(&(*mem)->attachments);
2830 	(*mem)->bo = amdgpu_bo_ref(gws_bo);
2831 	(*mem)->domain = AMDGPU_GEM_DOMAIN_GWS;
2832 	(*mem)->process_info = process_info;
2833 	add_kgd_mem_to_kfd_bo_list(*mem, process_info, false);
2834 	amdgpu_sync_create(&(*mem)->sync);
2835 
2836 
2837 	/* Validate gws bo the first time it is added to process */
2838 	mutex_lock(&(*mem)->process_info->lock);
2839 	ret = amdgpu_bo_reserve(gws_bo, false);
2840 	if (unlikely(ret)) {
2841 		pr_err("Reserve gws bo failed %d\n", ret);
2842 		goto bo_reservation_failure;
2843 	}
2844 
2845 	ret = amdgpu_amdkfd_bo_validate(gws_bo, AMDGPU_GEM_DOMAIN_GWS, true);
2846 	if (ret) {
2847 		pr_err("GWS BO validate failed %d\n", ret);
2848 		goto bo_validation_failure;
2849 	}
2850 	/* GWS resource is shared b/t amdgpu and amdkfd
2851 	 * Add process eviction fence to bo so they can
2852 	 * evict each other.
2853 	 */
2854 	ret = dma_resv_reserve_fences(gws_bo->tbo.base.resv, 1);
2855 	if (ret)
2856 		goto reserve_shared_fail;
2857 	amdgpu_bo_fence(gws_bo, &process_info->eviction_fence->base, true);
2858 	amdgpu_bo_unreserve(gws_bo);
2859 	mutex_unlock(&(*mem)->process_info->lock);
2860 
2861 	return ret;
2862 
2863 reserve_shared_fail:
2864 bo_validation_failure:
2865 	amdgpu_bo_unreserve(gws_bo);
2866 bo_reservation_failure:
2867 	mutex_unlock(&(*mem)->process_info->lock);
2868 	amdgpu_sync_free(&(*mem)->sync);
2869 	remove_kgd_mem_from_kfd_bo_list(*mem, process_info);
2870 	amdgpu_bo_unref(&gws_bo);
2871 	mutex_destroy(&(*mem)->lock);
2872 	kfree(*mem);
2873 	*mem = NULL;
2874 	return ret;
2875 }
2876 
2877 int amdgpu_amdkfd_remove_gws_from_process(void *info, void *mem)
2878 {
2879 	int ret;
2880 	struct amdkfd_process_info *process_info = (struct amdkfd_process_info *)info;
2881 	struct kgd_mem *kgd_mem = (struct kgd_mem *)mem;
2882 	struct amdgpu_bo *gws_bo = kgd_mem->bo;
2883 
2884 	/* Remove BO from process's validate list so restore worker won't touch
2885 	 * it anymore
2886 	 */
2887 	remove_kgd_mem_from_kfd_bo_list(kgd_mem, process_info);
2888 
2889 	ret = amdgpu_bo_reserve(gws_bo, false);
2890 	if (unlikely(ret)) {
2891 		pr_err("Reserve gws bo failed %d\n", ret);
2892 		//TODO add BO back to validate_list?
2893 		return ret;
2894 	}
2895 	amdgpu_amdkfd_remove_eviction_fence(gws_bo,
2896 			process_info->eviction_fence);
2897 	amdgpu_bo_unreserve(gws_bo);
2898 	amdgpu_sync_free(&kgd_mem->sync);
2899 	amdgpu_bo_unref(&gws_bo);
2900 	mutex_destroy(&kgd_mem->lock);
2901 	kfree(mem);
2902 	return 0;
2903 }
2904 
2905 /* Returns GPU-specific tiling mode information */
2906 int amdgpu_amdkfd_get_tile_config(struct amdgpu_device *adev,
2907 				struct tile_config *config)
2908 {
2909 	config->gb_addr_config = adev->gfx.config.gb_addr_config;
2910 	config->tile_config_ptr = adev->gfx.config.tile_mode_array;
2911 	config->num_tile_configs =
2912 			ARRAY_SIZE(adev->gfx.config.tile_mode_array);
2913 	config->macro_tile_config_ptr =
2914 			adev->gfx.config.macrotile_mode_array;
2915 	config->num_macro_tile_configs =
2916 			ARRAY_SIZE(adev->gfx.config.macrotile_mode_array);
2917 
2918 	/* Those values are not set from GFX9 onwards */
2919 	config->num_banks = adev->gfx.config.num_banks;
2920 	config->num_ranks = adev->gfx.config.num_ranks;
2921 
2922 	return 0;
2923 }
2924 
2925 bool amdgpu_amdkfd_bo_mapped_to_dev(struct amdgpu_device *adev, struct kgd_mem *mem)
2926 {
2927 	struct kfd_mem_attachment *entry;
2928 
2929 	list_for_each_entry(entry, &mem->attachments, list) {
2930 		if (entry->is_mapped && entry->adev == adev)
2931 			return true;
2932 	}
2933 	return false;
2934 }
2935