1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright 2014-2018 Advanced Micro Devices, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 */ 23 #include <linux/dma-buf.h> 24 #include <linux/list.h> 25 #include <linux/pagemap.h> 26 #include <linux/sched/mm.h> 27 #include <linux/sched/task.h> 28 #include <drm/ttm/ttm_tt.h> 29 30 #include <drm/drm_exec.h> 31 32 #include "amdgpu_object.h" 33 #include "amdgpu_gem.h" 34 #include "amdgpu_vm.h" 35 #include "amdgpu_hmm.h" 36 #include "amdgpu_amdkfd.h" 37 #include "amdgpu_dma_buf.h" 38 #include <uapi/linux/kfd_ioctl.h> 39 #include "amdgpu_xgmi.h" 40 #include "kfd_priv.h" 41 #include "kfd_smi_events.h" 42 43 /* Userptr restore delay, just long enough to allow consecutive VM 44 * changes to accumulate 45 */ 46 #define AMDGPU_USERPTR_RESTORE_DELAY_MS 1 47 #define AMDGPU_RESERVE_MEM_LIMIT (3UL << 29) 48 49 /* 50 * Align VRAM availability to 2MB to avoid fragmentation caused by 4K allocations in the tail 2MB 51 * BO chunk 52 */ 53 #define VRAM_AVAILABLITY_ALIGN (1 << 21) 54 55 /* Impose limit on how much memory KFD can use */ 56 static struct { 57 uint64_t max_system_mem_limit; 58 uint64_t max_ttm_mem_limit; 59 int64_t system_mem_used; 60 int64_t ttm_mem_used; 61 spinlock_t mem_limit_lock; 62 } kfd_mem_limit; 63 64 static const char * const domain_bit_to_string[] = { 65 "CPU", 66 "GTT", 67 "VRAM", 68 "GDS", 69 "GWS", 70 "OA" 71 }; 72 73 #define domain_string(domain) domain_bit_to_string[ffs(domain)-1] 74 75 static void amdgpu_amdkfd_restore_userptr_worker(struct work_struct *work); 76 77 static bool kfd_mem_is_attached(struct amdgpu_vm *avm, 78 struct kgd_mem *mem) 79 { 80 struct kfd_mem_attachment *entry; 81 82 list_for_each_entry(entry, &mem->attachments, list) 83 if (entry->bo_va->base.vm == avm) 84 return true; 85 86 return false; 87 } 88 89 /** 90 * reuse_dmamap() - Check whether adev can share the original 91 * userptr BO 92 * 93 * If both adev and bo_adev are in direct mapping or 94 * in the same iommu group, they can share the original BO. 95 * 96 * @adev: Device to which can or cannot share the original BO 97 * @bo_adev: Device to which allocated BO belongs to 98 * 99 * Return: returns true if adev can share original userptr BO, 100 * false otherwise. 101 */ 102 static bool reuse_dmamap(struct amdgpu_device *adev, struct amdgpu_device *bo_adev) 103 { 104 return (adev->ram_is_direct_mapped && bo_adev->ram_is_direct_mapped) || 105 (adev->dev->iommu_group == bo_adev->dev->iommu_group); 106 } 107 108 /* Set memory usage limits. Current, limits are 109 * System (TTM + userptr) memory - 15/16th System RAM 110 * TTM memory - 3/8th System RAM 111 */ 112 void amdgpu_amdkfd_gpuvm_init_mem_limits(void) 113 { 114 struct sysinfo si; 115 uint64_t mem; 116 117 if (kfd_mem_limit.max_system_mem_limit) 118 return; 119 120 si_meminfo(&si); 121 mem = si.totalram - si.totalhigh; 122 mem *= si.mem_unit; 123 124 spin_lock_init(&kfd_mem_limit.mem_limit_lock); 125 kfd_mem_limit.max_system_mem_limit = mem - (mem >> 6); 126 if (kfd_mem_limit.max_system_mem_limit < 2 * AMDGPU_RESERVE_MEM_LIMIT) 127 kfd_mem_limit.max_system_mem_limit >>= 1; 128 else 129 kfd_mem_limit.max_system_mem_limit -= AMDGPU_RESERVE_MEM_LIMIT; 130 131 kfd_mem_limit.max_ttm_mem_limit = ttm_tt_pages_limit() << PAGE_SHIFT; 132 pr_debug("Kernel memory limit %lluM, TTM limit %lluM\n", 133 (kfd_mem_limit.max_system_mem_limit >> 20), 134 (kfd_mem_limit.max_ttm_mem_limit >> 20)); 135 } 136 137 void amdgpu_amdkfd_reserve_system_mem(uint64_t size) 138 { 139 kfd_mem_limit.system_mem_used += size; 140 } 141 142 /* Estimate page table size needed to represent a given memory size 143 * 144 * With 4KB pages, we need one 8 byte PTE for each 4KB of memory 145 * (factor 512, >> 9). With 2MB pages, we need one 8 byte PTE for 2MB 146 * of memory (factor 256K, >> 18). ROCm user mode tries to optimize 147 * for 2MB pages for TLB efficiency. However, small allocations and 148 * fragmented system memory still need some 4KB pages. We choose a 149 * compromise that should work in most cases without reserving too 150 * much memory for page tables unnecessarily (factor 16K, >> 14). 151 */ 152 153 #define ESTIMATE_PT_SIZE(mem_size) max(((mem_size) >> 14), AMDGPU_VM_RESERVED_VRAM) 154 155 /** 156 * amdgpu_amdkfd_reserve_mem_limit() - Decrease available memory by size 157 * of buffer. 158 * 159 * @adev: Device to which allocated BO belongs to 160 * @size: Size of buffer, in bytes, encapsulated by B0. This should be 161 * equivalent to amdgpu_bo_size(BO) 162 * @alloc_flag: Flag used in allocating a BO as noted above 163 * @xcp_id: xcp_id is used to get xcp from xcp manager, one xcp is 164 * managed as one compute node in driver for app 165 * 166 * Return: 167 * returns -ENOMEM in case of error, ZERO otherwise 168 */ 169 int amdgpu_amdkfd_reserve_mem_limit(struct amdgpu_device *adev, 170 uint64_t size, u32 alloc_flag, int8_t xcp_id) 171 { 172 uint64_t reserved_for_pt = 173 ESTIMATE_PT_SIZE(amdgpu_amdkfd_total_mem_size); 174 struct amdgpu_ras *con = amdgpu_ras_get_context(adev); 175 uint64_t reserved_for_ras = (con ? con->reserved_pages_in_bytes : 0); 176 size_t system_mem_needed, ttm_mem_needed, vram_needed; 177 int ret = 0; 178 uint64_t vram_size = 0; 179 180 system_mem_needed = 0; 181 ttm_mem_needed = 0; 182 vram_needed = 0; 183 if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_GTT) { 184 system_mem_needed = size; 185 ttm_mem_needed = size; 186 } else if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) { 187 /* 188 * Conservatively round up the allocation requirement to 2 MB 189 * to avoid fragmentation caused by 4K allocations in the tail 190 * 2M BO chunk. 191 */ 192 vram_needed = size; 193 /* 194 * For GFX 9.4.3, get the VRAM size from XCP structs 195 */ 196 if (WARN_ONCE(xcp_id < 0, "invalid XCP ID %d", xcp_id)) 197 return -EINVAL; 198 199 vram_size = KFD_XCP_MEMORY_SIZE(adev, xcp_id); 200 if (adev->apu_prefer_gtt) { 201 system_mem_needed = size; 202 ttm_mem_needed = size; 203 } 204 } else if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) { 205 system_mem_needed = size; 206 } else if (!(alloc_flag & 207 (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL | 208 KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP))) { 209 pr_err("%s: Invalid BO type %#x\n", __func__, alloc_flag); 210 return -ENOMEM; 211 } 212 213 spin_lock(&kfd_mem_limit.mem_limit_lock); 214 215 if (kfd_mem_limit.system_mem_used + system_mem_needed > 216 kfd_mem_limit.max_system_mem_limit) { 217 pr_debug("Set no_system_mem_limit=1 if using shared memory\n"); 218 if (!no_system_mem_limit) { 219 ret = -ENOMEM; 220 goto release; 221 } 222 } 223 224 if (kfd_mem_limit.ttm_mem_used + ttm_mem_needed > 225 kfd_mem_limit.max_ttm_mem_limit) { 226 ret = -ENOMEM; 227 goto release; 228 } 229 230 /*if is_app_apu is false and apu_prefer_gtt is true, it is an APU with 231 * carve out < gtt. In that case, VRAM allocation will go to gtt domain, skip 232 * VRAM check since ttm_mem_limit check already cover this allocation 233 */ 234 235 if (adev && xcp_id >= 0 && (!adev->apu_prefer_gtt || adev->gmc.is_app_apu)) { 236 uint64_t vram_available = 237 vram_size - reserved_for_pt - reserved_for_ras - 238 atomic64_read(&adev->vram_pin_size); 239 if (adev->kfd.vram_used[xcp_id] + vram_needed > vram_available) { 240 ret = -ENOMEM; 241 goto release; 242 } 243 } 244 245 /* Update memory accounting by decreasing available system 246 * memory, TTM memory and GPU memory as computed above 247 */ 248 WARN_ONCE(vram_needed && !adev, 249 "adev reference can't be null when vram is used"); 250 if (adev && xcp_id >= 0) { 251 adev->kfd.vram_used[xcp_id] += vram_needed; 252 adev->kfd.vram_used_aligned[xcp_id] += 253 adev->apu_prefer_gtt ? 254 vram_needed : 255 ALIGN(vram_needed, VRAM_AVAILABLITY_ALIGN); 256 } 257 kfd_mem_limit.system_mem_used += system_mem_needed; 258 kfd_mem_limit.ttm_mem_used += ttm_mem_needed; 259 260 release: 261 spin_unlock(&kfd_mem_limit.mem_limit_lock); 262 return ret; 263 } 264 265 void amdgpu_amdkfd_unreserve_mem_limit(struct amdgpu_device *adev, 266 uint64_t size, u32 alloc_flag, int8_t xcp_id) 267 { 268 spin_lock(&kfd_mem_limit.mem_limit_lock); 269 270 if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_GTT) { 271 kfd_mem_limit.system_mem_used -= size; 272 kfd_mem_limit.ttm_mem_used -= size; 273 } else if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) { 274 WARN_ONCE(!adev, 275 "adev reference can't be null when alloc mem flags vram is set"); 276 if (WARN_ONCE(xcp_id < 0, "invalid XCP ID %d", xcp_id)) 277 goto release; 278 279 if (adev) { 280 adev->kfd.vram_used[xcp_id] -= size; 281 if (adev->apu_prefer_gtt) { 282 adev->kfd.vram_used_aligned[xcp_id] -= size; 283 kfd_mem_limit.system_mem_used -= size; 284 kfd_mem_limit.ttm_mem_used -= size; 285 } else { 286 adev->kfd.vram_used_aligned[xcp_id] -= 287 ALIGN(size, VRAM_AVAILABLITY_ALIGN); 288 } 289 } 290 } else if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) { 291 kfd_mem_limit.system_mem_used -= size; 292 } else if (!(alloc_flag & 293 (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL | 294 KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP))) { 295 pr_err("%s: Invalid BO type %#x\n", __func__, alloc_flag); 296 goto release; 297 } 298 WARN_ONCE(adev && xcp_id >= 0 && adev->kfd.vram_used[xcp_id] < 0, 299 "KFD VRAM memory accounting unbalanced for xcp: %d", xcp_id); 300 WARN_ONCE(kfd_mem_limit.ttm_mem_used < 0, 301 "KFD TTM memory accounting unbalanced"); 302 WARN_ONCE(kfd_mem_limit.system_mem_used < 0, 303 "KFD system memory accounting unbalanced"); 304 305 release: 306 spin_unlock(&kfd_mem_limit.mem_limit_lock); 307 } 308 309 void amdgpu_amdkfd_release_notify(struct amdgpu_bo *bo) 310 { 311 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 312 u32 alloc_flags = bo->kfd_bo->alloc_flags; 313 u64 size = amdgpu_bo_size(bo); 314 315 amdgpu_amdkfd_unreserve_mem_limit(adev, size, alloc_flags, 316 bo->xcp_id); 317 318 kfree(bo->kfd_bo); 319 } 320 321 /** 322 * create_dmamap_sg_bo() - Creates a amdgpu_bo object to reflect information 323 * about USERPTR or DOOREBELL or MMIO BO. 324 * 325 * @adev: Device for which dmamap BO is being created 326 * @mem: BO of peer device that is being DMA mapped. Provides parameters 327 * in building the dmamap BO 328 * @bo_out: Output parameter updated with handle of dmamap BO 329 */ 330 static int 331 create_dmamap_sg_bo(struct amdgpu_device *adev, 332 struct kgd_mem *mem, struct amdgpu_bo **bo_out) 333 { 334 struct drm_gem_object *gem_obj; 335 int ret; 336 uint64_t flags = 0; 337 338 ret = amdgpu_bo_reserve(mem->bo, false); 339 if (ret) 340 return ret; 341 342 if (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) 343 flags |= mem->bo->flags & (AMDGPU_GEM_CREATE_COHERENT | 344 AMDGPU_GEM_CREATE_UNCACHED); 345 346 ret = amdgpu_gem_object_create(adev, mem->bo->tbo.base.size, 1, 347 AMDGPU_GEM_DOMAIN_CPU, AMDGPU_GEM_CREATE_PREEMPTIBLE | flags, 348 ttm_bo_type_sg, mem->bo->tbo.base.resv, &gem_obj, 0); 349 350 amdgpu_bo_unreserve(mem->bo); 351 352 if (ret) { 353 pr_err("Error in creating DMA mappable SG BO on domain: %d\n", ret); 354 return -EINVAL; 355 } 356 357 *bo_out = gem_to_amdgpu_bo(gem_obj); 358 (*bo_out)->parent = amdgpu_bo_ref(mem->bo); 359 return ret; 360 } 361 362 /* amdgpu_amdkfd_remove_eviction_fence - Removes eviction fence from BO's 363 * reservation object. 364 * 365 * @bo: [IN] Remove eviction fence(s) from this BO 366 * @ef: [IN] This eviction fence is removed if it 367 * is present in the shared list. 368 * 369 * NOTE: Must be called with BO reserved i.e. bo->tbo.resv->lock held. 370 */ 371 static int amdgpu_amdkfd_remove_eviction_fence(struct amdgpu_bo *bo, 372 struct amdgpu_amdkfd_fence *ef) 373 { 374 struct dma_fence *replacement; 375 376 if (!ef) 377 return -EINVAL; 378 379 /* TODO: Instead of block before we should use the fence of the page 380 * table update and TLB flush here directly. 381 */ 382 replacement = dma_fence_get_stub(); 383 dma_resv_replace_fences(bo->tbo.base.resv, ef->base.context, 384 replacement, DMA_RESV_USAGE_BOOKKEEP); 385 dma_fence_put(replacement); 386 return 0; 387 } 388 389 /** 390 * amdgpu_amdkfd_remove_all_eviction_fences - Remove all eviction fences 391 * @bo: the BO where to remove the evictions fences from. 392 * 393 * This functions should only be used on release when all references to the BO 394 * are already dropped. We remove the eviction fence from the private copy of 395 * the dma_resv object here since that is what is used during release to 396 * determine of the BO is idle or not. 397 */ 398 void amdgpu_amdkfd_remove_all_eviction_fences(struct amdgpu_bo *bo) 399 { 400 struct dma_resv *resv = &bo->tbo.base._resv; 401 struct dma_fence *fence, *stub; 402 struct dma_resv_iter cursor; 403 404 dma_resv_assert_held(resv); 405 406 stub = dma_fence_get_stub(); 407 dma_resv_for_each_fence(&cursor, resv, DMA_RESV_USAGE_BOOKKEEP, fence) { 408 if (!to_amdgpu_amdkfd_fence(fence)) 409 continue; 410 411 dma_resv_replace_fences(resv, fence->context, stub, 412 DMA_RESV_USAGE_BOOKKEEP); 413 } 414 dma_fence_put(stub); 415 } 416 417 static int amdgpu_amdkfd_bo_validate(struct amdgpu_bo *bo, uint32_t domain, 418 bool wait) 419 { 420 struct ttm_operation_ctx ctx = { false, false }; 421 int ret; 422 423 if (WARN(amdgpu_ttm_tt_get_usermm(bo->tbo.ttm), 424 "Called with userptr BO")) 425 return -EINVAL; 426 427 /* bo has been pinned, not need validate it */ 428 if (bo->tbo.pin_count) 429 return 0; 430 431 amdgpu_bo_placement_from_domain(bo, domain); 432 433 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 434 if (ret) 435 goto validate_fail; 436 if (wait) 437 amdgpu_bo_sync_wait(bo, AMDGPU_FENCE_OWNER_KFD, false); 438 439 validate_fail: 440 return ret; 441 } 442 443 int amdgpu_amdkfd_bo_validate_and_fence(struct amdgpu_bo *bo, 444 uint32_t domain, 445 struct dma_fence *fence) 446 { 447 int ret = amdgpu_bo_reserve(bo, false); 448 449 if (ret) 450 return ret; 451 452 ret = amdgpu_amdkfd_bo_validate(bo, domain, true); 453 if (ret) 454 goto unreserve_out; 455 456 ret = dma_resv_reserve_fences(bo->tbo.base.resv, 1); 457 if (ret) 458 goto unreserve_out; 459 460 dma_resv_add_fence(bo->tbo.base.resv, fence, 461 DMA_RESV_USAGE_BOOKKEEP); 462 463 unreserve_out: 464 amdgpu_bo_unreserve(bo); 465 466 return ret; 467 } 468 469 static int amdgpu_amdkfd_validate_vm_bo(void *_unused, struct amdgpu_bo *bo) 470 { 471 return amdgpu_amdkfd_bo_validate(bo, bo->allowed_domains, false); 472 } 473 474 /* vm_validate_pt_pd_bos - Validate page table and directory BOs 475 * 476 * Page directories are not updated here because huge page handling 477 * during page table updates can invalidate page directory entries 478 * again. Page directories are only updated after updating page 479 * tables. 480 */ 481 static int vm_validate_pt_pd_bos(struct amdgpu_vm *vm, 482 struct ww_acquire_ctx *ticket) 483 { 484 struct amdgpu_bo *pd = vm->root.bo; 485 struct amdgpu_device *adev = amdgpu_ttm_adev(pd->tbo.bdev); 486 int ret; 487 488 ret = amdgpu_vm_validate(adev, vm, ticket, 489 amdgpu_amdkfd_validate_vm_bo, NULL); 490 if (ret) { 491 pr_err("failed to validate PT BOs\n"); 492 return ret; 493 } 494 495 vm->pd_phys_addr = amdgpu_gmc_pd_addr(vm->root.bo); 496 497 return 0; 498 } 499 500 static int vm_update_pds(struct amdgpu_vm *vm, struct amdgpu_sync *sync) 501 { 502 struct amdgpu_bo *pd = vm->root.bo; 503 struct amdgpu_device *adev = amdgpu_ttm_adev(pd->tbo.bdev); 504 int ret; 505 506 ret = amdgpu_vm_update_pdes(adev, vm, false); 507 if (ret) 508 return ret; 509 510 return amdgpu_sync_fence(sync, vm->last_update, GFP_KERNEL); 511 } 512 513 static uint64_t get_pte_flags(struct amdgpu_device *adev, struct amdgpu_vm *vm, 514 struct kgd_mem *mem) 515 { 516 uint32_t mapping_flags = AMDGPU_VM_PAGE_READABLE | 517 AMDGPU_VM_MTYPE_DEFAULT; 518 519 if (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE) 520 mapping_flags |= AMDGPU_VM_PAGE_WRITEABLE; 521 if (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE) 522 mapping_flags |= AMDGPU_VM_PAGE_EXECUTABLE; 523 524 return mapping_flags; 525 } 526 527 /** 528 * create_sg_table() - Create an sg_table for a contiguous DMA addr range 529 * @addr: The starting address to point to 530 * @size: Size of memory area in bytes being pointed to 531 * 532 * Allocates an instance of sg_table and initializes it to point to memory 533 * area specified by input parameters. The address used to build is assumed 534 * to be DMA mapped, if needed. 535 * 536 * DOORBELL or MMIO BOs use only one scatterlist node in their sg_table 537 * because they are physically contiguous. 538 * 539 * Return: Initialized instance of SG Table or NULL 540 */ 541 static struct sg_table *create_sg_table(uint64_t addr, uint32_t size) 542 { 543 struct sg_table *sg = kmalloc(sizeof(*sg), GFP_KERNEL); 544 545 if (!sg) 546 return NULL; 547 if (sg_alloc_table(sg, 1, GFP_KERNEL)) { 548 kfree(sg); 549 return NULL; 550 } 551 sg_dma_address(sg->sgl) = addr; 552 sg->sgl->length = size; 553 #ifdef CONFIG_NEED_SG_DMA_LENGTH 554 sg->sgl->dma_length = size; 555 #endif 556 return sg; 557 } 558 559 static int 560 kfd_mem_dmamap_userptr(struct kgd_mem *mem, 561 struct kfd_mem_attachment *attachment) 562 { 563 enum dma_data_direction direction = 564 mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? 565 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 566 struct ttm_operation_ctx ctx = {.interruptible = true}; 567 struct amdgpu_bo *bo = attachment->bo_va->base.bo; 568 struct amdgpu_device *adev = attachment->adev; 569 struct ttm_tt *src_ttm = mem->bo->tbo.ttm; 570 struct ttm_tt *ttm = bo->tbo.ttm; 571 int ret; 572 573 if (WARN_ON(ttm->num_pages != src_ttm->num_pages)) 574 return -EINVAL; 575 576 ttm->sg = kmalloc(sizeof(*ttm->sg), GFP_KERNEL); 577 if (unlikely(!ttm->sg)) 578 return -ENOMEM; 579 580 /* Same sequence as in amdgpu_ttm_tt_pin_userptr */ 581 ret = sg_alloc_table_from_pages(ttm->sg, src_ttm->pages, 582 ttm->num_pages, 0, 583 (u64)ttm->num_pages << PAGE_SHIFT, 584 GFP_KERNEL); 585 if (unlikely(ret)) 586 goto free_sg; 587 588 ret = dma_map_sgtable(adev->dev, ttm->sg, direction, 0); 589 if (unlikely(ret)) 590 goto release_sg; 591 592 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_GTT); 593 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 594 if (ret) 595 goto unmap_sg; 596 597 return 0; 598 599 unmap_sg: 600 dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0); 601 release_sg: 602 pr_err("DMA map userptr failed: %d\n", ret); 603 sg_free_table(ttm->sg); 604 free_sg: 605 kfree(ttm->sg); 606 ttm->sg = NULL; 607 return ret; 608 } 609 610 static int 611 kfd_mem_dmamap_dmabuf(struct kfd_mem_attachment *attachment) 612 { 613 struct ttm_operation_ctx ctx = {.interruptible = true}; 614 struct amdgpu_bo *bo = attachment->bo_va->base.bo; 615 616 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_GTT); 617 return ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 618 } 619 620 /** 621 * kfd_mem_dmamap_sg_bo() - Create DMA mapped sg_table to access DOORBELL or MMIO BO 622 * @mem: SG BO of the DOORBELL or MMIO resource on the owning device 623 * @attachment: Virtual address attachment of the BO on accessing device 624 * 625 * An access request from the device that owns DOORBELL does not require DMA mapping. 626 * This is because the request doesn't go through PCIe root complex i.e. it instead 627 * loops back. The need to DMA map arises only when accessing peer device's DOORBELL 628 * 629 * In contrast, all access requests for MMIO need to be DMA mapped without regard to 630 * device ownership. This is because access requests for MMIO go through PCIe root 631 * complex. 632 * 633 * This is accomplished in two steps: 634 * - Obtain DMA mapped address of DOORBELL or MMIO memory that could be used 635 * in updating requesting device's page table 636 * - Signal TTM to mark memory pointed to by requesting device's BO as GPU 637 * accessible. This allows an update of requesting device's page table 638 * with entries associated with DOOREBELL or MMIO memory 639 * 640 * This method is invoked in the following contexts: 641 * - Mapping of DOORBELL or MMIO BO of same or peer device 642 * - Validating an evicted DOOREBELL or MMIO BO on device seeking access 643 * 644 * Return: ZERO if successful, NON-ZERO otherwise 645 */ 646 static int 647 kfd_mem_dmamap_sg_bo(struct kgd_mem *mem, 648 struct kfd_mem_attachment *attachment) 649 { 650 struct ttm_operation_ctx ctx = {.interruptible = true}; 651 struct amdgpu_bo *bo = attachment->bo_va->base.bo; 652 struct amdgpu_device *adev = attachment->adev; 653 struct ttm_tt *ttm = bo->tbo.ttm; 654 enum dma_data_direction dir; 655 dma_addr_t dma_addr; 656 bool mmio; 657 int ret; 658 659 /* Expect SG Table of dmapmap BO to be NULL */ 660 mmio = (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP); 661 if (unlikely(ttm->sg)) { 662 pr_err("SG Table of %d BO for peer device is UNEXPECTEDLY NON-NULL", mmio); 663 return -EINVAL; 664 } 665 666 dir = mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? 667 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 668 dma_addr = mem->bo->tbo.sg->sgl->dma_address; 669 pr_debug("%d BO size: %d\n", mmio, mem->bo->tbo.sg->sgl->length); 670 pr_debug("%d BO address before DMA mapping: %llx\n", mmio, dma_addr); 671 dma_addr = dma_map_resource(adev->dev, dma_addr, 672 mem->bo->tbo.sg->sgl->length, dir, DMA_ATTR_SKIP_CPU_SYNC); 673 ret = dma_mapping_error(adev->dev, dma_addr); 674 if (unlikely(ret)) 675 return ret; 676 pr_debug("%d BO address after DMA mapping: %llx\n", mmio, dma_addr); 677 678 ttm->sg = create_sg_table(dma_addr, mem->bo->tbo.sg->sgl->length); 679 if (unlikely(!ttm->sg)) { 680 ret = -ENOMEM; 681 goto unmap_sg; 682 } 683 684 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_GTT); 685 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 686 if (unlikely(ret)) 687 goto free_sg; 688 689 return ret; 690 691 free_sg: 692 sg_free_table(ttm->sg); 693 kfree(ttm->sg); 694 ttm->sg = NULL; 695 unmap_sg: 696 dma_unmap_resource(adev->dev, dma_addr, mem->bo->tbo.sg->sgl->length, 697 dir, DMA_ATTR_SKIP_CPU_SYNC); 698 return ret; 699 } 700 701 static int 702 kfd_mem_dmamap_attachment(struct kgd_mem *mem, 703 struct kfd_mem_attachment *attachment) 704 { 705 switch (attachment->type) { 706 case KFD_MEM_ATT_SHARED: 707 return 0; 708 case KFD_MEM_ATT_USERPTR: 709 return kfd_mem_dmamap_userptr(mem, attachment); 710 case KFD_MEM_ATT_DMABUF: 711 return kfd_mem_dmamap_dmabuf(attachment); 712 case KFD_MEM_ATT_SG: 713 return kfd_mem_dmamap_sg_bo(mem, attachment); 714 default: 715 WARN_ON_ONCE(1); 716 } 717 return -EINVAL; 718 } 719 720 static void 721 kfd_mem_dmaunmap_userptr(struct kgd_mem *mem, 722 struct kfd_mem_attachment *attachment) 723 { 724 enum dma_data_direction direction = 725 mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? 726 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 727 struct ttm_operation_ctx ctx = {.interruptible = false}; 728 struct amdgpu_bo *bo = attachment->bo_va->base.bo; 729 struct amdgpu_device *adev = attachment->adev; 730 struct ttm_tt *ttm = bo->tbo.ttm; 731 732 if (unlikely(!ttm->sg)) 733 return; 734 735 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_CPU); 736 (void)ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 737 738 dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0); 739 sg_free_table(ttm->sg); 740 kfree(ttm->sg); 741 ttm->sg = NULL; 742 } 743 744 static void 745 kfd_mem_dmaunmap_dmabuf(struct kfd_mem_attachment *attachment) 746 { 747 /* This is a no-op. We don't want to trigger eviction fences when 748 * unmapping DMABufs. Therefore the invalidation (moving to system 749 * domain) is done in kfd_mem_dmamap_dmabuf. 750 */ 751 } 752 753 /** 754 * kfd_mem_dmaunmap_sg_bo() - Free DMA mapped sg_table of DOORBELL or MMIO BO 755 * @mem: SG BO of the DOORBELL or MMIO resource on the owning device 756 * @attachment: Virtual address attachment of the BO on accessing device 757 * 758 * The method performs following steps: 759 * - Signal TTM to mark memory pointed to by BO as GPU inaccessible 760 * - Free SG Table that is used to encapsulate DMA mapped memory of 761 * peer device's DOORBELL or MMIO memory 762 * 763 * This method is invoked in the following contexts: 764 * UNMapping of DOORBELL or MMIO BO on a device having access to its memory 765 * Eviction of DOOREBELL or MMIO BO on device having access to its memory 766 * 767 * Return: void 768 */ 769 static void 770 kfd_mem_dmaunmap_sg_bo(struct kgd_mem *mem, 771 struct kfd_mem_attachment *attachment) 772 { 773 struct ttm_operation_ctx ctx = {.interruptible = true}; 774 struct amdgpu_bo *bo = attachment->bo_va->base.bo; 775 struct amdgpu_device *adev = attachment->adev; 776 struct ttm_tt *ttm = bo->tbo.ttm; 777 enum dma_data_direction dir; 778 779 if (unlikely(!ttm->sg)) { 780 pr_debug("SG Table of BO is NULL"); 781 return; 782 } 783 784 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_CPU); 785 (void)ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 786 787 dir = mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? 788 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 789 dma_unmap_resource(adev->dev, ttm->sg->sgl->dma_address, 790 ttm->sg->sgl->length, dir, DMA_ATTR_SKIP_CPU_SYNC); 791 sg_free_table(ttm->sg); 792 kfree(ttm->sg); 793 ttm->sg = NULL; 794 bo->tbo.sg = NULL; 795 } 796 797 static void 798 kfd_mem_dmaunmap_attachment(struct kgd_mem *mem, 799 struct kfd_mem_attachment *attachment) 800 { 801 switch (attachment->type) { 802 case KFD_MEM_ATT_SHARED: 803 break; 804 case KFD_MEM_ATT_USERPTR: 805 kfd_mem_dmaunmap_userptr(mem, attachment); 806 break; 807 case KFD_MEM_ATT_DMABUF: 808 kfd_mem_dmaunmap_dmabuf(attachment); 809 break; 810 case KFD_MEM_ATT_SG: 811 kfd_mem_dmaunmap_sg_bo(mem, attachment); 812 break; 813 default: 814 WARN_ON_ONCE(1); 815 } 816 } 817 818 static int kfd_mem_export_dmabuf(struct kgd_mem *mem) 819 { 820 if (!mem->dmabuf) { 821 struct amdgpu_device *bo_adev; 822 struct dma_buf *dmabuf; 823 824 bo_adev = amdgpu_ttm_adev(mem->bo->tbo.bdev); 825 dmabuf = drm_gem_prime_handle_to_dmabuf(&bo_adev->ddev, bo_adev->kfd.client.file, 826 mem->gem_handle, 827 mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? 828 DRM_RDWR : 0); 829 if (IS_ERR(dmabuf)) 830 return PTR_ERR(dmabuf); 831 mem->dmabuf = dmabuf; 832 } 833 834 return 0; 835 } 836 837 static int 838 kfd_mem_attach_dmabuf(struct amdgpu_device *adev, struct kgd_mem *mem, 839 struct amdgpu_bo **bo) 840 { 841 struct drm_gem_object *gobj; 842 int ret; 843 844 ret = kfd_mem_export_dmabuf(mem); 845 if (ret) 846 return ret; 847 848 gobj = amdgpu_gem_prime_import(adev_to_drm(adev), mem->dmabuf); 849 if (IS_ERR(gobj)) 850 return PTR_ERR(gobj); 851 852 *bo = gem_to_amdgpu_bo(gobj); 853 (*bo)->flags |= AMDGPU_GEM_CREATE_PREEMPTIBLE; 854 855 return 0; 856 } 857 858 /* kfd_mem_attach - Add a BO to a VM 859 * 860 * Everything that needs to bo done only once when a BO is first added 861 * to a VM. It can later be mapped and unmapped many times without 862 * repeating these steps. 863 * 864 * 0. Create BO for DMA mapping, if needed 865 * 1. Allocate and initialize BO VA entry data structure 866 * 2. Add BO to the VM 867 * 3. Determine ASIC-specific PTE flags 868 * 4. Alloc page tables and directories if needed 869 * 4a. Validate new page tables and directories 870 */ 871 static int kfd_mem_attach(struct amdgpu_device *adev, struct kgd_mem *mem, 872 struct amdgpu_vm *vm, bool is_aql) 873 { 874 struct amdgpu_device *bo_adev = amdgpu_ttm_adev(mem->bo->tbo.bdev); 875 unsigned long bo_size = mem->bo->tbo.base.size; 876 uint64_t va = mem->va; 877 struct kfd_mem_attachment *attachment[2] = {NULL, NULL}; 878 struct amdgpu_bo *bo[2] = {NULL, NULL}; 879 struct amdgpu_bo_va *bo_va; 880 bool same_hive = false; 881 int i, ret; 882 883 if (!va) { 884 pr_err("Invalid VA when adding BO to VM\n"); 885 return -EINVAL; 886 } 887 888 /* Determine access to VRAM, MMIO and DOORBELL BOs of peer devices 889 * 890 * The access path of MMIO and DOORBELL BOs of is always over PCIe. 891 * In contrast the access path of VRAM BOs depens upon the type of 892 * link that connects the peer device. Access over PCIe is allowed 893 * if peer device has large BAR. In contrast, access over xGMI is 894 * allowed for both small and large BAR configurations of peer device 895 */ 896 if ((adev != bo_adev && !adev->apu_prefer_gtt) && 897 ((mem->domain == AMDGPU_GEM_DOMAIN_VRAM) || 898 (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) || 899 (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP))) { 900 if (mem->domain == AMDGPU_GEM_DOMAIN_VRAM) 901 same_hive = amdgpu_xgmi_same_hive(adev, bo_adev); 902 if (!same_hive && !amdgpu_device_is_peer_accessible(bo_adev, adev)) 903 return -EINVAL; 904 } 905 906 for (i = 0; i <= is_aql; i++) { 907 attachment[i] = kzalloc(sizeof(*attachment[i]), GFP_KERNEL); 908 if (unlikely(!attachment[i])) { 909 ret = -ENOMEM; 910 goto unwind; 911 } 912 913 pr_debug("\t add VA 0x%llx - 0x%llx to vm %p\n", va, 914 va + bo_size, vm); 915 916 if ((adev == bo_adev && !(mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) || 917 (amdgpu_ttm_tt_get_usermm(mem->bo->tbo.ttm) && reuse_dmamap(adev, bo_adev)) || 918 (mem->domain == AMDGPU_GEM_DOMAIN_GTT && reuse_dmamap(adev, bo_adev)) || 919 same_hive) { 920 /* Mappings on the local GPU, or VRAM mappings in the 921 * local hive, or userptr, or GTT mapping can reuse dma map 922 * address space share the original BO 923 */ 924 attachment[i]->type = KFD_MEM_ATT_SHARED; 925 bo[i] = mem->bo; 926 drm_gem_object_get(&bo[i]->tbo.base); 927 } else if (i > 0) { 928 /* Multiple mappings on the same GPU share the BO */ 929 attachment[i]->type = KFD_MEM_ATT_SHARED; 930 bo[i] = bo[0]; 931 drm_gem_object_get(&bo[i]->tbo.base); 932 } else if (amdgpu_ttm_tt_get_usermm(mem->bo->tbo.ttm)) { 933 /* Create an SG BO to DMA-map userptrs on other GPUs */ 934 attachment[i]->type = KFD_MEM_ATT_USERPTR; 935 ret = create_dmamap_sg_bo(adev, mem, &bo[i]); 936 if (ret) 937 goto unwind; 938 /* Handle DOORBELL BOs of peer devices and MMIO BOs of local and peer devices */ 939 } else if (mem->bo->tbo.type == ttm_bo_type_sg) { 940 WARN_ONCE(!(mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL || 941 mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP), 942 "Handing invalid SG BO in ATTACH request"); 943 attachment[i]->type = KFD_MEM_ATT_SG; 944 ret = create_dmamap_sg_bo(adev, mem, &bo[i]); 945 if (ret) 946 goto unwind; 947 /* Enable acces to GTT and VRAM BOs of peer devices */ 948 } else if (mem->domain == AMDGPU_GEM_DOMAIN_GTT || 949 mem->domain == AMDGPU_GEM_DOMAIN_VRAM) { 950 attachment[i]->type = KFD_MEM_ATT_DMABUF; 951 ret = kfd_mem_attach_dmabuf(adev, mem, &bo[i]); 952 if (ret) 953 goto unwind; 954 pr_debug("Employ DMABUF mechanism to enable peer GPU access\n"); 955 } else { 956 WARN_ONCE(true, "Handling invalid ATTACH request"); 957 ret = -EINVAL; 958 goto unwind; 959 } 960 961 /* Add BO to VM internal data structures */ 962 ret = amdgpu_bo_reserve(bo[i], false); 963 if (ret) { 964 pr_debug("Unable to reserve BO during memory attach"); 965 goto unwind; 966 } 967 bo_va = amdgpu_vm_bo_find(vm, bo[i]); 968 if (!bo_va) 969 bo_va = amdgpu_vm_bo_add(adev, vm, bo[i]); 970 else 971 ++bo_va->ref_count; 972 attachment[i]->bo_va = bo_va; 973 amdgpu_bo_unreserve(bo[i]); 974 if (unlikely(!attachment[i]->bo_va)) { 975 ret = -ENOMEM; 976 pr_err("Failed to add BO object to VM. ret == %d\n", 977 ret); 978 goto unwind; 979 } 980 attachment[i]->va = va; 981 attachment[i]->pte_flags = get_pte_flags(adev, vm, mem); 982 attachment[i]->adev = adev; 983 list_add(&attachment[i]->list, &mem->attachments); 984 985 va += bo_size; 986 } 987 988 return 0; 989 990 unwind: 991 for (; i >= 0; i--) { 992 if (!attachment[i]) 993 continue; 994 if (attachment[i]->bo_va) { 995 (void)amdgpu_bo_reserve(bo[i], true); 996 if (--attachment[i]->bo_va->ref_count == 0) 997 amdgpu_vm_bo_del(adev, attachment[i]->bo_va); 998 amdgpu_bo_unreserve(bo[i]); 999 list_del(&attachment[i]->list); 1000 } 1001 if (bo[i]) 1002 drm_gem_object_put(&bo[i]->tbo.base); 1003 kfree(attachment[i]); 1004 } 1005 return ret; 1006 } 1007 1008 static void kfd_mem_detach(struct kfd_mem_attachment *attachment) 1009 { 1010 struct amdgpu_bo *bo = attachment->bo_va->base.bo; 1011 1012 pr_debug("\t remove VA 0x%llx in entry %p\n", 1013 attachment->va, attachment); 1014 if (--attachment->bo_va->ref_count == 0) 1015 amdgpu_vm_bo_del(attachment->adev, attachment->bo_va); 1016 drm_gem_object_put(&bo->tbo.base); 1017 list_del(&attachment->list); 1018 kfree(attachment); 1019 } 1020 1021 static void add_kgd_mem_to_kfd_bo_list(struct kgd_mem *mem, 1022 struct amdkfd_process_info *process_info, 1023 bool userptr) 1024 { 1025 mutex_lock(&process_info->lock); 1026 if (userptr) 1027 list_add_tail(&mem->validate_list, 1028 &process_info->userptr_valid_list); 1029 else 1030 list_add_tail(&mem->validate_list, &process_info->kfd_bo_list); 1031 mutex_unlock(&process_info->lock); 1032 } 1033 1034 static void remove_kgd_mem_from_kfd_bo_list(struct kgd_mem *mem, 1035 struct amdkfd_process_info *process_info) 1036 { 1037 mutex_lock(&process_info->lock); 1038 list_del(&mem->validate_list); 1039 mutex_unlock(&process_info->lock); 1040 } 1041 1042 /* Initializes user pages. It registers the MMU notifier and validates 1043 * the userptr BO in the GTT domain. 1044 * 1045 * The BO must already be on the userptr_valid_list. Otherwise an 1046 * eviction and restore may happen that leaves the new BO unmapped 1047 * with the user mode queues running. 1048 * 1049 * Takes the process_info->lock to protect against concurrent restore 1050 * workers. 1051 * 1052 * Returns 0 for success, negative errno for errors. 1053 */ 1054 static int init_user_pages(struct kgd_mem *mem, uint64_t user_addr, 1055 bool criu_resume) 1056 { 1057 struct amdkfd_process_info *process_info = mem->process_info; 1058 struct amdgpu_bo *bo = mem->bo; 1059 struct ttm_operation_ctx ctx = { true, false }; 1060 struct hmm_range *range; 1061 int ret = 0; 1062 1063 mutex_lock(&process_info->lock); 1064 1065 ret = amdgpu_ttm_tt_set_userptr(&bo->tbo, user_addr, 0); 1066 if (ret) { 1067 pr_err("%s: Failed to set userptr: %d\n", __func__, ret); 1068 goto out; 1069 } 1070 1071 ret = amdgpu_hmm_register(bo, user_addr); 1072 if (ret) { 1073 pr_err("%s: Failed to register MMU notifier: %d\n", 1074 __func__, ret); 1075 goto out; 1076 } 1077 1078 if (criu_resume) { 1079 /* 1080 * During a CRIU restore operation, the userptr buffer objects 1081 * will be validated in the restore_userptr_work worker at a 1082 * later stage when it is scheduled by another ioctl called by 1083 * CRIU master process for the target pid for restore. 1084 */ 1085 mutex_lock(&process_info->notifier_lock); 1086 mem->invalid++; 1087 mutex_unlock(&process_info->notifier_lock); 1088 mutex_unlock(&process_info->lock); 1089 return 0; 1090 } 1091 1092 ret = amdgpu_ttm_tt_get_user_pages(bo, &range); 1093 if (ret) { 1094 if (ret == -EAGAIN) 1095 pr_debug("Failed to get user pages, try again\n"); 1096 else 1097 pr_err("%s: Failed to get user pages: %d\n", __func__, ret); 1098 goto unregister_out; 1099 } 1100 1101 ret = amdgpu_bo_reserve(bo, true); 1102 if (ret) { 1103 pr_err("%s: Failed to reserve BO\n", __func__); 1104 goto release_out; 1105 } 1106 1107 amdgpu_ttm_tt_set_user_pages(bo->tbo.ttm, range); 1108 1109 amdgpu_bo_placement_from_domain(bo, mem->domain); 1110 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 1111 if (ret) 1112 pr_err("%s: failed to validate BO\n", __func__); 1113 amdgpu_bo_unreserve(bo); 1114 1115 release_out: 1116 amdgpu_ttm_tt_get_user_pages_done(bo->tbo.ttm, range); 1117 unregister_out: 1118 if (ret) 1119 amdgpu_hmm_unregister(bo); 1120 out: 1121 mutex_unlock(&process_info->lock); 1122 return ret; 1123 } 1124 1125 /* Reserving a BO and its page table BOs must happen atomically to 1126 * avoid deadlocks. Some operations update multiple VMs at once. Track 1127 * all the reservation info in a context structure. Optionally a sync 1128 * object can track VM updates. 1129 */ 1130 struct bo_vm_reservation_context { 1131 /* DRM execution context for the reservation */ 1132 struct drm_exec exec; 1133 /* Number of VMs reserved */ 1134 unsigned int n_vms; 1135 /* Pointer to sync object */ 1136 struct amdgpu_sync *sync; 1137 }; 1138 1139 enum bo_vm_match { 1140 BO_VM_NOT_MAPPED = 0, /* Match VMs where a BO is not mapped */ 1141 BO_VM_MAPPED, /* Match VMs where a BO is mapped */ 1142 BO_VM_ALL, /* Match all VMs a BO was added to */ 1143 }; 1144 1145 /** 1146 * reserve_bo_and_vm - reserve a BO and a VM unconditionally. 1147 * @mem: KFD BO structure. 1148 * @vm: the VM to reserve. 1149 * @ctx: the struct that will be used in unreserve_bo_and_vms(). 1150 */ 1151 static int reserve_bo_and_vm(struct kgd_mem *mem, 1152 struct amdgpu_vm *vm, 1153 struct bo_vm_reservation_context *ctx) 1154 { 1155 struct amdgpu_bo *bo = mem->bo; 1156 int ret; 1157 1158 WARN_ON(!vm); 1159 1160 ctx->n_vms = 1; 1161 ctx->sync = &mem->sync; 1162 drm_exec_init(&ctx->exec, DRM_EXEC_INTERRUPTIBLE_WAIT, 0); 1163 drm_exec_until_all_locked(&ctx->exec) { 1164 ret = amdgpu_vm_lock_pd(vm, &ctx->exec, 2); 1165 drm_exec_retry_on_contention(&ctx->exec); 1166 if (unlikely(ret)) 1167 goto error; 1168 1169 ret = drm_exec_prepare_obj(&ctx->exec, &bo->tbo.base, 1); 1170 drm_exec_retry_on_contention(&ctx->exec); 1171 if (unlikely(ret)) 1172 goto error; 1173 } 1174 return 0; 1175 1176 error: 1177 pr_err("Failed to reserve buffers in ttm.\n"); 1178 drm_exec_fini(&ctx->exec); 1179 return ret; 1180 } 1181 1182 /** 1183 * reserve_bo_and_cond_vms - reserve a BO and some VMs conditionally 1184 * @mem: KFD BO structure. 1185 * @vm: the VM to reserve. If NULL, then all VMs associated with the BO 1186 * is used. Otherwise, a single VM associated with the BO. 1187 * @map_type: the mapping status that will be used to filter the VMs. 1188 * @ctx: the struct that will be used in unreserve_bo_and_vms(). 1189 * 1190 * Returns 0 for success, negative for failure. 1191 */ 1192 static int reserve_bo_and_cond_vms(struct kgd_mem *mem, 1193 struct amdgpu_vm *vm, enum bo_vm_match map_type, 1194 struct bo_vm_reservation_context *ctx) 1195 { 1196 struct kfd_mem_attachment *entry; 1197 struct amdgpu_bo *bo = mem->bo; 1198 int ret; 1199 1200 ctx->sync = &mem->sync; 1201 drm_exec_init(&ctx->exec, DRM_EXEC_INTERRUPTIBLE_WAIT | 1202 DRM_EXEC_IGNORE_DUPLICATES, 0); 1203 drm_exec_until_all_locked(&ctx->exec) { 1204 ctx->n_vms = 0; 1205 list_for_each_entry(entry, &mem->attachments, list) { 1206 if ((vm && vm != entry->bo_va->base.vm) || 1207 (entry->is_mapped != map_type 1208 && map_type != BO_VM_ALL)) 1209 continue; 1210 1211 ret = amdgpu_vm_lock_pd(entry->bo_va->base.vm, 1212 &ctx->exec, 2); 1213 drm_exec_retry_on_contention(&ctx->exec); 1214 if (unlikely(ret)) 1215 goto error; 1216 ++ctx->n_vms; 1217 } 1218 1219 ret = drm_exec_prepare_obj(&ctx->exec, &bo->tbo.base, 1); 1220 drm_exec_retry_on_contention(&ctx->exec); 1221 if (unlikely(ret)) 1222 goto error; 1223 } 1224 return 0; 1225 1226 error: 1227 pr_err("Failed to reserve buffers in ttm.\n"); 1228 drm_exec_fini(&ctx->exec); 1229 return ret; 1230 } 1231 1232 /** 1233 * unreserve_bo_and_vms - Unreserve BO and VMs from a reservation context 1234 * @ctx: Reservation context to unreserve 1235 * @wait: Optionally wait for a sync object representing pending VM updates 1236 * @intr: Whether the wait is interruptible 1237 * 1238 * Also frees any resources allocated in 1239 * reserve_bo_and_(cond_)vm(s). Returns the status from 1240 * amdgpu_sync_wait. 1241 */ 1242 static int unreserve_bo_and_vms(struct bo_vm_reservation_context *ctx, 1243 bool wait, bool intr) 1244 { 1245 int ret = 0; 1246 1247 if (wait) 1248 ret = amdgpu_sync_wait(ctx->sync, intr); 1249 1250 drm_exec_fini(&ctx->exec); 1251 ctx->sync = NULL; 1252 return ret; 1253 } 1254 1255 static int unmap_bo_from_gpuvm(struct kgd_mem *mem, 1256 struct kfd_mem_attachment *entry, 1257 struct amdgpu_sync *sync) 1258 { 1259 struct amdgpu_bo_va *bo_va = entry->bo_va; 1260 struct amdgpu_device *adev = entry->adev; 1261 struct amdgpu_vm *vm = bo_va->base.vm; 1262 1263 if (bo_va->queue_refcount) { 1264 pr_debug("bo_va->queue_refcount %d\n", bo_va->queue_refcount); 1265 return -EBUSY; 1266 } 1267 1268 (void)amdgpu_vm_bo_unmap(adev, bo_va, entry->va); 1269 1270 (void)amdgpu_vm_clear_freed(adev, vm, &bo_va->last_pt_update); 1271 1272 (void)amdgpu_sync_fence(sync, bo_va->last_pt_update, GFP_KERNEL); 1273 1274 return 0; 1275 } 1276 1277 static int update_gpuvm_pte(struct kgd_mem *mem, 1278 struct kfd_mem_attachment *entry, 1279 struct amdgpu_sync *sync) 1280 { 1281 struct amdgpu_bo_va *bo_va = entry->bo_va; 1282 struct amdgpu_device *adev = entry->adev; 1283 int ret; 1284 1285 ret = kfd_mem_dmamap_attachment(mem, entry); 1286 if (ret) 1287 return ret; 1288 1289 /* Update the page tables */ 1290 ret = amdgpu_vm_bo_update(adev, bo_va, false); 1291 if (ret) { 1292 pr_err("amdgpu_vm_bo_update failed\n"); 1293 return ret; 1294 } 1295 1296 return amdgpu_sync_fence(sync, bo_va->last_pt_update, GFP_KERNEL); 1297 } 1298 1299 static int map_bo_to_gpuvm(struct kgd_mem *mem, 1300 struct kfd_mem_attachment *entry, 1301 struct amdgpu_sync *sync, 1302 bool no_update_pte) 1303 { 1304 int ret; 1305 1306 /* Set virtual address for the allocation */ 1307 ret = amdgpu_vm_bo_map(entry->adev, entry->bo_va, entry->va, 0, 1308 amdgpu_bo_size(entry->bo_va->base.bo), 1309 entry->pte_flags); 1310 if (ret) { 1311 pr_err("Failed to map VA 0x%llx in vm. ret %d\n", 1312 entry->va, ret); 1313 return ret; 1314 } 1315 1316 if (no_update_pte) 1317 return 0; 1318 1319 ret = update_gpuvm_pte(mem, entry, sync); 1320 if (ret) { 1321 pr_err("update_gpuvm_pte() failed\n"); 1322 goto update_gpuvm_pte_failed; 1323 } 1324 1325 return 0; 1326 1327 update_gpuvm_pte_failed: 1328 unmap_bo_from_gpuvm(mem, entry, sync); 1329 kfd_mem_dmaunmap_attachment(mem, entry); 1330 return ret; 1331 } 1332 1333 static int process_validate_vms(struct amdkfd_process_info *process_info, 1334 struct ww_acquire_ctx *ticket) 1335 { 1336 struct amdgpu_vm *peer_vm; 1337 int ret; 1338 1339 list_for_each_entry(peer_vm, &process_info->vm_list_head, 1340 vm_list_node) { 1341 ret = vm_validate_pt_pd_bos(peer_vm, ticket); 1342 if (ret) 1343 return ret; 1344 } 1345 1346 return 0; 1347 } 1348 1349 static int process_sync_pds_resv(struct amdkfd_process_info *process_info, 1350 struct amdgpu_sync *sync) 1351 { 1352 struct amdgpu_vm *peer_vm; 1353 int ret; 1354 1355 list_for_each_entry(peer_vm, &process_info->vm_list_head, 1356 vm_list_node) { 1357 struct amdgpu_bo *pd = peer_vm->root.bo; 1358 1359 ret = amdgpu_sync_resv(NULL, sync, pd->tbo.base.resv, 1360 AMDGPU_SYNC_NE_OWNER, 1361 AMDGPU_FENCE_OWNER_KFD); 1362 if (ret) 1363 return ret; 1364 } 1365 1366 return 0; 1367 } 1368 1369 static int process_update_pds(struct amdkfd_process_info *process_info, 1370 struct amdgpu_sync *sync) 1371 { 1372 struct amdgpu_vm *peer_vm; 1373 int ret; 1374 1375 list_for_each_entry(peer_vm, &process_info->vm_list_head, 1376 vm_list_node) { 1377 ret = vm_update_pds(peer_vm, sync); 1378 if (ret) 1379 return ret; 1380 } 1381 1382 return 0; 1383 } 1384 1385 static int init_kfd_vm(struct amdgpu_vm *vm, void **process_info, 1386 struct dma_fence **ef) 1387 { 1388 struct amdkfd_process_info *info = NULL; 1389 int ret; 1390 1391 if (!*process_info) { 1392 info = kzalloc(sizeof(*info), GFP_KERNEL); 1393 if (!info) 1394 return -ENOMEM; 1395 1396 mutex_init(&info->lock); 1397 mutex_init(&info->notifier_lock); 1398 INIT_LIST_HEAD(&info->vm_list_head); 1399 INIT_LIST_HEAD(&info->kfd_bo_list); 1400 INIT_LIST_HEAD(&info->userptr_valid_list); 1401 INIT_LIST_HEAD(&info->userptr_inval_list); 1402 1403 info->eviction_fence = 1404 amdgpu_amdkfd_fence_create(dma_fence_context_alloc(1), 1405 current->mm, 1406 NULL); 1407 if (!info->eviction_fence) { 1408 pr_err("Failed to create eviction fence\n"); 1409 ret = -ENOMEM; 1410 goto create_evict_fence_fail; 1411 } 1412 1413 info->pid = get_task_pid(current->group_leader, PIDTYPE_PID); 1414 INIT_DELAYED_WORK(&info->restore_userptr_work, 1415 amdgpu_amdkfd_restore_userptr_worker); 1416 1417 *process_info = info; 1418 } 1419 1420 vm->process_info = *process_info; 1421 1422 /* Validate page directory and attach eviction fence */ 1423 ret = amdgpu_bo_reserve(vm->root.bo, true); 1424 if (ret) 1425 goto reserve_pd_fail; 1426 ret = vm_validate_pt_pd_bos(vm, NULL); 1427 if (ret) { 1428 pr_err("validate_pt_pd_bos() failed\n"); 1429 goto validate_pd_fail; 1430 } 1431 ret = amdgpu_bo_sync_wait(vm->root.bo, 1432 AMDGPU_FENCE_OWNER_KFD, false); 1433 if (ret) 1434 goto wait_pd_fail; 1435 ret = dma_resv_reserve_fences(vm->root.bo->tbo.base.resv, 1); 1436 if (ret) 1437 goto reserve_shared_fail; 1438 dma_resv_add_fence(vm->root.bo->tbo.base.resv, 1439 &vm->process_info->eviction_fence->base, 1440 DMA_RESV_USAGE_BOOKKEEP); 1441 amdgpu_bo_unreserve(vm->root.bo); 1442 1443 /* Update process info */ 1444 mutex_lock(&vm->process_info->lock); 1445 list_add_tail(&vm->vm_list_node, 1446 &(vm->process_info->vm_list_head)); 1447 vm->process_info->n_vms++; 1448 if (ef) 1449 *ef = dma_fence_get(&vm->process_info->eviction_fence->base); 1450 mutex_unlock(&vm->process_info->lock); 1451 1452 return 0; 1453 1454 reserve_shared_fail: 1455 wait_pd_fail: 1456 validate_pd_fail: 1457 amdgpu_bo_unreserve(vm->root.bo); 1458 reserve_pd_fail: 1459 vm->process_info = NULL; 1460 if (info) { 1461 dma_fence_put(&info->eviction_fence->base); 1462 *process_info = NULL; 1463 put_pid(info->pid); 1464 create_evict_fence_fail: 1465 mutex_destroy(&info->lock); 1466 mutex_destroy(&info->notifier_lock); 1467 kfree(info); 1468 } 1469 return ret; 1470 } 1471 1472 /** 1473 * amdgpu_amdkfd_gpuvm_pin_bo() - Pins a BO using following criteria 1474 * @bo: Handle of buffer object being pinned 1475 * @domain: Domain into which BO should be pinned 1476 * 1477 * - USERPTR BOs are UNPINNABLE and will return error 1478 * - All other BO types (GTT, VRAM, MMIO and DOORBELL) will have their 1479 * PIN count incremented. It is valid to PIN a BO multiple times 1480 * 1481 * Return: ZERO if successful in pinning, Non-Zero in case of error. 1482 */ 1483 static int amdgpu_amdkfd_gpuvm_pin_bo(struct amdgpu_bo *bo, u32 domain) 1484 { 1485 int ret = 0; 1486 1487 ret = amdgpu_bo_reserve(bo, false); 1488 if (unlikely(ret)) 1489 return ret; 1490 1491 if (bo->flags & AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS) { 1492 /* 1493 * If bo is not contiguous on VRAM, move to system memory first to ensure 1494 * we can get contiguous VRAM space after evicting other BOs. 1495 */ 1496 if (!(bo->tbo.resource->placement & TTM_PL_FLAG_CONTIGUOUS)) { 1497 struct ttm_operation_ctx ctx = { true, false }; 1498 1499 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_GTT); 1500 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 1501 if (unlikely(ret)) { 1502 pr_debug("validate bo 0x%p to GTT failed %d\n", &bo->tbo, ret); 1503 goto out; 1504 } 1505 } 1506 } 1507 1508 ret = amdgpu_bo_pin(bo, domain); 1509 if (ret) 1510 pr_err("Error in Pinning BO to domain: %d\n", domain); 1511 1512 amdgpu_bo_sync_wait(bo, AMDGPU_FENCE_OWNER_KFD, false); 1513 out: 1514 amdgpu_bo_unreserve(bo); 1515 return ret; 1516 } 1517 1518 /** 1519 * amdgpu_amdkfd_gpuvm_unpin_bo() - Unpins BO using following criteria 1520 * @bo: Handle of buffer object being unpinned 1521 * 1522 * - Is a illegal request for USERPTR BOs and is ignored 1523 * - All other BO types (GTT, VRAM, MMIO and DOORBELL) will have their 1524 * PIN count decremented. Calls to UNPIN must balance calls to PIN 1525 */ 1526 static void amdgpu_amdkfd_gpuvm_unpin_bo(struct amdgpu_bo *bo) 1527 { 1528 int ret = 0; 1529 1530 ret = amdgpu_bo_reserve(bo, false); 1531 if (unlikely(ret)) 1532 return; 1533 1534 amdgpu_bo_unpin(bo); 1535 amdgpu_bo_unreserve(bo); 1536 } 1537 1538 int amdgpu_amdkfd_gpuvm_acquire_process_vm(struct amdgpu_device *adev, 1539 struct amdgpu_vm *avm, 1540 void **process_info, 1541 struct dma_fence **ef) 1542 { 1543 int ret; 1544 1545 /* Already a compute VM? */ 1546 if (avm->process_info) 1547 return -EINVAL; 1548 1549 /* Convert VM into a compute VM */ 1550 ret = amdgpu_vm_make_compute(adev, avm); 1551 if (ret) 1552 return ret; 1553 1554 /* Initialize KFD part of the VM and process info */ 1555 ret = init_kfd_vm(avm, process_info, ef); 1556 if (ret) 1557 return ret; 1558 1559 amdgpu_vm_set_task_info(avm); 1560 1561 return 0; 1562 } 1563 1564 void amdgpu_amdkfd_gpuvm_destroy_cb(struct amdgpu_device *adev, 1565 struct amdgpu_vm *vm) 1566 { 1567 struct amdkfd_process_info *process_info = vm->process_info; 1568 1569 if (!process_info) 1570 return; 1571 1572 /* Update process info */ 1573 mutex_lock(&process_info->lock); 1574 process_info->n_vms--; 1575 list_del(&vm->vm_list_node); 1576 mutex_unlock(&process_info->lock); 1577 1578 vm->process_info = NULL; 1579 1580 /* Release per-process resources when last compute VM is destroyed */ 1581 if (!process_info->n_vms) { 1582 WARN_ON(!list_empty(&process_info->kfd_bo_list)); 1583 WARN_ON(!list_empty(&process_info->userptr_valid_list)); 1584 WARN_ON(!list_empty(&process_info->userptr_inval_list)); 1585 1586 dma_fence_put(&process_info->eviction_fence->base); 1587 cancel_delayed_work_sync(&process_info->restore_userptr_work); 1588 put_pid(process_info->pid); 1589 mutex_destroy(&process_info->lock); 1590 mutex_destroy(&process_info->notifier_lock); 1591 kfree(process_info); 1592 } 1593 } 1594 1595 uint64_t amdgpu_amdkfd_gpuvm_get_process_page_dir(void *drm_priv) 1596 { 1597 struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv); 1598 struct amdgpu_bo *pd = avm->root.bo; 1599 struct amdgpu_device *adev = amdgpu_ttm_adev(pd->tbo.bdev); 1600 1601 if (adev->asic_type < CHIP_VEGA10) 1602 return avm->pd_phys_addr >> AMDGPU_GPU_PAGE_SHIFT; 1603 return avm->pd_phys_addr; 1604 } 1605 1606 void amdgpu_amdkfd_block_mmu_notifications(void *p) 1607 { 1608 struct amdkfd_process_info *pinfo = (struct amdkfd_process_info *)p; 1609 1610 mutex_lock(&pinfo->lock); 1611 WRITE_ONCE(pinfo->block_mmu_notifications, true); 1612 mutex_unlock(&pinfo->lock); 1613 } 1614 1615 int amdgpu_amdkfd_criu_resume(void *p) 1616 { 1617 int ret = 0; 1618 struct amdkfd_process_info *pinfo = (struct amdkfd_process_info *)p; 1619 1620 mutex_lock(&pinfo->lock); 1621 pr_debug("scheduling work\n"); 1622 mutex_lock(&pinfo->notifier_lock); 1623 pinfo->evicted_bos++; 1624 mutex_unlock(&pinfo->notifier_lock); 1625 if (!READ_ONCE(pinfo->block_mmu_notifications)) { 1626 ret = -EINVAL; 1627 goto out_unlock; 1628 } 1629 WRITE_ONCE(pinfo->block_mmu_notifications, false); 1630 queue_delayed_work(system_freezable_wq, 1631 &pinfo->restore_userptr_work, 0); 1632 1633 out_unlock: 1634 mutex_unlock(&pinfo->lock); 1635 return ret; 1636 } 1637 1638 size_t amdgpu_amdkfd_get_available_memory(struct amdgpu_device *adev, 1639 uint8_t xcp_id) 1640 { 1641 uint64_t reserved_for_pt = 1642 ESTIMATE_PT_SIZE(amdgpu_amdkfd_total_mem_size); 1643 struct amdgpu_ras *con = amdgpu_ras_get_context(adev); 1644 uint64_t reserved_for_ras = (con ? con->reserved_pages_in_bytes : 0); 1645 ssize_t available; 1646 uint64_t vram_available, system_mem_available, ttm_mem_available; 1647 1648 spin_lock(&kfd_mem_limit.mem_limit_lock); 1649 if (adev->apu_prefer_gtt && !adev->gmc.is_app_apu) 1650 vram_available = KFD_XCP_MEMORY_SIZE(adev, xcp_id) 1651 - adev->kfd.vram_used_aligned[xcp_id]; 1652 else 1653 vram_available = KFD_XCP_MEMORY_SIZE(adev, xcp_id) 1654 - adev->kfd.vram_used_aligned[xcp_id] 1655 - atomic64_read(&adev->vram_pin_size) 1656 - reserved_for_pt 1657 - reserved_for_ras; 1658 1659 if (adev->apu_prefer_gtt) { 1660 system_mem_available = no_system_mem_limit ? 1661 kfd_mem_limit.max_system_mem_limit : 1662 kfd_mem_limit.max_system_mem_limit - 1663 kfd_mem_limit.system_mem_used; 1664 1665 ttm_mem_available = kfd_mem_limit.max_ttm_mem_limit - 1666 kfd_mem_limit.ttm_mem_used; 1667 1668 available = min3(system_mem_available, ttm_mem_available, 1669 vram_available); 1670 available = ALIGN_DOWN(available, PAGE_SIZE); 1671 } else { 1672 available = ALIGN_DOWN(vram_available, VRAM_AVAILABLITY_ALIGN); 1673 } 1674 1675 spin_unlock(&kfd_mem_limit.mem_limit_lock); 1676 1677 if (available < 0) 1678 available = 0; 1679 1680 return available; 1681 } 1682 1683 int amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu( 1684 struct amdgpu_device *adev, uint64_t va, uint64_t size, 1685 void *drm_priv, struct kgd_mem **mem, 1686 uint64_t *offset, uint32_t flags, bool criu_resume) 1687 { 1688 struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv); 1689 struct amdgpu_fpriv *fpriv = container_of(avm, struct amdgpu_fpriv, vm); 1690 enum ttm_bo_type bo_type = ttm_bo_type_device; 1691 struct sg_table *sg = NULL; 1692 uint64_t user_addr = 0; 1693 struct amdgpu_bo *bo; 1694 struct drm_gem_object *gobj = NULL; 1695 u32 domain, alloc_domain; 1696 uint64_t aligned_size; 1697 int8_t xcp_id = -1; 1698 u64 alloc_flags; 1699 int ret; 1700 1701 /* 1702 * Check on which domain to allocate BO 1703 */ 1704 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) { 1705 domain = alloc_domain = AMDGPU_GEM_DOMAIN_VRAM; 1706 1707 if (adev->apu_prefer_gtt) { 1708 domain = AMDGPU_GEM_DOMAIN_GTT; 1709 alloc_domain = AMDGPU_GEM_DOMAIN_GTT; 1710 alloc_flags = 0; 1711 } else { 1712 alloc_flags = AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE; 1713 alloc_flags |= (flags & KFD_IOC_ALLOC_MEM_FLAGS_PUBLIC) ? 1714 AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED : 0; 1715 1716 /* For contiguous VRAM allocation */ 1717 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_CONTIGUOUS) 1718 alloc_flags |= AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS; 1719 } 1720 xcp_id = fpriv->xcp_id == AMDGPU_XCP_NO_PARTITION ? 1721 0 : fpriv->xcp_id; 1722 } else if (flags & KFD_IOC_ALLOC_MEM_FLAGS_GTT) { 1723 domain = alloc_domain = AMDGPU_GEM_DOMAIN_GTT; 1724 alloc_flags = 0; 1725 } else { 1726 domain = AMDGPU_GEM_DOMAIN_GTT; 1727 alloc_domain = AMDGPU_GEM_DOMAIN_CPU; 1728 alloc_flags = AMDGPU_GEM_CREATE_PREEMPTIBLE; 1729 1730 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) { 1731 if (!offset || !*offset) 1732 return -EINVAL; 1733 user_addr = untagged_addr(*offset); 1734 } else if (flags & (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL | 1735 KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) { 1736 bo_type = ttm_bo_type_sg; 1737 if (size > UINT_MAX) 1738 return -EINVAL; 1739 sg = create_sg_table(*offset, size); 1740 if (!sg) 1741 return -ENOMEM; 1742 } else { 1743 return -EINVAL; 1744 } 1745 } 1746 1747 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_COHERENT) 1748 alloc_flags |= AMDGPU_GEM_CREATE_COHERENT; 1749 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_EXT_COHERENT) 1750 alloc_flags |= AMDGPU_GEM_CREATE_EXT_COHERENT; 1751 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_UNCACHED) 1752 alloc_flags |= AMDGPU_GEM_CREATE_UNCACHED; 1753 1754 *mem = kzalloc(sizeof(struct kgd_mem), GFP_KERNEL); 1755 if (!*mem) { 1756 ret = -ENOMEM; 1757 goto err; 1758 } 1759 INIT_LIST_HEAD(&(*mem)->attachments); 1760 mutex_init(&(*mem)->lock); 1761 (*mem)->aql_queue = !!(flags & KFD_IOC_ALLOC_MEM_FLAGS_AQL_QUEUE_MEM); 1762 1763 /* Workaround for AQL queue wraparound bug. Map the same 1764 * memory twice. That means we only actually allocate half 1765 * the memory. 1766 */ 1767 if ((*mem)->aql_queue) 1768 size >>= 1; 1769 aligned_size = PAGE_ALIGN(size); 1770 1771 (*mem)->alloc_flags = flags; 1772 1773 amdgpu_sync_create(&(*mem)->sync); 1774 1775 ret = amdgpu_amdkfd_reserve_mem_limit(adev, aligned_size, flags, 1776 xcp_id); 1777 if (ret) { 1778 pr_debug("Insufficient memory\n"); 1779 goto err_reserve_limit; 1780 } 1781 1782 pr_debug("\tcreate BO VA 0x%llx size 0x%llx domain %s xcp_id %d\n", 1783 va, (*mem)->aql_queue ? size << 1 : size, 1784 domain_string(alloc_domain), xcp_id); 1785 1786 ret = amdgpu_gem_object_create(adev, aligned_size, 1, alloc_domain, alloc_flags, 1787 bo_type, NULL, &gobj, xcp_id + 1); 1788 if (ret) { 1789 pr_debug("Failed to create BO on domain %s. ret %d\n", 1790 domain_string(alloc_domain), ret); 1791 goto err_bo_create; 1792 } 1793 ret = drm_vma_node_allow(&gobj->vma_node, drm_priv); 1794 if (ret) { 1795 pr_debug("Failed to allow vma node access. ret %d\n", ret); 1796 goto err_node_allow; 1797 } 1798 ret = drm_gem_handle_create(adev->kfd.client.file, gobj, &(*mem)->gem_handle); 1799 if (ret) 1800 goto err_gem_handle_create; 1801 bo = gem_to_amdgpu_bo(gobj); 1802 if (bo_type == ttm_bo_type_sg) { 1803 bo->tbo.sg = sg; 1804 bo->tbo.ttm->sg = sg; 1805 } 1806 bo->kfd_bo = *mem; 1807 (*mem)->bo = bo; 1808 if (user_addr) 1809 bo->flags |= AMDGPU_AMDKFD_CREATE_USERPTR_BO; 1810 1811 (*mem)->va = va; 1812 (*mem)->domain = domain; 1813 (*mem)->mapped_to_gpu_memory = 0; 1814 (*mem)->process_info = avm->process_info; 1815 1816 add_kgd_mem_to_kfd_bo_list(*mem, avm->process_info, user_addr); 1817 1818 if (user_addr) { 1819 pr_debug("creating userptr BO for user_addr = %llx\n", user_addr); 1820 ret = init_user_pages(*mem, user_addr, criu_resume); 1821 if (ret) 1822 goto allocate_init_user_pages_failed; 1823 } else if (flags & (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL | 1824 KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) { 1825 ret = amdgpu_amdkfd_gpuvm_pin_bo(bo, AMDGPU_GEM_DOMAIN_GTT); 1826 if (ret) { 1827 pr_err("Pinning MMIO/DOORBELL BO during ALLOC FAILED\n"); 1828 goto err_pin_bo; 1829 } 1830 bo->allowed_domains = AMDGPU_GEM_DOMAIN_GTT; 1831 bo->preferred_domains = AMDGPU_GEM_DOMAIN_GTT; 1832 } else { 1833 mutex_lock(&avm->process_info->lock); 1834 if (avm->process_info->eviction_fence && 1835 !dma_fence_is_signaled(&avm->process_info->eviction_fence->base)) 1836 ret = amdgpu_amdkfd_bo_validate_and_fence(bo, domain, 1837 &avm->process_info->eviction_fence->base); 1838 mutex_unlock(&avm->process_info->lock); 1839 if (ret) 1840 goto err_validate_bo; 1841 } 1842 1843 if (offset) 1844 *offset = amdgpu_bo_mmap_offset(bo); 1845 1846 return 0; 1847 1848 allocate_init_user_pages_failed: 1849 err_pin_bo: 1850 err_validate_bo: 1851 remove_kgd_mem_from_kfd_bo_list(*mem, avm->process_info); 1852 drm_gem_handle_delete(adev->kfd.client.file, (*mem)->gem_handle); 1853 err_gem_handle_create: 1854 drm_vma_node_revoke(&gobj->vma_node, drm_priv); 1855 err_node_allow: 1856 /* Don't unreserve system mem limit twice */ 1857 goto err_reserve_limit; 1858 err_bo_create: 1859 amdgpu_amdkfd_unreserve_mem_limit(adev, aligned_size, flags, xcp_id); 1860 err_reserve_limit: 1861 amdgpu_sync_free(&(*mem)->sync); 1862 mutex_destroy(&(*mem)->lock); 1863 if (gobj) 1864 drm_gem_object_put(gobj); 1865 else 1866 kfree(*mem); 1867 err: 1868 if (sg) { 1869 sg_free_table(sg); 1870 kfree(sg); 1871 } 1872 return ret; 1873 } 1874 1875 int amdgpu_amdkfd_gpuvm_free_memory_of_gpu( 1876 struct amdgpu_device *adev, struct kgd_mem *mem, void *drm_priv, 1877 uint64_t *size) 1878 { 1879 struct amdkfd_process_info *process_info = mem->process_info; 1880 unsigned long bo_size = mem->bo->tbo.base.size; 1881 bool use_release_notifier = (mem->bo->kfd_bo == mem); 1882 struct kfd_mem_attachment *entry, *tmp; 1883 struct bo_vm_reservation_context ctx; 1884 unsigned int mapped_to_gpu_memory; 1885 int ret; 1886 bool is_imported = false; 1887 1888 mutex_lock(&mem->lock); 1889 1890 /* Unpin MMIO/DOORBELL BO's that were pinned during allocation */ 1891 if (mem->alloc_flags & 1892 (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL | 1893 KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) { 1894 amdgpu_amdkfd_gpuvm_unpin_bo(mem->bo); 1895 } 1896 1897 mapped_to_gpu_memory = mem->mapped_to_gpu_memory; 1898 is_imported = mem->is_imported; 1899 mutex_unlock(&mem->lock); 1900 /* lock is not needed after this, since mem is unused and will 1901 * be freed anyway 1902 */ 1903 1904 if (mapped_to_gpu_memory > 0) { 1905 pr_debug("BO VA 0x%llx size 0x%lx is still mapped.\n", 1906 mem->va, bo_size); 1907 return -EBUSY; 1908 } 1909 1910 /* Make sure restore workers don't access the BO any more */ 1911 mutex_lock(&process_info->lock); 1912 list_del(&mem->validate_list); 1913 mutex_unlock(&process_info->lock); 1914 1915 /* Cleanup user pages and MMU notifiers */ 1916 if (amdgpu_ttm_tt_get_usermm(mem->bo->tbo.ttm)) { 1917 amdgpu_hmm_unregister(mem->bo); 1918 mutex_lock(&process_info->notifier_lock); 1919 amdgpu_ttm_tt_discard_user_pages(mem->bo->tbo.ttm, mem->range); 1920 mutex_unlock(&process_info->notifier_lock); 1921 } 1922 1923 ret = reserve_bo_and_cond_vms(mem, NULL, BO_VM_ALL, &ctx); 1924 if (unlikely(ret)) 1925 return ret; 1926 1927 amdgpu_amdkfd_remove_eviction_fence(mem->bo, 1928 process_info->eviction_fence); 1929 pr_debug("Release VA 0x%llx - 0x%llx\n", mem->va, 1930 mem->va + bo_size * (1 + mem->aql_queue)); 1931 1932 /* Remove from VM internal data structures */ 1933 list_for_each_entry_safe(entry, tmp, &mem->attachments, list) { 1934 kfd_mem_dmaunmap_attachment(mem, entry); 1935 kfd_mem_detach(entry); 1936 } 1937 1938 ret = unreserve_bo_and_vms(&ctx, false, false); 1939 1940 /* Free the sync object */ 1941 amdgpu_sync_free(&mem->sync); 1942 1943 /* If the SG is not NULL, it's one we created for a doorbell or mmio 1944 * remap BO. We need to free it. 1945 */ 1946 if (mem->bo->tbo.sg) { 1947 sg_free_table(mem->bo->tbo.sg); 1948 kfree(mem->bo->tbo.sg); 1949 } 1950 1951 /* Update the size of the BO being freed if it was allocated from 1952 * VRAM and is not imported. For APP APU VRAM allocations are done 1953 * in GTT domain 1954 */ 1955 if (size) { 1956 if (!is_imported && 1957 (mem->bo->preferred_domains == AMDGPU_GEM_DOMAIN_VRAM || 1958 (adev->apu_prefer_gtt && 1959 mem->bo->preferred_domains == AMDGPU_GEM_DOMAIN_GTT))) 1960 *size = bo_size; 1961 else 1962 *size = 0; 1963 } 1964 1965 /* Free the BO*/ 1966 drm_vma_node_revoke(&mem->bo->tbo.base.vma_node, drm_priv); 1967 drm_gem_handle_delete(adev->kfd.client.file, mem->gem_handle); 1968 if (mem->dmabuf) { 1969 dma_buf_put(mem->dmabuf); 1970 mem->dmabuf = NULL; 1971 } 1972 mutex_destroy(&mem->lock); 1973 1974 /* If this releases the last reference, it will end up calling 1975 * amdgpu_amdkfd_release_notify and kfree the mem struct. That's why 1976 * this needs to be the last call here. 1977 */ 1978 drm_gem_object_put(&mem->bo->tbo.base); 1979 1980 /* 1981 * For kgd_mem allocated in amdgpu_amdkfd_gpuvm_import_dmabuf(), 1982 * explicitly free it here. 1983 */ 1984 if (!use_release_notifier) 1985 kfree(mem); 1986 1987 return ret; 1988 } 1989 1990 int amdgpu_amdkfd_gpuvm_map_memory_to_gpu( 1991 struct amdgpu_device *adev, struct kgd_mem *mem, 1992 void *drm_priv) 1993 { 1994 struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv); 1995 int ret; 1996 struct amdgpu_bo *bo; 1997 uint32_t domain; 1998 struct kfd_mem_attachment *entry; 1999 struct bo_vm_reservation_context ctx; 2000 unsigned long bo_size; 2001 bool is_invalid_userptr = false; 2002 2003 bo = mem->bo; 2004 if (!bo) { 2005 pr_err("Invalid BO when mapping memory to GPU\n"); 2006 return -EINVAL; 2007 } 2008 2009 /* Make sure restore is not running concurrently. Since we 2010 * don't map invalid userptr BOs, we rely on the next restore 2011 * worker to do the mapping 2012 */ 2013 mutex_lock(&mem->process_info->lock); 2014 2015 /* Lock notifier lock. If we find an invalid userptr BO, we can be 2016 * sure that the MMU notifier is no longer running 2017 * concurrently and the queues are actually stopped 2018 */ 2019 if (amdgpu_ttm_tt_get_usermm(bo->tbo.ttm)) { 2020 mutex_lock(&mem->process_info->notifier_lock); 2021 is_invalid_userptr = !!mem->invalid; 2022 mutex_unlock(&mem->process_info->notifier_lock); 2023 } 2024 2025 mutex_lock(&mem->lock); 2026 2027 domain = mem->domain; 2028 bo_size = bo->tbo.base.size; 2029 2030 pr_debug("Map VA 0x%llx - 0x%llx to vm %p domain %s\n", 2031 mem->va, 2032 mem->va + bo_size * (1 + mem->aql_queue), 2033 avm, domain_string(domain)); 2034 2035 if (!kfd_mem_is_attached(avm, mem)) { 2036 ret = kfd_mem_attach(adev, mem, avm, mem->aql_queue); 2037 if (ret) 2038 goto out; 2039 } 2040 2041 ret = reserve_bo_and_vm(mem, avm, &ctx); 2042 if (unlikely(ret)) 2043 goto out; 2044 2045 /* Userptr can be marked as "not invalid", but not actually be 2046 * validated yet (still in the system domain). In that case 2047 * the queues are still stopped and we can leave mapping for 2048 * the next restore worker 2049 */ 2050 if (amdgpu_ttm_tt_get_usermm(bo->tbo.ttm) && 2051 bo->tbo.resource->mem_type == TTM_PL_SYSTEM) 2052 is_invalid_userptr = true; 2053 2054 ret = vm_validate_pt_pd_bos(avm, NULL); 2055 if (unlikely(ret)) 2056 goto out_unreserve; 2057 2058 list_for_each_entry(entry, &mem->attachments, list) { 2059 if (entry->bo_va->base.vm != avm || entry->is_mapped) 2060 continue; 2061 2062 pr_debug("\t map VA 0x%llx - 0x%llx in entry %p\n", 2063 entry->va, entry->va + bo_size, entry); 2064 2065 ret = map_bo_to_gpuvm(mem, entry, ctx.sync, 2066 is_invalid_userptr); 2067 if (ret) { 2068 pr_err("Failed to map bo to gpuvm\n"); 2069 goto out_unreserve; 2070 } 2071 2072 ret = vm_update_pds(avm, ctx.sync); 2073 if (ret) { 2074 pr_err("Failed to update page directories\n"); 2075 goto out_unreserve; 2076 } 2077 2078 entry->is_mapped = true; 2079 mem->mapped_to_gpu_memory++; 2080 pr_debug("\t INC mapping count %d\n", 2081 mem->mapped_to_gpu_memory); 2082 } 2083 2084 ret = unreserve_bo_and_vms(&ctx, false, false); 2085 2086 goto out; 2087 2088 out_unreserve: 2089 unreserve_bo_and_vms(&ctx, false, false); 2090 out: 2091 mutex_unlock(&mem->process_info->lock); 2092 mutex_unlock(&mem->lock); 2093 return ret; 2094 } 2095 2096 int amdgpu_amdkfd_gpuvm_dmaunmap_mem(struct kgd_mem *mem, void *drm_priv) 2097 { 2098 struct kfd_mem_attachment *entry; 2099 struct amdgpu_vm *vm; 2100 int ret; 2101 2102 vm = drm_priv_to_vm(drm_priv); 2103 2104 mutex_lock(&mem->lock); 2105 2106 ret = amdgpu_bo_reserve(mem->bo, true); 2107 if (ret) 2108 goto out; 2109 2110 list_for_each_entry(entry, &mem->attachments, list) { 2111 if (entry->bo_va->base.vm != vm) 2112 continue; 2113 if (entry->bo_va->base.bo->tbo.ttm && 2114 !entry->bo_va->base.bo->tbo.ttm->sg) 2115 continue; 2116 2117 kfd_mem_dmaunmap_attachment(mem, entry); 2118 } 2119 2120 amdgpu_bo_unreserve(mem->bo); 2121 out: 2122 mutex_unlock(&mem->lock); 2123 2124 return ret; 2125 } 2126 2127 int amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu( 2128 struct amdgpu_device *adev, struct kgd_mem *mem, void *drm_priv) 2129 { 2130 struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv); 2131 unsigned long bo_size = mem->bo->tbo.base.size; 2132 struct kfd_mem_attachment *entry; 2133 struct bo_vm_reservation_context ctx; 2134 int ret; 2135 2136 mutex_lock(&mem->lock); 2137 2138 ret = reserve_bo_and_cond_vms(mem, avm, BO_VM_MAPPED, &ctx); 2139 if (unlikely(ret)) 2140 goto out; 2141 /* If no VMs were reserved, it means the BO wasn't actually mapped */ 2142 if (ctx.n_vms == 0) { 2143 ret = -EINVAL; 2144 goto unreserve_out; 2145 } 2146 2147 ret = vm_validate_pt_pd_bos(avm, NULL); 2148 if (unlikely(ret)) 2149 goto unreserve_out; 2150 2151 pr_debug("Unmap VA 0x%llx - 0x%llx from vm %p\n", 2152 mem->va, 2153 mem->va + bo_size * (1 + mem->aql_queue), 2154 avm); 2155 2156 list_for_each_entry(entry, &mem->attachments, list) { 2157 if (entry->bo_va->base.vm != avm || !entry->is_mapped) 2158 continue; 2159 2160 pr_debug("\t unmap VA 0x%llx - 0x%llx from entry %p\n", 2161 entry->va, entry->va + bo_size, entry); 2162 2163 ret = unmap_bo_from_gpuvm(mem, entry, ctx.sync); 2164 if (ret) 2165 goto unreserve_out; 2166 2167 entry->is_mapped = false; 2168 2169 mem->mapped_to_gpu_memory--; 2170 pr_debug("\t DEC mapping count %d\n", 2171 mem->mapped_to_gpu_memory); 2172 } 2173 2174 unreserve_out: 2175 unreserve_bo_and_vms(&ctx, false, false); 2176 out: 2177 mutex_unlock(&mem->lock); 2178 return ret; 2179 } 2180 2181 int amdgpu_amdkfd_gpuvm_sync_memory( 2182 struct amdgpu_device *adev, struct kgd_mem *mem, bool intr) 2183 { 2184 struct amdgpu_sync sync; 2185 int ret; 2186 2187 amdgpu_sync_create(&sync); 2188 2189 mutex_lock(&mem->lock); 2190 amdgpu_sync_clone(&mem->sync, &sync); 2191 mutex_unlock(&mem->lock); 2192 2193 ret = amdgpu_sync_wait(&sync, intr); 2194 amdgpu_sync_free(&sync); 2195 return ret; 2196 } 2197 2198 /** 2199 * amdgpu_amdkfd_map_gtt_bo_to_gart - Map BO to GART and increment reference count 2200 * @bo: Buffer object to be mapped 2201 * @bo_gart: Return bo reference 2202 * 2203 * Before return, bo reference count is incremented. To release the reference and unpin/ 2204 * unmap the BO, call amdgpu_amdkfd_free_gtt_mem. 2205 */ 2206 int amdgpu_amdkfd_map_gtt_bo_to_gart(struct amdgpu_bo *bo, struct amdgpu_bo **bo_gart) 2207 { 2208 int ret; 2209 2210 ret = amdgpu_bo_reserve(bo, true); 2211 if (ret) { 2212 pr_err("Failed to reserve bo. ret %d\n", ret); 2213 goto err_reserve_bo_failed; 2214 } 2215 2216 ret = amdgpu_bo_pin(bo, AMDGPU_GEM_DOMAIN_GTT); 2217 if (ret) { 2218 pr_err("Failed to pin bo. ret %d\n", ret); 2219 goto err_pin_bo_failed; 2220 } 2221 2222 ret = amdgpu_ttm_alloc_gart(&bo->tbo); 2223 if (ret) { 2224 pr_err("Failed to bind bo to GART. ret %d\n", ret); 2225 goto err_map_bo_gart_failed; 2226 } 2227 2228 amdgpu_amdkfd_remove_eviction_fence( 2229 bo, bo->vm_bo->vm->process_info->eviction_fence); 2230 2231 amdgpu_bo_unreserve(bo); 2232 2233 *bo_gart = amdgpu_bo_ref(bo); 2234 2235 return 0; 2236 2237 err_map_bo_gart_failed: 2238 amdgpu_bo_unpin(bo); 2239 err_pin_bo_failed: 2240 amdgpu_bo_unreserve(bo); 2241 err_reserve_bo_failed: 2242 2243 return ret; 2244 } 2245 2246 /** amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel() - Map a GTT BO for kernel CPU access 2247 * 2248 * @mem: Buffer object to be mapped for CPU access 2249 * @kptr[out]: pointer in kernel CPU address space 2250 * @size[out]: size of the buffer 2251 * 2252 * Pins the BO and maps it for kernel CPU access. The eviction fence is removed 2253 * from the BO, since pinned BOs cannot be evicted. The bo must remain on the 2254 * validate_list, so the GPU mapping can be restored after a page table was 2255 * evicted. 2256 * 2257 * Return: 0 on success, error code on failure 2258 */ 2259 int amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(struct kgd_mem *mem, 2260 void **kptr, uint64_t *size) 2261 { 2262 int ret; 2263 struct amdgpu_bo *bo = mem->bo; 2264 2265 if (amdgpu_ttm_tt_get_usermm(bo->tbo.ttm)) { 2266 pr_err("userptr can't be mapped to kernel\n"); 2267 return -EINVAL; 2268 } 2269 2270 mutex_lock(&mem->process_info->lock); 2271 2272 ret = amdgpu_bo_reserve(bo, true); 2273 if (ret) { 2274 pr_err("Failed to reserve bo. ret %d\n", ret); 2275 goto bo_reserve_failed; 2276 } 2277 2278 ret = amdgpu_bo_pin(bo, AMDGPU_GEM_DOMAIN_GTT); 2279 if (ret) { 2280 pr_err("Failed to pin bo. ret %d\n", ret); 2281 goto pin_failed; 2282 } 2283 2284 ret = amdgpu_bo_kmap(bo, kptr); 2285 if (ret) { 2286 pr_err("Failed to map bo to kernel. ret %d\n", ret); 2287 goto kmap_failed; 2288 } 2289 2290 amdgpu_amdkfd_remove_eviction_fence( 2291 bo, mem->process_info->eviction_fence); 2292 2293 if (size) 2294 *size = amdgpu_bo_size(bo); 2295 2296 amdgpu_bo_unreserve(bo); 2297 2298 mutex_unlock(&mem->process_info->lock); 2299 return 0; 2300 2301 kmap_failed: 2302 amdgpu_bo_unpin(bo); 2303 pin_failed: 2304 amdgpu_bo_unreserve(bo); 2305 bo_reserve_failed: 2306 mutex_unlock(&mem->process_info->lock); 2307 2308 return ret; 2309 } 2310 2311 /** amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel() - Unmap a GTT BO for kernel CPU access 2312 * 2313 * @mem: Buffer object to be unmapped for CPU access 2314 * 2315 * Removes the kernel CPU mapping and unpins the BO. It does not restore the 2316 * eviction fence, so this function should only be used for cleanup before the 2317 * BO is destroyed. 2318 */ 2319 void amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(struct kgd_mem *mem) 2320 { 2321 struct amdgpu_bo *bo = mem->bo; 2322 2323 (void)amdgpu_bo_reserve(bo, true); 2324 amdgpu_bo_kunmap(bo); 2325 amdgpu_bo_unpin(bo); 2326 amdgpu_bo_unreserve(bo); 2327 } 2328 2329 int amdgpu_amdkfd_gpuvm_get_vm_fault_info(struct amdgpu_device *adev, 2330 struct kfd_vm_fault_info *mem) 2331 { 2332 if (atomic_read(&adev->gmc.vm_fault_info_updated) == 1) { 2333 *mem = *adev->gmc.vm_fault_info; 2334 mb(); /* make sure read happened */ 2335 atomic_set(&adev->gmc.vm_fault_info_updated, 0); 2336 } 2337 return 0; 2338 } 2339 2340 static int import_obj_create(struct amdgpu_device *adev, 2341 struct dma_buf *dma_buf, 2342 struct drm_gem_object *obj, 2343 uint64_t va, void *drm_priv, 2344 struct kgd_mem **mem, uint64_t *size, 2345 uint64_t *mmap_offset) 2346 { 2347 struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv); 2348 struct amdgpu_bo *bo; 2349 int ret; 2350 2351 bo = gem_to_amdgpu_bo(obj); 2352 if (!(bo->preferred_domains & (AMDGPU_GEM_DOMAIN_VRAM | 2353 AMDGPU_GEM_DOMAIN_GTT))) 2354 /* Only VRAM and GTT BOs are supported */ 2355 return -EINVAL; 2356 2357 *mem = kzalloc(sizeof(struct kgd_mem), GFP_KERNEL); 2358 if (!*mem) 2359 return -ENOMEM; 2360 2361 ret = drm_vma_node_allow(&obj->vma_node, drm_priv); 2362 if (ret) 2363 goto err_free_mem; 2364 2365 if (size) 2366 *size = amdgpu_bo_size(bo); 2367 2368 if (mmap_offset) 2369 *mmap_offset = amdgpu_bo_mmap_offset(bo); 2370 2371 INIT_LIST_HEAD(&(*mem)->attachments); 2372 mutex_init(&(*mem)->lock); 2373 2374 (*mem)->alloc_flags = 2375 ((bo->preferred_domains & AMDGPU_GEM_DOMAIN_VRAM) ? 2376 KFD_IOC_ALLOC_MEM_FLAGS_VRAM : KFD_IOC_ALLOC_MEM_FLAGS_GTT) 2377 | KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE 2378 | KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE; 2379 2380 get_dma_buf(dma_buf); 2381 (*mem)->dmabuf = dma_buf; 2382 (*mem)->bo = bo; 2383 (*mem)->va = va; 2384 (*mem)->domain = (bo->preferred_domains & AMDGPU_GEM_DOMAIN_VRAM) && 2385 !adev->apu_prefer_gtt ? 2386 AMDGPU_GEM_DOMAIN_VRAM : AMDGPU_GEM_DOMAIN_GTT; 2387 2388 (*mem)->mapped_to_gpu_memory = 0; 2389 (*mem)->process_info = avm->process_info; 2390 add_kgd_mem_to_kfd_bo_list(*mem, avm->process_info, false); 2391 amdgpu_sync_create(&(*mem)->sync); 2392 (*mem)->is_imported = true; 2393 2394 mutex_lock(&avm->process_info->lock); 2395 if (avm->process_info->eviction_fence && 2396 !dma_fence_is_signaled(&avm->process_info->eviction_fence->base)) 2397 ret = amdgpu_amdkfd_bo_validate_and_fence(bo, (*mem)->domain, 2398 &avm->process_info->eviction_fence->base); 2399 mutex_unlock(&avm->process_info->lock); 2400 if (ret) 2401 goto err_remove_mem; 2402 2403 return 0; 2404 2405 err_remove_mem: 2406 remove_kgd_mem_from_kfd_bo_list(*mem, avm->process_info); 2407 drm_vma_node_revoke(&obj->vma_node, drm_priv); 2408 err_free_mem: 2409 kfree(*mem); 2410 return ret; 2411 } 2412 2413 int amdgpu_amdkfd_gpuvm_import_dmabuf_fd(struct amdgpu_device *adev, int fd, 2414 uint64_t va, void *drm_priv, 2415 struct kgd_mem **mem, uint64_t *size, 2416 uint64_t *mmap_offset) 2417 { 2418 struct drm_gem_object *obj; 2419 uint32_t handle; 2420 int ret; 2421 2422 ret = drm_gem_prime_fd_to_handle(&adev->ddev, adev->kfd.client.file, fd, 2423 &handle); 2424 if (ret) 2425 return ret; 2426 obj = drm_gem_object_lookup(adev->kfd.client.file, handle); 2427 if (!obj) { 2428 ret = -EINVAL; 2429 goto err_release_handle; 2430 } 2431 2432 ret = import_obj_create(adev, obj->dma_buf, obj, va, drm_priv, mem, size, 2433 mmap_offset); 2434 if (ret) 2435 goto err_put_obj; 2436 2437 (*mem)->gem_handle = handle; 2438 2439 return 0; 2440 2441 err_put_obj: 2442 drm_gem_object_put(obj); 2443 err_release_handle: 2444 drm_gem_handle_delete(adev->kfd.client.file, handle); 2445 return ret; 2446 } 2447 2448 int amdgpu_amdkfd_gpuvm_export_dmabuf(struct kgd_mem *mem, 2449 struct dma_buf **dma_buf) 2450 { 2451 int ret; 2452 2453 mutex_lock(&mem->lock); 2454 ret = kfd_mem_export_dmabuf(mem); 2455 if (ret) 2456 goto out; 2457 2458 get_dma_buf(mem->dmabuf); 2459 *dma_buf = mem->dmabuf; 2460 out: 2461 mutex_unlock(&mem->lock); 2462 return ret; 2463 } 2464 2465 /* Evict a userptr BO by stopping the queues if necessary 2466 * 2467 * Runs in MMU notifier, may be in RECLAIM_FS context. This means it 2468 * cannot do any memory allocations, and cannot take any locks that 2469 * are held elsewhere while allocating memory. 2470 * 2471 * It doesn't do anything to the BO itself. The real work happens in 2472 * restore, where we get updated page addresses. This function only 2473 * ensures that GPU access to the BO is stopped. 2474 */ 2475 int amdgpu_amdkfd_evict_userptr(struct mmu_interval_notifier *mni, 2476 unsigned long cur_seq, struct kgd_mem *mem) 2477 { 2478 struct amdkfd_process_info *process_info = mem->process_info; 2479 int r = 0; 2480 2481 /* Do not process MMU notifications during CRIU restore until 2482 * KFD_CRIU_OP_RESUME IOCTL is received 2483 */ 2484 if (READ_ONCE(process_info->block_mmu_notifications)) 2485 return 0; 2486 2487 mutex_lock(&process_info->notifier_lock); 2488 mmu_interval_set_seq(mni, cur_seq); 2489 2490 mem->invalid++; 2491 if (++process_info->evicted_bos == 1) { 2492 /* First eviction, stop the queues */ 2493 r = kgd2kfd_quiesce_mm(mni->mm, 2494 KFD_QUEUE_EVICTION_TRIGGER_USERPTR); 2495 2496 if (r && r != -ESRCH) 2497 pr_err("Failed to quiesce KFD\n"); 2498 2499 if (r != -ESRCH) 2500 queue_delayed_work(system_freezable_wq, 2501 &process_info->restore_userptr_work, 2502 msecs_to_jiffies(AMDGPU_USERPTR_RESTORE_DELAY_MS)); 2503 } 2504 mutex_unlock(&process_info->notifier_lock); 2505 2506 return r; 2507 } 2508 2509 /* Update invalid userptr BOs 2510 * 2511 * Moves invalidated (evicted) userptr BOs from userptr_valid_list to 2512 * userptr_inval_list and updates user pages for all BOs that have 2513 * been invalidated since their last update. 2514 */ 2515 static int update_invalid_user_pages(struct amdkfd_process_info *process_info, 2516 struct mm_struct *mm) 2517 { 2518 struct kgd_mem *mem, *tmp_mem; 2519 struct amdgpu_bo *bo; 2520 struct ttm_operation_ctx ctx = { false, false }; 2521 uint32_t invalid; 2522 int ret = 0; 2523 2524 mutex_lock(&process_info->notifier_lock); 2525 2526 /* Move all invalidated BOs to the userptr_inval_list */ 2527 list_for_each_entry_safe(mem, tmp_mem, 2528 &process_info->userptr_valid_list, 2529 validate_list) 2530 if (mem->invalid) 2531 list_move_tail(&mem->validate_list, 2532 &process_info->userptr_inval_list); 2533 2534 /* Go through userptr_inval_list and update any invalid user_pages */ 2535 list_for_each_entry(mem, &process_info->userptr_inval_list, 2536 validate_list) { 2537 invalid = mem->invalid; 2538 if (!invalid) 2539 /* BO hasn't been invalidated since the last 2540 * revalidation attempt. Keep its page list. 2541 */ 2542 continue; 2543 2544 bo = mem->bo; 2545 2546 amdgpu_ttm_tt_discard_user_pages(bo->tbo.ttm, mem->range); 2547 mem->range = NULL; 2548 2549 /* BO reservations and getting user pages (hmm_range_fault) 2550 * must happen outside the notifier lock 2551 */ 2552 mutex_unlock(&process_info->notifier_lock); 2553 2554 /* Move the BO to system (CPU) domain if necessary to unmap 2555 * and free the SG table 2556 */ 2557 if (bo->tbo.resource->mem_type != TTM_PL_SYSTEM) { 2558 if (amdgpu_bo_reserve(bo, true)) 2559 return -EAGAIN; 2560 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_CPU); 2561 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 2562 amdgpu_bo_unreserve(bo); 2563 if (ret) { 2564 pr_err("%s: Failed to invalidate userptr BO\n", 2565 __func__); 2566 return -EAGAIN; 2567 } 2568 } 2569 2570 /* Get updated user pages */ 2571 ret = amdgpu_ttm_tt_get_user_pages(bo, &mem->range); 2572 if (ret) { 2573 pr_debug("Failed %d to get user pages\n", ret); 2574 2575 /* Return -EFAULT bad address error as success. It will 2576 * fail later with a VM fault if the GPU tries to access 2577 * it. Better than hanging indefinitely with stalled 2578 * user mode queues. 2579 * 2580 * Return other error -EBUSY or -ENOMEM to retry restore 2581 */ 2582 if (ret != -EFAULT) 2583 return ret; 2584 2585 /* If applications unmap memory before destroying the userptr 2586 * from the KFD, trigger a segmentation fault in VM debug mode. 2587 */ 2588 if (amdgpu_ttm_adev(bo->tbo.bdev)->debug_vm_userptr) { 2589 pr_err("Pid %d unmapped memory before destroying userptr at GPU addr 0x%llx\n", 2590 pid_nr(process_info->pid), mem->va); 2591 2592 // Send GPU VM fault to user space 2593 kfd_signal_vm_fault_event_with_userptr(kfd_lookup_process_by_pid(process_info->pid), 2594 mem->va); 2595 } 2596 2597 ret = 0; 2598 } 2599 2600 amdgpu_ttm_tt_set_user_pages(bo->tbo.ttm, mem->range); 2601 2602 mutex_lock(&process_info->notifier_lock); 2603 2604 /* Mark the BO as valid unless it was invalidated 2605 * again concurrently. 2606 */ 2607 if (mem->invalid != invalid) { 2608 ret = -EAGAIN; 2609 goto unlock_out; 2610 } 2611 /* set mem valid if mem has hmm range associated */ 2612 if (mem->range) 2613 mem->invalid = 0; 2614 } 2615 2616 unlock_out: 2617 mutex_unlock(&process_info->notifier_lock); 2618 2619 return ret; 2620 } 2621 2622 /* Validate invalid userptr BOs 2623 * 2624 * Validates BOs on the userptr_inval_list. Also updates GPUVM page tables 2625 * with new page addresses and waits for the page table updates to complete. 2626 */ 2627 static int validate_invalid_user_pages(struct amdkfd_process_info *process_info) 2628 { 2629 struct ttm_operation_ctx ctx = { false, false }; 2630 struct amdgpu_sync sync; 2631 struct drm_exec exec; 2632 2633 struct amdgpu_vm *peer_vm; 2634 struct kgd_mem *mem, *tmp_mem; 2635 struct amdgpu_bo *bo; 2636 int ret; 2637 2638 amdgpu_sync_create(&sync); 2639 2640 drm_exec_init(&exec, 0, 0); 2641 /* Reserve all BOs and page tables for validation */ 2642 drm_exec_until_all_locked(&exec) { 2643 /* Reserve all the page directories */ 2644 list_for_each_entry(peer_vm, &process_info->vm_list_head, 2645 vm_list_node) { 2646 ret = amdgpu_vm_lock_pd(peer_vm, &exec, 2); 2647 drm_exec_retry_on_contention(&exec); 2648 if (unlikely(ret)) 2649 goto unreserve_out; 2650 } 2651 2652 /* Reserve the userptr_inval_list entries to resv_list */ 2653 list_for_each_entry(mem, &process_info->userptr_inval_list, 2654 validate_list) { 2655 struct drm_gem_object *gobj; 2656 2657 gobj = &mem->bo->tbo.base; 2658 ret = drm_exec_prepare_obj(&exec, gobj, 1); 2659 drm_exec_retry_on_contention(&exec); 2660 if (unlikely(ret)) 2661 goto unreserve_out; 2662 } 2663 } 2664 2665 ret = process_validate_vms(process_info, NULL); 2666 if (ret) 2667 goto unreserve_out; 2668 2669 /* Validate BOs and update GPUVM page tables */ 2670 list_for_each_entry_safe(mem, tmp_mem, 2671 &process_info->userptr_inval_list, 2672 validate_list) { 2673 struct kfd_mem_attachment *attachment; 2674 2675 bo = mem->bo; 2676 2677 /* Validate the BO if we got user pages */ 2678 if (bo->tbo.ttm->pages[0]) { 2679 amdgpu_bo_placement_from_domain(bo, mem->domain); 2680 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 2681 if (ret) { 2682 pr_err("%s: failed to validate BO\n", __func__); 2683 goto unreserve_out; 2684 } 2685 } 2686 2687 /* Update mapping. If the BO was not validated 2688 * (because we couldn't get user pages), this will 2689 * clear the page table entries, which will result in 2690 * VM faults if the GPU tries to access the invalid 2691 * memory. 2692 */ 2693 list_for_each_entry(attachment, &mem->attachments, list) { 2694 if (!attachment->is_mapped) 2695 continue; 2696 2697 kfd_mem_dmaunmap_attachment(mem, attachment); 2698 ret = update_gpuvm_pte(mem, attachment, &sync); 2699 if (ret) { 2700 pr_err("%s: update PTE failed\n", __func__); 2701 /* make sure this gets validated again */ 2702 mutex_lock(&process_info->notifier_lock); 2703 mem->invalid++; 2704 mutex_unlock(&process_info->notifier_lock); 2705 goto unreserve_out; 2706 } 2707 } 2708 } 2709 2710 /* Update page directories */ 2711 ret = process_update_pds(process_info, &sync); 2712 2713 unreserve_out: 2714 drm_exec_fini(&exec); 2715 amdgpu_sync_wait(&sync, false); 2716 amdgpu_sync_free(&sync); 2717 2718 return ret; 2719 } 2720 2721 /* Confirm that all user pages are valid while holding the notifier lock 2722 * 2723 * Moves valid BOs from the userptr_inval_list back to userptr_val_list. 2724 */ 2725 static int confirm_valid_user_pages_locked(struct amdkfd_process_info *process_info) 2726 { 2727 struct kgd_mem *mem, *tmp_mem; 2728 int ret = 0; 2729 2730 list_for_each_entry_safe(mem, tmp_mem, 2731 &process_info->userptr_inval_list, 2732 validate_list) { 2733 bool valid; 2734 2735 /* keep mem without hmm range at userptr_inval_list */ 2736 if (!mem->range) 2737 continue; 2738 2739 /* Only check mem with hmm range associated */ 2740 valid = amdgpu_ttm_tt_get_user_pages_done( 2741 mem->bo->tbo.ttm, mem->range); 2742 2743 mem->range = NULL; 2744 if (!valid) { 2745 WARN(!mem->invalid, "Invalid BO not marked invalid"); 2746 ret = -EAGAIN; 2747 continue; 2748 } 2749 2750 if (mem->invalid) { 2751 WARN(1, "Valid BO is marked invalid"); 2752 ret = -EAGAIN; 2753 continue; 2754 } 2755 2756 list_move_tail(&mem->validate_list, 2757 &process_info->userptr_valid_list); 2758 } 2759 2760 return ret; 2761 } 2762 2763 /* Worker callback to restore evicted userptr BOs 2764 * 2765 * Tries to update and validate all userptr BOs. If successful and no 2766 * concurrent evictions happened, the queues are restarted. Otherwise, 2767 * reschedule for another attempt later. 2768 */ 2769 static void amdgpu_amdkfd_restore_userptr_worker(struct work_struct *work) 2770 { 2771 struct delayed_work *dwork = to_delayed_work(work); 2772 struct amdkfd_process_info *process_info = 2773 container_of(dwork, struct amdkfd_process_info, 2774 restore_userptr_work); 2775 struct task_struct *usertask; 2776 struct mm_struct *mm; 2777 uint32_t evicted_bos; 2778 2779 mutex_lock(&process_info->notifier_lock); 2780 evicted_bos = process_info->evicted_bos; 2781 mutex_unlock(&process_info->notifier_lock); 2782 if (!evicted_bos) 2783 return; 2784 2785 /* Reference task and mm in case of concurrent process termination */ 2786 usertask = get_pid_task(process_info->pid, PIDTYPE_PID); 2787 if (!usertask) 2788 return; 2789 mm = get_task_mm(usertask); 2790 if (!mm) { 2791 put_task_struct(usertask); 2792 return; 2793 } 2794 2795 mutex_lock(&process_info->lock); 2796 2797 if (update_invalid_user_pages(process_info, mm)) 2798 goto unlock_out; 2799 /* userptr_inval_list can be empty if all evicted userptr BOs 2800 * have been freed. In that case there is nothing to validate 2801 * and we can just restart the queues. 2802 */ 2803 if (!list_empty(&process_info->userptr_inval_list)) { 2804 if (validate_invalid_user_pages(process_info)) 2805 goto unlock_out; 2806 } 2807 /* Final check for concurrent evicton and atomic update. If 2808 * another eviction happens after successful update, it will 2809 * be a first eviction that calls quiesce_mm. The eviction 2810 * reference counting inside KFD will handle this case. 2811 */ 2812 mutex_lock(&process_info->notifier_lock); 2813 if (process_info->evicted_bos != evicted_bos) 2814 goto unlock_notifier_out; 2815 2816 if (confirm_valid_user_pages_locked(process_info)) { 2817 WARN(1, "User pages unexpectedly invalid"); 2818 goto unlock_notifier_out; 2819 } 2820 2821 process_info->evicted_bos = evicted_bos = 0; 2822 2823 if (kgd2kfd_resume_mm(mm)) { 2824 pr_err("%s: Failed to resume KFD\n", __func__); 2825 /* No recovery from this failure. Probably the CP is 2826 * hanging. No point trying again. 2827 */ 2828 } 2829 2830 unlock_notifier_out: 2831 mutex_unlock(&process_info->notifier_lock); 2832 unlock_out: 2833 mutex_unlock(&process_info->lock); 2834 2835 /* If validation failed, reschedule another attempt */ 2836 if (evicted_bos) { 2837 queue_delayed_work(system_freezable_wq, 2838 &process_info->restore_userptr_work, 2839 msecs_to_jiffies(AMDGPU_USERPTR_RESTORE_DELAY_MS)); 2840 2841 kfd_smi_event_queue_restore_rescheduled(mm); 2842 } 2843 mmput(mm); 2844 put_task_struct(usertask); 2845 } 2846 2847 static void replace_eviction_fence(struct dma_fence __rcu **ef, 2848 struct dma_fence *new_ef) 2849 { 2850 struct dma_fence *old_ef = rcu_replace_pointer(*ef, new_ef, true 2851 /* protected by process_info->lock */); 2852 2853 /* If we're replacing an unsignaled eviction fence, that fence will 2854 * never be signaled, and if anyone is still waiting on that fence, 2855 * they will hang forever. This should never happen. We should only 2856 * replace the fence in restore_work that only gets scheduled after 2857 * eviction work signaled the fence. 2858 */ 2859 WARN_ONCE(!dma_fence_is_signaled(old_ef), 2860 "Replacing unsignaled eviction fence"); 2861 dma_fence_put(old_ef); 2862 } 2863 2864 /** amdgpu_amdkfd_gpuvm_restore_process_bos - Restore all BOs for the given 2865 * KFD process identified by process_info 2866 * 2867 * @process_info: amdkfd_process_info of the KFD process 2868 * 2869 * After memory eviction, restore thread calls this function. The function 2870 * should be called when the Process is still valid. BO restore involves - 2871 * 2872 * 1. Release old eviction fence and create new one 2873 * 2. Get two copies of PD BO list from all the VMs. Keep one copy as pd_list. 2874 * 3 Use the second PD list and kfd_bo_list to create a list (ctx.list) of 2875 * BOs that need to be reserved. 2876 * 4. Reserve all the BOs 2877 * 5. Validate of PD and PT BOs. 2878 * 6. Validate all KFD BOs using kfd_bo_list and Map them and add new fence 2879 * 7. Add fence to all PD and PT BOs. 2880 * 8. Unreserve all BOs 2881 */ 2882 int amdgpu_amdkfd_gpuvm_restore_process_bos(void *info, struct dma_fence __rcu **ef) 2883 { 2884 struct amdkfd_process_info *process_info = info; 2885 struct amdgpu_vm *peer_vm; 2886 struct kgd_mem *mem; 2887 struct list_head duplicate_save; 2888 struct amdgpu_sync sync_obj; 2889 unsigned long failed_size = 0; 2890 unsigned long total_size = 0; 2891 struct drm_exec exec; 2892 int ret; 2893 2894 INIT_LIST_HEAD(&duplicate_save); 2895 2896 mutex_lock(&process_info->lock); 2897 2898 drm_exec_init(&exec, DRM_EXEC_IGNORE_DUPLICATES, 0); 2899 drm_exec_until_all_locked(&exec) { 2900 list_for_each_entry(peer_vm, &process_info->vm_list_head, 2901 vm_list_node) { 2902 ret = amdgpu_vm_lock_pd(peer_vm, &exec, 2); 2903 drm_exec_retry_on_contention(&exec); 2904 if (unlikely(ret)) { 2905 pr_err("Locking VM PD failed, ret: %d\n", ret); 2906 goto ttm_reserve_fail; 2907 } 2908 } 2909 2910 /* Reserve all BOs and page tables/directory. Add all BOs from 2911 * kfd_bo_list to ctx.list 2912 */ 2913 list_for_each_entry(mem, &process_info->kfd_bo_list, 2914 validate_list) { 2915 struct drm_gem_object *gobj; 2916 2917 gobj = &mem->bo->tbo.base; 2918 ret = drm_exec_prepare_obj(&exec, gobj, 1); 2919 drm_exec_retry_on_contention(&exec); 2920 if (unlikely(ret)) { 2921 pr_err("drm_exec_prepare_obj failed, ret: %d\n", ret); 2922 goto ttm_reserve_fail; 2923 } 2924 } 2925 } 2926 2927 amdgpu_sync_create(&sync_obj); 2928 2929 /* Validate BOs managed by KFD */ 2930 list_for_each_entry(mem, &process_info->kfd_bo_list, 2931 validate_list) { 2932 2933 struct amdgpu_bo *bo = mem->bo; 2934 uint32_t domain = mem->domain; 2935 struct dma_resv_iter cursor; 2936 struct dma_fence *fence; 2937 2938 total_size += amdgpu_bo_size(bo); 2939 2940 ret = amdgpu_amdkfd_bo_validate(bo, domain, false); 2941 if (ret) { 2942 pr_debug("Memory eviction: Validate BOs failed\n"); 2943 failed_size += amdgpu_bo_size(bo); 2944 ret = amdgpu_amdkfd_bo_validate(bo, 2945 AMDGPU_GEM_DOMAIN_GTT, false); 2946 if (ret) { 2947 pr_debug("Memory eviction: Try again\n"); 2948 goto validate_map_fail; 2949 } 2950 } 2951 dma_resv_for_each_fence(&cursor, bo->tbo.base.resv, 2952 DMA_RESV_USAGE_KERNEL, fence) { 2953 ret = amdgpu_sync_fence(&sync_obj, fence, GFP_KERNEL); 2954 if (ret) { 2955 pr_debug("Memory eviction: Sync BO fence failed. Try again\n"); 2956 goto validate_map_fail; 2957 } 2958 } 2959 } 2960 2961 if (failed_size) 2962 pr_debug("0x%lx/0x%lx in system\n", failed_size, total_size); 2963 2964 /* Validate PDs, PTs and evicted DMABuf imports last. Otherwise BO 2965 * validations above would invalidate DMABuf imports again. 2966 */ 2967 ret = process_validate_vms(process_info, &exec.ticket); 2968 if (ret) { 2969 pr_debug("Validating VMs failed, ret: %d\n", ret); 2970 goto validate_map_fail; 2971 } 2972 2973 /* Update mappings managed by KFD. */ 2974 list_for_each_entry(mem, &process_info->kfd_bo_list, 2975 validate_list) { 2976 struct kfd_mem_attachment *attachment; 2977 2978 list_for_each_entry(attachment, &mem->attachments, list) { 2979 if (!attachment->is_mapped) 2980 continue; 2981 2982 kfd_mem_dmaunmap_attachment(mem, attachment); 2983 ret = update_gpuvm_pte(mem, attachment, &sync_obj); 2984 if (ret) { 2985 pr_debug("Memory eviction: update PTE failed. Try again\n"); 2986 goto validate_map_fail; 2987 } 2988 } 2989 } 2990 2991 /* Update mappings not managed by KFD */ 2992 list_for_each_entry(peer_vm, &process_info->vm_list_head, 2993 vm_list_node) { 2994 struct amdgpu_device *adev = amdgpu_ttm_adev( 2995 peer_vm->root.bo->tbo.bdev); 2996 2997 struct amdgpu_fpriv *fpriv = 2998 container_of(peer_vm, struct amdgpu_fpriv, vm); 2999 3000 ret = amdgpu_vm_bo_update(adev, fpriv->prt_va, false); 3001 if (ret) { 3002 dev_dbg(adev->dev, 3003 "Memory eviction: handle PRT moved failed, pid %8d. Try again.\n", 3004 pid_nr(process_info->pid)); 3005 goto validate_map_fail; 3006 } 3007 3008 ret = amdgpu_vm_handle_moved(adev, peer_vm, &exec.ticket); 3009 if (ret) { 3010 dev_dbg(adev->dev, 3011 "Memory eviction: handle moved failed, pid %8d. Try again.\n", 3012 pid_nr(process_info->pid)); 3013 goto validate_map_fail; 3014 } 3015 } 3016 3017 /* Update page directories */ 3018 ret = process_update_pds(process_info, &sync_obj); 3019 if (ret) { 3020 pr_debug("Memory eviction: update PDs failed. Try again\n"); 3021 goto validate_map_fail; 3022 } 3023 3024 /* Sync with fences on all the page tables. They implicitly depend on any 3025 * move fences from amdgpu_vm_handle_moved above. 3026 */ 3027 ret = process_sync_pds_resv(process_info, &sync_obj); 3028 if (ret) { 3029 pr_debug("Memory eviction: Failed to sync to PD BO moving fence. Try again\n"); 3030 goto validate_map_fail; 3031 } 3032 3033 /* Wait for validate and PT updates to finish */ 3034 amdgpu_sync_wait(&sync_obj, false); 3035 3036 /* The old eviction fence may be unsignaled if restore happens 3037 * after a GPU reset or suspend/resume. Keep the old fence in that 3038 * case. Otherwise release the old eviction fence and create new 3039 * one, because fence only goes from unsignaled to signaled once 3040 * and cannot be reused. Use context and mm from the old fence. 3041 * 3042 * If an old eviction fence signals after this check, that's OK. 3043 * Anyone signaling an eviction fence must stop the queues first 3044 * and schedule another restore worker. 3045 */ 3046 if (dma_fence_is_signaled(&process_info->eviction_fence->base)) { 3047 struct amdgpu_amdkfd_fence *new_fence = 3048 amdgpu_amdkfd_fence_create( 3049 process_info->eviction_fence->base.context, 3050 process_info->eviction_fence->mm, 3051 NULL); 3052 3053 if (!new_fence) { 3054 pr_err("Failed to create eviction fence\n"); 3055 ret = -ENOMEM; 3056 goto validate_map_fail; 3057 } 3058 dma_fence_put(&process_info->eviction_fence->base); 3059 process_info->eviction_fence = new_fence; 3060 replace_eviction_fence(ef, dma_fence_get(&new_fence->base)); 3061 } else { 3062 WARN_ONCE(*ef != &process_info->eviction_fence->base, 3063 "KFD eviction fence doesn't match KGD process_info"); 3064 } 3065 3066 /* Attach new eviction fence to all BOs except pinned ones */ 3067 list_for_each_entry(mem, &process_info->kfd_bo_list, validate_list) { 3068 if (mem->bo->tbo.pin_count) 3069 continue; 3070 3071 dma_resv_add_fence(mem->bo->tbo.base.resv, 3072 &process_info->eviction_fence->base, 3073 DMA_RESV_USAGE_BOOKKEEP); 3074 } 3075 /* Attach eviction fence to PD / PT BOs and DMABuf imports */ 3076 list_for_each_entry(peer_vm, &process_info->vm_list_head, 3077 vm_list_node) { 3078 struct amdgpu_bo *bo = peer_vm->root.bo; 3079 3080 dma_resv_add_fence(bo->tbo.base.resv, 3081 &process_info->eviction_fence->base, 3082 DMA_RESV_USAGE_BOOKKEEP); 3083 } 3084 3085 validate_map_fail: 3086 amdgpu_sync_free(&sync_obj); 3087 ttm_reserve_fail: 3088 drm_exec_fini(&exec); 3089 mutex_unlock(&process_info->lock); 3090 return ret; 3091 } 3092 3093 int amdgpu_amdkfd_add_gws_to_process(void *info, void *gws, struct kgd_mem **mem) 3094 { 3095 struct amdkfd_process_info *process_info = (struct amdkfd_process_info *)info; 3096 struct amdgpu_bo *gws_bo = (struct amdgpu_bo *)gws; 3097 int ret; 3098 3099 if (!info || !gws) 3100 return -EINVAL; 3101 3102 *mem = kzalloc(sizeof(struct kgd_mem), GFP_KERNEL); 3103 if (!*mem) 3104 return -ENOMEM; 3105 3106 mutex_init(&(*mem)->lock); 3107 INIT_LIST_HEAD(&(*mem)->attachments); 3108 (*mem)->bo = amdgpu_bo_ref(gws_bo); 3109 (*mem)->domain = AMDGPU_GEM_DOMAIN_GWS; 3110 (*mem)->process_info = process_info; 3111 add_kgd_mem_to_kfd_bo_list(*mem, process_info, false); 3112 amdgpu_sync_create(&(*mem)->sync); 3113 3114 3115 /* Validate gws bo the first time it is added to process */ 3116 mutex_lock(&(*mem)->process_info->lock); 3117 ret = amdgpu_bo_reserve(gws_bo, false); 3118 if (unlikely(ret)) { 3119 pr_err("Reserve gws bo failed %d\n", ret); 3120 goto bo_reservation_failure; 3121 } 3122 3123 ret = amdgpu_amdkfd_bo_validate(gws_bo, AMDGPU_GEM_DOMAIN_GWS, true); 3124 if (ret) { 3125 pr_err("GWS BO validate failed %d\n", ret); 3126 goto bo_validation_failure; 3127 } 3128 /* GWS resource is shared b/t amdgpu and amdkfd 3129 * Add process eviction fence to bo so they can 3130 * evict each other. 3131 */ 3132 ret = dma_resv_reserve_fences(gws_bo->tbo.base.resv, 1); 3133 if (ret) 3134 goto reserve_shared_fail; 3135 dma_resv_add_fence(gws_bo->tbo.base.resv, 3136 &process_info->eviction_fence->base, 3137 DMA_RESV_USAGE_BOOKKEEP); 3138 amdgpu_bo_unreserve(gws_bo); 3139 mutex_unlock(&(*mem)->process_info->lock); 3140 3141 return ret; 3142 3143 reserve_shared_fail: 3144 bo_validation_failure: 3145 amdgpu_bo_unreserve(gws_bo); 3146 bo_reservation_failure: 3147 mutex_unlock(&(*mem)->process_info->lock); 3148 amdgpu_sync_free(&(*mem)->sync); 3149 remove_kgd_mem_from_kfd_bo_list(*mem, process_info); 3150 amdgpu_bo_unref(&gws_bo); 3151 mutex_destroy(&(*mem)->lock); 3152 kfree(*mem); 3153 *mem = NULL; 3154 return ret; 3155 } 3156 3157 int amdgpu_amdkfd_remove_gws_from_process(void *info, void *mem) 3158 { 3159 int ret; 3160 struct amdkfd_process_info *process_info = (struct amdkfd_process_info *)info; 3161 struct kgd_mem *kgd_mem = (struct kgd_mem *)mem; 3162 struct amdgpu_bo *gws_bo = kgd_mem->bo; 3163 3164 /* Remove BO from process's validate list so restore worker won't touch 3165 * it anymore 3166 */ 3167 remove_kgd_mem_from_kfd_bo_list(kgd_mem, process_info); 3168 3169 ret = amdgpu_bo_reserve(gws_bo, false); 3170 if (unlikely(ret)) { 3171 pr_err("Reserve gws bo failed %d\n", ret); 3172 //TODO add BO back to validate_list? 3173 return ret; 3174 } 3175 amdgpu_amdkfd_remove_eviction_fence(gws_bo, 3176 process_info->eviction_fence); 3177 amdgpu_bo_unreserve(gws_bo); 3178 amdgpu_sync_free(&kgd_mem->sync); 3179 amdgpu_bo_unref(&gws_bo); 3180 mutex_destroy(&kgd_mem->lock); 3181 kfree(mem); 3182 return 0; 3183 } 3184 3185 /* Returns GPU-specific tiling mode information */ 3186 int amdgpu_amdkfd_get_tile_config(struct amdgpu_device *adev, 3187 struct tile_config *config) 3188 { 3189 config->gb_addr_config = adev->gfx.config.gb_addr_config; 3190 config->tile_config_ptr = adev->gfx.config.tile_mode_array; 3191 config->num_tile_configs = 3192 ARRAY_SIZE(adev->gfx.config.tile_mode_array); 3193 config->macro_tile_config_ptr = 3194 adev->gfx.config.macrotile_mode_array; 3195 config->num_macro_tile_configs = 3196 ARRAY_SIZE(adev->gfx.config.macrotile_mode_array); 3197 3198 /* Those values are not set from GFX9 onwards */ 3199 config->num_banks = adev->gfx.config.num_banks; 3200 config->num_ranks = adev->gfx.config.num_ranks; 3201 3202 return 0; 3203 } 3204 3205 bool amdgpu_amdkfd_bo_mapped_to_dev(void *drm_priv, struct kgd_mem *mem) 3206 { 3207 struct amdgpu_vm *vm = drm_priv_to_vm(drm_priv); 3208 struct kfd_mem_attachment *entry; 3209 3210 list_for_each_entry(entry, &mem->attachments, list) { 3211 if (entry->is_mapped && entry->bo_va->base.vm == vm) 3212 return true; 3213 } 3214 return false; 3215 } 3216 3217 #if defined(CONFIG_DEBUG_FS) 3218 3219 int kfd_debugfs_kfd_mem_limits(struct seq_file *m, void *data) 3220 { 3221 3222 spin_lock(&kfd_mem_limit.mem_limit_lock); 3223 seq_printf(m, "System mem used %lldM out of %lluM\n", 3224 (kfd_mem_limit.system_mem_used >> 20), 3225 (kfd_mem_limit.max_system_mem_limit >> 20)); 3226 seq_printf(m, "TTM mem used %lldM out of %lluM\n", 3227 (kfd_mem_limit.ttm_mem_used >> 20), 3228 (kfd_mem_limit.max_ttm_mem_limit >> 20)); 3229 spin_unlock(&kfd_mem_limit.mem_limit_lock); 3230 3231 return 0; 3232 } 3233 3234 #endif 3235