1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright 2014-2018 Advanced Micro Devices, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 */ 23 #include <linux/dma-buf.h> 24 #include <linux/list.h> 25 #include <linux/pagemap.h> 26 #include <linux/sched/mm.h> 27 #include <linux/sched/task.h> 28 #include <drm/ttm/ttm_tt.h> 29 30 #include <drm/drm_exec.h> 31 32 #include "amdgpu_object.h" 33 #include "amdgpu_gem.h" 34 #include "amdgpu_vm.h" 35 #include "amdgpu_hmm.h" 36 #include "amdgpu_amdkfd.h" 37 #include "amdgpu_dma_buf.h" 38 #include <uapi/linux/kfd_ioctl.h> 39 #include "amdgpu_xgmi.h" 40 #include "kfd_priv.h" 41 #include "kfd_smi_events.h" 42 43 /* Userptr restore delay, just long enough to allow consecutive VM 44 * changes to accumulate 45 */ 46 #define AMDGPU_USERPTR_RESTORE_DELAY_MS 1 47 48 /* 49 * Align VRAM availability to 2MB to avoid fragmentation caused by 4K allocations in the tail 2MB 50 * BO chunk 51 */ 52 #define VRAM_AVAILABLITY_ALIGN (1 << 21) 53 54 /* Impose limit on how much memory KFD can use */ 55 static struct { 56 uint64_t max_system_mem_limit; 57 uint64_t max_ttm_mem_limit; 58 int64_t system_mem_used; 59 int64_t ttm_mem_used; 60 spinlock_t mem_limit_lock; 61 } kfd_mem_limit; 62 63 static const char * const domain_bit_to_string[] = { 64 "CPU", 65 "GTT", 66 "VRAM", 67 "GDS", 68 "GWS", 69 "OA" 70 }; 71 72 #define domain_string(domain) domain_bit_to_string[ffs(domain)-1] 73 74 static void amdgpu_amdkfd_restore_userptr_worker(struct work_struct *work); 75 76 static bool kfd_mem_is_attached(struct amdgpu_vm *avm, 77 struct kgd_mem *mem) 78 { 79 struct kfd_mem_attachment *entry; 80 81 list_for_each_entry(entry, &mem->attachments, list) 82 if (entry->bo_va->base.vm == avm) 83 return true; 84 85 return false; 86 } 87 88 /** 89 * reuse_dmamap() - Check whether adev can share the original 90 * userptr BO 91 * 92 * If both adev and bo_adev are in direct mapping or 93 * in the same iommu group, they can share the original BO. 94 * 95 * @adev: Device to which can or cannot share the original BO 96 * @bo_adev: Device to which allocated BO belongs to 97 * 98 * Return: returns true if adev can share original userptr BO, 99 * false otherwise. 100 */ 101 static bool reuse_dmamap(struct amdgpu_device *adev, struct amdgpu_device *bo_adev) 102 { 103 return (adev->ram_is_direct_mapped && bo_adev->ram_is_direct_mapped) || 104 (adev->dev->iommu_group == bo_adev->dev->iommu_group); 105 } 106 107 /* Set memory usage limits. Current, limits are 108 * System (TTM + userptr) memory - 15/16th System RAM 109 * TTM memory - 3/8th System RAM 110 */ 111 void amdgpu_amdkfd_gpuvm_init_mem_limits(void) 112 { 113 struct sysinfo si; 114 uint64_t mem; 115 116 if (kfd_mem_limit.max_system_mem_limit) 117 return; 118 119 si_meminfo(&si); 120 mem = si.freeram - si.freehigh; 121 mem *= si.mem_unit; 122 123 spin_lock_init(&kfd_mem_limit.mem_limit_lock); 124 kfd_mem_limit.max_system_mem_limit = mem - (mem >> 4); 125 kfd_mem_limit.max_ttm_mem_limit = ttm_tt_pages_limit() << PAGE_SHIFT; 126 pr_debug("Kernel memory limit %lluM, TTM limit %lluM\n", 127 (kfd_mem_limit.max_system_mem_limit >> 20), 128 (kfd_mem_limit.max_ttm_mem_limit >> 20)); 129 } 130 131 void amdgpu_amdkfd_reserve_system_mem(uint64_t size) 132 { 133 kfd_mem_limit.system_mem_used += size; 134 } 135 136 /* Estimate page table size needed to represent a given memory size 137 * 138 * With 4KB pages, we need one 8 byte PTE for each 4KB of memory 139 * (factor 512, >> 9). With 2MB pages, we need one 8 byte PTE for 2MB 140 * of memory (factor 256K, >> 18). ROCm user mode tries to optimize 141 * for 2MB pages for TLB efficiency. However, small allocations and 142 * fragmented system memory still need some 4KB pages. We choose a 143 * compromise that should work in most cases without reserving too 144 * much memory for page tables unnecessarily (factor 16K, >> 14). 145 */ 146 147 #define ESTIMATE_PT_SIZE(mem_size) max(((mem_size) >> 14), AMDGPU_VM_RESERVED_VRAM) 148 149 /** 150 * amdgpu_amdkfd_reserve_mem_limit() - Decrease available memory by size 151 * of buffer. 152 * 153 * @adev: Device to which allocated BO belongs to 154 * @size: Size of buffer, in bytes, encapsulated by B0. This should be 155 * equivalent to amdgpu_bo_size(BO) 156 * @alloc_flag: Flag used in allocating a BO as noted above 157 * @xcp_id: xcp_id is used to get xcp from xcp manager, one xcp is 158 * managed as one compute node in driver for app 159 * 160 * Return: 161 * returns -ENOMEM in case of error, ZERO otherwise 162 */ 163 int amdgpu_amdkfd_reserve_mem_limit(struct amdgpu_device *adev, 164 uint64_t size, u32 alloc_flag, int8_t xcp_id) 165 { 166 uint64_t reserved_for_pt = 167 ESTIMATE_PT_SIZE(amdgpu_amdkfd_total_mem_size); 168 size_t system_mem_needed, ttm_mem_needed, vram_needed; 169 int ret = 0; 170 uint64_t vram_size = 0; 171 172 system_mem_needed = 0; 173 ttm_mem_needed = 0; 174 vram_needed = 0; 175 if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_GTT) { 176 system_mem_needed = size; 177 ttm_mem_needed = size; 178 } else if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) { 179 /* 180 * Conservatively round up the allocation requirement to 2 MB 181 * to avoid fragmentation caused by 4K allocations in the tail 182 * 2M BO chunk. 183 */ 184 vram_needed = size; 185 /* 186 * For GFX 9.4.3, get the VRAM size from XCP structs 187 */ 188 if (WARN_ONCE(xcp_id < 0, "invalid XCP ID %d", xcp_id)) 189 return -EINVAL; 190 191 vram_size = KFD_XCP_MEMORY_SIZE(adev, xcp_id); 192 if (adev->gmc.is_app_apu) { 193 system_mem_needed = size; 194 ttm_mem_needed = size; 195 } 196 } else if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) { 197 system_mem_needed = size; 198 } else if (!(alloc_flag & 199 (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL | 200 KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP))) { 201 pr_err("%s: Invalid BO type %#x\n", __func__, alloc_flag); 202 return -ENOMEM; 203 } 204 205 spin_lock(&kfd_mem_limit.mem_limit_lock); 206 207 if (kfd_mem_limit.system_mem_used + system_mem_needed > 208 kfd_mem_limit.max_system_mem_limit) 209 pr_debug("Set no_system_mem_limit=1 if using shared memory\n"); 210 211 if ((kfd_mem_limit.system_mem_used + system_mem_needed > 212 kfd_mem_limit.max_system_mem_limit && !no_system_mem_limit) || 213 (kfd_mem_limit.ttm_mem_used + ttm_mem_needed > 214 kfd_mem_limit.max_ttm_mem_limit) || 215 (adev && xcp_id >= 0 && adev->kfd.vram_used[xcp_id] + vram_needed > 216 vram_size - reserved_for_pt)) { 217 ret = -ENOMEM; 218 goto release; 219 } 220 221 /* Update memory accounting by decreasing available system 222 * memory, TTM memory and GPU memory as computed above 223 */ 224 WARN_ONCE(vram_needed && !adev, 225 "adev reference can't be null when vram is used"); 226 if (adev && xcp_id >= 0) { 227 adev->kfd.vram_used[xcp_id] += vram_needed; 228 adev->kfd.vram_used_aligned[xcp_id] += adev->gmc.is_app_apu ? 229 vram_needed : 230 ALIGN(vram_needed, VRAM_AVAILABLITY_ALIGN); 231 } 232 kfd_mem_limit.system_mem_used += system_mem_needed; 233 kfd_mem_limit.ttm_mem_used += ttm_mem_needed; 234 235 release: 236 spin_unlock(&kfd_mem_limit.mem_limit_lock); 237 return ret; 238 } 239 240 void amdgpu_amdkfd_unreserve_mem_limit(struct amdgpu_device *adev, 241 uint64_t size, u32 alloc_flag, int8_t xcp_id) 242 { 243 spin_lock(&kfd_mem_limit.mem_limit_lock); 244 245 if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_GTT) { 246 kfd_mem_limit.system_mem_used -= size; 247 kfd_mem_limit.ttm_mem_used -= size; 248 } else if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) { 249 WARN_ONCE(!adev, 250 "adev reference can't be null when alloc mem flags vram is set"); 251 if (WARN_ONCE(xcp_id < 0, "invalid XCP ID %d", xcp_id)) 252 goto release; 253 254 if (adev) { 255 adev->kfd.vram_used[xcp_id] -= size; 256 if (adev->gmc.is_app_apu) { 257 adev->kfd.vram_used_aligned[xcp_id] -= size; 258 kfd_mem_limit.system_mem_used -= size; 259 kfd_mem_limit.ttm_mem_used -= size; 260 } else { 261 adev->kfd.vram_used_aligned[xcp_id] -= 262 ALIGN(size, VRAM_AVAILABLITY_ALIGN); 263 } 264 } 265 } else if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) { 266 kfd_mem_limit.system_mem_used -= size; 267 } else if (!(alloc_flag & 268 (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL | 269 KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP))) { 270 pr_err("%s: Invalid BO type %#x\n", __func__, alloc_flag); 271 goto release; 272 } 273 WARN_ONCE(adev && xcp_id >= 0 && adev->kfd.vram_used[xcp_id] < 0, 274 "KFD VRAM memory accounting unbalanced for xcp: %d", xcp_id); 275 WARN_ONCE(kfd_mem_limit.ttm_mem_used < 0, 276 "KFD TTM memory accounting unbalanced"); 277 WARN_ONCE(kfd_mem_limit.system_mem_used < 0, 278 "KFD system memory accounting unbalanced"); 279 280 release: 281 spin_unlock(&kfd_mem_limit.mem_limit_lock); 282 } 283 284 void amdgpu_amdkfd_release_notify(struct amdgpu_bo *bo) 285 { 286 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 287 u32 alloc_flags = bo->kfd_bo->alloc_flags; 288 u64 size = amdgpu_bo_size(bo); 289 290 amdgpu_amdkfd_unreserve_mem_limit(adev, size, alloc_flags, 291 bo->xcp_id); 292 293 kfree(bo->kfd_bo); 294 } 295 296 /** 297 * create_dmamap_sg_bo() - Creates a amdgpu_bo object to reflect information 298 * about USERPTR or DOOREBELL or MMIO BO. 299 * 300 * @adev: Device for which dmamap BO is being created 301 * @mem: BO of peer device that is being DMA mapped. Provides parameters 302 * in building the dmamap BO 303 * @bo_out: Output parameter updated with handle of dmamap BO 304 */ 305 static int 306 create_dmamap_sg_bo(struct amdgpu_device *adev, 307 struct kgd_mem *mem, struct amdgpu_bo **bo_out) 308 { 309 struct drm_gem_object *gem_obj; 310 int ret; 311 uint64_t flags = 0; 312 313 ret = amdgpu_bo_reserve(mem->bo, false); 314 if (ret) 315 return ret; 316 317 if (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) 318 flags |= mem->bo->flags & (AMDGPU_GEM_CREATE_COHERENT | 319 AMDGPU_GEM_CREATE_UNCACHED); 320 321 ret = amdgpu_gem_object_create(adev, mem->bo->tbo.base.size, 1, 322 AMDGPU_GEM_DOMAIN_CPU, AMDGPU_GEM_CREATE_PREEMPTIBLE | flags, 323 ttm_bo_type_sg, mem->bo->tbo.base.resv, &gem_obj, 0); 324 325 amdgpu_bo_unreserve(mem->bo); 326 327 if (ret) { 328 pr_err("Error in creating DMA mappable SG BO on domain: %d\n", ret); 329 return -EINVAL; 330 } 331 332 *bo_out = gem_to_amdgpu_bo(gem_obj); 333 (*bo_out)->parent = amdgpu_bo_ref(mem->bo); 334 return ret; 335 } 336 337 /* amdgpu_amdkfd_remove_eviction_fence - Removes eviction fence from BO's 338 * reservation object. 339 * 340 * @bo: [IN] Remove eviction fence(s) from this BO 341 * @ef: [IN] This eviction fence is removed if it 342 * is present in the shared list. 343 * 344 * NOTE: Must be called with BO reserved i.e. bo->tbo.resv->lock held. 345 */ 346 static int amdgpu_amdkfd_remove_eviction_fence(struct amdgpu_bo *bo, 347 struct amdgpu_amdkfd_fence *ef) 348 { 349 struct dma_fence *replacement; 350 351 if (!ef) 352 return -EINVAL; 353 354 /* TODO: Instead of block before we should use the fence of the page 355 * table update and TLB flush here directly. 356 */ 357 replacement = dma_fence_get_stub(); 358 dma_resv_replace_fences(bo->tbo.base.resv, ef->base.context, 359 replacement, DMA_RESV_USAGE_BOOKKEEP); 360 dma_fence_put(replacement); 361 return 0; 362 } 363 364 int amdgpu_amdkfd_remove_fence_on_pt_pd_bos(struct amdgpu_bo *bo) 365 { 366 struct amdgpu_bo *root = bo; 367 struct amdgpu_vm_bo_base *vm_bo; 368 struct amdgpu_vm *vm; 369 struct amdkfd_process_info *info; 370 struct amdgpu_amdkfd_fence *ef; 371 int ret; 372 373 /* we can always get vm_bo from root PD bo.*/ 374 while (root->parent) 375 root = root->parent; 376 377 vm_bo = root->vm_bo; 378 if (!vm_bo) 379 return 0; 380 381 vm = vm_bo->vm; 382 if (!vm) 383 return 0; 384 385 info = vm->process_info; 386 if (!info || !info->eviction_fence) 387 return 0; 388 389 ef = container_of(dma_fence_get(&info->eviction_fence->base), 390 struct amdgpu_amdkfd_fence, base); 391 392 BUG_ON(!dma_resv_trylock(bo->tbo.base.resv)); 393 ret = amdgpu_amdkfd_remove_eviction_fence(bo, ef); 394 dma_resv_unlock(bo->tbo.base.resv); 395 396 dma_fence_put(&ef->base); 397 return ret; 398 } 399 400 static int amdgpu_amdkfd_bo_validate(struct amdgpu_bo *bo, uint32_t domain, 401 bool wait) 402 { 403 struct ttm_operation_ctx ctx = { false, false }; 404 int ret; 405 406 if (WARN(amdgpu_ttm_tt_get_usermm(bo->tbo.ttm), 407 "Called with userptr BO")) 408 return -EINVAL; 409 410 amdgpu_bo_placement_from_domain(bo, domain); 411 412 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 413 if (ret) 414 goto validate_fail; 415 if (wait) 416 amdgpu_bo_sync_wait(bo, AMDGPU_FENCE_OWNER_KFD, false); 417 418 validate_fail: 419 return ret; 420 } 421 422 static int amdgpu_amdkfd_validate_vm_bo(void *_unused, struct amdgpu_bo *bo) 423 { 424 return amdgpu_amdkfd_bo_validate(bo, bo->allowed_domains, false); 425 } 426 427 /* vm_validate_pt_pd_bos - Validate page table and directory BOs 428 * 429 * Page directories are not updated here because huge page handling 430 * during page table updates can invalidate page directory entries 431 * again. Page directories are only updated after updating page 432 * tables. 433 */ 434 static int vm_validate_pt_pd_bos(struct amdgpu_vm *vm) 435 { 436 struct amdgpu_bo *pd = vm->root.bo; 437 struct amdgpu_device *adev = amdgpu_ttm_adev(pd->tbo.bdev); 438 int ret; 439 440 ret = amdgpu_vm_validate_pt_bos(adev, vm, amdgpu_amdkfd_validate_vm_bo, NULL); 441 if (ret) { 442 pr_err("failed to validate PT BOs\n"); 443 return ret; 444 } 445 446 vm->pd_phys_addr = amdgpu_gmc_pd_addr(vm->root.bo); 447 448 return 0; 449 } 450 451 static int vm_update_pds(struct amdgpu_vm *vm, struct amdgpu_sync *sync) 452 { 453 struct amdgpu_bo *pd = vm->root.bo; 454 struct amdgpu_device *adev = amdgpu_ttm_adev(pd->tbo.bdev); 455 int ret; 456 457 ret = amdgpu_vm_update_pdes(adev, vm, false); 458 if (ret) 459 return ret; 460 461 return amdgpu_sync_fence(sync, vm->last_update); 462 } 463 464 static uint64_t get_pte_flags(struct amdgpu_device *adev, struct kgd_mem *mem) 465 { 466 uint32_t mapping_flags = AMDGPU_VM_PAGE_READABLE | 467 AMDGPU_VM_MTYPE_DEFAULT; 468 469 if (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE) 470 mapping_flags |= AMDGPU_VM_PAGE_WRITEABLE; 471 if (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE) 472 mapping_flags |= AMDGPU_VM_PAGE_EXECUTABLE; 473 474 return amdgpu_gem_va_map_flags(adev, mapping_flags); 475 } 476 477 /** 478 * create_sg_table() - Create an sg_table for a contiguous DMA addr range 479 * @addr: The starting address to point to 480 * @size: Size of memory area in bytes being pointed to 481 * 482 * Allocates an instance of sg_table and initializes it to point to memory 483 * area specified by input parameters. The address used to build is assumed 484 * to be DMA mapped, if needed. 485 * 486 * DOORBELL or MMIO BOs use only one scatterlist node in their sg_table 487 * because they are physically contiguous. 488 * 489 * Return: Initialized instance of SG Table or NULL 490 */ 491 static struct sg_table *create_sg_table(uint64_t addr, uint32_t size) 492 { 493 struct sg_table *sg = kmalloc(sizeof(*sg), GFP_KERNEL); 494 495 if (!sg) 496 return NULL; 497 if (sg_alloc_table(sg, 1, GFP_KERNEL)) { 498 kfree(sg); 499 return NULL; 500 } 501 sg_dma_address(sg->sgl) = addr; 502 sg->sgl->length = size; 503 #ifdef CONFIG_NEED_SG_DMA_LENGTH 504 sg->sgl->dma_length = size; 505 #endif 506 return sg; 507 } 508 509 static int 510 kfd_mem_dmamap_userptr(struct kgd_mem *mem, 511 struct kfd_mem_attachment *attachment) 512 { 513 enum dma_data_direction direction = 514 mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? 515 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 516 struct ttm_operation_ctx ctx = {.interruptible = true}; 517 struct amdgpu_bo *bo = attachment->bo_va->base.bo; 518 struct amdgpu_device *adev = attachment->adev; 519 struct ttm_tt *src_ttm = mem->bo->tbo.ttm; 520 struct ttm_tt *ttm = bo->tbo.ttm; 521 int ret; 522 523 if (WARN_ON(ttm->num_pages != src_ttm->num_pages)) 524 return -EINVAL; 525 526 ttm->sg = kmalloc(sizeof(*ttm->sg), GFP_KERNEL); 527 if (unlikely(!ttm->sg)) 528 return -ENOMEM; 529 530 /* Same sequence as in amdgpu_ttm_tt_pin_userptr */ 531 ret = sg_alloc_table_from_pages(ttm->sg, src_ttm->pages, 532 ttm->num_pages, 0, 533 (u64)ttm->num_pages << PAGE_SHIFT, 534 GFP_KERNEL); 535 if (unlikely(ret)) 536 goto free_sg; 537 538 ret = dma_map_sgtable(adev->dev, ttm->sg, direction, 0); 539 if (unlikely(ret)) 540 goto release_sg; 541 542 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_GTT); 543 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 544 if (ret) 545 goto unmap_sg; 546 547 return 0; 548 549 unmap_sg: 550 dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0); 551 release_sg: 552 pr_err("DMA map userptr failed: %d\n", ret); 553 sg_free_table(ttm->sg); 554 free_sg: 555 kfree(ttm->sg); 556 ttm->sg = NULL; 557 return ret; 558 } 559 560 static int 561 kfd_mem_dmamap_dmabuf(struct kfd_mem_attachment *attachment) 562 { 563 struct ttm_operation_ctx ctx = {.interruptible = true}; 564 struct amdgpu_bo *bo = attachment->bo_va->base.bo; 565 int ret; 566 567 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_CPU); 568 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 569 if (ret) 570 return ret; 571 572 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_GTT); 573 return ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 574 } 575 576 /** 577 * kfd_mem_dmamap_sg_bo() - Create DMA mapped sg_table to access DOORBELL or MMIO BO 578 * @mem: SG BO of the DOORBELL or MMIO resource on the owning device 579 * @attachment: Virtual address attachment of the BO on accessing device 580 * 581 * An access request from the device that owns DOORBELL does not require DMA mapping. 582 * This is because the request doesn't go through PCIe root complex i.e. it instead 583 * loops back. The need to DMA map arises only when accessing peer device's DOORBELL 584 * 585 * In contrast, all access requests for MMIO need to be DMA mapped without regard to 586 * device ownership. This is because access requests for MMIO go through PCIe root 587 * complex. 588 * 589 * This is accomplished in two steps: 590 * - Obtain DMA mapped address of DOORBELL or MMIO memory that could be used 591 * in updating requesting device's page table 592 * - Signal TTM to mark memory pointed to by requesting device's BO as GPU 593 * accessible. This allows an update of requesting device's page table 594 * with entries associated with DOOREBELL or MMIO memory 595 * 596 * This method is invoked in the following contexts: 597 * - Mapping of DOORBELL or MMIO BO of same or peer device 598 * - Validating an evicted DOOREBELL or MMIO BO on device seeking access 599 * 600 * Return: ZERO if successful, NON-ZERO otherwise 601 */ 602 static int 603 kfd_mem_dmamap_sg_bo(struct kgd_mem *mem, 604 struct kfd_mem_attachment *attachment) 605 { 606 struct ttm_operation_ctx ctx = {.interruptible = true}; 607 struct amdgpu_bo *bo = attachment->bo_va->base.bo; 608 struct amdgpu_device *adev = attachment->adev; 609 struct ttm_tt *ttm = bo->tbo.ttm; 610 enum dma_data_direction dir; 611 dma_addr_t dma_addr; 612 bool mmio; 613 int ret; 614 615 /* Expect SG Table of dmapmap BO to be NULL */ 616 mmio = (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP); 617 if (unlikely(ttm->sg)) { 618 pr_err("SG Table of %d BO for peer device is UNEXPECTEDLY NON-NULL", mmio); 619 return -EINVAL; 620 } 621 622 dir = mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? 623 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 624 dma_addr = mem->bo->tbo.sg->sgl->dma_address; 625 pr_debug("%d BO size: %d\n", mmio, mem->bo->tbo.sg->sgl->length); 626 pr_debug("%d BO address before DMA mapping: %llx\n", mmio, dma_addr); 627 dma_addr = dma_map_resource(adev->dev, dma_addr, 628 mem->bo->tbo.sg->sgl->length, dir, DMA_ATTR_SKIP_CPU_SYNC); 629 ret = dma_mapping_error(adev->dev, dma_addr); 630 if (unlikely(ret)) 631 return ret; 632 pr_debug("%d BO address after DMA mapping: %llx\n", mmio, dma_addr); 633 634 ttm->sg = create_sg_table(dma_addr, mem->bo->tbo.sg->sgl->length); 635 if (unlikely(!ttm->sg)) { 636 ret = -ENOMEM; 637 goto unmap_sg; 638 } 639 640 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_GTT); 641 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 642 if (unlikely(ret)) 643 goto free_sg; 644 645 return ret; 646 647 free_sg: 648 sg_free_table(ttm->sg); 649 kfree(ttm->sg); 650 ttm->sg = NULL; 651 unmap_sg: 652 dma_unmap_resource(adev->dev, dma_addr, mem->bo->tbo.sg->sgl->length, 653 dir, DMA_ATTR_SKIP_CPU_SYNC); 654 return ret; 655 } 656 657 static int 658 kfd_mem_dmamap_attachment(struct kgd_mem *mem, 659 struct kfd_mem_attachment *attachment) 660 { 661 switch (attachment->type) { 662 case KFD_MEM_ATT_SHARED: 663 return 0; 664 case KFD_MEM_ATT_USERPTR: 665 return kfd_mem_dmamap_userptr(mem, attachment); 666 case KFD_MEM_ATT_DMABUF: 667 return kfd_mem_dmamap_dmabuf(attachment); 668 case KFD_MEM_ATT_SG: 669 return kfd_mem_dmamap_sg_bo(mem, attachment); 670 default: 671 WARN_ON_ONCE(1); 672 } 673 return -EINVAL; 674 } 675 676 static void 677 kfd_mem_dmaunmap_userptr(struct kgd_mem *mem, 678 struct kfd_mem_attachment *attachment) 679 { 680 enum dma_data_direction direction = 681 mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? 682 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 683 struct ttm_operation_ctx ctx = {.interruptible = false}; 684 struct amdgpu_bo *bo = attachment->bo_va->base.bo; 685 struct amdgpu_device *adev = attachment->adev; 686 struct ttm_tt *ttm = bo->tbo.ttm; 687 688 if (unlikely(!ttm->sg)) 689 return; 690 691 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_CPU); 692 ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 693 694 dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0); 695 sg_free_table(ttm->sg); 696 kfree(ttm->sg); 697 ttm->sg = NULL; 698 } 699 700 static void 701 kfd_mem_dmaunmap_dmabuf(struct kfd_mem_attachment *attachment) 702 { 703 /* This is a no-op. We don't want to trigger eviction fences when 704 * unmapping DMABufs. Therefore the invalidation (moving to system 705 * domain) is done in kfd_mem_dmamap_dmabuf. 706 */ 707 } 708 709 /** 710 * kfd_mem_dmaunmap_sg_bo() - Free DMA mapped sg_table of DOORBELL or MMIO BO 711 * @mem: SG BO of the DOORBELL or MMIO resource on the owning device 712 * @attachment: Virtual address attachment of the BO on accessing device 713 * 714 * The method performs following steps: 715 * - Signal TTM to mark memory pointed to by BO as GPU inaccessible 716 * - Free SG Table that is used to encapsulate DMA mapped memory of 717 * peer device's DOORBELL or MMIO memory 718 * 719 * This method is invoked in the following contexts: 720 * UNMapping of DOORBELL or MMIO BO on a device having access to its memory 721 * Eviction of DOOREBELL or MMIO BO on device having access to its memory 722 * 723 * Return: void 724 */ 725 static void 726 kfd_mem_dmaunmap_sg_bo(struct kgd_mem *mem, 727 struct kfd_mem_attachment *attachment) 728 { 729 struct ttm_operation_ctx ctx = {.interruptible = true}; 730 struct amdgpu_bo *bo = attachment->bo_va->base.bo; 731 struct amdgpu_device *adev = attachment->adev; 732 struct ttm_tt *ttm = bo->tbo.ttm; 733 enum dma_data_direction dir; 734 735 if (unlikely(!ttm->sg)) { 736 pr_err("SG Table of BO is UNEXPECTEDLY NULL"); 737 return; 738 } 739 740 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_CPU); 741 ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 742 743 dir = mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? 744 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 745 dma_unmap_resource(adev->dev, ttm->sg->sgl->dma_address, 746 ttm->sg->sgl->length, dir, DMA_ATTR_SKIP_CPU_SYNC); 747 sg_free_table(ttm->sg); 748 kfree(ttm->sg); 749 ttm->sg = NULL; 750 bo->tbo.sg = NULL; 751 } 752 753 static void 754 kfd_mem_dmaunmap_attachment(struct kgd_mem *mem, 755 struct kfd_mem_attachment *attachment) 756 { 757 switch (attachment->type) { 758 case KFD_MEM_ATT_SHARED: 759 break; 760 case KFD_MEM_ATT_USERPTR: 761 kfd_mem_dmaunmap_userptr(mem, attachment); 762 break; 763 case KFD_MEM_ATT_DMABUF: 764 kfd_mem_dmaunmap_dmabuf(attachment); 765 break; 766 case KFD_MEM_ATT_SG: 767 kfd_mem_dmaunmap_sg_bo(mem, attachment); 768 break; 769 default: 770 WARN_ON_ONCE(1); 771 } 772 } 773 774 static int kfd_mem_export_dmabuf(struct kgd_mem *mem) 775 { 776 if (!mem->dmabuf) { 777 struct dma_buf *ret = amdgpu_gem_prime_export( 778 &mem->bo->tbo.base, 779 mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? 780 DRM_RDWR : 0); 781 if (IS_ERR(ret)) 782 return PTR_ERR(ret); 783 mem->dmabuf = ret; 784 } 785 786 return 0; 787 } 788 789 static int 790 kfd_mem_attach_dmabuf(struct amdgpu_device *adev, struct kgd_mem *mem, 791 struct amdgpu_bo **bo) 792 { 793 struct drm_gem_object *gobj; 794 int ret; 795 796 ret = kfd_mem_export_dmabuf(mem); 797 if (ret) 798 return ret; 799 800 gobj = amdgpu_gem_prime_import(adev_to_drm(adev), mem->dmabuf); 801 if (IS_ERR(gobj)) 802 return PTR_ERR(gobj); 803 804 *bo = gem_to_amdgpu_bo(gobj); 805 (*bo)->flags |= AMDGPU_GEM_CREATE_PREEMPTIBLE; 806 807 return 0; 808 } 809 810 /* kfd_mem_attach - Add a BO to a VM 811 * 812 * Everything that needs to bo done only once when a BO is first added 813 * to a VM. It can later be mapped and unmapped many times without 814 * repeating these steps. 815 * 816 * 0. Create BO for DMA mapping, if needed 817 * 1. Allocate and initialize BO VA entry data structure 818 * 2. Add BO to the VM 819 * 3. Determine ASIC-specific PTE flags 820 * 4. Alloc page tables and directories if needed 821 * 4a. Validate new page tables and directories 822 */ 823 static int kfd_mem_attach(struct amdgpu_device *adev, struct kgd_mem *mem, 824 struct amdgpu_vm *vm, bool is_aql) 825 { 826 struct amdgpu_device *bo_adev = amdgpu_ttm_adev(mem->bo->tbo.bdev); 827 unsigned long bo_size = mem->bo->tbo.base.size; 828 uint64_t va = mem->va; 829 struct kfd_mem_attachment *attachment[2] = {NULL, NULL}; 830 struct amdgpu_bo *bo[2] = {NULL, NULL}; 831 bool same_hive = false; 832 int i, ret; 833 834 if (!va) { 835 pr_err("Invalid VA when adding BO to VM\n"); 836 return -EINVAL; 837 } 838 839 /* Determine access to VRAM, MMIO and DOORBELL BOs of peer devices 840 * 841 * The access path of MMIO and DOORBELL BOs of is always over PCIe. 842 * In contrast the access path of VRAM BOs depens upon the type of 843 * link that connects the peer device. Access over PCIe is allowed 844 * if peer device has large BAR. In contrast, access over xGMI is 845 * allowed for both small and large BAR configurations of peer device 846 */ 847 if ((adev != bo_adev && !adev->gmc.is_app_apu) && 848 ((mem->domain == AMDGPU_GEM_DOMAIN_VRAM) || 849 (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) || 850 (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP))) { 851 if (mem->domain == AMDGPU_GEM_DOMAIN_VRAM) 852 same_hive = amdgpu_xgmi_same_hive(adev, bo_adev); 853 if (!same_hive && !amdgpu_device_is_peer_accessible(bo_adev, adev)) 854 return -EINVAL; 855 } 856 857 for (i = 0; i <= is_aql; i++) { 858 attachment[i] = kzalloc(sizeof(*attachment[i]), GFP_KERNEL); 859 if (unlikely(!attachment[i])) { 860 ret = -ENOMEM; 861 goto unwind; 862 } 863 864 pr_debug("\t add VA 0x%llx - 0x%llx to vm %p\n", va, 865 va + bo_size, vm); 866 867 if ((adev == bo_adev && !(mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) || 868 (amdgpu_ttm_tt_get_usermm(mem->bo->tbo.ttm) && reuse_dmamap(adev, bo_adev)) || 869 (mem->domain == AMDGPU_GEM_DOMAIN_GTT && reuse_dmamap(adev, bo_adev)) || 870 same_hive) { 871 /* Mappings on the local GPU, or VRAM mappings in the 872 * local hive, or userptr, or GTT mapping can reuse dma map 873 * address space share the original BO 874 */ 875 attachment[i]->type = KFD_MEM_ATT_SHARED; 876 bo[i] = mem->bo; 877 drm_gem_object_get(&bo[i]->tbo.base); 878 } else if (i > 0) { 879 /* Multiple mappings on the same GPU share the BO */ 880 attachment[i]->type = KFD_MEM_ATT_SHARED; 881 bo[i] = bo[0]; 882 drm_gem_object_get(&bo[i]->tbo.base); 883 } else if (amdgpu_ttm_tt_get_usermm(mem->bo->tbo.ttm)) { 884 /* Create an SG BO to DMA-map userptrs on other GPUs */ 885 attachment[i]->type = KFD_MEM_ATT_USERPTR; 886 ret = create_dmamap_sg_bo(adev, mem, &bo[i]); 887 if (ret) 888 goto unwind; 889 /* Handle DOORBELL BOs of peer devices and MMIO BOs of local and peer devices */ 890 } else if (mem->bo->tbo.type == ttm_bo_type_sg) { 891 WARN_ONCE(!(mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL || 892 mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP), 893 "Handing invalid SG BO in ATTACH request"); 894 attachment[i]->type = KFD_MEM_ATT_SG; 895 ret = create_dmamap_sg_bo(adev, mem, &bo[i]); 896 if (ret) 897 goto unwind; 898 /* Enable acces to GTT and VRAM BOs of peer devices */ 899 } else if (mem->domain == AMDGPU_GEM_DOMAIN_GTT || 900 mem->domain == AMDGPU_GEM_DOMAIN_VRAM) { 901 attachment[i]->type = KFD_MEM_ATT_DMABUF; 902 ret = kfd_mem_attach_dmabuf(adev, mem, &bo[i]); 903 if (ret) 904 goto unwind; 905 pr_debug("Employ DMABUF mechanism to enable peer GPU access\n"); 906 } else { 907 WARN_ONCE(true, "Handling invalid ATTACH request"); 908 ret = -EINVAL; 909 goto unwind; 910 } 911 912 /* Add BO to VM internal data structures */ 913 ret = amdgpu_bo_reserve(bo[i], false); 914 if (ret) { 915 pr_debug("Unable to reserve BO during memory attach"); 916 goto unwind; 917 } 918 attachment[i]->bo_va = amdgpu_vm_bo_add(adev, vm, bo[i]); 919 amdgpu_bo_unreserve(bo[i]); 920 if (unlikely(!attachment[i]->bo_va)) { 921 ret = -ENOMEM; 922 pr_err("Failed to add BO object to VM. ret == %d\n", 923 ret); 924 goto unwind; 925 } 926 attachment[i]->va = va; 927 attachment[i]->pte_flags = get_pte_flags(adev, mem); 928 attachment[i]->adev = adev; 929 list_add(&attachment[i]->list, &mem->attachments); 930 931 va += bo_size; 932 } 933 934 return 0; 935 936 unwind: 937 for (; i >= 0; i--) { 938 if (!attachment[i]) 939 continue; 940 if (attachment[i]->bo_va) { 941 amdgpu_bo_reserve(bo[i], true); 942 amdgpu_vm_bo_del(adev, attachment[i]->bo_va); 943 amdgpu_bo_unreserve(bo[i]); 944 list_del(&attachment[i]->list); 945 } 946 if (bo[i]) 947 drm_gem_object_put(&bo[i]->tbo.base); 948 kfree(attachment[i]); 949 } 950 return ret; 951 } 952 953 static void kfd_mem_detach(struct kfd_mem_attachment *attachment) 954 { 955 struct amdgpu_bo *bo = attachment->bo_va->base.bo; 956 957 pr_debug("\t remove VA 0x%llx in entry %p\n", 958 attachment->va, attachment); 959 amdgpu_vm_bo_del(attachment->adev, attachment->bo_va); 960 drm_gem_object_put(&bo->tbo.base); 961 list_del(&attachment->list); 962 kfree(attachment); 963 } 964 965 static void add_kgd_mem_to_kfd_bo_list(struct kgd_mem *mem, 966 struct amdkfd_process_info *process_info, 967 bool userptr) 968 { 969 mutex_lock(&process_info->lock); 970 if (userptr) 971 list_add_tail(&mem->validate_list, 972 &process_info->userptr_valid_list); 973 else 974 list_add_tail(&mem->validate_list, &process_info->kfd_bo_list); 975 mutex_unlock(&process_info->lock); 976 } 977 978 static void remove_kgd_mem_from_kfd_bo_list(struct kgd_mem *mem, 979 struct amdkfd_process_info *process_info) 980 { 981 mutex_lock(&process_info->lock); 982 list_del(&mem->validate_list); 983 mutex_unlock(&process_info->lock); 984 } 985 986 /* Initializes user pages. It registers the MMU notifier and validates 987 * the userptr BO in the GTT domain. 988 * 989 * The BO must already be on the userptr_valid_list. Otherwise an 990 * eviction and restore may happen that leaves the new BO unmapped 991 * with the user mode queues running. 992 * 993 * Takes the process_info->lock to protect against concurrent restore 994 * workers. 995 * 996 * Returns 0 for success, negative errno for errors. 997 */ 998 static int init_user_pages(struct kgd_mem *mem, uint64_t user_addr, 999 bool criu_resume) 1000 { 1001 struct amdkfd_process_info *process_info = mem->process_info; 1002 struct amdgpu_bo *bo = mem->bo; 1003 struct ttm_operation_ctx ctx = { true, false }; 1004 struct hmm_range *range; 1005 int ret = 0; 1006 1007 mutex_lock(&process_info->lock); 1008 1009 ret = amdgpu_ttm_tt_set_userptr(&bo->tbo, user_addr, 0); 1010 if (ret) { 1011 pr_err("%s: Failed to set userptr: %d\n", __func__, ret); 1012 goto out; 1013 } 1014 1015 ret = amdgpu_hmm_register(bo, user_addr); 1016 if (ret) { 1017 pr_err("%s: Failed to register MMU notifier: %d\n", 1018 __func__, ret); 1019 goto out; 1020 } 1021 1022 if (criu_resume) { 1023 /* 1024 * During a CRIU restore operation, the userptr buffer objects 1025 * will be validated in the restore_userptr_work worker at a 1026 * later stage when it is scheduled by another ioctl called by 1027 * CRIU master process for the target pid for restore. 1028 */ 1029 mutex_lock(&process_info->notifier_lock); 1030 mem->invalid++; 1031 mutex_unlock(&process_info->notifier_lock); 1032 mutex_unlock(&process_info->lock); 1033 return 0; 1034 } 1035 1036 ret = amdgpu_ttm_tt_get_user_pages(bo, bo->tbo.ttm->pages, &range); 1037 if (ret) { 1038 pr_err("%s: Failed to get user pages: %d\n", __func__, ret); 1039 goto unregister_out; 1040 } 1041 1042 ret = amdgpu_bo_reserve(bo, true); 1043 if (ret) { 1044 pr_err("%s: Failed to reserve BO\n", __func__); 1045 goto release_out; 1046 } 1047 amdgpu_bo_placement_from_domain(bo, mem->domain); 1048 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 1049 if (ret) 1050 pr_err("%s: failed to validate BO\n", __func__); 1051 amdgpu_bo_unreserve(bo); 1052 1053 release_out: 1054 amdgpu_ttm_tt_get_user_pages_done(bo->tbo.ttm, range); 1055 unregister_out: 1056 if (ret) 1057 amdgpu_hmm_unregister(bo); 1058 out: 1059 mutex_unlock(&process_info->lock); 1060 return ret; 1061 } 1062 1063 /* Reserving a BO and its page table BOs must happen atomically to 1064 * avoid deadlocks. Some operations update multiple VMs at once. Track 1065 * all the reservation info in a context structure. Optionally a sync 1066 * object can track VM updates. 1067 */ 1068 struct bo_vm_reservation_context { 1069 /* DRM execution context for the reservation */ 1070 struct drm_exec exec; 1071 /* Number of VMs reserved */ 1072 unsigned int n_vms; 1073 /* Pointer to sync object */ 1074 struct amdgpu_sync *sync; 1075 }; 1076 1077 enum bo_vm_match { 1078 BO_VM_NOT_MAPPED = 0, /* Match VMs where a BO is not mapped */ 1079 BO_VM_MAPPED, /* Match VMs where a BO is mapped */ 1080 BO_VM_ALL, /* Match all VMs a BO was added to */ 1081 }; 1082 1083 /** 1084 * reserve_bo_and_vm - reserve a BO and a VM unconditionally. 1085 * @mem: KFD BO structure. 1086 * @vm: the VM to reserve. 1087 * @ctx: the struct that will be used in unreserve_bo_and_vms(). 1088 */ 1089 static int reserve_bo_and_vm(struct kgd_mem *mem, 1090 struct amdgpu_vm *vm, 1091 struct bo_vm_reservation_context *ctx) 1092 { 1093 struct amdgpu_bo *bo = mem->bo; 1094 int ret; 1095 1096 WARN_ON(!vm); 1097 1098 ctx->n_vms = 1; 1099 ctx->sync = &mem->sync; 1100 drm_exec_init(&ctx->exec, DRM_EXEC_INTERRUPTIBLE_WAIT); 1101 drm_exec_until_all_locked(&ctx->exec) { 1102 ret = amdgpu_vm_lock_pd(vm, &ctx->exec, 2); 1103 drm_exec_retry_on_contention(&ctx->exec); 1104 if (unlikely(ret)) 1105 goto error; 1106 1107 ret = drm_exec_lock_obj(&ctx->exec, &bo->tbo.base); 1108 drm_exec_retry_on_contention(&ctx->exec); 1109 if (unlikely(ret)) 1110 goto error; 1111 } 1112 return 0; 1113 1114 error: 1115 pr_err("Failed to reserve buffers in ttm.\n"); 1116 drm_exec_fini(&ctx->exec); 1117 return ret; 1118 } 1119 1120 /** 1121 * reserve_bo_and_cond_vms - reserve a BO and some VMs conditionally 1122 * @mem: KFD BO structure. 1123 * @vm: the VM to reserve. If NULL, then all VMs associated with the BO 1124 * is used. Otherwise, a single VM associated with the BO. 1125 * @map_type: the mapping status that will be used to filter the VMs. 1126 * @ctx: the struct that will be used in unreserve_bo_and_vms(). 1127 * 1128 * Returns 0 for success, negative for failure. 1129 */ 1130 static int reserve_bo_and_cond_vms(struct kgd_mem *mem, 1131 struct amdgpu_vm *vm, enum bo_vm_match map_type, 1132 struct bo_vm_reservation_context *ctx) 1133 { 1134 struct kfd_mem_attachment *entry; 1135 struct amdgpu_bo *bo = mem->bo; 1136 int ret; 1137 1138 ctx->sync = &mem->sync; 1139 drm_exec_init(&ctx->exec, DRM_EXEC_INTERRUPTIBLE_WAIT); 1140 drm_exec_until_all_locked(&ctx->exec) { 1141 ctx->n_vms = 0; 1142 list_for_each_entry(entry, &mem->attachments, list) { 1143 if ((vm && vm != entry->bo_va->base.vm) || 1144 (entry->is_mapped != map_type 1145 && map_type != BO_VM_ALL)) 1146 continue; 1147 1148 ret = amdgpu_vm_lock_pd(entry->bo_va->base.vm, 1149 &ctx->exec, 2); 1150 drm_exec_retry_on_contention(&ctx->exec); 1151 if (unlikely(ret)) 1152 goto error; 1153 ++ctx->n_vms; 1154 } 1155 1156 ret = drm_exec_prepare_obj(&ctx->exec, &bo->tbo.base, 1); 1157 drm_exec_retry_on_contention(&ctx->exec); 1158 if (unlikely(ret)) 1159 goto error; 1160 } 1161 return 0; 1162 1163 error: 1164 pr_err("Failed to reserve buffers in ttm.\n"); 1165 drm_exec_fini(&ctx->exec); 1166 return ret; 1167 } 1168 1169 /** 1170 * unreserve_bo_and_vms - Unreserve BO and VMs from a reservation context 1171 * @ctx: Reservation context to unreserve 1172 * @wait: Optionally wait for a sync object representing pending VM updates 1173 * @intr: Whether the wait is interruptible 1174 * 1175 * Also frees any resources allocated in 1176 * reserve_bo_and_(cond_)vm(s). Returns the status from 1177 * amdgpu_sync_wait. 1178 */ 1179 static int unreserve_bo_and_vms(struct bo_vm_reservation_context *ctx, 1180 bool wait, bool intr) 1181 { 1182 int ret = 0; 1183 1184 if (wait) 1185 ret = amdgpu_sync_wait(ctx->sync, intr); 1186 1187 drm_exec_fini(&ctx->exec); 1188 ctx->sync = NULL; 1189 return ret; 1190 } 1191 1192 static void unmap_bo_from_gpuvm(struct kgd_mem *mem, 1193 struct kfd_mem_attachment *entry, 1194 struct amdgpu_sync *sync) 1195 { 1196 struct amdgpu_bo_va *bo_va = entry->bo_va; 1197 struct amdgpu_device *adev = entry->adev; 1198 struct amdgpu_vm *vm = bo_va->base.vm; 1199 1200 amdgpu_vm_bo_unmap(adev, bo_va, entry->va); 1201 1202 amdgpu_vm_clear_freed(adev, vm, &bo_va->last_pt_update); 1203 1204 amdgpu_sync_fence(sync, bo_va->last_pt_update); 1205 1206 kfd_mem_dmaunmap_attachment(mem, entry); 1207 } 1208 1209 static int update_gpuvm_pte(struct kgd_mem *mem, 1210 struct kfd_mem_attachment *entry, 1211 struct amdgpu_sync *sync) 1212 { 1213 struct amdgpu_bo_va *bo_va = entry->bo_va; 1214 struct amdgpu_device *adev = entry->adev; 1215 int ret; 1216 1217 ret = kfd_mem_dmamap_attachment(mem, entry); 1218 if (ret) 1219 return ret; 1220 1221 /* Update the page tables */ 1222 ret = amdgpu_vm_bo_update(adev, bo_va, false); 1223 if (ret) { 1224 pr_err("amdgpu_vm_bo_update failed\n"); 1225 return ret; 1226 } 1227 1228 return amdgpu_sync_fence(sync, bo_va->last_pt_update); 1229 } 1230 1231 static int map_bo_to_gpuvm(struct kgd_mem *mem, 1232 struct kfd_mem_attachment *entry, 1233 struct amdgpu_sync *sync, 1234 bool no_update_pte) 1235 { 1236 int ret; 1237 1238 /* Set virtual address for the allocation */ 1239 ret = amdgpu_vm_bo_map(entry->adev, entry->bo_va, entry->va, 0, 1240 amdgpu_bo_size(entry->bo_va->base.bo), 1241 entry->pte_flags); 1242 if (ret) { 1243 pr_err("Failed to map VA 0x%llx in vm. ret %d\n", 1244 entry->va, ret); 1245 return ret; 1246 } 1247 1248 if (no_update_pte) 1249 return 0; 1250 1251 ret = update_gpuvm_pte(mem, entry, sync); 1252 if (ret) { 1253 pr_err("update_gpuvm_pte() failed\n"); 1254 goto update_gpuvm_pte_failed; 1255 } 1256 1257 return 0; 1258 1259 update_gpuvm_pte_failed: 1260 unmap_bo_from_gpuvm(mem, entry, sync); 1261 return ret; 1262 } 1263 1264 static int process_validate_vms(struct amdkfd_process_info *process_info) 1265 { 1266 struct amdgpu_vm *peer_vm; 1267 int ret; 1268 1269 list_for_each_entry(peer_vm, &process_info->vm_list_head, 1270 vm_list_node) { 1271 ret = vm_validate_pt_pd_bos(peer_vm); 1272 if (ret) 1273 return ret; 1274 } 1275 1276 return 0; 1277 } 1278 1279 static int process_sync_pds_resv(struct amdkfd_process_info *process_info, 1280 struct amdgpu_sync *sync) 1281 { 1282 struct amdgpu_vm *peer_vm; 1283 int ret; 1284 1285 list_for_each_entry(peer_vm, &process_info->vm_list_head, 1286 vm_list_node) { 1287 struct amdgpu_bo *pd = peer_vm->root.bo; 1288 1289 ret = amdgpu_sync_resv(NULL, sync, pd->tbo.base.resv, 1290 AMDGPU_SYNC_NE_OWNER, 1291 AMDGPU_FENCE_OWNER_KFD); 1292 if (ret) 1293 return ret; 1294 } 1295 1296 return 0; 1297 } 1298 1299 static int process_update_pds(struct amdkfd_process_info *process_info, 1300 struct amdgpu_sync *sync) 1301 { 1302 struct amdgpu_vm *peer_vm; 1303 int ret; 1304 1305 list_for_each_entry(peer_vm, &process_info->vm_list_head, 1306 vm_list_node) { 1307 ret = vm_update_pds(peer_vm, sync); 1308 if (ret) 1309 return ret; 1310 } 1311 1312 return 0; 1313 } 1314 1315 static int init_kfd_vm(struct amdgpu_vm *vm, void **process_info, 1316 struct dma_fence **ef) 1317 { 1318 struct amdkfd_process_info *info = NULL; 1319 int ret; 1320 1321 if (!*process_info) { 1322 info = kzalloc(sizeof(*info), GFP_KERNEL); 1323 if (!info) 1324 return -ENOMEM; 1325 1326 mutex_init(&info->lock); 1327 mutex_init(&info->notifier_lock); 1328 INIT_LIST_HEAD(&info->vm_list_head); 1329 INIT_LIST_HEAD(&info->kfd_bo_list); 1330 INIT_LIST_HEAD(&info->userptr_valid_list); 1331 INIT_LIST_HEAD(&info->userptr_inval_list); 1332 1333 info->eviction_fence = 1334 amdgpu_amdkfd_fence_create(dma_fence_context_alloc(1), 1335 current->mm, 1336 NULL); 1337 if (!info->eviction_fence) { 1338 pr_err("Failed to create eviction fence\n"); 1339 ret = -ENOMEM; 1340 goto create_evict_fence_fail; 1341 } 1342 1343 info->pid = get_task_pid(current->group_leader, PIDTYPE_PID); 1344 INIT_DELAYED_WORK(&info->restore_userptr_work, 1345 amdgpu_amdkfd_restore_userptr_worker); 1346 1347 *process_info = info; 1348 *ef = dma_fence_get(&info->eviction_fence->base); 1349 } 1350 1351 vm->process_info = *process_info; 1352 1353 /* Validate page directory and attach eviction fence */ 1354 ret = amdgpu_bo_reserve(vm->root.bo, true); 1355 if (ret) 1356 goto reserve_pd_fail; 1357 ret = vm_validate_pt_pd_bos(vm); 1358 if (ret) { 1359 pr_err("validate_pt_pd_bos() failed\n"); 1360 goto validate_pd_fail; 1361 } 1362 ret = amdgpu_bo_sync_wait(vm->root.bo, 1363 AMDGPU_FENCE_OWNER_KFD, false); 1364 if (ret) 1365 goto wait_pd_fail; 1366 ret = dma_resv_reserve_fences(vm->root.bo->tbo.base.resv, 1); 1367 if (ret) 1368 goto reserve_shared_fail; 1369 dma_resv_add_fence(vm->root.bo->tbo.base.resv, 1370 &vm->process_info->eviction_fence->base, 1371 DMA_RESV_USAGE_BOOKKEEP); 1372 amdgpu_bo_unreserve(vm->root.bo); 1373 1374 /* Update process info */ 1375 mutex_lock(&vm->process_info->lock); 1376 list_add_tail(&vm->vm_list_node, 1377 &(vm->process_info->vm_list_head)); 1378 vm->process_info->n_vms++; 1379 mutex_unlock(&vm->process_info->lock); 1380 1381 return 0; 1382 1383 reserve_shared_fail: 1384 wait_pd_fail: 1385 validate_pd_fail: 1386 amdgpu_bo_unreserve(vm->root.bo); 1387 reserve_pd_fail: 1388 vm->process_info = NULL; 1389 if (info) { 1390 /* Two fence references: one in info and one in *ef */ 1391 dma_fence_put(&info->eviction_fence->base); 1392 dma_fence_put(*ef); 1393 *ef = NULL; 1394 *process_info = NULL; 1395 put_pid(info->pid); 1396 create_evict_fence_fail: 1397 mutex_destroy(&info->lock); 1398 mutex_destroy(&info->notifier_lock); 1399 kfree(info); 1400 } 1401 return ret; 1402 } 1403 1404 /** 1405 * amdgpu_amdkfd_gpuvm_pin_bo() - Pins a BO using following criteria 1406 * @bo: Handle of buffer object being pinned 1407 * @domain: Domain into which BO should be pinned 1408 * 1409 * - USERPTR BOs are UNPINNABLE and will return error 1410 * - All other BO types (GTT, VRAM, MMIO and DOORBELL) will have their 1411 * PIN count incremented. It is valid to PIN a BO multiple times 1412 * 1413 * Return: ZERO if successful in pinning, Non-Zero in case of error. 1414 */ 1415 static int amdgpu_amdkfd_gpuvm_pin_bo(struct amdgpu_bo *bo, u32 domain) 1416 { 1417 int ret = 0; 1418 1419 ret = amdgpu_bo_reserve(bo, false); 1420 if (unlikely(ret)) 1421 return ret; 1422 1423 ret = amdgpu_bo_pin_restricted(bo, domain, 0, 0); 1424 if (ret) 1425 pr_err("Error in Pinning BO to domain: %d\n", domain); 1426 1427 amdgpu_bo_sync_wait(bo, AMDGPU_FENCE_OWNER_KFD, false); 1428 amdgpu_bo_unreserve(bo); 1429 1430 return ret; 1431 } 1432 1433 /** 1434 * amdgpu_amdkfd_gpuvm_unpin_bo() - Unpins BO using following criteria 1435 * @bo: Handle of buffer object being unpinned 1436 * 1437 * - Is a illegal request for USERPTR BOs and is ignored 1438 * - All other BO types (GTT, VRAM, MMIO and DOORBELL) will have their 1439 * PIN count decremented. Calls to UNPIN must balance calls to PIN 1440 */ 1441 static void amdgpu_amdkfd_gpuvm_unpin_bo(struct amdgpu_bo *bo) 1442 { 1443 int ret = 0; 1444 1445 ret = amdgpu_bo_reserve(bo, false); 1446 if (unlikely(ret)) 1447 return; 1448 1449 amdgpu_bo_unpin(bo); 1450 amdgpu_bo_unreserve(bo); 1451 } 1452 1453 int amdgpu_amdkfd_gpuvm_set_vm_pasid(struct amdgpu_device *adev, 1454 struct amdgpu_vm *avm, u32 pasid) 1455 1456 { 1457 int ret; 1458 1459 /* Free the original amdgpu allocated pasid, 1460 * will be replaced with kfd allocated pasid. 1461 */ 1462 if (avm->pasid) { 1463 amdgpu_pasid_free(avm->pasid); 1464 amdgpu_vm_set_pasid(adev, avm, 0); 1465 } 1466 1467 ret = amdgpu_vm_set_pasid(adev, avm, pasid); 1468 if (ret) 1469 return ret; 1470 1471 return 0; 1472 } 1473 1474 int amdgpu_amdkfd_gpuvm_acquire_process_vm(struct amdgpu_device *adev, 1475 struct amdgpu_vm *avm, 1476 void **process_info, 1477 struct dma_fence **ef) 1478 { 1479 int ret; 1480 1481 /* Already a compute VM? */ 1482 if (avm->process_info) 1483 return -EINVAL; 1484 1485 /* Convert VM into a compute VM */ 1486 ret = amdgpu_vm_make_compute(adev, avm); 1487 if (ret) 1488 return ret; 1489 1490 /* Initialize KFD part of the VM and process info */ 1491 ret = init_kfd_vm(avm, process_info, ef); 1492 if (ret) 1493 return ret; 1494 1495 amdgpu_vm_set_task_info(avm); 1496 1497 return 0; 1498 } 1499 1500 void amdgpu_amdkfd_gpuvm_destroy_cb(struct amdgpu_device *adev, 1501 struct amdgpu_vm *vm) 1502 { 1503 struct amdkfd_process_info *process_info = vm->process_info; 1504 1505 if (!process_info) 1506 return; 1507 1508 /* Update process info */ 1509 mutex_lock(&process_info->lock); 1510 process_info->n_vms--; 1511 list_del(&vm->vm_list_node); 1512 mutex_unlock(&process_info->lock); 1513 1514 vm->process_info = NULL; 1515 1516 /* Release per-process resources when last compute VM is destroyed */ 1517 if (!process_info->n_vms) { 1518 WARN_ON(!list_empty(&process_info->kfd_bo_list)); 1519 WARN_ON(!list_empty(&process_info->userptr_valid_list)); 1520 WARN_ON(!list_empty(&process_info->userptr_inval_list)); 1521 1522 dma_fence_put(&process_info->eviction_fence->base); 1523 cancel_delayed_work_sync(&process_info->restore_userptr_work); 1524 put_pid(process_info->pid); 1525 mutex_destroy(&process_info->lock); 1526 mutex_destroy(&process_info->notifier_lock); 1527 kfree(process_info); 1528 } 1529 } 1530 1531 void amdgpu_amdkfd_gpuvm_release_process_vm(struct amdgpu_device *adev, 1532 void *drm_priv) 1533 { 1534 struct amdgpu_vm *avm; 1535 1536 if (WARN_ON(!adev || !drm_priv)) 1537 return; 1538 1539 avm = drm_priv_to_vm(drm_priv); 1540 1541 pr_debug("Releasing process vm %p\n", avm); 1542 1543 /* The original pasid of amdgpu vm has already been 1544 * released during making a amdgpu vm to a compute vm 1545 * The current pasid is managed by kfd and will be 1546 * released on kfd process destroy. Set amdgpu pasid 1547 * to 0 to avoid duplicate release. 1548 */ 1549 amdgpu_vm_release_compute(adev, avm); 1550 } 1551 1552 uint64_t amdgpu_amdkfd_gpuvm_get_process_page_dir(void *drm_priv) 1553 { 1554 struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv); 1555 struct amdgpu_bo *pd = avm->root.bo; 1556 struct amdgpu_device *adev = amdgpu_ttm_adev(pd->tbo.bdev); 1557 1558 if (adev->asic_type < CHIP_VEGA10) 1559 return avm->pd_phys_addr >> AMDGPU_GPU_PAGE_SHIFT; 1560 return avm->pd_phys_addr; 1561 } 1562 1563 void amdgpu_amdkfd_block_mmu_notifications(void *p) 1564 { 1565 struct amdkfd_process_info *pinfo = (struct amdkfd_process_info *)p; 1566 1567 mutex_lock(&pinfo->lock); 1568 WRITE_ONCE(pinfo->block_mmu_notifications, true); 1569 mutex_unlock(&pinfo->lock); 1570 } 1571 1572 int amdgpu_amdkfd_criu_resume(void *p) 1573 { 1574 int ret = 0; 1575 struct amdkfd_process_info *pinfo = (struct amdkfd_process_info *)p; 1576 1577 mutex_lock(&pinfo->lock); 1578 pr_debug("scheduling work\n"); 1579 mutex_lock(&pinfo->notifier_lock); 1580 pinfo->evicted_bos++; 1581 mutex_unlock(&pinfo->notifier_lock); 1582 if (!READ_ONCE(pinfo->block_mmu_notifications)) { 1583 ret = -EINVAL; 1584 goto out_unlock; 1585 } 1586 WRITE_ONCE(pinfo->block_mmu_notifications, false); 1587 schedule_delayed_work(&pinfo->restore_userptr_work, 0); 1588 1589 out_unlock: 1590 mutex_unlock(&pinfo->lock); 1591 return ret; 1592 } 1593 1594 size_t amdgpu_amdkfd_get_available_memory(struct amdgpu_device *adev, 1595 uint8_t xcp_id) 1596 { 1597 uint64_t reserved_for_pt = 1598 ESTIMATE_PT_SIZE(amdgpu_amdkfd_total_mem_size); 1599 ssize_t available; 1600 uint64_t vram_available, system_mem_available, ttm_mem_available; 1601 1602 spin_lock(&kfd_mem_limit.mem_limit_lock); 1603 vram_available = KFD_XCP_MEMORY_SIZE(adev, xcp_id) 1604 - adev->kfd.vram_used_aligned[xcp_id] 1605 - atomic64_read(&adev->vram_pin_size) 1606 - reserved_for_pt; 1607 1608 if (adev->gmc.is_app_apu) { 1609 system_mem_available = no_system_mem_limit ? 1610 kfd_mem_limit.max_system_mem_limit : 1611 kfd_mem_limit.max_system_mem_limit - 1612 kfd_mem_limit.system_mem_used; 1613 1614 ttm_mem_available = kfd_mem_limit.max_ttm_mem_limit - 1615 kfd_mem_limit.ttm_mem_used; 1616 1617 available = min3(system_mem_available, ttm_mem_available, 1618 vram_available); 1619 available = ALIGN_DOWN(available, PAGE_SIZE); 1620 } else { 1621 available = ALIGN_DOWN(vram_available, VRAM_AVAILABLITY_ALIGN); 1622 } 1623 1624 spin_unlock(&kfd_mem_limit.mem_limit_lock); 1625 1626 if (available < 0) 1627 available = 0; 1628 1629 return available; 1630 } 1631 1632 int amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu( 1633 struct amdgpu_device *adev, uint64_t va, uint64_t size, 1634 void *drm_priv, struct kgd_mem **mem, 1635 uint64_t *offset, uint32_t flags, bool criu_resume) 1636 { 1637 struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv); 1638 struct amdgpu_fpriv *fpriv = container_of(avm, struct amdgpu_fpriv, vm); 1639 enum ttm_bo_type bo_type = ttm_bo_type_device; 1640 struct sg_table *sg = NULL; 1641 uint64_t user_addr = 0; 1642 struct amdgpu_bo *bo; 1643 struct drm_gem_object *gobj = NULL; 1644 u32 domain, alloc_domain; 1645 uint64_t aligned_size; 1646 int8_t xcp_id = -1; 1647 u64 alloc_flags; 1648 int ret; 1649 1650 /* 1651 * Check on which domain to allocate BO 1652 */ 1653 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) { 1654 domain = alloc_domain = AMDGPU_GEM_DOMAIN_VRAM; 1655 1656 if (adev->gmc.is_app_apu) { 1657 domain = AMDGPU_GEM_DOMAIN_GTT; 1658 alloc_domain = AMDGPU_GEM_DOMAIN_GTT; 1659 alloc_flags = 0; 1660 } else { 1661 alloc_flags = AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE; 1662 alloc_flags |= (flags & KFD_IOC_ALLOC_MEM_FLAGS_PUBLIC) ? 1663 AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED : 0; 1664 } 1665 xcp_id = fpriv->xcp_id == AMDGPU_XCP_NO_PARTITION ? 1666 0 : fpriv->xcp_id; 1667 } else if (flags & KFD_IOC_ALLOC_MEM_FLAGS_GTT) { 1668 domain = alloc_domain = AMDGPU_GEM_DOMAIN_GTT; 1669 alloc_flags = 0; 1670 } else { 1671 domain = AMDGPU_GEM_DOMAIN_GTT; 1672 alloc_domain = AMDGPU_GEM_DOMAIN_CPU; 1673 alloc_flags = AMDGPU_GEM_CREATE_PREEMPTIBLE; 1674 1675 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) { 1676 if (!offset || !*offset) 1677 return -EINVAL; 1678 user_addr = untagged_addr(*offset); 1679 } else if (flags & (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL | 1680 KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) { 1681 bo_type = ttm_bo_type_sg; 1682 if (size > UINT_MAX) 1683 return -EINVAL; 1684 sg = create_sg_table(*offset, size); 1685 if (!sg) 1686 return -ENOMEM; 1687 } else { 1688 return -EINVAL; 1689 } 1690 } 1691 1692 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_COHERENT) 1693 alloc_flags |= AMDGPU_GEM_CREATE_COHERENT; 1694 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_EXT_COHERENT) 1695 alloc_flags |= AMDGPU_GEM_CREATE_EXT_COHERENT; 1696 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_UNCACHED) 1697 alloc_flags |= AMDGPU_GEM_CREATE_UNCACHED; 1698 1699 *mem = kzalloc(sizeof(struct kgd_mem), GFP_KERNEL); 1700 if (!*mem) { 1701 ret = -ENOMEM; 1702 goto err; 1703 } 1704 INIT_LIST_HEAD(&(*mem)->attachments); 1705 mutex_init(&(*mem)->lock); 1706 (*mem)->aql_queue = !!(flags & KFD_IOC_ALLOC_MEM_FLAGS_AQL_QUEUE_MEM); 1707 1708 /* Workaround for AQL queue wraparound bug. Map the same 1709 * memory twice. That means we only actually allocate half 1710 * the memory. 1711 */ 1712 if ((*mem)->aql_queue) 1713 size >>= 1; 1714 aligned_size = PAGE_ALIGN(size); 1715 1716 (*mem)->alloc_flags = flags; 1717 1718 amdgpu_sync_create(&(*mem)->sync); 1719 1720 ret = amdgpu_amdkfd_reserve_mem_limit(adev, aligned_size, flags, 1721 xcp_id); 1722 if (ret) { 1723 pr_debug("Insufficient memory\n"); 1724 goto err_reserve_limit; 1725 } 1726 1727 pr_debug("\tcreate BO VA 0x%llx size 0x%llx domain %s xcp_id %d\n", 1728 va, (*mem)->aql_queue ? size << 1 : size, 1729 domain_string(alloc_domain), xcp_id); 1730 1731 ret = amdgpu_gem_object_create(adev, aligned_size, 1, alloc_domain, alloc_flags, 1732 bo_type, NULL, &gobj, xcp_id + 1); 1733 if (ret) { 1734 pr_debug("Failed to create BO on domain %s. ret %d\n", 1735 domain_string(alloc_domain), ret); 1736 goto err_bo_create; 1737 } 1738 ret = drm_vma_node_allow(&gobj->vma_node, drm_priv); 1739 if (ret) { 1740 pr_debug("Failed to allow vma node access. ret %d\n", ret); 1741 goto err_node_allow; 1742 } 1743 bo = gem_to_amdgpu_bo(gobj); 1744 if (bo_type == ttm_bo_type_sg) { 1745 bo->tbo.sg = sg; 1746 bo->tbo.ttm->sg = sg; 1747 } 1748 bo->kfd_bo = *mem; 1749 (*mem)->bo = bo; 1750 if (user_addr) 1751 bo->flags |= AMDGPU_AMDKFD_CREATE_USERPTR_BO; 1752 1753 (*mem)->va = va; 1754 (*mem)->domain = domain; 1755 (*mem)->mapped_to_gpu_memory = 0; 1756 (*mem)->process_info = avm->process_info; 1757 1758 add_kgd_mem_to_kfd_bo_list(*mem, avm->process_info, user_addr); 1759 1760 if (user_addr) { 1761 pr_debug("creating userptr BO for user_addr = %llx\n", user_addr); 1762 ret = init_user_pages(*mem, user_addr, criu_resume); 1763 if (ret) 1764 goto allocate_init_user_pages_failed; 1765 } else if (flags & (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL | 1766 KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) { 1767 ret = amdgpu_amdkfd_gpuvm_pin_bo(bo, AMDGPU_GEM_DOMAIN_GTT); 1768 if (ret) { 1769 pr_err("Pinning MMIO/DOORBELL BO during ALLOC FAILED\n"); 1770 goto err_pin_bo; 1771 } 1772 bo->allowed_domains = AMDGPU_GEM_DOMAIN_GTT; 1773 bo->preferred_domains = AMDGPU_GEM_DOMAIN_GTT; 1774 } 1775 1776 if (offset) 1777 *offset = amdgpu_bo_mmap_offset(bo); 1778 1779 return 0; 1780 1781 allocate_init_user_pages_failed: 1782 err_pin_bo: 1783 remove_kgd_mem_from_kfd_bo_list(*mem, avm->process_info); 1784 drm_vma_node_revoke(&gobj->vma_node, drm_priv); 1785 err_node_allow: 1786 /* Don't unreserve system mem limit twice */ 1787 goto err_reserve_limit; 1788 err_bo_create: 1789 amdgpu_amdkfd_unreserve_mem_limit(adev, aligned_size, flags, xcp_id); 1790 err_reserve_limit: 1791 mutex_destroy(&(*mem)->lock); 1792 if (gobj) 1793 drm_gem_object_put(gobj); 1794 else 1795 kfree(*mem); 1796 err: 1797 if (sg) { 1798 sg_free_table(sg); 1799 kfree(sg); 1800 } 1801 return ret; 1802 } 1803 1804 int amdgpu_amdkfd_gpuvm_free_memory_of_gpu( 1805 struct amdgpu_device *adev, struct kgd_mem *mem, void *drm_priv, 1806 uint64_t *size) 1807 { 1808 struct amdkfd_process_info *process_info = mem->process_info; 1809 unsigned long bo_size = mem->bo->tbo.base.size; 1810 bool use_release_notifier = (mem->bo->kfd_bo == mem); 1811 struct kfd_mem_attachment *entry, *tmp; 1812 struct bo_vm_reservation_context ctx; 1813 unsigned int mapped_to_gpu_memory; 1814 int ret; 1815 bool is_imported = false; 1816 1817 mutex_lock(&mem->lock); 1818 1819 /* Unpin MMIO/DOORBELL BO's that were pinned during allocation */ 1820 if (mem->alloc_flags & 1821 (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL | 1822 KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) { 1823 amdgpu_amdkfd_gpuvm_unpin_bo(mem->bo); 1824 } 1825 1826 mapped_to_gpu_memory = mem->mapped_to_gpu_memory; 1827 is_imported = mem->is_imported; 1828 mutex_unlock(&mem->lock); 1829 /* lock is not needed after this, since mem is unused and will 1830 * be freed anyway 1831 */ 1832 1833 if (mapped_to_gpu_memory > 0) { 1834 pr_debug("BO VA 0x%llx size 0x%lx is still mapped.\n", 1835 mem->va, bo_size); 1836 return -EBUSY; 1837 } 1838 1839 /* Make sure restore workers don't access the BO any more */ 1840 mutex_lock(&process_info->lock); 1841 list_del(&mem->validate_list); 1842 mutex_unlock(&process_info->lock); 1843 1844 /* Cleanup user pages and MMU notifiers */ 1845 if (amdgpu_ttm_tt_get_usermm(mem->bo->tbo.ttm)) { 1846 amdgpu_hmm_unregister(mem->bo); 1847 mutex_lock(&process_info->notifier_lock); 1848 amdgpu_ttm_tt_discard_user_pages(mem->bo->tbo.ttm, mem->range); 1849 mutex_unlock(&process_info->notifier_lock); 1850 } 1851 1852 ret = reserve_bo_and_cond_vms(mem, NULL, BO_VM_ALL, &ctx); 1853 if (unlikely(ret)) 1854 return ret; 1855 1856 /* The eviction fence should be removed by the last unmap. 1857 * TODO: Log an error condition if the bo still has the eviction fence 1858 * attached 1859 */ 1860 amdgpu_amdkfd_remove_eviction_fence(mem->bo, 1861 process_info->eviction_fence); 1862 pr_debug("Release VA 0x%llx - 0x%llx\n", mem->va, 1863 mem->va + bo_size * (1 + mem->aql_queue)); 1864 1865 /* Remove from VM internal data structures */ 1866 list_for_each_entry_safe(entry, tmp, &mem->attachments, list) 1867 kfd_mem_detach(entry); 1868 1869 ret = unreserve_bo_and_vms(&ctx, false, false); 1870 1871 /* Free the sync object */ 1872 amdgpu_sync_free(&mem->sync); 1873 1874 /* If the SG is not NULL, it's one we created for a doorbell or mmio 1875 * remap BO. We need to free it. 1876 */ 1877 if (mem->bo->tbo.sg) { 1878 sg_free_table(mem->bo->tbo.sg); 1879 kfree(mem->bo->tbo.sg); 1880 } 1881 1882 /* Update the size of the BO being freed if it was allocated from 1883 * VRAM and is not imported. For APP APU VRAM allocations are done 1884 * in GTT domain 1885 */ 1886 if (size) { 1887 if (!is_imported && 1888 (mem->bo->preferred_domains == AMDGPU_GEM_DOMAIN_VRAM || 1889 (adev->gmc.is_app_apu && 1890 mem->bo->preferred_domains == AMDGPU_GEM_DOMAIN_GTT))) 1891 *size = bo_size; 1892 else 1893 *size = 0; 1894 } 1895 1896 /* Free the BO*/ 1897 drm_vma_node_revoke(&mem->bo->tbo.base.vma_node, drm_priv); 1898 if (mem->dmabuf) 1899 dma_buf_put(mem->dmabuf); 1900 mutex_destroy(&mem->lock); 1901 1902 /* If this releases the last reference, it will end up calling 1903 * amdgpu_amdkfd_release_notify and kfree the mem struct. That's why 1904 * this needs to be the last call here. 1905 */ 1906 drm_gem_object_put(&mem->bo->tbo.base); 1907 1908 /* 1909 * For kgd_mem allocated in amdgpu_amdkfd_gpuvm_import_dmabuf(), 1910 * explicitly free it here. 1911 */ 1912 if (!use_release_notifier) 1913 kfree(mem); 1914 1915 return ret; 1916 } 1917 1918 int amdgpu_amdkfd_gpuvm_map_memory_to_gpu( 1919 struct amdgpu_device *adev, struct kgd_mem *mem, 1920 void *drm_priv) 1921 { 1922 struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv); 1923 int ret; 1924 struct amdgpu_bo *bo; 1925 uint32_t domain; 1926 struct kfd_mem_attachment *entry; 1927 struct bo_vm_reservation_context ctx; 1928 unsigned long bo_size; 1929 bool is_invalid_userptr = false; 1930 1931 bo = mem->bo; 1932 if (!bo) { 1933 pr_err("Invalid BO when mapping memory to GPU\n"); 1934 return -EINVAL; 1935 } 1936 1937 /* Make sure restore is not running concurrently. Since we 1938 * don't map invalid userptr BOs, we rely on the next restore 1939 * worker to do the mapping 1940 */ 1941 mutex_lock(&mem->process_info->lock); 1942 1943 /* Lock notifier lock. If we find an invalid userptr BO, we can be 1944 * sure that the MMU notifier is no longer running 1945 * concurrently and the queues are actually stopped 1946 */ 1947 if (amdgpu_ttm_tt_get_usermm(bo->tbo.ttm)) { 1948 mutex_lock(&mem->process_info->notifier_lock); 1949 is_invalid_userptr = !!mem->invalid; 1950 mutex_unlock(&mem->process_info->notifier_lock); 1951 } 1952 1953 mutex_lock(&mem->lock); 1954 1955 domain = mem->domain; 1956 bo_size = bo->tbo.base.size; 1957 1958 pr_debug("Map VA 0x%llx - 0x%llx to vm %p domain %s\n", 1959 mem->va, 1960 mem->va + bo_size * (1 + mem->aql_queue), 1961 avm, domain_string(domain)); 1962 1963 if (!kfd_mem_is_attached(avm, mem)) { 1964 ret = kfd_mem_attach(adev, mem, avm, mem->aql_queue); 1965 if (ret) 1966 goto out; 1967 } 1968 1969 ret = reserve_bo_and_vm(mem, avm, &ctx); 1970 if (unlikely(ret)) 1971 goto out; 1972 1973 /* Userptr can be marked as "not invalid", but not actually be 1974 * validated yet (still in the system domain). In that case 1975 * the queues are still stopped and we can leave mapping for 1976 * the next restore worker 1977 */ 1978 if (amdgpu_ttm_tt_get_usermm(bo->tbo.ttm) && 1979 bo->tbo.resource->mem_type == TTM_PL_SYSTEM) 1980 is_invalid_userptr = true; 1981 1982 ret = vm_validate_pt_pd_bos(avm); 1983 if (unlikely(ret)) 1984 goto out_unreserve; 1985 1986 if (mem->mapped_to_gpu_memory == 0 && 1987 !amdgpu_ttm_tt_get_usermm(bo->tbo.ttm)) { 1988 /* Validate BO only once. The eviction fence gets added to BO 1989 * the first time it is mapped. Validate will wait for all 1990 * background evictions to complete. 1991 */ 1992 ret = amdgpu_amdkfd_bo_validate(bo, domain, true); 1993 if (ret) { 1994 pr_debug("Validate failed\n"); 1995 goto out_unreserve; 1996 } 1997 } 1998 1999 list_for_each_entry(entry, &mem->attachments, list) { 2000 if (entry->bo_va->base.vm != avm || entry->is_mapped) 2001 continue; 2002 2003 pr_debug("\t map VA 0x%llx - 0x%llx in entry %p\n", 2004 entry->va, entry->va + bo_size, entry); 2005 2006 ret = map_bo_to_gpuvm(mem, entry, ctx.sync, 2007 is_invalid_userptr); 2008 if (ret) { 2009 pr_err("Failed to map bo to gpuvm\n"); 2010 goto out_unreserve; 2011 } 2012 2013 ret = vm_update_pds(avm, ctx.sync); 2014 if (ret) { 2015 pr_err("Failed to update page directories\n"); 2016 goto out_unreserve; 2017 } 2018 2019 entry->is_mapped = true; 2020 mem->mapped_to_gpu_memory++; 2021 pr_debug("\t INC mapping count %d\n", 2022 mem->mapped_to_gpu_memory); 2023 } 2024 2025 if (!amdgpu_ttm_tt_get_usermm(bo->tbo.ttm) && !bo->tbo.pin_count) 2026 dma_resv_add_fence(bo->tbo.base.resv, 2027 &avm->process_info->eviction_fence->base, 2028 DMA_RESV_USAGE_BOOKKEEP); 2029 ret = unreserve_bo_and_vms(&ctx, false, false); 2030 2031 goto out; 2032 2033 out_unreserve: 2034 unreserve_bo_and_vms(&ctx, false, false); 2035 out: 2036 mutex_unlock(&mem->process_info->lock); 2037 mutex_unlock(&mem->lock); 2038 return ret; 2039 } 2040 2041 int amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu( 2042 struct amdgpu_device *adev, struct kgd_mem *mem, void *drm_priv) 2043 { 2044 struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv); 2045 struct amdkfd_process_info *process_info = avm->process_info; 2046 unsigned long bo_size = mem->bo->tbo.base.size; 2047 struct kfd_mem_attachment *entry; 2048 struct bo_vm_reservation_context ctx; 2049 int ret; 2050 2051 mutex_lock(&mem->lock); 2052 2053 ret = reserve_bo_and_cond_vms(mem, avm, BO_VM_MAPPED, &ctx); 2054 if (unlikely(ret)) 2055 goto out; 2056 /* If no VMs were reserved, it means the BO wasn't actually mapped */ 2057 if (ctx.n_vms == 0) { 2058 ret = -EINVAL; 2059 goto unreserve_out; 2060 } 2061 2062 ret = vm_validate_pt_pd_bos(avm); 2063 if (unlikely(ret)) 2064 goto unreserve_out; 2065 2066 pr_debug("Unmap VA 0x%llx - 0x%llx from vm %p\n", 2067 mem->va, 2068 mem->va + bo_size * (1 + mem->aql_queue), 2069 avm); 2070 2071 list_for_each_entry(entry, &mem->attachments, list) { 2072 if (entry->bo_va->base.vm != avm || !entry->is_mapped) 2073 continue; 2074 2075 pr_debug("\t unmap VA 0x%llx - 0x%llx from entry %p\n", 2076 entry->va, entry->va + bo_size, entry); 2077 2078 unmap_bo_from_gpuvm(mem, entry, ctx.sync); 2079 entry->is_mapped = false; 2080 2081 mem->mapped_to_gpu_memory--; 2082 pr_debug("\t DEC mapping count %d\n", 2083 mem->mapped_to_gpu_memory); 2084 } 2085 2086 /* If BO is unmapped from all VMs, unfence it. It can be evicted if 2087 * required. 2088 */ 2089 if (mem->mapped_to_gpu_memory == 0 && 2090 !amdgpu_ttm_tt_get_usermm(mem->bo->tbo.ttm) && 2091 !mem->bo->tbo.pin_count) 2092 amdgpu_amdkfd_remove_eviction_fence(mem->bo, 2093 process_info->eviction_fence); 2094 2095 unreserve_out: 2096 unreserve_bo_and_vms(&ctx, false, false); 2097 out: 2098 mutex_unlock(&mem->lock); 2099 return ret; 2100 } 2101 2102 int amdgpu_amdkfd_gpuvm_sync_memory( 2103 struct amdgpu_device *adev, struct kgd_mem *mem, bool intr) 2104 { 2105 struct amdgpu_sync sync; 2106 int ret; 2107 2108 amdgpu_sync_create(&sync); 2109 2110 mutex_lock(&mem->lock); 2111 amdgpu_sync_clone(&mem->sync, &sync); 2112 mutex_unlock(&mem->lock); 2113 2114 ret = amdgpu_sync_wait(&sync, intr); 2115 amdgpu_sync_free(&sync); 2116 return ret; 2117 } 2118 2119 /** 2120 * amdgpu_amdkfd_map_gtt_bo_to_gart - Map BO to GART and increment reference count 2121 * @adev: Device to which allocated BO belongs 2122 * @bo: Buffer object to be mapped 2123 * 2124 * Before return, bo reference count is incremented. To release the reference and unpin/ 2125 * unmap the BO, call amdgpu_amdkfd_free_gtt_mem. 2126 */ 2127 int amdgpu_amdkfd_map_gtt_bo_to_gart(struct amdgpu_device *adev, struct amdgpu_bo *bo) 2128 { 2129 int ret; 2130 2131 ret = amdgpu_bo_reserve(bo, true); 2132 if (ret) { 2133 pr_err("Failed to reserve bo. ret %d\n", ret); 2134 goto err_reserve_bo_failed; 2135 } 2136 2137 ret = amdgpu_bo_pin(bo, AMDGPU_GEM_DOMAIN_GTT); 2138 if (ret) { 2139 pr_err("Failed to pin bo. ret %d\n", ret); 2140 goto err_pin_bo_failed; 2141 } 2142 2143 ret = amdgpu_ttm_alloc_gart(&bo->tbo); 2144 if (ret) { 2145 pr_err("Failed to bind bo to GART. ret %d\n", ret); 2146 goto err_map_bo_gart_failed; 2147 } 2148 2149 amdgpu_amdkfd_remove_eviction_fence( 2150 bo, bo->vm_bo->vm->process_info->eviction_fence); 2151 2152 amdgpu_bo_unreserve(bo); 2153 2154 bo = amdgpu_bo_ref(bo); 2155 2156 return 0; 2157 2158 err_map_bo_gart_failed: 2159 amdgpu_bo_unpin(bo); 2160 err_pin_bo_failed: 2161 amdgpu_bo_unreserve(bo); 2162 err_reserve_bo_failed: 2163 2164 return ret; 2165 } 2166 2167 /** amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel() - Map a GTT BO for kernel CPU access 2168 * 2169 * @mem: Buffer object to be mapped for CPU access 2170 * @kptr[out]: pointer in kernel CPU address space 2171 * @size[out]: size of the buffer 2172 * 2173 * Pins the BO and maps it for kernel CPU access. The eviction fence is removed 2174 * from the BO, since pinned BOs cannot be evicted. The bo must remain on the 2175 * validate_list, so the GPU mapping can be restored after a page table was 2176 * evicted. 2177 * 2178 * Return: 0 on success, error code on failure 2179 */ 2180 int amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(struct kgd_mem *mem, 2181 void **kptr, uint64_t *size) 2182 { 2183 int ret; 2184 struct amdgpu_bo *bo = mem->bo; 2185 2186 if (amdgpu_ttm_tt_get_usermm(bo->tbo.ttm)) { 2187 pr_err("userptr can't be mapped to kernel\n"); 2188 return -EINVAL; 2189 } 2190 2191 mutex_lock(&mem->process_info->lock); 2192 2193 ret = amdgpu_bo_reserve(bo, true); 2194 if (ret) { 2195 pr_err("Failed to reserve bo. ret %d\n", ret); 2196 goto bo_reserve_failed; 2197 } 2198 2199 ret = amdgpu_bo_pin(bo, AMDGPU_GEM_DOMAIN_GTT); 2200 if (ret) { 2201 pr_err("Failed to pin bo. ret %d\n", ret); 2202 goto pin_failed; 2203 } 2204 2205 ret = amdgpu_bo_kmap(bo, kptr); 2206 if (ret) { 2207 pr_err("Failed to map bo to kernel. ret %d\n", ret); 2208 goto kmap_failed; 2209 } 2210 2211 amdgpu_amdkfd_remove_eviction_fence( 2212 bo, mem->process_info->eviction_fence); 2213 2214 if (size) 2215 *size = amdgpu_bo_size(bo); 2216 2217 amdgpu_bo_unreserve(bo); 2218 2219 mutex_unlock(&mem->process_info->lock); 2220 return 0; 2221 2222 kmap_failed: 2223 amdgpu_bo_unpin(bo); 2224 pin_failed: 2225 amdgpu_bo_unreserve(bo); 2226 bo_reserve_failed: 2227 mutex_unlock(&mem->process_info->lock); 2228 2229 return ret; 2230 } 2231 2232 /** amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel() - Unmap a GTT BO for kernel CPU access 2233 * 2234 * @mem: Buffer object to be unmapped for CPU access 2235 * 2236 * Removes the kernel CPU mapping and unpins the BO. It does not restore the 2237 * eviction fence, so this function should only be used for cleanup before the 2238 * BO is destroyed. 2239 */ 2240 void amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(struct kgd_mem *mem) 2241 { 2242 struct amdgpu_bo *bo = mem->bo; 2243 2244 amdgpu_bo_reserve(bo, true); 2245 amdgpu_bo_kunmap(bo); 2246 amdgpu_bo_unpin(bo); 2247 amdgpu_bo_unreserve(bo); 2248 } 2249 2250 int amdgpu_amdkfd_gpuvm_get_vm_fault_info(struct amdgpu_device *adev, 2251 struct kfd_vm_fault_info *mem) 2252 { 2253 if (atomic_read(&adev->gmc.vm_fault_info_updated) == 1) { 2254 *mem = *adev->gmc.vm_fault_info; 2255 mb(); /* make sure read happened */ 2256 atomic_set(&adev->gmc.vm_fault_info_updated, 0); 2257 } 2258 return 0; 2259 } 2260 2261 int amdgpu_amdkfd_gpuvm_import_dmabuf(struct amdgpu_device *adev, 2262 struct dma_buf *dma_buf, 2263 uint64_t va, void *drm_priv, 2264 struct kgd_mem **mem, uint64_t *size, 2265 uint64_t *mmap_offset) 2266 { 2267 struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv); 2268 struct drm_gem_object *obj; 2269 struct amdgpu_bo *bo; 2270 int ret; 2271 2272 obj = amdgpu_gem_prime_import(adev_to_drm(adev), dma_buf); 2273 if (IS_ERR(obj)) 2274 return PTR_ERR(obj); 2275 2276 bo = gem_to_amdgpu_bo(obj); 2277 if (!(bo->preferred_domains & (AMDGPU_GEM_DOMAIN_VRAM | 2278 AMDGPU_GEM_DOMAIN_GTT))) { 2279 /* Only VRAM and GTT BOs are supported */ 2280 ret = -EINVAL; 2281 goto err_put_obj; 2282 } 2283 2284 *mem = kzalloc(sizeof(struct kgd_mem), GFP_KERNEL); 2285 if (!*mem) { 2286 ret = -ENOMEM; 2287 goto err_put_obj; 2288 } 2289 2290 ret = drm_vma_node_allow(&obj->vma_node, drm_priv); 2291 if (ret) 2292 goto err_free_mem; 2293 2294 if (size) 2295 *size = amdgpu_bo_size(bo); 2296 2297 if (mmap_offset) 2298 *mmap_offset = amdgpu_bo_mmap_offset(bo); 2299 2300 INIT_LIST_HEAD(&(*mem)->attachments); 2301 mutex_init(&(*mem)->lock); 2302 2303 (*mem)->alloc_flags = 2304 ((bo->preferred_domains & AMDGPU_GEM_DOMAIN_VRAM) ? 2305 KFD_IOC_ALLOC_MEM_FLAGS_VRAM : KFD_IOC_ALLOC_MEM_FLAGS_GTT) 2306 | KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE 2307 | KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE; 2308 2309 get_dma_buf(dma_buf); 2310 (*mem)->dmabuf = dma_buf; 2311 (*mem)->bo = bo; 2312 (*mem)->va = va; 2313 (*mem)->domain = (bo->preferred_domains & AMDGPU_GEM_DOMAIN_VRAM) && !adev->gmc.is_app_apu ? 2314 AMDGPU_GEM_DOMAIN_VRAM : AMDGPU_GEM_DOMAIN_GTT; 2315 2316 (*mem)->mapped_to_gpu_memory = 0; 2317 (*mem)->process_info = avm->process_info; 2318 add_kgd_mem_to_kfd_bo_list(*mem, avm->process_info, false); 2319 amdgpu_sync_create(&(*mem)->sync); 2320 (*mem)->is_imported = true; 2321 2322 return 0; 2323 2324 err_free_mem: 2325 kfree(*mem); 2326 err_put_obj: 2327 drm_gem_object_put(obj); 2328 return ret; 2329 } 2330 2331 int amdgpu_amdkfd_gpuvm_export_dmabuf(struct kgd_mem *mem, 2332 struct dma_buf **dma_buf) 2333 { 2334 int ret; 2335 2336 mutex_lock(&mem->lock); 2337 ret = kfd_mem_export_dmabuf(mem); 2338 if (ret) 2339 goto out; 2340 2341 get_dma_buf(mem->dmabuf); 2342 *dma_buf = mem->dmabuf; 2343 out: 2344 mutex_unlock(&mem->lock); 2345 return ret; 2346 } 2347 2348 /* Evict a userptr BO by stopping the queues if necessary 2349 * 2350 * Runs in MMU notifier, may be in RECLAIM_FS context. This means it 2351 * cannot do any memory allocations, and cannot take any locks that 2352 * are held elsewhere while allocating memory. 2353 * 2354 * It doesn't do anything to the BO itself. The real work happens in 2355 * restore, where we get updated page addresses. This function only 2356 * ensures that GPU access to the BO is stopped. 2357 */ 2358 int amdgpu_amdkfd_evict_userptr(struct mmu_interval_notifier *mni, 2359 unsigned long cur_seq, struct kgd_mem *mem) 2360 { 2361 struct amdkfd_process_info *process_info = mem->process_info; 2362 int r = 0; 2363 2364 /* Do not process MMU notifications during CRIU restore until 2365 * KFD_CRIU_OP_RESUME IOCTL is received 2366 */ 2367 if (READ_ONCE(process_info->block_mmu_notifications)) 2368 return 0; 2369 2370 mutex_lock(&process_info->notifier_lock); 2371 mmu_interval_set_seq(mni, cur_seq); 2372 2373 mem->invalid++; 2374 if (++process_info->evicted_bos == 1) { 2375 /* First eviction, stop the queues */ 2376 r = kgd2kfd_quiesce_mm(mni->mm, 2377 KFD_QUEUE_EVICTION_TRIGGER_USERPTR); 2378 if (r) 2379 pr_err("Failed to quiesce KFD\n"); 2380 schedule_delayed_work(&process_info->restore_userptr_work, 2381 msecs_to_jiffies(AMDGPU_USERPTR_RESTORE_DELAY_MS)); 2382 } 2383 mutex_unlock(&process_info->notifier_lock); 2384 2385 return r; 2386 } 2387 2388 /* Update invalid userptr BOs 2389 * 2390 * Moves invalidated (evicted) userptr BOs from userptr_valid_list to 2391 * userptr_inval_list and updates user pages for all BOs that have 2392 * been invalidated since their last update. 2393 */ 2394 static int update_invalid_user_pages(struct amdkfd_process_info *process_info, 2395 struct mm_struct *mm) 2396 { 2397 struct kgd_mem *mem, *tmp_mem; 2398 struct amdgpu_bo *bo; 2399 struct ttm_operation_ctx ctx = { false, false }; 2400 uint32_t invalid; 2401 int ret = 0; 2402 2403 mutex_lock(&process_info->notifier_lock); 2404 2405 /* Move all invalidated BOs to the userptr_inval_list */ 2406 list_for_each_entry_safe(mem, tmp_mem, 2407 &process_info->userptr_valid_list, 2408 validate_list) 2409 if (mem->invalid) 2410 list_move_tail(&mem->validate_list, 2411 &process_info->userptr_inval_list); 2412 2413 /* Go through userptr_inval_list and update any invalid user_pages */ 2414 list_for_each_entry(mem, &process_info->userptr_inval_list, 2415 validate_list) { 2416 invalid = mem->invalid; 2417 if (!invalid) 2418 /* BO hasn't been invalidated since the last 2419 * revalidation attempt. Keep its page list. 2420 */ 2421 continue; 2422 2423 bo = mem->bo; 2424 2425 amdgpu_ttm_tt_discard_user_pages(bo->tbo.ttm, mem->range); 2426 mem->range = NULL; 2427 2428 /* BO reservations and getting user pages (hmm_range_fault) 2429 * must happen outside the notifier lock 2430 */ 2431 mutex_unlock(&process_info->notifier_lock); 2432 2433 /* Move the BO to system (CPU) domain if necessary to unmap 2434 * and free the SG table 2435 */ 2436 if (bo->tbo.resource->mem_type != TTM_PL_SYSTEM) { 2437 if (amdgpu_bo_reserve(bo, true)) 2438 return -EAGAIN; 2439 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_CPU); 2440 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 2441 amdgpu_bo_unreserve(bo); 2442 if (ret) { 2443 pr_err("%s: Failed to invalidate userptr BO\n", 2444 __func__); 2445 return -EAGAIN; 2446 } 2447 } 2448 2449 /* Get updated user pages */ 2450 ret = amdgpu_ttm_tt_get_user_pages(bo, bo->tbo.ttm->pages, 2451 &mem->range); 2452 if (ret) { 2453 pr_debug("Failed %d to get user pages\n", ret); 2454 2455 /* Return -EFAULT bad address error as success. It will 2456 * fail later with a VM fault if the GPU tries to access 2457 * it. Better than hanging indefinitely with stalled 2458 * user mode queues. 2459 * 2460 * Return other error -EBUSY or -ENOMEM to retry restore 2461 */ 2462 if (ret != -EFAULT) 2463 return ret; 2464 2465 ret = 0; 2466 } 2467 2468 mutex_lock(&process_info->notifier_lock); 2469 2470 /* Mark the BO as valid unless it was invalidated 2471 * again concurrently. 2472 */ 2473 if (mem->invalid != invalid) { 2474 ret = -EAGAIN; 2475 goto unlock_out; 2476 } 2477 /* set mem valid if mem has hmm range associated */ 2478 if (mem->range) 2479 mem->invalid = 0; 2480 } 2481 2482 unlock_out: 2483 mutex_unlock(&process_info->notifier_lock); 2484 2485 return ret; 2486 } 2487 2488 /* Validate invalid userptr BOs 2489 * 2490 * Validates BOs on the userptr_inval_list. Also updates GPUVM page tables 2491 * with new page addresses and waits for the page table updates to complete. 2492 */ 2493 static int validate_invalid_user_pages(struct amdkfd_process_info *process_info) 2494 { 2495 struct ttm_operation_ctx ctx = { false, false }; 2496 struct amdgpu_sync sync; 2497 struct drm_exec exec; 2498 2499 struct amdgpu_vm *peer_vm; 2500 struct kgd_mem *mem, *tmp_mem; 2501 struct amdgpu_bo *bo; 2502 int ret; 2503 2504 amdgpu_sync_create(&sync); 2505 2506 drm_exec_init(&exec, 0); 2507 /* Reserve all BOs and page tables for validation */ 2508 drm_exec_until_all_locked(&exec) { 2509 /* Reserve all the page directories */ 2510 list_for_each_entry(peer_vm, &process_info->vm_list_head, 2511 vm_list_node) { 2512 ret = amdgpu_vm_lock_pd(peer_vm, &exec, 2); 2513 drm_exec_retry_on_contention(&exec); 2514 if (unlikely(ret)) 2515 goto unreserve_out; 2516 } 2517 2518 /* Reserve the userptr_inval_list entries to resv_list */ 2519 list_for_each_entry(mem, &process_info->userptr_inval_list, 2520 validate_list) { 2521 struct drm_gem_object *gobj; 2522 2523 gobj = &mem->bo->tbo.base; 2524 ret = drm_exec_prepare_obj(&exec, gobj, 1); 2525 drm_exec_retry_on_contention(&exec); 2526 if (unlikely(ret)) 2527 goto unreserve_out; 2528 } 2529 } 2530 2531 ret = process_validate_vms(process_info); 2532 if (ret) 2533 goto unreserve_out; 2534 2535 /* Validate BOs and update GPUVM page tables */ 2536 list_for_each_entry_safe(mem, tmp_mem, 2537 &process_info->userptr_inval_list, 2538 validate_list) { 2539 struct kfd_mem_attachment *attachment; 2540 2541 bo = mem->bo; 2542 2543 /* Validate the BO if we got user pages */ 2544 if (bo->tbo.ttm->pages[0]) { 2545 amdgpu_bo_placement_from_domain(bo, mem->domain); 2546 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 2547 if (ret) { 2548 pr_err("%s: failed to validate BO\n", __func__); 2549 goto unreserve_out; 2550 } 2551 } 2552 2553 /* Update mapping. If the BO was not validated 2554 * (because we couldn't get user pages), this will 2555 * clear the page table entries, which will result in 2556 * VM faults if the GPU tries to access the invalid 2557 * memory. 2558 */ 2559 list_for_each_entry(attachment, &mem->attachments, list) { 2560 if (!attachment->is_mapped) 2561 continue; 2562 2563 kfd_mem_dmaunmap_attachment(mem, attachment); 2564 ret = update_gpuvm_pte(mem, attachment, &sync); 2565 if (ret) { 2566 pr_err("%s: update PTE failed\n", __func__); 2567 /* make sure this gets validated again */ 2568 mutex_lock(&process_info->notifier_lock); 2569 mem->invalid++; 2570 mutex_unlock(&process_info->notifier_lock); 2571 goto unreserve_out; 2572 } 2573 } 2574 } 2575 2576 /* Update page directories */ 2577 ret = process_update_pds(process_info, &sync); 2578 2579 unreserve_out: 2580 drm_exec_fini(&exec); 2581 amdgpu_sync_wait(&sync, false); 2582 amdgpu_sync_free(&sync); 2583 2584 return ret; 2585 } 2586 2587 /* Confirm that all user pages are valid while holding the notifier lock 2588 * 2589 * Moves valid BOs from the userptr_inval_list back to userptr_val_list. 2590 */ 2591 static int confirm_valid_user_pages_locked(struct amdkfd_process_info *process_info) 2592 { 2593 struct kgd_mem *mem, *tmp_mem; 2594 int ret = 0; 2595 2596 list_for_each_entry_safe(mem, tmp_mem, 2597 &process_info->userptr_inval_list, 2598 validate_list) { 2599 bool valid; 2600 2601 /* keep mem without hmm range at userptr_inval_list */ 2602 if (!mem->range) 2603 continue; 2604 2605 /* Only check mem with hmm range associated */ 2606 valid = amdgpu_ttm_tt_get_user_pages_done( 2607 mem->bo->tbo.ttm, mem->range); 2608 2609 mem->range = NULL; 2610 if (!valid) { 2611 WARN(!mem->invalid, "Invalid BO not marked invalid"); 2612 ret = -EAGAIN; 2613 continue; 2614 } 2615 2616 if (mem->invalid) { 2617 WARN(1, "Valid BO is marked invalid"); 2618 ret = -EAGAIN; 2619 continue; 2620 } 2621 2622 list_move_tail(&mem->validate_list, 2623 &process_info->userptr_valid_list); 2624 } 2625 2626 return ret; 2627 } 2628 2629 /* Worker callback to restore evicted userptr BOs 2630 * 2631 * Tries to update and validate all userptr BOs. If successful and no 2632 * concurrent evictions happened, the queues are restarted. Otherwise, 2633 * reschedule for another attempt later. 2634 */ 2635 static void amdgpu_amdkfd_restore_userptr_worker(struct work_struct *work) 2636 { 2637 struct delayed_work *dwork = to_delayed_work(work); 2638 struct amdkfd_process_info *process_info = 2639 container_of(dwork, struct amdkfd_process_info, 2640 restore_userptr_work); 2641 struct task_struct *usertask; 2642 struct mm_struct *mm; 2643 uint32_t evicted_bos; 2644 2645 mutex_lock(&process_info->notifier_lock); 2646 evicted_bos = process_info->evicted_bos; 2647 mutex_unlock(&process_info->notifier_lock); 2648 if (!evicted_bos) 2649 return; 2650 2651 /* Reference task and mm in case of concurrent process termination */ 2652 usertask = get_pid_task(process_info->pid, PIDTYPE_PID); 2653 if (!usertask) 2654 return; 2655 mm = get_task_mm(usertask); 2656 if (!mm) { 2657 put_task_struct(usertask); 2658 return; 2659 } 2660 2661 mutex_lock(&process_info->lock); 2662 2663 if (update_invalid_user_pages(process_info, mm)) 2664 goto unlock_out; 2665 /* userptr_inval_list can be empty if all evicted userptr BOs 2666 * have been freed. In that case there is nothing to validate 2667 * and we can just restart the queues. 2668 */ 2669 if (!list_empty(&process_info->userptr_inval_list)) { 2670 if (validate_invalid_user_pages(process_info)) 2671 goto unlock_out; 2672 } 2673 /* Final check for concurrent evicton and atomic update. If 2674 * another eviction happens after successful update, it will 2675 * be a first eviction that calls quiesce_mm. The eviction 2676 * reference counting inside KFD will handle this case. 2677 */ 2678 mutex_lock(&process_info->notifier_lock); 2679 if (process_info->evicted_bos != evicted_bos) 2680 goto unlock_notifier_out; 2681 2682 if (confirm_valid_user_pages_locked(process_info)) { 2683 WARN(1, "User pages unexpectedly invalid"); 2684 goto unlock_notifier_out; 2685 } 2686 2687 process_info->evicted_bos = evicted_bos = 0; 2688 2689 if (kgd2kfd_resume_mm(mm)) { 2690 pr_err("%s: Failed to resume KFD\n", __func__); 2691 /* No recovery from this failure. Probably the CP is 2692 * hanging. No point trying again. 2693 */ 2694 } 2695 2696 unlock_notifier_out: 2697 mutex_unlock(&process_info->notifier_lock); 2698 unlock_out: 2699 mutex_unlock(&process_info->lock); 2700 2701 /* If validation failed, reschedule another attempt */ 2702 if (evicted_bos) { 2703 schedule_delayed_work(&process_info->restore_userptr_work, 2704 msecs_to_jiffies(AMDGPU_USERPTR_RESTORE_DELAY_MS)); 2705 2706 kfd_smi_event_queue_restore_rescheduled(mm); 2707 } 2708 mmput(mm); 2709 put_task_struct(usertask); 2710 } 2711 2712 /** amdgpu_amdkfd_gpuvm_restore_process_bos - Restore all BOs for the given 2713 * KFD process identified by process_info 2714 * 2715 * @process_info: amdkfd_process_info of the KFD process 2716 * 2717 * After memory eviction, restore thread calls this function. The function 2718 * should be called when the Process is still valid. BO restore involves - 2719 * 2720 * 1. Release old eviction fence and create new one 2721 * 2. Get two copies of PD BO list from all the VMs. Keep one copy as pd_list. 2722 * 3 Use the second PD list and kfd_bo_list to create a list (ctx.list) of 2723 * BOs that need to be reserved. 2724 * 4. Reserve all the BOs 2725 * 5. Validate of PD and PT BOs. 2726 * 6. Validate all KFD BOs using kfd_bo_list and Map them and add new fence 2727 * 7. Add fence to all PD and PT BOs. 2728 * 8. Unreserve all BOs 2729 */ 2730 int amdgpu_amdkfd_gpuvm_restore_process_bos(void *info, struct dma_fence **ef) 2731 { 2732 struct amdkfd_process_info *process_info = info; 2733 struct amdgpu_vm *peer_vm; 2734 struct kgd_mem *mem; 2735 struct amdgpu_amdkfd_fence *new_fence; 2736 struct list_head duplicate_save; 2737 struct amdgpu_sync sync_obj; 2738 unsigned long failed_size = 0; 2739 unsigned long total_size = 0; 2740 struct drm_exec exec; 2741 int ret; 2742 2743 INIT_LIST_HEAD(&duplicate_save); 2744 2745 mutex_lock(&process_info->lock); 2746 2747 drm_exec_init(&exec, 0); 2748 drm_exec_until_all_locked(&exec) { 2749 list_for_each_entry(peer_vm, &process_info->vm_list_head, 2750 vm_list_node) { 2751 ret = amdgpu_vm_lock_pd(peer_vm, &exec, 2); 2752 drm_exec_retry_on_contention(&exec); 2753 if (unlikely(ret)) 2754 goto ttm_reserve_fail; 2755 } 2756 2757 /* Reserve all BOs and page tables/directory. Add all BOs from 2758 * kfd_bo_list to ctx.list 2759 */ 2760 list_for_each_entry(mem, &process_info->kfd_bo_list, 2761 validate_list) { 2762 struct drm_gem_object *gobj; 2763 2764 gobj = &mem->bo->tbo.base; 2765 ret = drm_exec_prepare_obj(&exec, gobj, 1); 2766 drm_exec_retry_on_contention(&exec); 2767 if (unlikely(ret)) 2768 goto ttm_reserve_fail; 2769 } 2770 } 2771 2772 amdgpu_sync_create(&sync_obj); 2773 2774 /* Validate PDs and PTs */ 2775 ret = process_validate_vms(process_info); 2776 if (ret) 2777 goto validate_map_fail; 2778 2779 ret = process_sync_pds_resv(process_info, &sync_obj); 2780 if (ret) { 2781 pr_debug("Memory eviction: Failed to sync to PD BO moving fence. Try again\n"); 2782 goto validate_map_fail; 2783 } 2784 2785 /* Validate BOs and map them to GPUVM (update VM page tables). */ 2786 list_for_each_entry(mem, &process_info->kfd_bo_list, 2787 validate_list) { 2788 2789 struct amdgpu_bo *bo = mem->bo; 2790 uint32_t domain = mem->domain; 2791 struct kfd_mem_attachment *attachment; 2792 struct dma_resv_iter cursor; 2793 struct dma_fence *fence; 2794 2795 total_size += amdgpu_bo_size(bo); 2796 2797 ret = amdgpu_amdkfd_bo_validate(bo, domain, false); 2798 if (ret) { 2799 pr_debug("Memory eviction: Validate BOs failed\n"); 2800 failed_size += amdgpu_bo_size(bo); 2801 ret = amdgpu_amdkfd_bo_validate(bo, 2802 AMDGPU_GEM_DOMAIN_GTT, false); 2803 if (ret) { 2804 pr_debug("Memory eviction: Try again\n"); 2805 goto validate_map_fail; 2806 } 2807 } 2808 dma_resv_for_each_fence(&cursor, bo->tbo.base.resv, 2809 DMA_RESV_USAGE_KERNEL, fence) { 2810 ret = amdgpu_sync_fence(&sync_obj, fence); 2811 if (ret) { 2812 pr_debug("Memory eviction: Sync BO fence failed. Try again\n"); 2813 goto validate_map_fail; 2814 } 2815 } 2816 list_for_each_entry(attachment, &mem->attachments, list) { 2817 if (!attachment->is_mapped) 2818 continue; 2819 2820 if (attachment->bo_va->base.bo->tbo.pin_count) 2821 continue; 2822 2823 kfd_mem_dmaunmap_attachment(mem, attachment); 2824 ret = update_gpuvm_pte(mem, attachment, &sync_obj); 2825 if (ret) { 2826 pr_debug("Memory eviction: update PTE failed. Try again\n"); 2827 goto validate_map_fail; 2828 } 2829 } 2830 } 2831 2832 if (failed_size) 2833 pr_debug("0x%lx/0x%lx in system\n", failed_size, total_size); 2834 2835 /* Update page directories */ 2836 ret = process_update_pds(process_info, &sync_obj); 2837 if (ret) { 2838 pr_debug("Memory eviction: update PDs failed. Try again\n"); 2839 goto validate_map_fail; 2840 } 2841 2842 /* Wait for validate and PT updates to finish */ 2843 amdgpu_sync_wait(&sync_obj, false); 2844 2845 /* Release old eviction fence and create new one, because fence only 2846 * goes from unsignaled to signaled, fence cannot be reused. 2847 * Use context and mm from the old fence. 2848 */ 2849 new_fence = amdgpu_amdkfd_fence_create( 2850 process_info->eviction_fence->base.context, 2851 process_info->eviction_fence->mm, 2852 NULL); 2853 if (!new_fence) { 2854 pr_err("Failed to create eviction fence\n"); 2855 ret = -ENOMEM; 2856 goto validate_map_fail; 2857 } 2858 dma_fence_put(&process_info->eviction_fence->base); 2859 process_info->eviction_fence = new_fence; 2860 *ef = dma_fence_get(&new_fence->base); 2861 2862 /* Attach new eviction fence to all BOs except pinned ones */ 2863 list_for_each_entry(mem, &process_info->kfd_bo_list, validate_list) { 2864 if (mem->bo->tbo.pin_count) 2865 continue; 2866 2867 dma_resv_add_fence(mem->bo->tbo.base.resv, 2868 &process_info->eviction_fence->base, 2869 DMA_RESV_USAGE_BOOKKEEP); 2870 } 2871 /* Attach eviction fence to PD / PT BOs */ 2872 list_for_each_entry(peer_vm, &process_info->vm_list_head, 2873 vm_list_node) { 2874 struct amdgpu_bo *bo = peer_vm->root.bo; 2875 2876 dma_resv_add_fence(bo->tbo.base.resv, 2877 &process_info->eviction_fence->base, 2878 DMA_RESV_USAGE_BOOKKEEP); 2879 } 2880 2881 validate_map_fail: 2882 amdgpu_sync_free(&sync_obj); 2883 ttm_reserve_fail: 2884 drm_exec_fini(&exec); 2885 mutex_unlock(&process_info->lock); 2886 return ret; 2887 } 2888 2889 int amdgpu_amdkfd_add_gws_to_process(void *info, void *gws, struct kgd_mem **mem) 2890 { 2891 struct amdkfd_process_info *process_info = (struct amdkfd_process_info *)info; 2892 struct amdgpu_bo *gws_bo = (struct amdgpu_bo *)gws; 2893 int ret; 2894 2895 if (!info || !gws) 2896 return -EINVAL; 2897 2898 *mem = kzalloc(sizeof(struct kgd_mem), GFP_KERNEL); 2899 if (!*mem) 2900 return -ENOMEM; 2901 2902 mutex_init(&(*mem)->lock); 2903 INIT_LIST_HEAD(&(*mem)->attachments); 2904 (*mem)->bo = amdgpu_bo_ref(gws_bo); 2905 (*mem)->domain = AMDGPU_GEM_DOMAIN_GWS; 2906 (*mem)->process_info = process_info; 2907 add_kgd_mem_to_kfd_bo_list(*mem, process_info, false); 2908 amdgpu_sync_create(&(*mem)->sync); 2909 2910 2911 /* Validate gws bo the first time it is added to process */ 2912 mutex_lock(&(*mem)->process_info->lock); 2913 ret = amdgpu_bo_reserve(gws_bo, false); 2914 if (unlikely(ret)) { 2915 pr_err("Reserve gws bo failed %d\n", ret); 2916 goto bo_reservation_failure; 2917 } 2918 2919 ret = amdgpu_amdkfd_bo_validate(gws_bo, AMDGPU_GEM_DOMAIN_GWS, true); 2920 if (ret) { 2921 pr_err("GWS BO validate failed %d\n", ret); 2922 goto bo_validation_failure; 2923 } 2924 /* GWS resource is shared b/t amdgpu and amdkfd 2925 * Add process eviction fence to bo so they can 2926 * evict each other. 2927 */ 2928 ret = dma_resv_reserve_fences(gws_bo->tbo.base.resv, 1); 2929 if (ret) 2930 goto reserve_shared_fail; 2931 dma_resv_add_fence(gws_bo->tbo.base.resv, 2932 &process_info->eviction_fence->base, 2933 DMA_RESV_USAGE_BOOKKEEP); 2934 amdgpu_bo_unreserve(gws_bo); 2935 mutex_unlock(&(*mem)->process_info->lock); 2936 2937 return ret; 2938 2939 reserve_shared_fail: 2940 bo_validation_failure: 2941 amdgpu_bo_unreserve(gws_bo); 2942 bo_reservation_failure: 2943 mutex_unlock(&(*mem)->process_info->lock); 2944 amdgpu_sync_free(&(*mem)->sync); 2945 remove_kgd_mem_from_kfd_bo_list(*mem, process_info); 2946 amdgpu_bo_unref(&gws_bo); 2947 mutex_destroy(&(*mem)->lock); 2948 kfree(*mem); 2949 *mem = NULL; 2950 return ret; 2951 } 2952 2953 int amdgpu_amdkfd_remove_gws_from_process(void *info, void *mem) 2954 { 2955 int ret; 2956 struct amdkfd_process_info *process_info = (struct amdkfd_process_info *)info; 2957 struct kgd_mem *kgd_mem = (struct kgd_mem *)mem; 2958 struct amdgpu_bo *gws_bo = kgd_mem->bo; 2959 2960 /* Remove BO from process's validate list so restore worker won't touch 2961 * it anymore 2962 */ 2963 remove_kgd_mem_from_kfd_bo_list(kgd_mem, process_info); 2964 2965 ret = amdgpu_bo_reserve(gws_bo, false); 2966 if (unlikely(ret)) { 2967 pr_err("Reserve gws bo failed %d\n", ret); 2968 //TODO add BO back to validate_list? 2969 return ret; 2970 } 2971 amdgpu_amdkfd_remove_eviction_fence(gws_bo, 2972 process_info->eviction_fence); 2973 amdgpu_bo_unreserve(gws_bo); 2974 amdgpu_sync_free(&kgd_mem->sync); 2975 amdgpu_bo_unref(&gws_bo); 2976 mutex_destroy(&kgd_mem->lock); 2977 kfree(mem); 2978 return 0; 2979 } 2980 2981 /* Returns GPU-specific tiling mode information */ 2982 int amdgpu_amdkfd_get_tile_config(struct amdgpu_device *adev, 2983 struct tile_config *config) 2984 { 2985 config->gb_addr_config = adev->gfx.config.gb_addr_config; 2986 config->tile_config_ptr = adev->gfx.config.tile_mode_array; 2987 config->num_tile_configs = 2988 ARRAY_SIZE(adev->gfx.config.tile_mode_array); 2989 config->macro_tile_config_ptr = 2990 adev->gfx.config.macrotile_mode_array; 2991 config->num_macro_tile_configs = 2992 ARRAY_SIZE(adev->gfx.config.macrotile_mode_array); 2993 2994 /* Those values are not set from GFX9 onwards */ 2995 config->num_banks = adev->gfx.config.num_banks; 2996 config->num_ranks = adev->gfx.config.num_ranks; 2997 2998 return 0; 2999 } 3000 3001 bool amdgpu_amdkfd_bo_mapped_to_dev(struct amdgpu_device *adev, struct kgd_mem *mem) 3002 { 3003 struct kfd_mem_attachment *entry; 3004 3005 list_for_each_entry(entry, &mem->attachments, list) { 3006 if (entry->is_mapped && entry->adev == adev) 3007 return true; 3008 } 3009 return false; 3010 } 3011 3012 #if defined(CONFIG_DEBUG_FS) 3013 3014 int kfd_debugfs_kfd_mem_limits(struct seq_file *m, void *data) 3015 { 3016 3017 spin_lock(&kfd_mem_limit.mem_limit_lock); 3018 seq_printf(m, "System mem used %lldM out of %lluM\n", 3019 (kfd_mem_limit.system_mem_used >> 20), 3020 (kfd_mem_limit.max_system_mem_limit >> 20)); 3021 seq_printf(m, "TTM mem used %lldM out of %lluM\n", 3022 (kfd_mem_limit.ttm_mem_used >> 20), 3023 (kfd_mem_limit.max_ttm_mem_limit >> 20)); 3024 spin_unlock(&kfd_mem_limit.mem_limit_lock); 3025 3026 return 0; 3027 } 3028 3029 #endif 3030