1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright 2014-2018 Advanced Micro Devices, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 */ 23 #include <linux/dma-buf.h> 24 #include <linux/list.h> 25 #include <linux/pagemap.h> 26 #include <linux/sched/mm.h> 27 #include <linux/sched/task.h> 28 #include <linux/fdtable.h> 29 #include <drm/ttm/ttm_tt.h> 30 31 #include <drm/drm_exec.h> 32 33 #include "amdgpu_object.h" 34 #include "amdgpu_gem.h" 35 #include "amdgpu_vm.h" 36 #include "amdgpu_hmm.h" 37 #include "amdgpu_amdkfd.h" 38 #include "amdgpu_dma_buf.h" 39 #include <uapi/linux/kfd_ioctl.h> 40 #include "amdgpu_xgmi.h" 41 #include "kfd_priv.h" 42 #include "kfd_smi_events.h" 43 44 /* Userptr restore delay, just long enough to allow consecutive VM 45 * changes to accumulate 46 */ 47 #define AMDGPU_USERPTR_RESTORE_DELAY_MS 1 48 #define AMDGPU_RESERVE_MEM_LIMIT (3UL << 29) 49 50 /* 51 * Align VRAM availability to 2MB to avoid fragmentation caused by 4K allocations in the tail 2MB 52 * BO chunk 53 */ 54 #define VRAM_AVAILABLITY_ALIGN (1 << 21) 55 56 /* Impose limit on how much memory KFD can use */ 57 static struct { 58 uint64_t max_system_mem_limit; 59 uint64_t max_ttm_mem_limit; 60 int64_t system_mem_used; 61 int64_t ttm_mem_used; 62 spinlock_t mem_limit_lock; 63 } kfd_mem_limit; 64 65 static const char * const domain_bit_to_string[] = { 66 "CPU", 67 "GTT", 68 "VRAM", 69 "GDS", 70 "GWS", 71 "OA" 72 }; 73 74 #define domain_string(domain) domain_bit_to_string[ffs(domain)-1] 75 76 static void amdgpu_amdkfd_restore_userptr_worker(struct work_struct *work); 77 78 static bool kfd_mem_is_attached(struct amdgpu_vm *avm, 79 struct kgd_mem *mem) 80 { 81 struct kfd_mem_attachment *entry; 82 83 list_for_each_entry(entry, &mem->attachments, list) 84 if (entry->bo_va->base.vm == avm) 85 return true; 86 87 return false; 88 } 89 90 /** 91 * reuse_dmamap() - Check whether adev can share the original 92 * userptr BO 93 * 94 * If both adev and bo_adev are in direct mapping or 95 * in the same iommu group, they can share the original BO. 96 * 97 * @adev: Device to which can or cannot share the original BO 98 * @bo_adev: Device to which allocated BO belongs to 99 * 100 * Return: returns true if adev can share original userptr BO, 101 * false otherwise. 102 */ 103 static bool reuse_dmamap(struct amdgpu_device *adev, struct amdgpu_device *bo_adev) 104 { 105 return (adev->ram_is_direct_mapped && bo_adev->ram_is_direct_mapped) || 106 (adev->dev->iommu_group == bo_adev->dev->iommu_group); 107 } 108 109 /* Set memory usage limits. Current, limits are 110 * System (TTM + userptr) memory - 15/16th System RAM 111 * TTM memory - 3/8th System RAM 112 */ 113 void amdgpu_amdkfd_gpuvm_init_mem_limits(void) 114 { 115 struct sysinfo si; 116 uint64_t mem; 117 118 if (kfd_mem_limit.max_system_mem_limit) 119 return; 120 121 si_meminfo(&si); 122 mem = si.totalram - si.totalhigh; 123 mem *= si.mem_unit; 124 125 spin_lock_init(&kfd_mem_limit.mem_limit_lock); 126 kfd_mem_limit.max_system_mem_limit = mem - (mem >> 6); 127 if (kfd_mem_limit.max_system_mem_limit < 2 * AMDGPU_RESERVE_MEM_LIMIT) 128 kfd_mem_limit.max_system_mem_limit >>= 1; 129 else 130 kfd_mem_limit.max_system_mem_limit -= AMDGPU_RESERVE_MEM_LIMIT; 131 132 kfd_mem_limit.max_ttm_mem_limit = ttm_tt_pages_limit() << PAGE_SHIFT; 133 pr_debug("Kernel memory limit %lluM, TTM limit %lluM\n", 134 (kfd_mem_limit.max_system_mem_limit >> 20), 135 (kfd_mem_limit.max_ttm_mem_limit >> 20)); 136 } 137 138 void amdgpu_amdkfd_reserve_system_mem(uint64_t size) 139 { 140 kfd_mem_limit.system_mem_used += size; 141 } 142 143 /* Estimate page table size needed to represent a given memory size 144 * 145 * With 4KB pages, we need one 8 byte PTE for each 4KB of memory 146 * (factor 512, >> 9). With 2MB pages, we need one 8 byte PTE for 2MB 147 * of memory (factor 256K, >> 18). ROCm user mode tries to optimize 148 * for 2MB pages for TLB efficiency. However, small allocations and 149 * fragmented system memory still need some 4KB pages. We choose a 150 * compromise that should work in most cases without reserving too 151 * much memory for page tables unnecessarily (factor 16K, >> 14). 152 */ 153 154 #define ESTIMATE_PT_SIZE(mem_size) max(((mem_size) >> 14), AMDGPU_VM_RESERVED_VRAM) 155 156 /** 157 * amdgpu_amdkfd_reserve_mem_limit() - Decrease available memory by size 158 * of buffer. 159 * 160 * @adev: Device to which allocated BO belongs to 161 * @size: Size of buffer, in bytes, encapsulated by B0. This should be 162 * equivalent to amdgpu_bo_size(BO) 163 * @alloc_flag: Flag used in allocating a BO as noted above 164 * @xcp_id: xcp_id is used to get xcp from xcp manager, one xcp is 165 * managed as one compute node in driver for app 166 * 167 * Return: 168 * returns -ENOMEM in case of error, ZERO otherwise 169 */ 170 int amdgpu_amdkfd_reserve_mem_limit(struct amdgpu_device *adev, 171 uint64_t size, u32 alloc_flag, int8_t xcp_id) 172 { 173 uint64_t reserved_for_pt = 174 ESTIMATE_PT_SIZE(amdgpu_amdkfd_total_mem_size); 175 struct amdgpu_ras *con = amdgpu_ras_get_context(adev); 176 uint64_t reserved_for_ras = (con ? con->reserved_pages_in_bytes : 0); 177 size_t system_mem_needed, ttm_mem_needed, vram_needed; 178 int ret = 0; 179 uint64_t vram_size = 0; 180 181 system_mem_needed = 0; 182 ttm_mem_needed = 0; 183 vram_needed = 0; 184 if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_GTT) { 185 system_mem_needed = size; 186 ttm_mem_needed = size; 187 } else if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) { 188 /* 189 * Conservatively round up the allocation requirement to 2 MB 190 * to avoid fragmentation caused by 4K allocations in the tail 191 * 2M BO chunk. 192 */ 193 vram_needed = size; 194 /* 195 * For GFX 9.4.3, get the VRAM size from XCP structs 196 */ 197 if (WARN_ONCE(xcp_id < 0, "invalid XCP ID %d", xcp_id)) 198 return -EINVAL; 199 200 vram_size = KFD_XCP_MEMORY_SIZE(adev, xcp_id); 201 if (adev->flags & AMD_IS_APU) { 202 system_mem_needed = size; 203 ttm_mem_needed = size; 204 } 205 } else if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) { 206 system_mem_needed = size; 207 } else if (!(alloc_flag & 208 (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL | 209 KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP))) { 210 pr_err("%s: Invalid BO type %#x\n", __func__, alloc_flag); 211 return -ENOMEM; 212 } 213 214 spin_lock(&kfd_mem_limit.mem_limit_lock); 215 216 if (kfd_mem_limit.system_mem_used + system_mem_needed > 217 kfd_mem_limit.max_system_mem_limit) 218 pr_debug("Set no_system_mem_limit=1 if using shared memory\n"); 219 220 if ((kfd_mem_limit.system_mem_used + system_mem_needed > 221 kfd_mem_limit.max_system_mem_limit && !no_system_mem_limit) || 222 (kfd_mem_limit.ttm_mem_used + ttm_mem_needed > 223 kfd_mem_limit.max_ttm_mem_limit) || 224 (adev && xcp_id >= 0 && adev->kfd.vram_used[xcp_id] + vram_needed > 225 vram_size - reserved_for_pt - reserved_for_ras - atomic64_read(&adev->vram_pin_size))) { 226 ret = -ENOMEM; 227 goto release; 228 } 229 230 /* Update memory accounting by decreasing available system 231 * memory, TTM memory and GPU memory as computed above 232 */ 233 WARN_ONCE(vram_needed && !adev, 234 "adev reference can't be null when vram is used"); 235 if (adev && xcp_id >= 0) { 236 adev->kfd.vram_used[xcp_id] += vram_needed; 237 adev->kfd.vram_used_aligned[xcp_id] += 238 (adev->flags & AMD_IS_APU) ? 239 vram_needed : 240 ALIGN(vram_needed, VRAM_AVAILABLITY_ALIGN); 241 } 242 kfd_mem_limit.system_mem_used += system_mem_needed; 243 kfd_mem_limit.ttm_mem_used += ttm_mem_needed; 244 245 release: 246 spin_unlock(&kfd_mem_limit.mem_limit_lock); 247 return ret; 248 } 249 250 void amdgpu_amdkfd_unreserve_mem_limit(struct amdgpu_device *adev, 251 uint64_t size, u32 alloc_flag, int8_t xcp_id) 252 { 253 spin_lock(&kfd_mem_limit.mem_limit_lock); 254 255 if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_GTT) { 256 kfd_mem_limit.system_mem_used -= size; 257 kfd_mem_limit.ttm_mem_used -= size; 258 } else if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) { 259 WARN_ONCE(!adev, 260 "adev reference can't be null when alloc mem flags vram is set"); 261 if (WARN_ONCE(xcp_id < 0, "invalid XCP ID %d", xcp_id)) 262 goto release; 263 264 if (adev) { 265 adev->kfd.vram_used[xcp_id] -= size; 266 if (adev->flags & AMD_IS_APU) { 267 adev->kfd.vram_used_aligned[xcp_id] -= size; 268 kfd_mem_limit.system_mem_used -= size; 269 kfd_mem_limit.ttm_mem_used -= size; 270 } else { 271 adev->kfd.vram_used_aligned[xcp_id] -= 272 ALIGN(size, VRAM_AVAILABLITY_ALIGN); 273 } 274 } 275 } else if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) { 276 kfd_mem_limit.system_mem_used -= size; 277 } else if (!(alloc_flag & 278 (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL | 279 KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP))) { 280 pr_err("%s: Invalid BO type %#x\n", __func__, alloc_flag); 281 goto release; 282 } 283 WARN_ONCE(adev && xcp_id >= 0 && adev->kfd.vram_used[xcp_id] < 0, 284 "KFD VRAM memory accounting unbalanced for xcp: %d", xcp_id); 285 WARN_ONCE(kfd_mem_limit.ttm_mem_used < 0, 286 "KFD TTM memory accounting unbalanced"); 287 WARN_ONCE(kfd_mem_limit.system_mem_used < 0, 288 "KFD system memory accounting unbalanced"); 289 290 release: 291 spin_unlock(&kfd_mem_limit.mem_limit_lock); 292 } 293 294 void amdgpu_amdkfd_release_notify(struct amdgpu_bo *bo) 295 { 296 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 297 u32 alloc_flags = bo->kfd_bo->alloc_flags; 298 u64 size = amdgpu_bo_size(bo); 299 300 amdgpu_amdkfd_unreserve_mem_limit(adev, size, alloc_flags, 301 bo->xcp_id); 302 303 kfree(bo->kfd_bo); 304 } 305 306 /** 307 * create_dmamap_sg_bo() - Creates a amdgpu_bo object to reflect information 308 * about USERPTR or DOOREBELL or MMIO BO. 309 * 310 * @adev: Device for which dmamap BO is being created 311 * @mem: BO of peer device that is being DMA mapped. Provides parameters 312 * in building the dmamap BO 313 * @bo_out: Output parameter updated with handle of dmamap BO 314 */ 315 static int 316 create_dmamap_sg_bo(struct amdgpu_device *adev, 317 struct kgd_mem *mem, struct amdgpu_bo **bo_out) 318 { 319 struct drm_gem_object *gem_obj; 320 int ret; 321 uint64_t flags = 0; 322 323 ret = amdgpu_bo_reserve(mem->bo, false); 324 if (ret) 325 return ret; 326 327 if (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) 328 flags |= mem->bo->flags & (AMDGPU_GEM_CREATE_COHERENT | 329 AMDGPU_GEM_CREATE_UNCACHED); 330 331 ret = amdgpu_gem_object_create(adev, mem->bo->tbo.base.size, 1, 332 AMDGPU_GEM_DOMAIN_CPU, AMDGPU_GEM_CREATE_PREEMPTIBLE | flags, 333 ttm_bo_type_sg, mem->bo->tbo.base.resv, &gem_obj, 0); 334 335 amdgpu_bo_unreserve(mem->bo); 336 337 if (ret) { 338 pr_err("Error in creating DMA mappable SG BO on domain: %d\n", ret); 339 return -EINVAL; 340 } 341 342 *bo_out = gem_to_amdgpu_bo(gem_obj); 343 (*bo_out)->parent = amdgpu_bo_ref(mem->bo); 344 return ret; 345 } 346 347 /* amdgpu_amdkfd_remove_eviction_fence - Removes eviction fence from BO's 348 * reservation object. 349 * 350 * @bo: [IN] Remove eviction fence(s) from this BO 351 * @ef: [IN] This eviction fence is removed if it 352 * is present in the shared list. 353 * 354 * NOTE: Must be called with BO reserved i.e. bo->tbo.resv->lock held. 355 */ 356 static int amdgpu_amdkfd_remove_eviction_fence(struct amdgpu_bo *bo, 357 struct amdgpu_amdkfd_fence *ef) 358 { 359 struct dma_fence *replacement; 360 361 if (!ef) 362 return -EINVAL; 363 364 /* TODO: Instead of block before we should use the fence of the page 365 * table update and TLB flush here directly. 366 */ 367 replacement = dma_fence_get_stub(); 368 dma_resv_replace_fences(bo->tbo.base.resv, ef->base.context, 369 replacement, DMA_RESV_USAGE_BOOKKEEP); 370 dma_fence_put(replacement); 371 return 0; 372 } 373 374 int amdgpu_amdkfd_remove_fence_on_pt_pd_bos(struct amdgpu_bo *bo) 375 { 376 struct amdgpu_bo *root = bo; 377 struct amdgpu_vm_bo_base *vm_bo; 378 struct amdgpu_vm *vm; 379 struct amdkfd_process_info *info; 380 struct amdgpu_amdkfd_fence *ef; 381 int ret; 382 383 /* we can always get vm_bo from root PD bo.*/ 384 while (root->parent) 385 root = root->parent; 386 387 vm_bo = root->vm_bo; 388 if (!vm_bo) 389 return 0; 390 391 vm = vm_bo->vm; 392 if (!vm) 393 return 0; 394 395 info = vm->process_info; 396 if (!info || !info->eviction_fence) 397 return 0; 398 399 ef = container_of(dma_fence_get(&info->eviction_fence->base), 400 struct amdgpu_amdkfd_fence, base); 401 402 BUG_ON(!dma_resv_trylock(bo->tbo.base.resv)); 403 ret = amdgpu_amdkfd_remove_eviction_fence(bo, ef); 404 dma_resv_unlock(bo->tbo.base.resv); 405 406 dma_fence_put(&ef->base); 407 return ret; 408 } 409 410 static int amdgpu_amdkfd_bo_validate(struct amdgpu_bo *bo, uint32_t domain, 411 bool wait) 412 { 413 struct ttm_operation_ctx ctx = { false, false }; 414 int ret; 415 416 if (WARN(amdgpu_ttm_tt_get_usermm(bo->tbo.ttm), 417 "Called with userptr BO")) 418 return -EINVAL; 419 420 /* bo has been pinned, not need validate it */ 421 if (bo->tbo.pin_count) 422 return 0; 423 424 amdgpu_bo_placement_from_domain(bo, domain); 425 426 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 427 if (ret) 428 goto validate_fail; 429 if (wait) 430 amdgpu_bo_sync_wait(bo, AMDGPU_FENCE_OWNER_KFD, false); 431 432 validate_fail: 433 return ret; 434 } 435 436 int amdgpu_amdkfd_bo_validate_and_fence(struct amdgpu_bo *bo, 437 uint32_t domain, 438 struct dma_fence *fence) 439 { 440 int ret = amdgpu_bo_reserve(bo, false); 441 442 if (ret) 443 return ret; 444 445 ret = amdgpu_amdkfd_bo_validate(bo, domain, true); 446 if (ret) 447 goto unreserve_out; 448 449 ret = dma_resv_reserve_fences(bo->tbo.base.resv, 1); 450 if (ret) 451 goto unreserve_out; 452 453 dma_resv_add_fence(bo->tbo.base.resv, fence, 454 DMA_RESV_USAGE_BOOKKEEP); 455 456 unreserve_out: 457 amdgpu_bo_unreserve(bo); 458 459 return ret; 460 } 461 462 static int amdgpu_amdkfd_validate_vm_bo(void *_unused, struct amdgpu_bo *bo) 463 { 464 return amdgpu_amdkfd_bo_validate(bo, bo->allowed_domains, false); 465 } 466 467 /* vm_validate_pt_pd_bos - Validate page table and directory BOs 468 * 469 * Page directories are not updated here because huge page handling 470 * during page table updates can invalidate page directory entries 471 * again. Page directories are only updated after updating page 472 * tables. 473 */ 474 static int vm_validate_pt_pd_bos(struct amdgpu_vm *vm, 475 struct ww_acquire_ctx *ticket) 476 { 477 struct amdgpu_bo *pd = vm->root.bo; 478 struct amdgpu_device *adev = amdgpu_ttm_adev(pd->tbo.bdev); 479 int ret; 480 481 ret = amdgpu_vm_validate(adev, vm, ticket, 482 amdgpu_amdkfd_validate_vm_bo, NULL); 483 if (ret) { 484 pr_err("failed to validate PT BOs\n"); 485 return ret; 486 } 487 488 vm->pd_phys_addr = amdgpu_gmc_pd_addr(vm->root.bo); 489 490 return 0; 491 } 492 493 static int vm_update_pds(struct amdgpu_vm *vm, struct amdgpu_sync *sync) 494 { 495 struct amdgpu_bo *pd = vm->root.bo; 496 struct amdgpu_device *adev = amdgpu_ttm_adev(pd->tbo.bdev); 497 int ret; 498 499 ret = amdgpu_vm_update_pdes(adev, vm, false); 500 if (ret) 501 return ret; 502 503 return amdgpu_sync_fence(sync, vm->last_update); 504 } 505 506 static uint64_t get_pte_flags(struct amdgpu_device *adev, struct kgd_mem *mem) 507 { 508 uint32_t mapping_flags = AMDGPU_VM_PAGE_READABLE | 509 AMDGPU_VM_MTYPE_DEFAULT; 510 511 if (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE) 512 mapping_flags |= AMDGPU_VM_PAGE_WRITEABLE; 513 if (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE) 514 mapping_flags |= AMDGPU_VM_PAGE_EXECUTABLE; 515 516 return amdgpu_gem_va_map_flags(adev, mapping_flags); 517 } 518 519 /** 520 * create_sg_table() - Create an sg_table for a contiguous DMA addr range 521 * @addr: The starting address to point to 522 * @size: Size of memory area in bytes being pointed to 523 * 524 * Allocates an instance of sg_table and initializes it to point to memory 525 * area specified by input parameters. The address used to build is assumed 526 * to be DMA mapped, if needed. 527 * 528 * DOORBELL or MMIO BOs use only one scatterlist node in their sg_table 529 * because they are physically contiguous. 530 * 531 * Return: Initialized instance of SG Table or NULL 532 */ 533 static struct sg_table *create_sg_table(uint64_t addr, uint32_t size) 534 { 535 struct sg_table *sg = kmalloc(sizeof(*sg), GFP_KERNEL); 536 537 if (!sg) 538 return NULL; 539 if (sg_alloc_table(sg, 1, GFP_KERNEL)) { 540 kfree(sg); 541 return NULL; 542 } 543 sg_dma_address(sg->sgl) = addr; 544 sg->sgl->length = size; 545 #ifdef CONFIG_NEED_SG_DMA_LENGTH 546 sg->sgl->dma_length = size; 547 #endif 548 return sg; 549 } 550 551 static int 552 kfd_mem_dmamap_userptr(struct kgd_mem *mem, 553 struct kfd_mem_attachment *attachment) 554 { 555 enum dma_data_direction direction = 556 mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? 557 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 558 struct ttm_operation_ctx ctx = {.interruptible = true}; 559 struct amdgpu_bo *bo = attachment->bo_va->base.bo; 560 struct amdgpu_device *adev = attachment->adev; 561 struct ttm_tt *src_ttm = mem->bo->tbo.ttm; 562 struct ttm_tt *ttm = bo->tbo.ttm; 563 int ret; 564 565 if (WARN_ON(ttm->num_pages != src_ttm->num_pages)) 566 return -EINVAL; 567 568 ttm->sg = kmalloc(sizeof(*ttm->sg), GFP_KERNEL); 569 if (unlikely(!ttm->sg)) 570 return -ENOMEM; 571 572 /* Same sequence as in amdgpu_ttm_tt_pin_userptr */ 573 ret = sg_alloc_table_from_pages(ttm->sg, src_ttm->pages, 574 ttm->num_pages, 0, 575 (u64)ttm->num_pages << PAGE_SHIFT, 576 GFP_KERNEL); 577 if (unlikely(ret)) 578 goto free_sg; 579 580 ret = dma_map_sgtable(adev->dev, ttm->sg, direction, 0); 581 if (unlikely(ret)) 582 goto release_sg; 583 584 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_GTT); 585 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 586 if (ret) 587 goto unmap_sg; 588 589 return 0; 590 591 unmap_sg: 592 dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0); 593 release_sg: 594 pr_err("DMA map userptr failed: %d\n", ret); 595 sg_free_table(ttm->sg); 596 free_sg: 597 kfree(ttm->sg); 598 ttm->sg = NULL; 599 return ret; 600 } 601 602 static int 603 kfd_mem_dmamap_dmabuf(struct kfd_mem_attachment *attachment) 604 { 605 struct ttm_operation_ctx ctx = {.interruptible = true}; 606 struct amdgpu_bo *bo = attachment->bo_va->base.bo; 607 int ret; 608 609 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_CPU); 610 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 611 if (ret) 612 return ret; 613 614 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_GTT); 615 return ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 616 } 617 618 /** 619 * kfd_mem_dmamap_sg_bo() - Create DMA mapped sg_table to access DOORBELL or MMIO BO 620 * @mem: SG BO of the DOORBELL or MMIO resource on the owning device 621 * @attachment: Virtual address attachment of the BO on accessing device 622 * 623 * An access request from the device that owns DOORBELL does not require DMA mapping. 624 * This is because the request doesn't go through PCIe root complex i.e. it instead 625 * loops back. The need to DMA map arises only when accessing peer device's DOORBELL 626 * 627 * In contrast, all access requests for MMIO need to be DMA mapped without regard to 628 * device ownership. This is because access requests for MMIO go through PCIe root 629 * complex. 630 * 631 * This is accomplished in two steps: 632 * - Obtain DMA mapped address of DOORBELL or MMIO memory that could be used 633 * in updating requesting device's page table 634 * - Signal TTM to mark memory pointed to by requesting device's BO as GPU 635 * accessible. This allows an update of requesting device's page table 636 * with entries associated with DOOREBELL or MMIO memory 637 * 638 * This method is invoked in the following contexts: 639 * - Mapping of DOORBELL or MMIO BO of same or peer device 640 * - Validating an evicted DOOREBELL or MMIO BO on device seeking access 641 * 642 * Return: ZERO if successful, NON-ZERO otherwise 643 */ 644 static int 645 kfd_mem_dmamap_sg_bo(struct kgd_mem *mem, 646 struct kfd_mem_attachment *attachment) 647 { 648 struct ttm_operation_ctx ctx = {.interruptible = true}; 649 struct amdgpu_bo *bo = attachment->bo_va->base.bo; 650 struct amdgpu_device *adev = attachment->adev; 651 struct ttm_tt *ttm = bo->tbo.ttm; 652 enum dma_data_direction dir; 653 dma_addr_t dma_addr; 654 bool mmio; 655 int ret; 656 657 /* Expect SG Table of dmapmap BO to be NULL */ 658 mmio = (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP); 659 if (unlikely(ttm->sg)) { 660 pr_err("SG Table of %d BO for peer device is UNEXPECTEDLY NON-NULL", mmio); 661 return -EINVAL; 662 } 663 664 dir = mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? 665 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 666 dma_addr = mem->bo->tbo.sg->sgl->dma_address; 667 pr_debug("%d BO size: %d\n", mmio, mem->bo->tbo.sg->sgl->length); 668 pr_debug("%d BO address before DMA mapping: %llx\n", mmio, dma_addr); 669 dma_addr = dma_map_resource(adev->dev, dma_addr, 670 mem->bo->tbo.sg->sgl->length, dir, DMA_ATTR_SKIP_CPU_SYNC); 671 ret = dma_mapping_error(adev->dev, dma_addr); 672 if (unlikely(ret)) 673 return ret; 674 pr_debug("%d BO address after DMA mapping: %llx\n", mmio, dma_addr); 675 676 ttm->sg = create_sg_table(dma_addr, mem->bo->tbo.sg->sgl->length); 677 if (unlikely(!ttm->sg)) { 678 ret = -ENOMEM; 679 goto unmap_sg; 680 } 681 682 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_GTT); 683 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 684 if (unlikely(ret)) 685 goto free_sg; 686 687 return ret; 688 689 free_sg: 690 sg_free_table(ttm->sg); 691 kfree(ttm->sg); 692 ttm->sg = NULL; 693 unmap_sg: 694 dma_unmap_resource(adev->dev, dma_addr, mem->bo->tbo.sg->sgl->length, 695 dir, DMA_ATTR_SKIP_CPU_SYNC); 696 return ret; 697 } 698 699 static int 700 kfd_mem_dmamap_attachment(struct kgd_mem *mem, 701 struct kfd_mem_attachment *attachment) 702 { 703 switch (attachment->type) { 704 case KFD_MEM_ATT_SHARED: 705 return 0; 706 case KFD_MEM_ATT_USERPTR: 707 return kfd_mem_dmamap_userptr(mem, attachment); 708 case KFD_MEM_ATT_DMABUF: 709 return kfd_mem_dmamap_dmabuf(attachment); 710 case KFD_MEM_ATT_SG: 711 return kfd_mem_dmamap_sg_bo(mem, attachment); 712 default: 713 WARN_ON_ONCE(1); 714 } 715 return -EINVAL; 716 } 717 718 static void 719 kfd_mem_dmaunmap_userptr(struct kgd_mem *mem, 720 struct kfd_mem_attachment *attachment) 721 { 722 enum dma_data_direction direction = 723 mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? 724 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 725 struct ttm_operation_ctx ctx = {.interruptible = false}; 726 struct amdgpu_bo *bo = attachment->bo_va->base.bo; 727 struct amdgpu_device *adev = attachment->adev; 728 struct ttm_tt *ttm = bo->tbo.ttm; 729 730 if (unlikely(!ttm->sg)) 731 return; 732 733 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_CPU); 734 ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 735 736 dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0); 737 sg_free_table(ttm->sg); 738 kfree(ttm->sg); 739 ttm->sg = NULL; 740 } 741 742 static void 743 kfd_mem_dmaunmap_dmabuf(struct kfd_mem_attachment *attachment) 744 { 745 /* This is a no-op. We don't want to trigger eviction fences when 746 * unmapping DMABufs. Therefore the invalidation (moving to system 747 * domain) is done in kfd_mem_dmamap_dmabuf. 748 */ 749 } 750 751 /** 752 * kfd_mem_dmaunmap_sg_bo() - Free DMA mapped sg_table of DOORBELL or MMIO BO 753 * @mem: SG BO of the DOORBELL or MMIO resource on the owning device 754 * @attachment: Virtual address attachment of the BO on accessing device 755 * 756 * The method performs following steps: 757 * - Signal TTM to mark memory pointed to by BO as GPU inaccessible 758 * - Free SG Table that is used to encapsulate DMA mapped memory of 759 * peer device's DOORBELL or MMIO memory 760 * 761 * This method is invoked in the following contexts: 762 * UNMapping of DOORBELL or MMIO BO on a device having access to its memory 763 * Eviction of DOOREBELL or MMIO BO on device having access to its memory 764 * 765 * Return: void 766 */ 767 static void 768 kfd_mem_dmaunmap_sg_bo(struct kgd_mem *mem, 769 struct kfd_mem_attachment *attachment) 770 { 771 struct ttm_operation_ctx ctx = {.interruptible = true}; 772 struct amdgpu_bo *bo = attachment->bo_va->base.bo; 773 struct amdgpu_device *adev = attachment->adev; 774 struct ttm_tt *ttm = bo->tbo.ttm; 775 enum dma_data_direction dir; 776 777 if (unlikely(!ttm->sg)) { 778 pr_debug("SG Table of BO is NULL"); 779 return; 780 } 781 782 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_CPU); 783 ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 784 785 dir = mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? 786 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 787 dma_unmap_resource(adev->dev, ttm->sg->sgl->dma_address, 788 ttm->sg->sgl->length, dir, DMA_ATTR_SKIP_CPU_SYNC); 789 sg_free_table(ttm->sg); 790 kfree(ttm->sg); 791 ttm->sg = NULL; 792 bo->tbo.sg = NULL; 793 } 794 795 static void 796 kfd_mem_dmaunmap_attachment(struct kgd_mem *mem, 797 struct kfd_mem_attachment *attachment) 798 { 799 switch (attachment->type) { 800 case KFD_MEM_ATT_SHARED: 801 break; 802 case KFD_MEM_ATT_USERPTR: 803 kfd_mem_dmaunmap_userptr(mem, attachment); 804 break; 805 case KFD_MEM_ATT_DMABUF: 806 kfd_mem_dmaunmap_dmabuf(attachment); 807 break; 808 case KFD_MEM_ATT_SG: 809 kfd_mem_dmaunmap_sg_bo(mem, attachment); 810 break; 811 default: 812 WARN_ON_ONCE(1); 813 } 814 } 815 816 static int kfd_mem_export_dmabuf(struct kgd_mem *mem) 817 { 818 if (!mem->dmabuf) { 819 struct amdgpu_device *bo_adev; 820 struct dma_buf *dmabuf; 821 int r, fd; 822 823 bo_adev = amdgpu_ttm_adev(mem->bo->tbo.bdev); 824 r = drm_gem_prime_handle_to_fd(&bo_adev->ddev, bo_adev->kfd.client.file, 825 mem->gem_handle, 826 mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? 827 DRM_RDWR : 0, &fd); 828 if (r) 829 return r; 830 dmabuf = dma_buf_get(fd); 831 close_fd(fd); 832 if (WARN_ON_ONCE(IS_ERR(dmabuf))) 833 return PTR_ERR(dmabuf); 834 mem->dmabuf = dmabuf; 835 } 836 837 return 0; 838 } 839 840 static int 841 kfd_mem_attach_dmabuf(struct amdgpu_device *adev, struct kgd_mem *mem, 842 struct amdgpu_bo **bo) 843 { 844 struct drm_gem_object *gobj; 845 int ret; 846 847 ret = kfd_mem_export_dmabuf(mem); 848 if (ret) 849 return ret; 850 851 gobj = amdgpu_gem_prime_import(adev_to_drm(adev), mem->dmabuf); 852 if (IS_ERR(gobj)) 853 return PTR_ERR(gobj); 854 855 *bo = gem_to_amdgpu_bo(gobj); 856 (*bo)->flags |= AMDGPU_GEM_CREATE_PREEMPTIBLE; 857 858 return 0; 859 } 860 861 /* kfd_mem_attach - Add a BO to a VM 862 * 863 * Everything that needs to bo done only once when a BO is first added 864 * to a VM. It can later be mapped and unmapped many times without 865 * repeating these steps. 866 * 867 * 0. Create BO for DMA mapping, if needed 868 * 1. Allocate and initialize BO VA entry data structure 869 * 2. Add BO to the VM 870 * 3. Determine ASIC-specific PTE flags 871 * 4. Alloc page tables and directories if needed 872 * 4a. Validate new page tables and directories 873 */ 874 static int kfd_mem_attach(struct amdgpu_device *adev, struct kgd_mem *mem, 875 struct amdgpu_vm *vm, bool is_aql) 876 { 877 struct amdgpu_device *bo_adev = amdgpu_ttm_adev(mem->bo->tbo.bdev); 878 unsigned long bo_size = mem->bo->tbo.base.size; 879 uint64_t va = mem->va; 880 struct kfd_mem_attachment *attachment[2] = {NULL, NULL}; 881 struct amdgpu_bo *bo[2] = {NULL, NULL}; 882 struct amdgpu_bo_va *bo_va; 883 bool same_hive = false; 884 int i, ret; 885 886 if (!va) { 887 pr_err("Invalid VA when adding BO to VM\n"); 888 return -EINVAL; 889 } 890 891 /* Determine access to VRAM, MMIO and DOORBELL BOs of peer devices 892 * 893 * The access path of MMIO and DOORBELL BOs of is always over PCIe. 894 * In contrast the access path of VRAM BOs depens upon the type of 895 * link that connects the peer device. Access over PCIe is allowed 896 * if peer device has large BAR. In contrast, access over xGMI is 897 * allowed for both small and large BAR configurations of peer device 898 */ 899 if ((adev != bo_adev && !(adev->flags & AMD_IS_APU)) && 900 ((mem->domain == AMDGPU_GEM_DOMAIN_VRAM) || 901 (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) || 902 (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP))) { 903 if (mem->domain == AMDGPU_GEM_DOMAIN_VRAM) 904 same_hive = amdgpu_xgmi_same_hive(adev, bo_adev); 905 if (!same_hive && !amdgpu_device_is_peer_accessible(bo_adev, adev)) 906 return -EINVAL; 907 } 908 909 for (i = 0; i <= is_aql; i++) { 910 attachment[i] = kzalloc(sizeof(*attachment[i]), GFP_KERNEL); 911 if (unlikely(!attachment[i])) { 912 ret = -ENOMEM; 913 goto unwind; 914 } 915 916 pr_debug("\t add VA 0x%llx - 0x%llx to vm %p\n", va, 917 va + bo_size, vm); 918 919 if ((adev == bo_adev && !(mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) || 920 (amdgpu_ttm_tt_get_usermm(mem->bo->tbo.ttm) && reuse_dmamap(adev, bo_adev)) || 921 (mem->domain == AMDGPU_GEM_DOMAIN_GTT && reuse_dmamap(adev, bo_adev)) || 922 same_hive) { 923 /* Mappings on the local GPU, or VRAM mappings in the 924 * local hive, or userptr, or GTT mapping can reuse dma map 925 * address space share the original BO 926 */ 927 attachment[i]->type = KFD_MEM_ATT_SHARED; 928 bo[i] = mem->bo; 929 drm_gem_object_get(&bo[i]->tbo.base); 930 } else if (i > 0) { 931 /* Multiple mappings on the same GPU share the BO */ 932 attachment[i]->type = KFD_MEM_ATT_SHARED; 933 bo[i] = bo[0]; 934 drm_gem_object_get(&bo[i]->tbo.base); 935 } else if (amdgpu_ttm_tt_get_usermm(mem->bo->tbo.ttm)) { 936 /* Create an SG BO to DMA-map userptrs on other GPUs */ 937 attachment[i]->type = KFD_MEM_ATT_USERPTR; 938 ret = create_dmamap_sg_bo(adev, mem, &bo[i]); 939 if (ret) 940 goto unwind; 941 /* Handle DOORBELL BOs of peer devices and MMIO BOs of local and peer devices */ 942 } else if (mem->bo->tbo.type == ttm_bo_type_sg) { 943 WARN_ONCE(!(mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL || 944 mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP), 945 "Handing invalid SG BO in ATTACH request"); 946 attachment[i]->type = KFD_MEM_ATT_SG; 947 ret = create_dmamap_sg_bo(adev, mem, &bo[i]); 948 if (ret) 949 goto unwind; 950 /* Enable acces to GTT and VRAM BOs of peer devices */ 951 } else if (mem->domain == AMDGPU_GEM_DOMAIN_GTT || 952 mem->domain == AMDGPU_GEM_DOMAIN_VRAM) { 953 attachment[i]->type = KFD_MEM_ATT_DMABUF; 954 ret = kfd_mem_attach_dmabuf(adev, mem, &bo[i]); 955 if (ret) 956 goto unwind; 957 pr_debug("Employ DMABUF mechanism to enable peer GPU access\n"); 958 } else { 959 WARN_ONCE(true, "Handling invalid ATTACH request"); 960 ret = -EINVAL; 961 goto unwind; 962 } 963 964 /* Add BO to VM internal data structures */ 965 ret = amdgpu_bo_reserve(bo[i], false); 966 if (ret) { 967 pr_debug("Unable to reserve BO during memory attach"); 968 goto unwind; 969 } 970 bo_va = amdgpu_vm_bo_find(vm, bo[i]); 971 if (!bo_va) 972 bo_va = amdgpu_vm_bo_add(adev, vm, bo[i]); 973 else 974 ++bo_va->ref_count; 975 attachment[i]->bo_va = bo_va; 976 amdgpu_bo_unreserve(bo[i]); 977 if (unlikely(!attachment[i]->bo_va)) { 978 ret = -ENOMEM; 979 pr_err("Failed to add BO object to VM. ret == %d\n", 980 ret); 981 goto unwind; 982 } 983 attachment[i]->va = va; 984 attachment[i]->pte_flags = get_pte_flags(adev, mem); 985 attachment[i]->adev = adev; 986 list_add(&attachment[i]->list, &mem->attachments); 987 988 va += bo_size; 989 } 990 991 return 0; 992 993 unwind: 994 for (; i >= 0; i--) { 995 if (!attachment[i]) 996 continue; 997 if (attachment[i]->bo_va) { 998 amdgpu_bo_reserve(bo[i], true); 999 if (--attachment[i]->bo_va->ref_count == 0) 1000 amdgpu_vm_bo_del(adev, attachment[i]->bo_va); 1001 amdgpu_bo_unreserve(bo[i]); 1002 list_del(&attachment[i]->list); 1003 } 1004 if (bo[i]) 1005 drm_gem_object_put(&bo[i]->tbo.base); 1006 kfree(attachment[i]); 1007 } 1008 return ret; 1009 } 1010 1011 static void kfd_mem_detach(struct kfd_mem_attachment *attachment) 1012 { 1013 struct amdgpu_bo *bo = attachment->bo_va->base.bo; 1014 1015 pr_debug("\t remove VA 0x%llx in entry %p\n", 1016 attachment->va, attachment); 1017 if (--attachment->bo_va->ref_count == 0) 1018 amdgpu_vm_bo_del(attachment->adev, attachment->bo_va); 1019 drm_gem_object_put(&bo->tbo.base); 1020 list_del(&attachment->list); 1021 kfree(attachment); 1022 } 1023 1024 static void add_kgd_mem_to_kfd_bo_list(struct kgd_mem *mem, 1025 struct amdkfd_process_info *process_info, 1026 bool userptr) 1027 { 1028 mutex_lock(&process_info->lock); 1029 if (userptr) 1030 list_add_tail(&mem->validate_list, 1031 &process_info->userptr_valid_list); 1032 else 1033 list_add_tail(&mem->validate_list, &process_info->kfd_bo_list); 1034 mutex_unlock(&process_info->lock); 1035 } 1036 1037 static void remove_kgd_mem_from_kfd_bo_list(struct kgd_mem *mem, 1038 struct amdkfd_process_info *process_info) 1039 { 1040 mutex_lock(&process_info->lock); 1041 list_del(&mem->validate_list); 1042 mutex_unlock(&process_info->lock); 1043 } 1044 1045 /* Initializes user pages. It registers the MMU notifier and validates 1046 * the userptr BO in the GTT domain. 1047 * 1048 * The BO must already be on the userptr_valid_list. Otherwise an 1049 * eviction and restore may happen that leaves the new BO unmapped 1050 * with the user mode queues running. 1051 * 1052 * Takes the process_info->lock to protect against concurrent restore 1053 * workers. 1054 * 1055 * Returns 0 for success, negative errno for errors. 1056 */ 1057 static int init_user_pages(struct kgd_mem *mem, uint64_t user_addr, 1058 bool criu_resume) 1059 { 1060 struct amdkfd_process_info *process_info = mem->process_info; 1061 struct amdgpu_bo *bo = mem->bo; 1062 struct ttm_operation_ctx ctx = { true, false }; 1063 struct hmm_range *range; 1064 int ret = 0; 1065 1066 mutex_lock(&process_info->lock); 1067 1068 ret = amdgpu_ttm_tt_set_userptr(&bo->tbo, user_addr, 0); 1069 if (ret) { 1070 pr_err("%s: Failed to set userptr: %d\n", __func__, ret); 1071 goto out; 1072 } 1073 1074 ret = amdgpu_hmm_register(bo, user_addr); 1075 if (ret) { 1076 pr_err("%s: Failed to register MMU notifier: %d\n", 1077 __func__, ret); 1078 goto out; 1079 } 1080 1081 if (criu_resume) { 1082 /* 1083 * During a CRIU restore operation, the userptr buffer objects 1084 * will be validated in the restore_userptr_work worker at a 1085 * later stage when it is scheduled by another ioctl called by 1086 * CRIU master process for the target pid for restore. 1087 */ 1088 mutex_lock(&process_info->notifier_lock); 1089 mem->invalid++; 1090 mutex_unlock(&process_info->notifier_lock); 1091 mutex_unlock(&process_info->lock); 1092 return 0; 1093 } 1094 1095 ret = amdgpu_ttm_tt_get_user_pages(bo, bo->tbo.ttm->pages, &range); 1096 if (ret) { 1097 if (ret == -EAGAIN) 1098 pr_debug("Failed to get user pages, try again\n"); 1099 else 1100 pr_err("%s: Failed to get user pages: %d\n", __func__, ret); 1101 goto unregister_out; 1102 } 1103 1104 ret = amdgpu_bo_reserve(bo, true); 1105 if (ret) { 1106 pr_err("%s: Failed to reserve BO\n", __func__); 1107 goto release_out; 1108 } 1109 amdgpu_bo_placement_from_domain(bo, mem->domain); 1110 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 1111 if (ret) 1112 pr_err("%s: failed to validate BO\n", __func__); 1113 amdgpu_bo_unreserve(bo); 1114 1115 release_out: 1116 amdgpu_ttm_tt_get_user_pages_done(bo->tbo.ttm, range); 1117 unregister_out: 1118 if (ret) 1119 amdgpu_hmm_unregister(bo); 1120 out: 1121 mutex_unlock(&process_info->lock); 1122 return ret; 1123 } 1124 1125 /* Reserving a BO and its page table BOs must happen atomically to 1126 * avoid deadlocks. Some operations update multiple VMs at once. Track 1127 * all the reservation info in a context structure. Optionally a sync 1128 * object can track VM updates. 1129 */ 1130 struct bo_vm_reservation_context { 1131 /* DRM execution context for the reservation */ 1132 struct drm_exec exec; 1133 /* Number of VMs reserved */ 1134 unsigned int n_vms; 1135 /* Pointer to sync object */ 1136 struct amdgpu_sync *sync; 1137 }; 1138 1139 enum bo_vm_match { 1140 BO_VM_NOT_MAPPED = 0, /* Match VMs where a BO is not mapped */ 1141 BO_VM_MAPPED, /* Match VMs where a BO is mapped */ 1142 BO_VM_ALL, /* Match all VMs a BO was added to */ 1143 }; 1144 1145 /** 1146 * reserve_bo_and_vm - reserve a BO and a VM unconditionally. 1147 * @mem: KFD BO structure. 1148 * @vm: the VM to reserve. 1149 * @ctx: the struct that will be used in unreserve_bo_and_vms(). 1150 */ 1151 static int reserve_bo_and_vm(struct kgd_mem *mem, 1152 struct amdgpu_vm *vm, 1153 struct bo_vm_reservation_context *ctx) 1154 { 1155 struct amdgpu_bo *bo = mem->bo; 1156 int ret; 1157 1158 WARN_ON(!vm); 1159 1160 ctx->n_vms = 1; 1161 ctx->sync = &mem->sync; 1162 drm_exec_init(&ctx->exec, DRM_EXEC_INTERRUPTIBLE_WAIT, 0); 1163 drm_exec_until_all_locked(&ctx->exec) { 1164 ret = amdgpu_vm_lock_pd(vm, &ctx->exec, 2); 1165 drm_exec_retry_on_contention(&ctx->exec); 1166 if (unlikely(ret)) 1167 goto error; 1168 1169 ret = drm_exec_prepare_obj(&ctx->exec, &bo->tbo.base, 1); 1170 drm_exec_retry_on_contention(&ctx->exec); 1171 if (unlikely(ret)) 1172 goto error; 1173 } 1174 return 0; 1175 1176 error: 1177 pr_err("Failed to reserve buffers in ttm.\n"); 1178 drm_exec_fini(&ctx->exec); 1179 return ret; 1180 } 1181 1182 /** 1183 * reserve_bo_and_cond_vms - reserve a BO and some VMs conditionally 1184 * @mem: KFD BO structure. 1185 * @vm: the VM to reserve. If NULL, then all VMs associated with the BO 1186 * is used. Otherwise, a single VM associated with the BO. 1187 * @map_type: the mapping status that will be used to filter the VMs. 1188 * @ctx: the struct that will be used in unreserve_bo_and_vms(). 1189 * 1190 * Returns 0 for success, negative for failure. 1191 */ 1192 static int reserve_bo_and_cond_vms(struct kgd_mem *mem, 1193 struct amdgpu_vm *vm, enum bo_vm_match map_type, 1194 struct bo_vm_reservation_context *ctx) 1195 { 1196 struct kfd_mem_attachment *entry; 1197 struct amdgpu_bo *bo = mem->bo; 1198 int ret; 1199 1200 ctx->sync = &mem->sync; 1201 drm_exec_init(&ctx->exec, DRM_EXEC_INTERRUPTIBLE_WAIT | 1202 DRM_EXEC_IGNORE_DUPLICATES, 0); 1203 drm_exec_until_all_locked(&ctx->exec) { 1204 ctx->n_vms = 0; 1205 list_for_each_entry(entry, &mem->attachments, list) { 1206 if ((vm && vm != entry->bo_va->base.vm) || 1207 (entry->is_mapped != map_type 1208 && map_type != BO_VM_ALL)) 1209 continue; 1210 1211 ret = amdgpu_vm_lock_pd(entry->bo_va->base.vm, 1212 &ctx->exec, 2); 1213 drm_exec_retry_on_contention(&ctx->exec); 1214 if (unlikely(ret)) 1215 goto error; 1216 ++ctx->n_vms; 1217 } 1218 1219 ret = drm_exec_prepare_obj(&ctx->exec, &bo->tbo.base, 1); 1220 drm_exec_retry_on_contention(&ctx->exec); 1221 if (unlikely(ret)) 1222 goto error; 1223 } 1224 return 0; 1225 1226 error: 1227 pr_err("Failed to reserve buffers in ttm.\n"); 1228 drm_exec_fini(&ctx->exec); 1229 return ret; 1230 } 1231 1232 /** 1233 * unreserve_bo_and_vms - Unreserve BO and VMs from a reservation context 1234 * @ctx: Reservation context to unreserve 1235 * @wait: Optionally wait for a sync object representing pending VM updates 1236 * @intr: Whether the wait is interruptible 1237 * 1238 * Also frees any resources allocated in 1239 * reserve_bo_and_(cond_)vm(s). Returns the status from 1240 * amdgpu_sync_wait. 1241 */ 1242 static int unreserve_bo_and_vms(struct bo_vm_reservation_context *ctx, 1243 bool wait, bool intr) 1244 { 1245 int ret = 0; 1246 1247 if (wait) 1248 ret = amdgpu_sync_wait(ctx->sync, intr); 1249 1250 drm_exec_fini(&ctx->exec); 1251 ctx->sync = NULL; 1252 return ret; 1253 } 1254 1255 static int unmap_bo_from_gpuvm(struct kgd_mem *mem, 1256 struct kfd_mem_attachment *entry, 1257 struct amdgpu_sync *sync) 1258 { 1259 struct amdgpu_bo_va *bo_va = entry->bo_va; 1260 struct amdgpu_device *adev = entry->adev; 1261 struct amdgpu_vm *vm = bo_va->base.vm; 1262 1263 if (bo_va->queue_refcount) { 1264 pr_debug("bo_va->queue_refcount %d\n", bo_va->queue_refcount); 1265 return -EBUSY; 1266 } 1267 1268 amdgpu_vm_bo_unmap(adev, bo_va, entry->va); 1269 1270 amdgpu_vm_clear_freed(adev, vm, &bo_va->last_pt_update); 1271 1272 amdgpu_sync_fence(sync, bo_va->last_pt_update); 1273 1274 return 0; 1275 } 1276 1277 static int update_gpuvm_pte(struct kgd_mem *mem, 1278 struct kfd_mem_attachment *entry, 1279 struct amdgpu_sync *sync) 1280 { 1281 struct amdgpu_bo_va *bo_va = entry->bo_va; 1282 struct amdgpu_device *adev = entry->adev; 1283 int ret; 1284 1285 ret = kfd_mem_dmamap_attachment(mem, entry); 1286 if (ret) 1287 return ret; 1288 1289 /* Update the page tables */ 1290 ret = amdgpu_vm_bo_update(adev, bo_va, false); 1291 if (ret) { 1292 pr_err("amdgpu_vm_bo_update failed\n"); 1293 return ret; 1294 } 1295 1296 return amdgpu_sync_fence(sync, bo_va->last_pt_update); 1297 } 1298 1299 static int map_bo_to_gpuvm(struct kgd_mem *mem, 1300 struct kfd_mem_attachment *entry, 1301 struct amdgpu_sync *sync, 1302 bool no_update_pte) 1303 { 1304 int ret; 1305 1306 /* Set virtual address for the allocation */ 1307 ret = amdgpu_vm_bo_map(entry->adev, entry->bo_va, entry->va, 0, 1308 amdgpu_bo_size(entry->bo_va->base.bo), 1309 entry->pte_flags); 1310 if (ret) { 1311 pr_err("Failed to map VA 0x%llx in vm. ret %d\n", 1312 entry->va, ret); 1313 return ret; 1314 } 1315 1316 if (no_update_pte) 1317 return 0; 1318 1319 ret = update_gpuvm_pte(mem, entry, sync); 1320 if (ret) { 1321 pr_err("update_gpuvm_pte() failed\n"); 1322 goto update_gpuvm_pte_failed; 1323 } 1324 1325 return 0; 1326 1327 update_gpuvm_pte_failed: 1328 unmap_bo_from_gpuvm(mem, entry, sync); 1329 kfd_mem_dmaunmap_attachment(mem, entry); 1330 return ret; 1331 } 1332 1333 static int process_validate_vms(struct amdkfd_process_info *process_info, 1334 struct ww_acquire_ctx *ticket) 1335 { 1336 struct amdgpu_vm *peer_vm; 1337 int ret; 1338 1339 list_for_each_entry(peer_vm, &process_info->vm_list_head, 1340 vm_list_node) { 1341 ret = vm_validate_pt_pd_bos(peer_vm, ticket); 1342 if (ret) 1343 return ret; 1344 } 1345 1346 return 0; 1347 } 1348 1349 static int process_sync_pds_resv(struct amdkfd_process_info *process_info, 1350 struct amdgpu_sync *sync) 1351 { 1352 struct amdgpu_vm *peer_vm; 1353 int ret; 1354 1355 list_for_each_entry(peer_vm, &process_info->vm_list_head, 1356 vm_list_node) { 1357 struct amdgpu_bo *pd = peer_vm->root.bo; 1358 1359 ret = amdgpu_sync_resv(NULL, sync, pd->tbo.base.resv, 1360 AMDGPU_SYNC_NE_OWNER, 1361 AMDGPU_FENCE_OWNER_KFD); 1362 if (ret) 1363 return ret; 1364 } 1365 1366 return 0; 1367 } 1368 1369 static int process_update_pds(struct amdkfd_process_info *process_info, 1370 struct amdgpu_sync *sync) 1371 { 1372 struct amdgpu_vm *peer_vm; 1373 int ret; 1374 1375 list_for_each_entry(peer_vm, &process_info->vm_list_head, 1376 vm_list_node) { 1377 ret = vm_update_pds(peer_vm, sync); 1378 if (ret) 1379 return ret; 1380 } 1381 1382 return 0; 1383 } 1384 1385 static int init_kfd_vm(struct amdgpu_vm *vm, void **process_info, 1386 struct dma_fence **ef) 1387 { 1388 struct amdkfd_process_info *info = NULL; 1389 int ret; 1390 1391 if (!*process_info) { 1392 info = kzalloc(sizeof(*info), GFP_KERNEL); 1393 if (!info) 1394 return -ENOMEM; 1395 1396 mutex_init(&info->lock); 1397 mutex_init(&info->notifier_lock); 1398 INIT_LIST_HEAD(&info->vm_list_head); 1399 INIT_LIST_HEAD(&info->kfd_bo_list); 1400 INIT_LIST_HEAD(&info->userptr_valid_list); 1401 INIT_LIST_HEAD(&info->userptr_inval_list); 1402 1403 info->eviction_fence = 1404 amdgpu_amdkfd_fence_create(dma_fence_context_alloc(1), 1405 current->mm, 1406 NULL); 1407 if (!info->eviction_fence) { 1408 pr_err("Failed to create eviction fence\n"); 1409 ret = -ENOMEM; 1410 goto create_evict_fence_fail; 1411 } 1412 1413 info->pid = get_task_pid(current->group_leader, PIDTYPE_PID); 1414 INIT_DELAYED_WORK(&info->restore_userptr_work, 1415 amdgpu_amdkfd_restore_userptr_worker); 1416 1417 *process_info = info; 1418 } 1419 1420 vm->process_info = *process_info; 1421 1422 /* Validate page directory and attach eviction fence */ 1423 ret = amdgpu_bo_reserve(vm->root.bo, true); 1424 if (ret) 1425 goto reserve_pd_fail; 1426 ret = vm_validate_pt_pd_bos(vm, NULL); 1427 if (ret) { 1428 pr_err("validate_pt_pd_bos() failed\n"); 1429 goto validate_pd_fail; 1430 } 1431 ret = amdgpu_bo_sync_wait(vm->root.bo, 1432 AMDGPU_FENCE_OWNER_KFD, false); 1433 if (ret) 1434 goto wait_pd_fail; 1435 ret = dma_resv_reserve_fences(vm->root.bo->tbo.base.resv, 1); 1436 if (ret) 1437 goto reserve_shared_fail; 1438 dma_resv_add_fence(vm->root.bo->tbo.base.resv, 1439 &vm->process_info->eviction_fence->base, 1440 DMA_RESV_USAGE_BOOKKEEP); 1441 amdgpu_bo_unreserve(vm->root.bo); 1442 1443 /* Update process info */ 1444 mutex_lock(&vm->process_info->lock); 1445 list_add_tail(&vm->vm_list_node, 1446 &(vm->process_info->vm_list_head)); 1447 vm->process_info->n_vms++; 1448 1449 *ef = dma_fence_get(&vm->process_info->eviction_fence->base); 1450 mutex_unlock(&vm->process_info->lock); 1451 1452 return 0; 1453 1454 reserve_shared_fail: 1455 wait_pd_fail: 1456 validate_pd_fail: 1457 amdgpu_bo_unreserve(vm->root.bo); 1458 reserve_pd_fail: 1459 vm->process_info = NULL; 1460 if (info) { 1461 dma_fence_put(&info->eviction_fence->base); 1462 *process_info = NULL; 1463 put_pid(info->pid); 1464 create_evict_fence_fail: 1465 mutex_destroy(&info->lock); 1466 mutex_destroy(&info->notifier_lock); 1467 kfree(info); 1468 } 1469 return ret; 1470 } 1471 1472 /** 1473 * amdgpu_amdkfd_gpuvm_pin_bo() - Pins a BO using following criteria 1474 * @bo: Handle of buffer object being pinned 1475 * @domain: Domain into which BO should be pinned 1476 * 1477 * - USERPTR BOs are UNPINNABLE and will return error 1478 * - All other BO types (GTT, VRAM, MMIO and DOORBELL) will have their 1479 * PIN count incremented. It is valid to PIN a BO multiple times 1480 * 1481 * Return: ZERO if successful in pinning, Non-Zero in case of error. 1482 */ 1483 static int amdgpu_amdkfd_gpuvm_pin_bo(struct amdgpu_bo *bo, u32 domain) 1484 { 1485 int ret = 0; 1486 1487 ret = amdgpu_bo_reserve(bo, false); 1488 if (unlikely(ret)) 1489 return ret; 1490 1491 if (bo->flags & AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS) { 1492 /* 1493 * If bo is not contiguous on VRAM, move to system memory first to ensure 1494 * we can get contiguous VRAM space after evicting other BOs. 1495 */ 1496 if (!(bo->tbo.resource->placement & TTM_PL_FLAG_CONTIGUOUS)) { 1497 struct ttm_operation_ctx ctx = { true, false }; 1498 1499 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_GTT); 1500 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 1501 if (unlikely(ret)) { 1502 pr_debug("validate bo 0x%p to GTT failed %d\n", &bo->tbo, ret); 1503 goto out; 1504 } 1505 } 1506 } 1507 1508 ret = amdgpu_bo_pin_restricted(bo, domain, 0, 0); 1509 if (ret) 1510 pr_err("Error in Pinning BO to domain: %d\n", domain); 1511 1512 amdgpu_bo_sync_wait(bo, AMDGPU_FENCE_OWNER_KFD, false); 1513 out: 1514 amdgpu_bo_unreserve(bo); 1515 return ret; 1516 } 1517 1518 /** 1519 * amdgpu_amdkfd_gpuvm_unpin_bo() - Unpins BO using following criteria 1520 * @bo: Handle of buffer object being unpinned 1521 * 1522 * - Is a illegal request for USERPTR BOs and is ignored 1523 * - All other BO types (GTT, VRAM, MMIO and DOORBELL) will have their 1524 * PIN count decremented. Calls to UNPIN must balance calls to PIN 1525 */ 1526 static void amdgpu_amdkfd_gpuvm_unpin_bo(struct amdgpu_bo *bo) 1527 { 1528 int ret = 0; 1529 1530 ret = amdgpu_bo_reserve(bo, false); 1531 if (unlikely(ret)) 1532 return; 1533 1534 amdgpu_bo_unpin(bo); 1535 amdgpu_bo_unreserve(bo); 1536 } 1537 1538 int amdgpu_amdkfd_gpuvm_set_vm_pasid(struct amdgpu_device *adev, 1539 struct amdgpu_vm *avm, u32 pasid) 1540 1541 { 1542 int ret; 1543 1544 /* Free the original amdgpu allocated pasid, 1545 * will be replaced with kfd allocated pasid. 1546 */ 1547 if (avm->pasid) { 1548 amdgpu_pasid_free(avm->pasid); 1549 amdgpu_vm_set_pasid(adev, avm, 0); 1550 } 1551 1552 ret = amdgpu_vm_set_pasid(adev, avm, pasid); 1553 if (ret) 1554 return ret; 1555 1556 return 0; 1557 } 1558 1559 int amdgpu_amdkfd_gpuvm_acquire_process_vm(struct amdgpu_device *adev, 1560 struct amdgpu_vm *avm, 1561 void **process_info, 1562 struct dma_fence **ef) 1563 { 1564 int ret; 1565 1566 /* Already a compute VM? */ 1567 if (avm->process_info) 1568 return -EINVAL; 1569 1570 /* Convert VM into a compute VM */ 1571 ret = amdgpu_vm_make_compute(adev, avm); 1572 if (ret) 1573 return ret; 1574 1575 /* Initialize KFD part of the VM and process info */ 1576 ret = init_kfd_vm(avm, process_info, ef); 1577 if (ret) 1578 return ret; 1579 1580 amdgpu_vm_set_task_info(avm); 1581 1582 return 0; 1583 } 1584 1585 void amdgpu_amdkfd_gpuvm_destroy_cb(struct amdgpu_device *adev, 1586 struct amdgpu_vm *vm) 1587 { 1588 struct amdkfd_process_info *process_info = vm->process_info; 1589 1590 if (!process_info) 1591 return; 1592 1593 /* Update process info */ 1594 mutex_lock(&process_info->lock); 1595 process_info->n_vms--; 1596 list_del(&vm->vm_list_node); 1597 mutex_unlock(&process_info->lock); 1598 1599 vm->process_info = NULL; 1600 1601 /* Release per-process resources when last compute VM is destroyed */ 1602 if (!process_info->n_vms) { 1603 WARN_ON(!list_empty(&process_info->kfd_bo_list)); 1604 WARN_ON(!list_empty(&process_info->userptr_valid_list)); 1605 WARN_ON(!list_empty(&process_info->userptr_inval_list)); 1606 1607 dma_fence_put(&process_info->eviction_fence->base); 1608 cancel_delayed_work_sync(&process_info->restore_userptr_work); 1609 put_pid(process_info->pid); 1610 mutex_destroy(&process_info->lock); 1611 mutex_destroy(&process_info->notifier_lock); 1612 kfree(process_info); 1613 } 1614 } 1615 1616 void amdgpu_amdkfd_gpuvm_release_process_vm(struct amdgpu_device *adev, 1617 void *drm_priv) 1618 { 1619 struct amdgpu_vm *avm; 1620 1621 if (WARN_ON(!adev || !drm_priv)) 1622 return; 1623 1624 avm = drm_priv_to_vm(drm_priv); 1625 1626 pr_debug("Releasing process vm %p\n", avm); 1627 1628 /* The original pasid of amdgpu vm has already been 1629 * released during making a amdgpu vm to a compute vm 1630 * The current pasid is managed by kfd and will be 1631 * released on kfd process destroy. Set amdgpu pasid 1632 * to 0 to avoid duplicate release. 1633 */ 1634 amdgpu_vm_release_compute(adev, avm); 1635 } 1636 1637 uint64_t amdgpu_amdkfd_gpuvm_get_process_page_dir(void *drm_priv) 1638 { 1639 struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv); 1640 struct amdgpu_bo *pd = avm->root.bo; 1641 struct amdgpu_device *adev = amdgpu_ttm_adev(pd->tbo.bdev); 1642 1643 if (adev->asic_type < CHIP_VEGA10) 1644 return avm->pd_phys_addr >> AMDGPU_GPU_PAGE_SHIFT; 1645 return avm->pd_phys_addr; 1646 } 1647 1648 void amdgpu_amdkfd_block_mmu_notifications(void *p) 1649 { 1650 struct amdkfd_process_info *pinfo = (struct amdkfd_process_info *)p; 1651 1652 mutex_lock(&pinfo->lock); 1653 WRITE_ONCE(pinfo->block_mmu_notifications, true); 1654 mutex_unlock(&pinfo->lock); 1655 } 1656 1657 int amdgpu_amdkfd_criu_resume(void *p) 1658 { 1659 int ret = 0; 1660 struct amdkfd_process_info *pinfo = (struct amdkfd_process_info *)p; 1661 1662 mutex_lock(&pinfo->lock); 1663 pr_debug("scheduling work\n"); 1664 mutex_lock(&pinfo->notifier_lock); 1665 pinfo->evicted_bos++; 1666 mutex_unlock(&pinfo->notifier_lock); 1667 if (!READ_ONCE(pinfo->block_mmu_notifications)) { 1668 ret = -EINVAL; 1669 goto out_unlock; 1670 } 1671 WRITE_ONCE(pinfo->block_mmu_notifications, false); 1672 queue_delayed_work(system_freezable_wq, 1673 &pinfo->restore_userptr_work, 0); 1674 1675 out_unlock: 1676 mutex_unlock(&pinfo->lock); 1677 return ret; 1678 } 1679 1680 size_t amdgpu_amdkfd_get_available_memory(struct amdgpu_device *adev, 1681 uint8_t xcp_id) 1682 { 1683 uint64_t reserved_for_pt = 1684 ESTIMATE_PT_SIZE(amdgpu_amdkfd_total_mem_size); 1685 struct amdgpu_ras *con = amdgpu_ras_get_context(adev); 1686 uint64_t reserved_for_ras = (con ? con->reserved_pages_in_bytes : 0); 1687 ssize_t available; 1688 uint64_t vram_available, system_mem_available, ttm_mem_available; 1689 1690 spin_lock(&kfd_mem_limit.mem_limit_lock); 1691 vram_available = KFD_XCP_MEMORY_SIZE(adev, xcp_id) 1692 - adev->kfd.vram_used_aligned[xcp_id] 1693 - atomic64_read(&adev->vram_pin_size) 1694 - reserved_for_pt 1695 - reserved_for_ras; 1696 1697 if (adev->flags & AMD_IS_APU) { 1698 system_mem_available = no_system_mem_limit ? 1699 kfd_mem_limit.max_system_mem_limit : 1700 kfd_mem_limit.max_system_mem_limit - 1701 kfd_mem_limit.system_mem_used; 1702 1703 ttm_mem_available = kfd_mem_limit.max_ttm_mem_limit - 1704 kfd_mem_limit.ttm_mem_used; 1705 1706 available = min3(system_mem_available, ttm_mem_available, 1707 vram_available); 1708 available = ALIGN_DOWN(available, PAGE_SIZE); 1709 } else { 1710 available = ALIGN_DOWN(vram_available, VRAM_AVAILABLITY_ALIGN); 1711 } 1712 1713 spin_unlock(&kfd_mem_limit.mem_limit_lock); 1714 1715 if (available < 0) 1716 available = 0; 1717 1718 return available; 1719 } 1720 1721 int amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu( 1722 struct amdgpu_device *adev, uint64_t va, uint64_t size, 1723 void *drm_priv, struct kgd_mem **mem, 1724 uint64_t *offset, uint32_t flags, bool criu_resume) 1725 { 1726 struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv); 1727 struct amdgpu_fpriv *fpriv = container_of(avm, struct amdgpu_fpriv, vm); 1728 enum ttm_bo_type bo_type = ttm_bo_type_device; 1729 struct sg_table *sg = NULL; 1730 uint64_t user_addr = 0; 1731 struct amdgpu_bo *bo; 1732 struct drm_gem_object *gobj = NULL; 1733 u32 domain, alloc_domain; 1734 uint64_t aligned_size; 1735 int8_t xcp_id = -1; 1736 u64 alloc_flags; 1737 int ret; 1738 1739 /* 1740 * Check on which domain to allocate BO 1741 */ 1742 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) { 1743 domain = alloc_domain = AMDGPU_GEM_DOMAIN_VRAM; 1744 1745 if (adev->flags & AMD_IS_APU) { 1746 domain = AMDGPU_GEM_DOMAIN_GTT; 1747 alloc_domain = AMDGPU_GEM_DOMAIN_GTT; 1748 alloc_flags = 0; 1749 } else { 1750 alloc_flags = AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE; 1751 alloc_flags |= (flags & KFD_IOC_ALLOC_MEM_FLAGS_PUBLIC) ? 1752 AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED : 0; 1753 1754 /* For contiguous VRAM allocation */ 1755 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_CONTIGUOUS) 1756 alloc_flags |= AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS; 1757 } 1758 xcp_id = fpriv->xcp_id == AMDGPU_XCP_NO_PARTITION ? 1759 0 : fpriv->xcp_id; 1760 } else if (flags & KFD_IOC_ALLOC_MEM_FLAGS_GTT) { 1761 domain = alloc_domain = AMDGPU_GEM_DOMAIN_GTT; 1762 alloc_flags = 0; 1763 } else { 1764 domain = AMDGPU_GEM_DOMAIN_GTT; 1765 alloc_domain = AMDGPU_GEM_DOMAIN_CPU; 1766 alloc_flags = AMDGPU_GEM_CREATE_PREEMPTIBLE; 1767 1768 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) { 1769 if (!offset || !*offset) 1770 return -EINVAL; 1771 user_addr = untagged_addr(*offset); 1772 } else if (flags & (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL | 1773 KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) { 1774 bo_type = ttm_bo_type_sg; 1775 if (size > UINT_MAX) 1776 return -EINVAL; 1777 sg = create_sg_table(*offset, size); 1778 if (!sg) 1779 return -ENOMEM; 1780 } else { 1781 return -EINVAL; 1782 } 1783 } 1784 1785 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_COHERENT) 1786 alloc_flags |= AMDGPU_GEM_CREATE_COHERENT; 1787 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_EXT_COHERENT) 1788 alloc_flags |= AMDGPU_GEM_CREATE_EXT_COHERENT; 1789 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_UNCACHED) 1790 alloc_flags |= AMDGPU_GEM_CREATE_UNCACHED; 1791 1792 *mem = kzalloc(sizeof(struct kgd_mem), GFP_KERNEL); 1793 if (!*mem) { 1794 ret = -ENOMEM; 1795 goto err; 1796 } 1797 INIT_LIST_HEAD(&(*mem)->attachments); 1798 mutex_init(&(*mem)->lock); 1799 (*mem)->aql_queue = !!(flags & KFD_IOC_ALLOC_MEM_FLAGS_AQL_QUEUE_MEM); 1800 1801 /* Workaround for AQL queue wraparound bug. Map the same 1802 * memory twice. That means we only actually allocate half 1803 * the memory. 1804 */ 1805 if ((*mem)->aql_queue) 1806 size >>= 1; 1807 aligned_size = PAGE_ALIGN(size); 1808 1809 (*mem)->alloc_flags = flags; 1810 1811 amdgpu_sync_create(&(*mem)->sync); 1812 1813 ret = amdgpu_amdkfd_reserve_mem_limit(adev, aligned_size, flags, 1814 xcp_id); 1815 if (ret) { 1816 pr_debug("Insufficient memory\n"); 1817 goto err_reserve_limit; 1818 } 1819 1820 pr_debug("\tcreate BO VA 0x%llx size 0x%llx domain %s xcp_id %d\n", 1821 va, (*mem)->aql_queue ? size << 1 : size, 1822 domain_string(alloc_domain), xcp_id); 1823 1824 ret = amdgpu_gem_object_create(adev, aligned_size, 1, alloc_domain, alloc_flags, 1825 bo_type, NULL, &gobj, xcp_id + 1); 1826 if (ret) { 1827 pr_debug("Failed to create BO on domain %s. ret %d\n", 1828 domain_string(alloc_domain), ret); 1829 goto err_bo_create; 1830 } 1831 ret = drm_vma_node_allow(&gobj->vma_node, drm_priv); 1832 if (ret) { 1833 pr_debug("Failed to allow vma node access. ret %d\n", ret); 1834 goto err_node_allow; 1835 } 1836 ret = drm_gem_handle_create(adev->kfd.client.file, gobj, &(*mem)->gem_handle); 1837 if (ret) 1838 goto err_gem_handle_create; 1839 bo = gem_to_amdgpu_bo(gobj); 1840 if (bo_type == ttm_bo_type_sg) { 1841 bo->tbo.sg = sg; 1842 bo->tbo.ttm->sg = sg; 1843 } 1844 bo->kfd_bo = *mem; 1845 (*mem)->bo = bo; 1846 if (user_addr) 1847 bo->flags |= AMDGPU_AMDKFD_CREATE_USERPTR_BO; 1848 1849 (*mem)->va = va; 1850 (*mem)->domain = domain; 1851 (*mem)->mapped_to_gpu_memory = 0; 1852 (*mem)->process_info = avm->process_info; 1853 1854 add_kgd_mem_to_kfd_bo_list(*mem, avm->process_info, user_addr); 1855 1856 if (user_addr) { 1857 pr_debug("creating userptr BO for user_addr = %llx\n", user_addr); 1858 ret = init_user_pages(*mem, user_addr, criu_resume); 1859 if (ret) 1860 goto allocate_init_user_pages_failed; 1861 } else if (flags & (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL | 1862 KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) { 1863 ret = amdgpu_amdkfd_gpuvm_pin_bo(bo, AMDGPU_GEM_DOMAIN_GTT); 1864 if (ret) { 1865 pr_err("Pinning MMIO/DOORBELL BO during ALLOC FAILED\n"); 1866 goto err_pin_bo; 1867 } 1868 bo->allowed_domains = AMDGPU_GEM_DOMAIN_GTT; 1869 bo->preferred_domains = AMDGPU_GEM_DOMAIN_GTT; 1870 } else { 1871 mutex_lock(&avm->process_info->lock); 1872 if (avm->process_info->eviction_fence && 1873 !dma_fence_is_signaled(&avm->process_info->eviction_fence->base)) 1874 ret = amdgpu_amdkfd_bo_validate_and_fence(bo, domain, 1875 &avm->process_info->eviction_fence->base); 1876 mutex_unlock(&avm->process_info->lock); 1877 if (ret) 1878 goto err_validate_bo; 1879 } 1880 1881 if (offset) 1882 *offset = amdgpu_bo_mmap_offset(bo); 1883 1884 return 0; 1885 1886 allocate_init_user_pages_failed: 1887 err_pin_bo: 1888 err_validate_bo: 1889 remove_kgd_mem_from_kfd_bo_list(*mem, avm->process_info); 1890 drm_gem_handle_delete(adev->kfd.client.file, (*mem)->gem_handle); 1891 err_gem_handle_create: 1892 drm_vma_node_revoke(&gobj->vma_node, drm_priv); 1893 err_node_allow: 1894 /* Don't unreserve system mem limit twice */ 1895 goto err_reserve_limit; 1896 err_bo_create: 1897 amdgpu_amdkfd_unreserve_mem_limit(adev, aligned_size, flags, xcp_id); 1898 err_reserve_limit: 1899 amdgpu_sync_free(&(*mem)->sync); 1900 mutex_destroy(&(*mem)->lock); 1901 if (gobj) 1902 drm_gem_object_put(gobj); 1903 else 1904 kfree(*mem); 1905 err: 1906 if (sg) { 1907 sg_free_table(sg); 1908 kfree(sg); 1909 } 1910 return ret; 1911 } 1912 1913 int amdgpu_amdkfd_gpuvm_free_memory_of_gpu( 1914 struct amdgpu_device *adev, struct kgd_mem *mem, void *drm_priv, 1915 uint64_t *size) 1916 { 1917 struct amdkfd_process_info *process_info = mem->process_info; 1918 unsigned long bo_size = mem->bo->tbo.base.size; 1919 bool use_release_notifier = (mem->bo->kfd_bo == mem); 1920 struct kfd_mem_attachment *entry, *tmp; 1921 struct bo_vm_reservation_context ctx; 1922 unsigned int mapped_to_gpu_memory; 1923 int ret; 1924 bool is_imported = false; 1925 1926 mutex_lock(&mem->lock); 1927 1928 /* Unpin MMIO/DOORBELL BO's that were pinned during allocation */ 1929 if (mem->alloc_flags & 1930 (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL | 1931 KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) { 1932 amdgpu_amdkfd_gpuvm_unpin_bo(mem->bo); 1933 } 1934 1935 mapped_to_gpu_memory = mem->mapped_to_gpu_memory; 1936 is_imported = mem->is_imported; 1937 mutex_unlock(&mem->lock); 1938 /* lock is not needed after this, since mem is unused and will 1939 * be freed anyway 1940 */ 1941 1942 if (mapped_to_gpu_memory > 0) { 1943 pr_debug("BO VA 0x%llx size 0x%lx is still mapped.\n", 1944 mem->va, bo_size); 1945 return -EBUSY; 1946 } 1947 1948 /* Make sure restore workers don't access the BO any more */ 1949 mutex_lock(&process_info->lock); 1950 list_del(&mem->validate_list); 1951 mutex_unlock(&process_info->lock); 1952 1953 /* Cleanup user pages and MMU notifiers */ 1954 if (amdgpu_ttm_tt_get_usermm(mem->bo->tbo.ttm)) { 1955 amdgpu_hmm_unregister(mem->bo); 1956 mutex_lock(&process_info->notifier_lock); 1957 amdgpu_ttm_tt_discard_user_pages(mem->bo->tbo.ttm, mem->range); 1958 mutex_unlock(&process_info->notifier_lock); 1959 } 1960 1961 ret = reserve_bo_and_cond_vms(mem, NULL, BO_VM_ALL, &ctx); 1962 if (unlikely(ret)) 1963 return ret; 1964 1965 amdgpu_amdkfd_remove_eviction_fence(mem->bo, 1966 process_info->eviction_fence); 1967 pr_debug("Release VA 0x%llx - 0x%llx\n", mem->va, 1968 mem->va + bo_size * (1 + mem->aql_queue)); 1969 1970 /* Remove from VM internal data structures */ 1971 list_for_each_entry_safe(entry, tmp, &mem->attachments, list) { 1972 kfd_mem_dmaunmap_attachment(mem, entry); 1973 kfd_mem_detach(entry); 1974 } 1975 1976 ret = unreserve_bo_and_vms(&ctx, false, false); 1977 1978 /* Free the sync object */ 1979 amdgpu_sync_free(&mem->sync); 1980 1981 /* If the SG is not NULL, it's one we created for a doorbell or mmio 1982 * remap BO. We need to free it. 1983 */ 1984 if (mem->bo->tbo.sg) { 1985 sg_free_table(mem->bo->tbo.sg); 1986 kfree(mem->bo->tbo.sg); 1987 } 1988 1989 /* Update the size of the BO being freed if it was allocated from 1990 * VRAM and is not imported. For APP APU VRAM allocations are done 1991 * in GTT domain 1992 */ 1993 if (size) { 1994 if (!is_imported && 1995 (mem->bo->preferred_domains == AMDGPU_GEM_DOMAIN_VRAM || 1996 ((adev->flags & AMD_IS_APU) && 1997 mem->bo->preferred_domains == AMDGPU_GEM_DOMAIN_GTT))) 1998 *size = bo_size; 1999 else 2000 *size = 0; 2001 } 2002 2003 /* Free the BO*/ 2004 drm_vma_node_revoke(&mem->bo->tbo.base.vma_node, drm_priv); 2005 drm_gem_handle_delete(adev->kfd.client.file, mem->gem_handle); 2006 if (mem->dmabuf) { 2007 dma_buf_put(mem->dmabuf); 2008 mem->dmabuf = NULL; 2009 } 2010 mutex_destroy(&mem->lock); 2011 2012 /* If this releases the last reference, it will end up calling 2013 * amdgpu_amdkfd_release_notify and kfree the mem struct. That's why 2014 * this needs to be the last call here. 2015 */ 2016 drm_gem_object_put(&mem->bo->tbo.base); 2017 2018 /* 2019 * For kgd_mem allocated in amdgpu_amdkfd_gpuvm_import_dmabuf(), 2020 * explicitly free it here. 2021 */ 2022 if (!use_release_notifier) 2023 kfree(mem); 2024 2025 return ret; 2026 } 2027 2028 int amdgpu_amdkfd_gpuvm_map_memory_to_gpu( 2029 struct amdgpu_device *adev, struct kgd_mem *mem, 2030 void *drm_priv) 2031 { 2032 struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv); 2033 int ret; 2034 struct amdgpu_bo *bo; 2035 uint32_t domain; 2036 struct kfd_mem_attachment *entry; 2037 struct bo_vm_reservation_context ctx; 2038 unsigned long bo_size; 2039 bool is_invalid_userptr = false; 2040 2041 bo = mem->bo; 2042 if (!bo) { 2043 pr_err("Invalid BO when mapping memory to GPU\n"); 2044 return -EINVAL; 2045 } 2046 2047 /* Make sure restore is not running concurrently. Since we 2048 * don't map invalid userptr BOs, we rely on the next restore 2049 * worker to do the mapping 2050 */ 2051 mutex_lock(&mem->process_info->lock); 2052 2053 /* Lock notifier lock. If we find an invalid userptr BO, we can be 2054 * sure that the MMU notifier is no longer running 2055 * concurrently and the queues are actually stopped 2056 */ 2057 if (amdgpu_ttm_tt_get_usermm(bo->tbo.ttm)) { 2058 mutex_lock(&mem->process_info->notifier_lock); 2059 is_invalid_userptr = !!mem->invalid; 2060 mutex_unlock(&mem->process_info->notifier_lock); 2061 } 2062 2063 mutex_lock(&mem->lock); 2064 2065 domain = mem->domain; 2066 bo_size = bo->tbo.base.size; 2067 2068 pr_debug("Map VA 0x%llx - 0x%llx to vm %p domain %s\n", 2069 mem->va, 2070 mem->va + bo_size * (1 + mem->aql_queue), 2071 avm, domain_string(domain)); 2072 2073 if (!kfd_mem_is_attached(avm, mem)) { 2074 ret = kfd_mem_attach(adev, mem, avm, mem->aql_queue); 2075 if (ret) 2076 goto out; 2077 } 2078 2079 ret = reserve_bo_and_vm(mem, avm, &ctx); 2080 if (unlikely(ret)) 2081 goto out; 2082 2083 /* Userptr can be marked as "not invalid", but not actually be 2084 * validated yet (still in the system domain). In that case 2085 * the queues are still stopped and we can leave mapping for 2086 * the next restore worker 2087 */ 2088 if (amdgpu_ttm_tt_get_usermm(bo->tbo.ttm) && 2089 bo->tbo.resource->mem_type == TTM_PL_SYSTEM) 2090 is_invalid_userptr = true; 2091 2092 ret = vm_validate_pt_pd_bos(avm, NULL); 2093 if (unlikely(ret)) 2094 goto out_unreserve; 2095 2096 list_for_each_entry(entry, &mem->attachments, list) { 2097 if (entry->bo_va->base.vm != avm || entry->is_mapped) 2098 continue; 2099 2100 pr_debug("\t map VA 0x%llx - 0x%llx in entry %p\n", 2101 entry->va, entry->va + bo_size, entry); 2102 2103 ret = map_bo_to_gpuvm(mem, entry, ctx.sync, 2104 is_invalid_userptr); 2105 if (ret) { 2106 pr_err("Failed to map bo to gpuvm\n"); 2107 goto out_unreserve; 2108 } 2109 2110 ret = vm_update_pds(avm, ctx.sync); 2111 if (ret) { 2112 pr_err("Failed to update page directories\n"); 2113 goto out_unreserve; 2114 } 2115 2116 entry->is_mapped = true; 2117 mem->mapped_to_gpu_memory++; 2118 pr_debug("\t INC mapping count %d\n", 2119 mem->mapped_to_gpu_memory); 2120 } 2121 2122 ret = unreserve_bo_and_vms(&ctx, false, false); 2123 2124 goto out; 2125 2126 out_unreserve: 2127 unreserve_bo_and_vms(&ctx, false, false); 2128 out: 2129 mutex_unlock(&mem->process_info->lock); 2130 mutex_unlock(&mem->lock); 2131 return ret; 2132 } 2133 2134 int amdgpu_amdkfd_gpuvm_dmaunmap_mem(struct kgd_mem *mem, void *drm_priv) 2135 { 2136 struct kfd_mem_attachment *entry; 2137 struct amdgpu_vm *vm; 2138 int ret; 2139 2140 vm = drm_priv_to_vm(drm_priv); 2141 2142 mutex_lock(&mem->lock); 2143 2144 ret = amdgpu_bo_reserve(mem->bo, true); 2145 if (ret) 2146 goto out; 2147 2148 list_for_each_entry(entry, &mem->attachments, list) { 2149 if (entry->bo_va->base.vm != vm) 2150 continue; 2151 if (entry->bo_va->base.bo->tbo.ttm && 2152 !entry->bo_va->base.bo->tbo.ttm->sg) 2153 continue; 2154 2155 kfd_mem_dmaunmap_attachment(mem, entry); 2156 } 2157 2158 amdgpu_bo_unreserve(mem->bo); 2159 out: 2160 mutex_unlock(&mem->lock); 2161 2162 return ret; 2163 } 2164 2165 int amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu( 2166 struct amdgpu_device *adev, struct kgd_mem *mem, void *drm_priv) 2167 { 2168 struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv); 2169 unsigned long bo_size = mem->bo->tbo.base.size; 2170 struct kfd_mem_attachment *entry; 2171 struct bo_vm_reservation_context ctx; 2172 int ret; 2173 2174 mutex_lock(&mem->lock); 2175 2176 ret = reserve_bo_and_cond_vms(mem, avm, BO_VM_MAPPED, &ctx); 2177 if (unlikely(ret)) 2178 goto out; 2179 /* If no VMs were reserved, it means the BO wasn't actually mapped */ 2180 if (ctx.n_vms == 0) { 2181 ret = -EINVAL; 2182 goto unreserve_out; 2183 } 2184 2185 ret = vm_validate_pt_pd_bos(avm, NULL); 2186 if (unlikely(ret)) 2187 goto unreserve_out; 2188 2189 pr_debug("Unmap VA 0x%llx - 0x%llx from vm %p\n", 2190 mem->va, 2191 mem->va + bo_size * (1 + mem->aql_queue), 2192 avm); 2193 2194 list_for_each_entry(entry, &mem->attachments, list) { 2195 if (entry->bo_va->base.vm != avm || !entry->is_mapped) 2196 continue; 2197 2198 pr_debug("\t unmap VA 0x%llx - 0x%llx from entry %p\n", 2199 entry->va, entry->va + bo_size, entry); 2200 2201 ret = unmap_bo_from_gpuvm(mem, entry, ctx.sync); 2202 if (ret) 2203 goto unreserve_out; 2204 2205 entry->is_mapped = false; 2206 2207 mem->mapped_to_gpu_memory--; 2208 pr_debug("\t DEC mapping count %d\n", 2209 mem->mapped_to_gpu_memory); 2210 } 2211 2212 unreserve_out: 2213 unreserve_bo_and_vms(&ctx, false, false); 2214 out: 2215 mutex_unlock(&mem->lock); 2216 return ret; 2217 } 2218 2219 int amdgpu_amdkfd_gpuvm_sync_memory( 2220 struct amdgpu_device *adev, struct kgd_mem *mem, bool intr) 2221 { 2222 struct amdgpu_sync sync; 2223 int ret; 2224 2225 amdgpu_sync_create(&sync); 2226 2227 mutex_lock(&mem->lock); 2228 amdgpu_sync_clone(&mem->sync, &sync); 2229 mutex_unlock(&mem->lock); 2230 2231 ret = amdgpu_sync_wait(&sync, intr); 2232 amdgpu_sync_free(&sync); 2233 return ret; 2234 } 2235 2236 /** 2237 * amdgpu_amdkfd_map_gtt_bo_to_gart - Map BO to GART and increment reference count 2238 * @bo: Buffer object to be mapped 2239 * @bo_gart: Return bo reference 2240 * 2241 * Before return, bo reference count is incremented. To release the reference and unpin/ 2242 * unmap the BO, call amdgpu_amdkfd_free_gtt_mem. 2243 */ 2244 int amdgpu_amdkfd_map_gtt_bo_to_gart(struct amdgpu_bo *bo, struct amdgpu_bo **bo_gart) 2245 { 2246 int ret; 2247 2248 ret = amdgpu_bo_reserve(bo, true); 2249 if (ret) { 2250 pr_err("Failed to reserve bo. ret %d\n", ret); 2251 goto err_reserve_bo_failed; 2252 } 2253 2254 ret = amdgpu_bo_pin(bo, AMDGPU_GEM_DOMAIN_GTT); 2255 if (ret) { 2256 pr_err("Failed to pin bo. ret %d\n", ret); 2257 goto err_pin_bo_failed; 2258 } 2259 2260 ret = amdgpu_ttm_alloc_gart(&bo->tbo); 2261 if (ret) { 2262 pr_err("Failed to bind bo to GART. ret %d\n", ret); 2263 goto err_map_bo_gart_failed; 2264 } 2265 2266 amdgpu_amdkfd_remove_eviction_fence( 2267 bo, bo->vm_bo->vm->process_info->eviction_fence); 2268 2269 amdgpu_bo_unreserve(bo); 2270 2271 *bo_gart = amdgpu_bo_ref(bo); 2272 2273 return 0; 2274 2275 err_map_bo_gart_failed: 2276 amdgpu_bo_unpin(bo); 2277 err_pin_bo_failed: 2278 amdgpu_bo_unreserve(bo); 2279 err_reserve_bo_failed: 2280 2281 return ret; 2282 } 2283 2284 /** amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel() - Map a GTT BO for kernel CPU access 2285 * 2286 * @mem: Buffer object to be mapped for CPU access 2287 * @kptr[out]: pointer in kernel CPU address space 2288 * @size[out]: size of the buffer 2289 * 2290 * Pins the BO and maps it for kernel CPU access. The eviction fence is removed 2291 * from the BO, since pinned BOs cannot be evicted. The bo must remain on the 2292 * validate_list, so the GPU mapping can be restored after a page table was 2293 * evicted. 2294 * 2295 * Return: 0 on success, error code on failure 2296 */ 2297 int amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(struct kgd_mem *mem, 2298 void **kptr, uint64_t *size) 2299 { 2300 int ret; 2301 struct amdgpu_bo *bo = mem->bo; 2302 2303 if (amdgpu_ttm_tt_get_usermm(bo->tbo.ttm)) { 2304 pr_err("userptr can't be mapped to kernel\n"); 2305 return -EINVAL; 2306 } 2307 2308 mutex_lock(&mem->process_info->lock); 2309 2310 ret = amdgpu_bo_reserve(bo, true); 2311 if (ret) { 2312 pr_err("Failed to reserve bo. ret %d\n", ret); 2313 goto bo_reserve_failed; 2314 } 2315 2316 ret = amdgpu_bo_pin(bo, AMDGPU_GEM_DOMAIN_GTT); 2317 if (ret) { 2318 pr_err("Failed to pin bo. ret %d\n", ret); 2319 goto pin_failed; 2320 } 2321 2322 ret = amdgpu_bo_kmap(bo, kptr); 2323 if (ret) { 2324 pr_err("Failed to map bo to kernel. ret %d\n", ret); 2325 goto kmap_failed; 2326 } 2327 2328 amdgpu_amdkfd_remove_eviction_fence( 2329 bo, mem->process_info->eviction_fence); 2330 2331 if (size) 2332 *size = amdgpu_bo_size(bo); 2333 2334 amdgpu_bo_unreserve(bo); 2335 2336 mutex_unlock(&mem->process_info->lock); 2337 return 0; 2338 2339 kmap_failed: 2340 amdgpu_bo_unpin(bo); 2341 pin_failed: 2342 amdgpu_bo_unreserve(bo); 2343 bo_reserve_failed: 2344 mutex_unlock(&mem->process_info->lock); 2345 2346 return ret; 2347 } 2348 2349 /** amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel() - Unmap a GTT BO for kernel CPU access 2350 * 2351 * @mem: Buffer object to be unmapped for CPU access 2352 * 2353 * Removes the kernel CPU mapping and unpins the BO. It does not restore the 2354 * eviction fence, so this function should only be used for cleanup before the 2355 * BO is destroyed. 2356 */ 2357 void amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(struct kgd_mem *mem) 2358 { 2359 struct amdgpu_bo *bo = mem->bo; 2360 2361 amdgpu_bo_reserve(bo, true); 2362 amdgpu_bo_kunmap(bo); 2363 amdgpu_bo_unpin(bo); 2364 amdgpu_bo_unreserve(bo); 2365 } 2366 2367 int amdgpu_amdkfd_gpuvm_get_vm_fault_info(struct amdgpu_device *adev, 2368 struct kfd_vm_fault_info *mem) 2369 { 2370 if (atomic_read(&adev->gmc.vm_fault_info_updated) == 1) { 2371 *mem = *adev->gmc.vm_fault_info; 2372 mb(); /* make sure read happened */ 2373 atomic_set(&adev->gmc.vm_fault_info_updated, 0); 2374 } 2375 return 0; 2376 } 2377 2378 static int import_obj_create(struct amdgpu_device *adev, 2379 struct dma_buf *dma_buf, 2380 struct drm_gem_object *obj, 2381 uint64_t va, void *drm_priv, 2382 struct kgd_mem **mem, uint64_t *size, 2383 uint64_t *mmap_offset) 2384 { 2385 struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv); 2386 struct amdgpu_bo *bo; 2387 int ret; 2388 2389 bo = gem_to_amdgpu_bo(obj); 2390 if (!(bo->preferred_domains & (AMDGPU_GEM_DOMAIN_VRAM | 2391 AMDGPU_GEM_DOMAIN_GTT))) 2392 /* Only VRAM and GTT BOs are supported */ 2393 return -EINVAL; 2394 2395 *mem = kzalloc(sizeof(struct kgd_mem), GFP_KERNEL); 2396 if (!*mem) 2397 return -ENOMEM; 2398 2399 ret = drm_vma_node_allow(&obj->vma_node, drm_priv); 2400 if (ret) 2401 goto err_free_mem; 2402 2403 if (size) 2404 *size = amdgpu_bo_size(bo); 2405 2406 if (mmap_offset) 2407 *mmap_offset = amdgpu_bo_mmap_offset(bo); 2408 2409 INIT_LIST_HEAD(&(*mem)->attachments); 2410 mutex_init(&(*mem)->lock); 2411 2412 (*mem)->alloc_flags = 2413 ((bo->preferred_domains & AMDGPU_GEM_DOMAIN_VRAM) ? 2414 KFD_IOC_ALLOC_MEM_FLAGS_VRAM : KFD_IOC_ALLOC_MEM_FLAGS_GTT) 2415 | KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE 2416 | KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE; 2417 2418 get_dma_buf(dma_buf); 2419 (*mem)->dmabuf = dma_buf; 2420 (*mem)->bo = bo; 2421 (*mem)->va = va; 2422 (*mem)->domain = (bo->preferred_domains & AMDGPU_GEM_DOMAIN_VRAM) && 2423 !(adev->flags & AMD_IS_APU) ? 2424 AMDGPU_GEM_DOMAIN_VRAM : AMDGPU_GEM_DOMAIN_GTT; 2425 2426 (*mem)->mapped_to_gpu_memory = 0; 2427 (*mem)->process_info = avm->process_info; 2428 add_kgd_mem_to_kfd_bo_list(*mem, avm->process_info, false); 2429 amdgpu_sync_create(&(*mem)->sync); 2430 (*mem)->is_imported = true; 2431 2432 mutex_lock(&avm->process_info->lock); 2433 if (avm->process_info->eviction_fence && 2434 !dma_fence_is_signaled(&avm->process_info->eviction_fence->base)) 2435 ret = amdgpu_amdkfd_bo_validate_and_fence(bo, (*mem)->domain, 2436 &avm->process_info->eviction_fence->base); 2437 mutex_unlock(&avm->process_info->lock); 2438 if (ret) 2439 goto err_remove_mem; 2440 2441 return 0; 2442 2443 err_remove_mem: 2444 remove_kgd_mem_from_kfd_bo_list(*mem, avm->process_info); 2445 drm_vma_node_revoke(&obj->vma_node, drm_priv); 2446 err_free_mem: 2447 kfree(*mem); 2448 return ret; 2449 } 2450 2451 int amdgpu_amdkfd_gpuvm_import_dmabuf_fd(struct amdgpu_device *adev, int fd, 2452 uint64_t va, void *drm_priv, 2453 struct kgd_mem **mem, uint64_t *size, 2454 uint64_t *mmap_offset) 2455 { 2456 struct drm_gem_object *obj; 2457 uint32_t handle; 2458 int ret; 2459 2460 ret = drm_gem_prime_fd_to_handle(&adev->ddev, adev->kfd.client.file, fd, 2461 &handle); 2462 if (ret) 2463 return ret; 2464 obj = drm_gem_object_lookup(adev->kfd.client.file, handle); 2465 if (!obj) { 2466 ret = -EINVAL; 2467 goto err_release_handle; 2468 } 2469 2470 ret = import_obj_create(adev, obj->dma_buf, obj, va, drm_priv, mem, size, 2471 mmap_offset); 2472 if (ret) 2473 goto err_put_obj; 2474 2475 (*mem)->gem_handle = handle; 2476 2477 return 0; 2478 2479 err_put_obj: 2480 drm_gem_object_put(obj); 2481 err_release_handle: 2482 drm_gem_handle_delete(adev->kfd.client.file, handle); 2483 return ret; 2484 } 2485 2486 int amdgpu_amdkfd_gpuvm_export_dmabuf(struct kgd_mem *mem, 2487 struct dma_buf **dma_buf) 2488 { 2489 int ret; 2490 2491 mutex_lock(&mem->lock); 2492 ret = kfd_mem_export_dmabuf(mem); 2493 if (ret) 2494 goto out; 2495 2496 get_dma_buf(mem->dmabuf); 2497 *dma_buf = mem->dmabuf; 2498 out: 2499 mutex_unlock(&mem->lock); 2500 return ret; 2501 } 2502 2503 /* Evict a userptr BO by stopping the queues if necessary 2504 * 2505 * Runs in MMU notifier, may be in RECLAIM_FS context. This means it 2506 * cannot do any memory allocations, and cannot take any locks that 2507 * are held elsewhere while allocating memory. 2508 * 2509 * It doesn't do anything to the BO itself. The real work happens in 2510 * restore, where we get updated page addresses. This function only 2511 * ensures that GPU access to the BO is stopped. 2512 */ 2513 int amdgpu_amdkfd_evict_userptr(struct mmu_interval_notifier *mni, 2514 unsigned long cur_seq, struct kgd_mem *mem) 2515 { 2516 struct amdkfd_process_info *process_info = mem->process_info; 2517 int r = 0; 2518 2519 /* Do not process MMU notifications during CRIU restore until 2520 * KFD_CRIU_OP_RESUME IOCTL is received 2521 */ 2522 if (READ_ONCE(process_info->block_mmu_notifications)) 2523 return 0; 2524 2525 mutex_lock(&process_info->notifier_lock); 2526 mmu_interval_set_seq(mni, cur_seq); 2527 2528 mem->invalid++; 2529 if (++process_info->evicted_bos == 1) { 2530 /* First eviction, stop the queues */ 2531 r = kgd2kfd_quiesce_mm(mni->mm, 2532 KFD_QUEUE_EVICTION_TRIGGER_USERPTR); 2533 if (r) 2534 pr_err("Failed to quiesce KFD\n"); 2535 queue_delayed_work(system_freezable_wq, 2536 &process_info->restore_userptr_work, 2537 msecs_to_jiffies(AMDGPU_USERPTR_RESTORE_DELAY_MS)); 2538 } 2539 mutex_unlock(&process_info->notifier_lock); 2540 2541 return r; 2542 } 2543 2544 /* Update invalid userptr BOs 2545 * 2546 * Moves invalidated (evicted) userptr BOs from userptr_valid_list to 2547 * userptr_inval_list and updates user pages for all BOs that have 2548 * been invalidated since their last update. 2549 */ 2550 static int update_invalid_user_pages(struct amdkfd_process_info *process_info, 2551 struct mm_struct *mm) 2552 { 2553 struct kgd_mem *mem, *tmp_mem; 2554 struct amdgpu_bo *bo; 2555 struct ttm_operation_ctx ctx = { false, false }; 2556 uint32_t invalid; 2557 int ret = 0; 2558 2559 mutex_lock(&process_info->notifier_lock); 2560 2561 /* Move all invalidated BOs to the userptr_inval_list */ 2562 list_for_each_entry_safe(mem, tmp_mem, 2563 &process_info->userptr_valid_list, 2564 validate_list) 2565 if (mem->invalid) 2566 list_move_tail(&mem->validate_list, 2567 &process_info->userptr_inval_list); 2568 2569 /* Go through userptr_inval_list and update any invalid user_pages */ 2570 list_for_each_entry(mem, &process_info->userptr_inval_list, 2571 validate_list) { 2572 invalid = mem->invalid; 2573 if (!invalid) 2574 /* BO hasn't been invalidated since the last 2575 * revalidation attempt. Keep its page list. 2576 */ 2577 continue; 2578 2579 bo = mem->bo; 2580 2581 amdgpu_ttm_tt_discard_user_pages(bo->tbo.ttm, mem->range); 2582 mem->range = NULL; 2583 2584 /* BO reservations and getting user pages (hmm_range_fault) 2585 * must happen outside the notifier lock 2586 */ 2587 mutex_unlock(&process_info->notifier_lock); 2588 2589 /* Move the BO to system (CPU) domain if necessary to unmap 2590 * and free the SG table 2591 */ 2592 if (bo->tbo.resource->mem_type != TTM_PL_SYSTEM) { 2593 if (amdgpu_bo_reserve(bo, true)) 2594 return -EAGAIN; 2595 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_CPU); 2596 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 2597 amdgpu_bo_unreserve(bo); 2598 if (ret) { 2599 pr_err("%s: Failed to invalidate userptr BO\n", 2600 __func__); 2601 return -EAGAIN; 2602 } 2603 } 2604 2605 /* Get updated user pages */ 2606 ret = amdgpu_ttm_tt_get_user_pages(bo, bo->tbo.ttm->pages, 2607 &mem->range); 2608 if (ret) { 2609 pr_debug("Failed %d to get user pages\n", ret); 2610 2611 /* Return -EFAULT bad address error as success. It will 2612 * fail later with a VM fault if the GPU tries to access 2613 * it. Better than hanging indefinitely with stalled 2614 * user mode queues. 2615 * 2616 * Return other error -EBUSY or -ENOMEM to retry restore 2617 */ 2618 if (ret != -EFAULT) 2619 return ret; 2620 2621 ret = 0; 2622 } 2623 2624 mutex_lock(&process_info->notifier_lock); 2625 2626 /* Mark the BO as valid unless it was invalidated 2627 * again concurrently. 2628 */ 2629 if (mem->invalid != invalid) { 2630 ret = -EAGAIN; 2631 goto unlock_out; 2632 } 2633 /* set mem valid if mem has hmm range associated */ 2634 if (mem->range) 2635 mem->invalid = 0; 2636 } 2637 2638 unlock_out: 2639 mutex_unlock(&process_info->notifier_lock); 2640 2641 return ret; 2642 } 2643 2644 /* Validate invalid userptr BOs 2645 * 2646 * Validates BOs on the userptr_inval_list. Also updates GPUVM page tables 2647 * with new page addresses and waits for the page table updates to complete. 2648 */ 2649 static int validate_invalid_user_pages(struct amdkfd_process_info *process_info) 2650 { 2651 struct ttm_operation_ctx ctx = { false, false }; 2652 struct amdgpu_sync sync; 2653 struct drm_exec exec; 2654 2655 struct amdgpu_vm *peer_vm; 2656 struct kgd_mem *mem, *tmp_mem; 2657 struct amdgpu_bo *bo; 2658 int ret; 2659 2660 amdgpu_sync_create(&sync); 2661 2662 drm_exec_init(&exec, 0, 0); 2663 /* Reserve all BOs and page tables for validation */ 2664 drm_exec_until_all_locked(&exec) { 2665 /* Reserve all the page directories */ 2666 list_for_each_entry(peer_vm, &process_info->vm_list_head, 2667 vm_list_node) { 2668 ret = amdgpu_vm_lock_pd(peer_vm, &exec, 2); 2669 drm_exec_retry_on_contention(&exec); 2670 if (unlikely(ret)) 2671 goto unreserve_out; 2672 } 2673 2674 /* Reserve the userptr_inval_list entries to resv_list */ 2675 list_for_each_entry(mem, &process_info->userptr_inval_list, 2676 validate_list) { 2677 struct drm_gem_object *gobj; 2678 2679 gobj = &mem->bo->tbo.base; 2680 ret = drm_exec_prepare_obj(&exec, gobj, 1); 2681 drm_exec_retry_on_contention(&exec); 2682 if (unlikely(ret)) 2683 goto unreserve_out; 2684 } 2685 } 2686 2687 ret = process_validate_vms(process_info, NULL); 2688 if (ret) 2689 goto unreserve_out; 2690 2691 /* Validate BOs and update GPUVM page tables */ 2692 list_for_each_entry_safe(mem, tmp_mem, 2693 &process_info->userptr_inval_list, 2694 validate_list) { 2695 struct kfd_mem_attachment *attachment; 2696 2697 bo = mem->bo; 2698 2699 /* Validate the BO if we got user pages */ 2700 if (bo->tbo.ttm->pages[0]) { 2701 amdgpu_bo_placement_from_domain(bo, mem->domain); 2702 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 2703 if (ret) { 2704 pr_err("%s: failed to validate BO\n", __func__); 2705 goto unreserve_out; 2706 } 2707 } 2708 2709 /* Update mapping. If the BO was not validated 2710 * (because we couldn't get user pages), this will 2711 * clear the page table entries, which will result in 2712 * VM faults if the GPU tries to access the invalid 2713 * memory. 2714 */ 2715 list_for_each_entry(attachment, &mem->attachments, list) { 2716 if (!attachment->is_mapped) 2717 continue; 2718 2719 kfd_mem_dmaunmap_attachment(mem, attachment); 2720 ret = update_gpuvm_pte(mem, attachment, &sync); 2721 if (ret) { 2722 pr_err("%s: update PTE failed\n", __func__); 2723 /* make sure this gets validated again */ 2724 mutex_lock(&process_info->notifier_lock); 2725 mem->invalid++; 2726 mutex_unlock(&process_info->notifier_lock); 2727 goto unreserve_out; 2728 } 2729 } 2730 } 2731 2732 /* Update page directories */ 2733 ret = process_update_pds(process_info, &sync); 2734 2735 unreserve_out: 2736 drm_exec_fini(&exec); 2737 amdgpu_sync_wait(&sync, false); 2738 amdgpu_sync_free(&sync); 2739 2740 return ret; 2741 } 2742 2743 /* Confirm that all user pages are valid while holding the notifier lock 2744 * 2745 * Moves valid BOs from the userptr_inval_list back to userptr_val_list. 2746 */ 2747 static int confirm_valid_user_pages_locked(struct amdkfd_process_info *process_info) 2748 { 2749 struct kgd_mem *mem, *tmp_mem; 2750 int ret = 0; 2751 2752 list_for_each_entry_safe(mem, tmp_mem, 2753 &process_info->userptr_inval_list, 2754 validate_list) { 2755 bool valid; 2756 2757 /* keep mem without hmm range at userptr_inval_list */ 2758 if (!mem->range) 2759 continue; 2760 2761 /* Only check mem with hmm range associated */ 2762 valid = amdgpu_ttm_tt_get_user_pages_done( 2763 mem->bo->tbo.ttm, mem->range); 2764 2765 mem->range = NULL; 2766 if (!valid) { 2767 WARN(!mem->invalid, "Invalid BO not marked invalid"); 2768 ret = -EAGAIN; 2769 continue; 2770 } 2771 2772 if (mem->invalid) { 2773 WARN(1, "Valid BO is marked invalid"); 2774 ret = -EAGAIN; 2775 continue; 2776 } 2777 2778 list_move_tail(&mem->validate_list, 2779 &process_info->userptr_valid_list); 2780 } 2781 2782 return ret; 2783 } 2784 2785 /* Worker callback to restore evicted userptr BOs 2786 * 2787 * Tries to update and validate all userptr BOs. If successful and no 2788 * concurrent evictions happened, the queues are restarted. Otherwise, 2789 * reschedule for another attempt later. 2790 */ 2791 static void amdgpu_amdkfd_restore_userptr_worker(struct work_struct *work) 2792 { 2793 struct delayed_work *dwork = to_delayed_work(work); 2794 struct amdkfd_process_info *process_info = 2795 container_of(dwork, struct amdkfd_process_info, 2796 restore_userptr_work); 2797 struct task_struct *usertask; 2798 struct mm_struct *mm; 2799 uint32_t evicted_bos; 2800 2801 mutex_lock(&process_info->notifier_lock); 2802 evicted_bos = process_info->evicted_bos; 2803 mutex_unlock(&process_info->notifier_lock); 2804 if (!evicted_bos) 2805 return; 2806 2807 /* Reference task and mm in case of concurrent process termination */ 2808 usertask = get_pid_task(process_info->pid, PIDTYPE_PID); 2809 if (!usertask) 2810 return; 2811 mm = get_task_mm(usertask); 2812 if (!mm) { 2813 put_task_struct(usertask); 2814 return; 2815 } 2816 2817 mutex_lock(&process_info->lock); 2818 2819 if (update_invalid_user_pages(process_info, mm)) 2820 goto unlock_out; 2821 /* userptr_inval_list can be empty if all evicted userptr BOs 2822 * have been freed. In that case there is nothing to validate 2823 * and we can just restart the queues. 2824 */ 2825 if (!list_empty(&process_info->userptr_inval_list)) { 2826 if (validate_invalid_user_pages(process_info)) 2827 goto unlock_out; 2828 } 2829 /* Final check for concurrent evicton and atomic update. If 2830 * another eviction happens after successful update, it will 2831 * be a first eviction that calls quiesce_mm. The eviction 2832 * reference counting inside KFD will handle this case. 2833 */ 2834 mutex_lock(&process_info->notifier_lock); 2835 if (process_info->evicted_bos != evicted_bos) 2836 goto unlock_notifier_out; 2837 2838 if (confirm_valid_user_pages_locked(process_info)) { 2839 WARN(1, "User pages unexpectedly invalid"); 2840 goto unlock_notifier_out; 2841 } 2842 2843 process_info->evicted_bos = evicted_bos = 0; 2844 2845 if (kgd2kfd_resume_mm(mm)) { 2846 pr_err("%s: Failed to resume KFD\n", __func__); 2847 /* No recovery from this failure. Probably the CP is 2848 * hanging. No point trying again. 2849 */ 2850 } 2851 2852 unlock_notifier_out: 2853 mutex_unlock(&process_info->notifier_lock); 2854 unlock_out: 2855 mutex_unlock(&process_info->lock); 2856 2857 /* If validation failed, reschedule another attempt */ 2858 if (evicted_bos) { 2859 queue_delayed_work(system_freezable_wq, 2860 &process_info->restore_userptr_work, 2861 msecs_to_jiffies(AMDGPU_USERPTR_RESTORE_DELAY_MS)); 2862 2863 kfd_smi_event_queue_restore_rescheduled(mm); 2864 } 2865 mmput(mm); 2866 put_task_struct(usertask); 2867 } 2868 2869 static void replace_eviction_fence(struct dma_fence __rcu **ef, 2870 struct dma_fence *new_ef) 2871 { 2872 struct dma_fence *old_ef = rcu_replace_pointer(*ef, new_ef, true 2873 /* protected by process_info->lock */); 2874 2875 /* If we're replacing an unsignaled eviction fence, that fence will 2876 * never be signaled, and if anyone is still waiting on that fence, 2877 * they will hang forever. This should never happen. We should only 2878 * replace the fence in restore_work that only gets scheduled after 2879 * eviction work signaled the fence. 2880 */ 2881 WARN_ONCE(!dma_fence_is_signaled(old_ef), 2882 "Replacing unsignaled eviction fence"); 2883 dma_fence_put(old_ef); 2884 } 2885 2886 /** amdgpu_amdkfd_gpuvm_restore_process_bos - Restore all BOs for the given 2887 * KFD process identified by process_info 2888 * 2889 * @process_info: amdkfd_process_info of the KFD process 2890 * 2891 * After memory eviction, restore thread calls this function. The function 2892 * should be called when the Process is still valid. BO restore involves - 2893 * 2894 * 1. Release old eviction fence and create new one 2895 * 2. Get two copies of PD BO list from all the VMs. Keep one copy as pd_list. 2896 * 3 Use the second PD list and kfd_bo_list to create a list (ctx.list) of 2897 * BOs that need to be reserved. 2898 * 4. Reserve all the BOs 2899 * 5. Validate of PD and PT BOs. 2900 * 6. Validate all KFD BOs using kfd_bo_list and Map them and add new fence 2901 * 7. Add fence to all PD and PT BOs. 2902 * 8. Unreserve all BOs 2903 */ 2904 int amdgpu_amdkfd_gpuvm_restore_process_bos(void *info, struct dma_fence __rcu **ef) 2905 { 2906 struct amdkfd_process_info *process_info = info; 2907 struct amdgpu_vm *peer_vm; 2908 struct kgd_mem *mem; 2909 struct list_head duplicate_save; 2910 struct amdgpu_sync sync_obj; 2911 unsigned long failed_size = 0; 2912 unsigned long total_size = 0; 2913 struct drm_exec exec; 2914 int ret; 2915 2916 INIT_LIST_HEAD(&duplicate_save); 2917 2918 mutex_lock(&process_info->lock); 2919 2920 drm_exec_init(&exec, DRM_EXEC_IGNORE_DUPLICATES, 0); 2921 drm_exec_until_all_locked(&exec) { 2922 list_for_each_entry(peer_vm, &process_info->vm_list_head, 2923 vm_list_node) { 2924 ret = amdgpu_vm_lock_pd(peer_vm, &exec, 2); 2925 drm_exec_retry_on_contention(&exec); 2926 if (unlikely(ret)) { 2927 pr_err("Locking VM PD failed, ret: %d\n", ret); 2928 goto ttm_reserve_fail; 2929 } 2930 } 2931 2932 /* Reserve all BOs and page tables/directory. Add all BOs from 2933 * kfd_bo_list to ctx.list 2934 */ 2935 list_for_each_entry(mem, &process_info->kfd_bo_list, 2936 validate_list) { 2937 struct drm_gem_object *gobj; 2938 2939 gobj = &mem->bo->tbo.base; 2940 ret = drm_exec_prepare_obj(&exec, gobj, 1); 2941 drm_exec_retry_on_contention(&exec); 2942 if (unlikely(ret)) { 2943 pr_err("drm_exec_prepare_obj failed, ret: %d\n", ret); 2944 goto ttm_reserve_fail; 2945 } 2946 } 2947 } 2948 2949 amdgpu_sync_create(&sync_obj); 2950 2951 /* Validate BOs managed by KFD */ 2952 list_for_each_entry(mem, &process_info->kfd_bo_list, 2953 validate_list) { 2954 2955 struct amdgpu_bo *bo = mem->bo; 2956 uint32_t domain = mem->domain; 2957 struct dma_resv_iter cursor; 2958 struct dma_fence *fence; 2959 2960 total_size += amdgpu_bo_size(bo); 2961 2962 ret = amdgpu_amdkfd_bo_validate(bo, domain, false); 2963 if (ret) { 2964 pr_debug("Memory eviction: Validate BOs failed\n"); 2965 failed_size += amdgpu_bo_size(bo); 2966 ret = amdgpu_amdkfd_bo_validate(bo, 2967 AMDGPU_GEM_DOMAIN_GTT, false); 2968 if (ret) { 2969 pr_debug("Memory eviction: Try again\n"); 2970 goto validate_map_fail; 2971 } 2972 } 2973 dma_resv_for_each_fence(&cursor, bo->tbo.base.resv, 2974 DMA_RESV_USAGE_KERNEL, fence) { 2975 ret = amdgpu_sync_fence(&sync_obj, fence); 2976 if (ret) { 2977 pr_debug("Memory eviction: Sync BO fence failed. Try again\n"); 2978 goto validate_map_fail; 2979 } 2980 } 2981 } 2982 2983 if (failed_size) 2984 pr_debug("0x%lx/0x%lx in system\n", failed_size, total_size); 2985 2986 /* Validate PDs, PTs and evicted DMABuf imports last. Otherwise BO 2987 * validations above would invalidate DMABuf imports again. 2988 */ 2989 ret = process_validate_vms(process_info, &exec.ticket); 2990 if (ret) { 2991 pr_debug("Validating VMs failed, ret: %d\n", ret); 2992 goto validate_map_fail; 2993 } 2994 2995 /* Update mappings managed by KFD. */ 2996 list_for_each_entry(mem, &process_info->kfd_bo_list, 2997 validate_list) { 2998 struct kfd_mem_attachment *attachment; 2999 3000 list_for_each_entry(attachment, &mem->attachments, list) { 3001 if (!attachment->is_mapped) 3002 continue; 3003 3004 kfd_mem_dmaunmap_attachment(mem, attachment); 3005 ret = update_gpuvm_pte(mem, attachment, &sync_obj); 3006 if (ret) { 3007 pr_debug("Memory eviction: update PTE failed. Try again\n"); 3008 goto validate_map_fail; 3009 } 3010 } 3011 } 3012 3013 /* Update mappings not managed by KFD */ 3014 list_for_each_entry(peer_vm, &process_info->vm_list_head, 3015 vm_list_node) { 3016 struct amdgpu_device *adev = amdgpu_ttm_adev( 3017 peer_vm->root.bo->tbo.bdev); 3018 3019 ret = amdgpu_vm_handle_moved(adev, peer_vm, &exec.ticket); 3020 if (ret) { 3021 pr_debug("Memory eviction: handle moved failed. Try again\n"); 3022 goto validate_map_fail; 3023 } 3024 } 3025 3026 /* Update page directories */ 3027 ret = process_update_pds(process_info, &sync_obj); 3028 if (ret) { 3029 pr_debug("Memory eviction: update PDs failed. Try again\n"); 3030 goto validate_map_fail; 3031 } 3032 3033 /* Sync with fences on all the page tables. They implicitly depend on any 3034 * move fences from amdgpu_vm_handle_moved above. 3035 */ 3036 ret = process_sync_pds_resv(process_info, &sync_obj); 3037 if (ret) { 3038 pr_debug("Memory eviction: Failed to sync to PD BO moving fence. Try again\n"); 3039 goto validate_map_fail; 3040 } 3041 3042 /* Wait for validate and PT updates to finish */ 3043 amdgpu_sync_wait(&sync_obj, false); 3044 3045 /* The old eviction fence may be unsignaled if restore happens 3046 * after a GPU reset or suspend/resume. Keep the old fence in that 3047 * case. Otherwise release the old eviction fence and create new 3048 * one, because fence only goes from unsignaled to signaled once 3049 * and cannot be reused. Use context and mm from the old fence. 3050 * 3051 * If an old eviction fence signals after this check, that's OK. 3052 * Anyone signaling an eviction fence must stop the queues first 3053 * and schedule another restore worker. 3054 */ 3055 if (dma_fence_is_signaled(&process_info->eviction_fence->base)) { 3056 struct amdgpu_amdkfd_fence *new_fence = 3057 amdgpu_amdkfd_fence_create( 3058 process_info->eviction_fence->base.context, 3059 process_info->eviction_fence->mm, 3060 NULL); 3061 3062 if (!new_fence) { 3063 pr_err("Failed to create eviction fence\n"); 3064 ret = -ENOMEM; 3065 goto validate_map_fail; 3066 } 3067 dma_fence_put(&process_info->eviction_fence->base); 3068 process_info->eviction_fence = new_fence; 3069 replace_eviction_fence(ef, dma_fence_get(&new_fence->base)); 3070 } else { 3071 WARN_ONCE(*ef != &process_info->eviction_fence->base, 3072 "KFD eviction fence doesn't match KGD process_info"); 3073 } 3074 3075 /* Attach new eviction fence to all BOs except pinned ones */ 3076 list_for_each_entry(mem, &process_info->kfd_bo_list, validate_list) { 3077 if (mem->bo->tbo.pin_count) 3078 continue; 3079 3080 dma_resv_add_fence(mem->bo->tbo.base.resv, 3081 &process_info->eviction_fence->base, 3082 DMA_RESV_USAGE_BOOKKEEP); 3083 } 3084 /* Attach eviction fence to PD / PT BOs and DMABuf imports */ 3085 list_for_each_entry(peer_vm, &process_info->vm_list_head, 3086 vm_list_node) { 3087 struct amdgpu_bo *bo = peer_vm->root.bo; 3088 3089 dma_resv_add_fence(bo->tbo.base.resv, 3090 &process_info->eviction_fence->base, 3091 DMA_RESV_USAGE_BOOKKEEP); 3092 } 3093 3094 validate_map_fail: 3095 amdgpu_sync_free(&sync_obj); 3096 ttm_reserve_fail: 3097 drm_exec_fini(&exec); 3098 mutex_unlock(&process_info->lock); 3099 return ret; 3100 } 3101 3102 int amdgpu_amdkfd_add_gws_to_process(void *info, void *gws, struct kgd_mem **mem) 3103 { 3104 struct amdkfd_process_info *process_info = (struct amdkfd_process_info *)info; 3105 struct amdgpu_bo *gws_bo = (struct amdgpu_bo *)gws; 3106 int ret; 3107 3108 if (!info || !gws) 3109 return -EINVAL; 3110 3111 *mem = kzalloc(sizeof(struct kgd_mem), GFP_KERNEL); 3112 if (!*mem) 3113 return -ENOMEM; 3114 3115 mutex_init(&(*mem)->lock); 3116 INIT_LIST_HEAD(&(*mem)->attachments); 3117 (*mem)->bo = amdgpu_bo_ref(gws_bo); 3118 (*mem)->domain = AMDGPU_GEM_DOMAIN_GWS; 3119 (*mem)->process_info = process_info; 3120 add_kgd_mem_to_kfd_bo_list(*mem, process_info, false); 3121 amdgpu_sync_create(&(*mem)->sync); 3122 3123 3124 /* Validate gws bo the first time it is added to process */ 3125 mutex_lock(&(*mem)->process_info->lock); 3126 ret = amdgpu_bo_reserve(gws_bo, false); 3127 if (unlikely(ret)) { 3128 pr_err("Reserve gws bo failed %d\n", ret); 3129 goto bo_reservation_failure; 3130 } 3131 3132 ret = amdgpu_amdkfd_bo_validate(gws_bo, AMDGPU_GEM_DOMAIN_GWS, true); 3133 if (ret) { 3134 pr_err("GWS BO validate failed %d\n", ret); 3135 goto bo_validation_failure; 3136 } 3137 /* GWS resource is shared b/t amdgpu and amdkfd 3138 * Add process eviction fence to bo so they can 3139 * evict each other. 3140 */ 3141 ret = dma_resv_reserve_fences(gws_bo->tbo.base.resv, 1); 3142 if (ret) 3143 goto reserve_shared_fail; 3144 dma_resv_add_fence(gws_bo->tbo.base.resv, 3145 &process_info->eviction_fence->base, 3146 DMA_RESV_USAGE_BOOKKEEP); 3147 amdgpu_bo_unreserve(gws_bo); 3148 mutex_unlock(&(*mem)->process_info->lock); 3149 3150 return ret; 3151 3152 reserve_shared_fail: 3153 bo_validation_failure: 3154 amdgpu_bo_unreserve(gws_bo); 3155 bo_reservation_failure: 3156 mutex_unlock(&(*mem)->process_info->lock); 3157 amdgpu_sync_free(&(*mem)->sync); 3158 remove_kgd_mem_from_kfd_bo_list(*mem, process_info); 3159 amdgpu_bo_unref(&gws_bo); 3160 mutex_destroy(&(*mem)->lock); 3161 kfree(*mem); 3162 *mem = NULL; 3163 return ret; 3164 } 3165 3166 int amdgpu_amdkfd_remove_gws_from_process(void *info, void *mem) 3167 { 3168 int ret; 3169 struct amdkfd_process_info *process_info = (struct amdkfd_process_info *)info; 3170 struct kgd_mem *kgd_mem = (struct kgd_mem *)mem; 3171 struct amdgpu_bo *gws_bo = kgd_mem->bo; 3172 3173 /* Remove BO from process's validate list so restore worker won't touch 3174 * it anymore 3175 */ 3176 remove_kgd_mem_from_kfd_bo_list(kgd_mem, process_info); 3177 3178 ret = amdgpu_bo_reserve(gws_bo, false); 3179 if (unlikely(ret)) { 3180 pr_err("Reserve gws bo failed %d\n", ret); 3181 //TODO add BO back to validate_list? 3182 return ret; 3183 } 3184 amdgpu_amdkfd_remove_eviction_fence(gws_bo, 3185 process_info->eviction_fence); 3186 amdgpu_bo_unreserve(gws_bo); 3187 amdgpu_sync_free(&kgd_mem->sync); 3188 amdgpu_bo_unref(&gws_bo); 3189 mutex_destroy(&kgd_mem->lock); 3190 kfree(mem); 3191 return 0; 3192 } 3193 3194 /* Returns GPU-specific tiling mode information */ 3195 int amdgpu_amdkfd_get_tile_config(struct amdgpu_device *adev, 3196 struct tile_config *config) 3197 { 3198 config->gb_addr_config = adev->gfx.config.gb_addr_config; 3199 config->tile_config_ptr = adev->gfx.config.tile_mode_array; 3200 config->num_tile_configs = 3201 ARRAY_SIZE(adev->gfx.config.tile_mode_array); 3202 config->macro_tile_config_ptr = 3203 adev->gfx.config.macrotile_mode_array; 3204 config->num_macro_tile_configs = 3205 ARRAY_SIZE(adev->gfx.config.macrotile_mode_array); 3206 3207 /* Those values are not set from GFX9 onwards */ 3208 config->num_banks = adev->gfx.config.num_banks; 3209 config->num_ranks = adev->gfx.config.num_ranks; 3210 3211 return 0; 3212 } 3213 3214 bool amdgpu_amdkfd_bo_mapped_to_dev(void *drm_priv, struct kgd_mem *mem) 3215 { 3216 struct amdgpu_vm *vm = drm_priv_to_vm(drm_priv); 3217 struct kfd_mem_attachment *entry; 3218 3219 list_for_each_entry(entry, &mem->attachments, list) { 3220 if (entry->is_mapped && entry->bo_va->base.vm == vm) 3221 return true; 3222 } 3223 return false; 3224 } 3225 3226 #if defined(CONFIG_DEBUG_FS) 3227 3228 int kfd_debugfs_kfd_mem_limits(struct seq_file *m, void *data) 3229 { 3230 3231 spin_lock(&kfd_mem_limit.mem_limit_lock); 3232 seq_printf(m, "System mem used %lldM out of %lluM\n", 3233 (kfd_mem_limit.system_mem_used >> 20), 3234 (kfd_mem_limit.max_system_mem_limit >> 20)); 3235 seq_printf(m, "TTM mem used %lldM out of %lluM\n", 3236 (kfd_mem_limit.ttm_mem_used >> 20), 3237 (kfd_mem_limit.max_ttm_mem_limit >> 20)); 3238 spin_unlock(&kfd_mem_limit.mem_limit_lock); 3239 3240 return 0; 3241 } 3242 3243 #endif 3244