1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright 2014-2018 Advanced Micro Devices, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 */ 23 #include <linux/dma-buf.h> 24 #include <linux/list.h> 25 #include <linux/pagemap.h> 26 #include <linux/sched/mm.h> 27 #include <linux/sched/task.h> 28 #include <drm/ttm/ttm_tt.h> 29 30 #include <drm/drm_exec.h> 31 32 #include "amdgpu_object.h" 33 #include "amdgpu_gem.h" 34 #include "amdgpu_vm.h" 35 #include "amdgpu_hmm.h" 36 #include "amdgpu_amdkfd.h" 37 #include "amdgpu_dma_buf.h" 38 #include <uapi/linux/kfd_ioctl.h> 39 #include "amdgpu_xgmi.h" 40 #include "kfd_priv.h" 41 #include "kfd_smi_events.h" 42 43 /* Userptr restore delay, just long enough to allow consecutive VM 44 * changes to accumulate 45 */ 46 #define AMDGPU_USERPTR_RESTORE_DELAY_MS 1 47 #define AMDGPU_RESERVE_MEM_LIMIT (3UL << 29) 48 49 /* 50 * Align VRAM availability to 2MB to avoid fragmentation caused by 4K allocations in the tail 2MB 51 * BO chunk 52 */ 53 #define VRAM_AVAILABLITY_ALIGN (1 << 21) 54 55 /* Impose limit on how much memory KFD can use */ 56 static struct { 57 uint64_t max_system_mem_limit; 58 uint64_t max_ttm_mem_limit; 59 int64_t system_mem_used; 60 int64_t ttm_mem_used; 61 spinlock_t mem_limit_lock; 62 } kfd_mem_limit; 63 64 static const char * const domain_bit_to_string[] = { 65 "CPU", 66 "GTT", 67 "VRAM", 68 "GDS", 69 "GWS", 70 "OA" 71 }; 72 73 #define domain_string(domain) domain_bit_to_string[ffs(domain)-1] 74 75 static void amdgpu_amdkfd_restore_userptr_worker(struct work_struct *work); 76 77 static bool kfd_mem_is_attached(struct amdgpu_vm *avm, 78 struct kgd_mem *mem) 79 { 80 struct kfd_mem_attachment *entry; 81 82 list_for_each_entry(entry, &mem->attachments, list) 83 if (entry->bo_va->base.vm == avm) 84 return true; 85 86 return false; 87 } 88 89 /** 90 * reuse_dmamap() - Check whether adev can share the original 91 * userptr BO 92 * 93 * If both adev and bo_adev are in direct mapping or 94 * in the same iommu group, they can share the original BO. 95 * 96 * @adev: Device to which can or cannot share the original BO 97 * @bo_adev: Device to which allocated BO belongs to 98 * 99 * Return: returns true if adev can share original userptr BO, 100 * false otherwise. 101 */ 102 static bool reuse_dmamap(struct amdgpu_device *adev, struct amdgpu_device *bo_adev) 103 { 104 return (adev->ram_is_direct_mapped && bo_adev->ram_is_direct_mapped) || 105 (adev->dev->iommu_group == bo_adev->dev->iommu_group); 106 } 107 108 /* Set memory usage limits. Current, limits are 109 * System (TTM + userptr) memory - 15/16th System RAM 110 * TTM memory - 3/8th System RAM 111 */ 112 void amdgpu_amdkfd_gpuvm_init_mem_limits(void) 113 { 114 struct sysinfo si; 115 uint64_t mem; 116 117 if (kfd_mem_limit.max_system_mem_limit) 118 return; 119 120 si_meminfo(&si); 121 mem = si.totalram - si.totalhigh; 122 mem *= si.mem_unit; 123 124 spin_lock_init(&kfd_mem_limit.mem_limit_lock); 125 kfd_mem_limit.max_system_mem_limit = mem - (mem >> 6); 126 if (kfd_mem_limit.max_system_mem_limit < 2 * AMDGPU_RESERVE_MEM_LIMIT) 127 kfd_mem_limit.max_system_mem_limit >>= 1; 128 else 129 kfd_mem_limit.max_system_mem_limit -= AMDGPU_RESERVE_MEM_LIMIT; 130 131 kfd_mem_limit.max_ttm_mem_limit = ttm_tt_pages_limit() << PAGE_SHIFT; 132 pr_debug("Kernel memory limit %lluM, TTM limit %lluM\n", 133 (kfd_mem_limit.max_system_mem_limit >> 20), 134 (kfd_mem_limit.max_ttm_mem_limit >> 20)); 135 } 136 137 void amdgpu_amdkfd_reserve_system_mem(uint64_t size) 138 { 139 kfd_mem_limit.system_mem_used += size; 140 } 141 142 /* Estimate page table size needed to represent a given memory size 143 * 144 * With 4KB pages, we need one 8 byte PTE for each 4KB of memory 145 * (factor 512, >> 9). With 2MB pages, we need one 8 byte PTE for 2MB 146 * of memory (factor 256K, >> 18). ROCm user mode tries to optimize 147 * for 2MB pages for TLB efficiency. However, small allocations and 148 * fragmented system memory still need some 4KB pages. We choose a 149 * compromise that should work in most cases without reserving too 150 * much memory for page tables unnecessarily (factor 16K, >> 14). 151 */ 152 153 #define ESTIMATE_PT_SIZE(mem_size) max(((mem_size) >> 14), AMDGPU_VM_RESERVED_VRAM) 154 155 /** 156 * amdgpu_amdkfd_reserve_mem_limit() - Decrease available memory by size 157 * of buffer. 158 * 159 * @adev: Device to which allocated BO belongs to 160 * @size: Size of buffer, in bytes, encapsulated by B0. This should be 161 * equivalent to amdgpu_bo_size(BO) 162 * @alloc_flag: Flag used in allocating a BO as noted above 163 * @xcp_id: xcp_id is used to get xcp from xcp manager, one xcp is 164 * managed as one compute node in driver for app 165 * 166 * Return: 167 * returns -ENOMEM in case of error, ZERO otherwise 168 */ 169 int amdgpu_amdkfd_reserve_mem_limit(struct amdgpu_device *adev, 170 uint64_t size, u32 alloc_flag, int8_t xcp_id) 171 { 172 uint64_t reserved_for_pt = 173 ESTIMATE_PT_SIZE(amdgpu_amdkfd_total_mem_size); 174 struct amdgpu_ras *con = amdgpu_ras_get_context(adev); 175 uint64_t reserved_for_ras = (con ? con->reserved_pages_in_bytes : 0); 176 size_t system_mem_needed, ttm_mem_needed, vram_needed; 177 int ret = 0; 178 uint64_t vram_size = 0; 179 180 system_mem_needed = 0; 181 ttm_mem_needed = 0; 182 vram_needed = 0; 183 if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_GTT) { 184 system_mem_needed = size; 185 ttm_mem_needed = size; 186 } else if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) { 187 /* 188 * Conservatively round up the allocation requirement to 2 MB 189 * to avoid fragmentation caused by 4K allocations in the tail 190 * 2M BO chunk. 191 */ 192 vram_needed = size; 193 /* 194 * For GFX 9.4.3, get the VRAM size from XCP structs 195 */ 196 if (WARN_ONCE(xcp_id < 0, "invalid XCP ID %d", xcp_id)) 197 return -EINVAL; 198 199 vram_size = KFD_XCP_MEMORY_SIZE(adev, xcp_id); 200 if (adev->apu_prefer_gtt) { 201 system_mem_needed = size; 202 ttm_mem_needed = size; 203 } 204 } else if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) { 205 system_mem_needed = size; 206 } else if (!(alloc_flag & 207 (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL | 208 KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP))) { 209 pr_err("%s: Invalid BO type %#x\n", __func__, alloc_flag); 210 return -ENOMEM; 211 } 212 213 spin_lock(&kfd_mem_limit.mem_limit_lock); 214 215 if (kfd_mem_limit.system_mem_used + system_mem_needed > 216 kfd_mem_limit.max_system_mem_limit) 217 pr_debug("Set no_system_mem_limit=1 if using shared memory\n"); 218 219 if ((kfd_mem_limit.system_mem_used + system_mem_needed > 220 kfd_mem_limit.max_system_mem_limit && !no_system_mem_limit) || 221 (kfd_mem_limit.ttm_mem_used + ttm_mem_needed > 222 kfd_mem_limit.max_ttm_mem_limit) || 223 (adev && xcp_id >= 0 && adev->kfd.vram_used[xcp_id] + vram_needed > 224 vram_size - reserved_for_pt - reserved_for_ras - atomic64_read(&adev->vram_pin_size))) { 225 ret = -ENOMEM; 226 goto release; 227 } 228 229 /* Update memory accounting by decreasing available system 230 * memory, TTM memory and GPU memory as computed above 231 */ 232 WARN_ONCE(vram_needed && !adev, 233 "adev reference can't be null when vram is used"); 234 if (adev && xcp_id >= 0) { 235 adev->kfd.vram_used[xcp_id] += vram_needed; 236 adev->kfd.vram_used_aligned[xcp_id] += 237 adev->apu_prefer_gtt ? 238 vram_needed : 239 ALIGN(vram_needed, VRAM_AVAILABLITY_ALIGN); 240 } 241 kfd_mem_limit.system_mem_used += system_mem_needed; 242 kfd_mem_limit.ttm_mem_used += ttm_mem_needed; 243 244 release: 245 spin_unlock(&kfd_mem_limit.mem_limit_lock); 246 return ret; 247 } 248 249 void amdgpu_amdkfd_unreserve_mem_limit(struct amdgpu_device *adev, 250 uint64_t size, u32 alloc_flag, int8_t xcp_id) 251 { 252 spin_lock(&kfd_mem_limit.mem_limit_lock); 253 254 if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_GTT) { 255 kfd_mem_limit.system_mem_used -= size; 256 kfd_mem_limit.ttm_mem_used -= size; 257 } else if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) { 258 WARN_ONCE(!adev, 259 "adev reference can't be null when alloc mem flags vram is set"); 260 if (WARN_ONCE(xcp_id < 0, "invalid XCP ID %d", xcp_id)) 261 goto release; 262 263 if (adev) { 264 adev->kfd.vram_used[xcp_id] -= size; 265 if (adev->apu_prefer_gtt) { 266 adev->kfd.vram_used_aligned[xcp_id] -= size; 267 kfd_mem_limit.system_mem_used -= size; 268 kfd_mem_limit.ttm_mem_used -= size; 269 } else { 270 adev->kfd.vram_used_aligned[xcp_id] -= 271 ALIGN(size, VRAM_AVAILABLITY_ALIGN); 272 } 273 } 274 } else if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) { 275 kfd_mem_limit.system_mem_used -= size; 276 } else if (!(alloc_flag & 277 (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL | 278 KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP))) { 279 pr_err("%s: Invalid BO type %#x\n", __func__, alloc_flag); 280 goto release; 281 } 282 WARN_ONCE(adev && xcp_id >= 0 && adev->kfd.vram_used[xcp_id] < 0, 283 "KFD VRAM memory accounting unbalanced for xcp: %d", xcp_id); 284 WARN_ONCE(kfd_mem_limit.ttm_mem_used < 0, 285 "KFD TTM memory accounting unbalanced"); 286 WARN_ONCE(kfd_mem_limit.system_mem_used < 0, 287 "KFD system memory accounting unbalanced"); 288 289 release: 290 spin_unlock(&kfd_mem_limit.mem_limit_lock); 291 } 292 293 void amdgpu_amdkfd_release_notify(struct amdgpu_bo *bo) 294 { 295 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 296 u32 alloc_flags = bo->kfd_bo->alloc_flags; 297 u64 size = amdgpu_bo_size(bo); 298 299 amdgpu_amdkfd_unreserve_mem_limit(adev, size, alloc_flags, 300 bo->xcp_id); 301 302 kfree(bo->kfd_bo); 303 } 304 305 /** 306 * create_dmamap_sg_bo() - Creates a amdgpu_bo object to reflect information 307 * about USERPTR or DOOREBELL or MMIO BO. 308 * 309 * @adev: Device for which dmamap BO is being created 310 * @mem: BO of peer device that is being DMA mapped. Provides parameters 311 * in building the dmamap BO 312 * @bo_out: Output parameter updated with handle of dmamap BO 313 */ 314 static int 315 create_dmamap_sg_bo(struct amdgpu_device *adev, 316 struct kgd_mem *mem, struct amdgpu_bo **bo_out) 317 { 318 struct drm_gem_object *gem_obj; 319 int ret; 320 uint64_t flags = 0; 321 322 ret = amdgpu_bo_reserve(mem->bo, false); 323 if (ret) 324 return ret; 325 326 if (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) 327 flags |= mem->bo->flags & (AMDGPU_GEM_CREATE_COHERENT | 328 AMDGPU_GEM_CREATE_UNCACHED); 329 330 ret = amdgpu_gem_object_create(adev, mem->bo->tbo.base.size, 1, 331 AMDGPU_GEM_DOMAIN_CPU, AMDGPU_GEM_CREATE_PREEMPTIBLE | flags, 332 ttm_bo_type_sg, mem->bo->tbo.base.resv, &gem_obj, 0); 333 334 amdgpu_bo_unreserve(mem->bo); 335 336 if (ret) { 337 pr_err("Error in creating DMA mappable SG BO on domain: %d\n", ret); 338 return -EINVAL; 339 } 340 341 *bo_out = gem_to_amdgpu_bo(gem_obj); 342 (*bo_out)->parent = amdgpu_bo_ref(mem->bo); 343 return ret; 344 } 345 346 /* amdgpu_amdkfd_remove_eviction_fence - Removes eviction fence from BO's 347 * reservation object. 348 * 349 * @bo: [IN] Remove eviction fence(s) from this BO 350 * @ef: [IN] This eviction fence is removed if it 351 * is present in the shared list. 352 * 353 * NOTE: Must be called with BO reserved i.e. bo->tbo.resv->lock held. 354 */ 355 static int amdgpu_amdkfd_remove_eviction_fence(struct amdgpu_bo *bo, 356 struct amdgpu_amdkfd_fence *ef) 357 { 358 struct dma_fence *replacement; 359 360 if (!ef) 361 return -EINVAL; 362 363 /* TODO: Instead of block before we should use the fence of the page 364 * table update and TLB flush here directly. 365 */ 366 replacement = dma_fence_get_stub(); 367 dma_resv_replace_fences(bo->tbo.base.resv, ef->base.context, 368 replacement, DMA_RESV_USAGE_BOOKKEEP); 369 dma_fence_put(replacement); 370 return 0; 371 } 372 373 /** 374 * amdgpu_amdkfd_remove_all_eviction_fences - Remove all eviction fences 375 * @bo: the BO where to remove the evictions fences from. 376 * 377 * This functions should only be used on release when all references to the BO 378 * are already dropped. We remove the eviction fence from the private copy of 379 * the dma_resv object here since that is what is used during release to 380 * determine of the BO is idle or not. 381 */ 382 void amdgpu_amdkfd_remove_all_eviction_fences(struct amdgpu_bo *bo) 383 { 384 struct dma_resv *resv = &bo->tbo.base._resv; 385 struct dma_fence *fence, *stub; 386 struct dma_resv_iter cursor; 387 388 dma_resv_assert_held(resv); 389 390 stub = dma_fence_get_stub(); 391 dma_resv_for_each_fence(&cursor, resv, DMA_RESV_USAGE_BOOKKEEP, fence) { 392 if (!to_amdgpu_amdkfd_fence(fence)) 393 continue; 394 395 dma_resv_replace_fences(resv, fence->context, stub, 396 DMA_RESV_USAGE_BOOKKEEP); 397 } 398 dma_fence_put(stub); 399 } 400 401 static int amdgpu_amdkfd_bo_validate(struct amdgpu_bo *bo, uint32_t domain, 402 bool wait) 403 { 404 struct ttm_operation_ctx ctx = { false, false }; 405 int ret; 406 407 if (WARN(amdgpu_ttm_tt_get_usermm(bo->tbo.ttm), 408 "Called with userptr BO")) 409 return -EINVAL; 410 411 /* bo has been pinned, not need validate it */ 412 if (bo->tbo.pin_count) 413 return 0; 414 415 amdgpu_bo_placement_from_domain(bo, domain); 416 417 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 418 if (ret) 419 goto validate_fail; 420 if (wait) 421 amdgpu_bo_sync_wait(bo, AMDGPU_FENCE_OWNER_KFD, false); 422 423 validate_fail: 424 return ret; 425 } 426 427 int amdgpu_amdkfd_bo_validate_and_fence(struct amdgpu_bo *bo, 428 uint32_t domain, 429 struct dma_fence *fence) 430 { 431 int ret = amdgpu_bo_reserve(bo, false); 432 433 if (ret) 434 return ret; 435 436 ret = amdgpu_amdkfd_bo_validate(bo, domain, true); 437 if (ret) 438 goto unreserve_out; 439 440 ret = dma_resv_reserve_fences(bo->tbo.base.resv, 1); 441 if (ret) 442 goto unreserve_out; 443 444 dma_resv_add_fence(bo->tbo.base.resv, fence, 445 DMA_RESV_USAGE_BOOKKEEP); 446 447 unreserve_out: 448 amdgpu_bo_unreserve(bo); 449 450 return ret; 451 } 452 453 static int amdgpu_amdkfd_validate_vm_bo(void *_unused, struct amdgpu_bo *bo) 454 { 455 return amdgpu_amdkfd_bo_validate(bo, bo->allowed_domains, false); 456 } 457 458 /* vm_validate_pt_pd_bos - Validate page table and directory BOs 459 * 460 * Page directories are not updated here because huge page handling 461 * during page table updates can invalidate page directory entries 462 * again. Page directories are only updated after updating page 463 * tables. 464 */ 465 static int vm_validate_pt_pd_bos(struct amdgpu_vm *vm, 466 struct ww_acquire_ctx *ticket) 467 { 468 struct amdgpu_bo *pd = vm->root.bo; 469 struct amdgpu_device *adev = amdgpu_ttm_adev(pd->tbo.bdev); 470 int ret; 471 472 ret = amdgpu_vm_validate(adev, vm, ticket, 473 amdgpu_amdkfd_validate_vm_bo, NULL); 474 if (ret) { 475 pr_err("failed to validate PT BOs\n"); 476 return ret; 477 } 478 479 vm->pd_phys_addr = amdgpu_gmc_pd_addr(vm->root.bo); 480 481 return 0; 482 } 483 484 static int vm_update_pds(struct amdgpu_vm *vm, struct amdgpu_sync *sync) 485 { 486 struct amdgpu_bo *pd = vm->root.bo; 487 struct amdgpu_device *adev = amdgpu_ttm_adev(pd->tbo.bdev); 488 int ret; 489 490 ret = amdgpu_vm_update_pdes(adev, vm, false); 491 if (ret) 492 return ret; 493 494 return amdgpu_sync_fence(sync, vm->last_update, GFP_KERNEL); 495 } 496 497 static uint64_t get_pte_flags(struct amdgpu_device *adev, struct amdgpu_vm *vm, 498 struct kgd_mem *mem) 499 { 500 uint32_t mapping_flags = AMDGPU_VM_PAGE_READABLE | 501 AMDGPU_VM_MTYPE_DEFAULT; 502 503 if (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE) 504 mapping_flags |= AMDGPU_VM_PAGE_WRITEABLE; 505 if (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE) 506 mapping_flags |= AMDGPU_VM_PAGE_EXECUTABLE; 507 508 return mapping_flags; 509 } 510 511 /** 512 * create_sg_table() - Create an sg_table for a contiguous DMA addr range 513 * @addr: The starting address to point to 514 * @size: Size of memory area in bytes being pointed to 515 * 516 * Allocates an instance of sg_table and initializes it to point to memory 517 * area specified by input parameters. The address used to build is assumed 518 * to be DMA mapped, if needed. 519 * 520 * DOORBELL or MMIO BOs use only one scatterlist node in their sg_table 521 * because they are physically contiguous. 522 * 523 * Return: Initialized instance of SG Table or NULL 524 */ 525 static struct sg_table *create_sg_table(uint64_t addr, uint32_t size) 526 { 527 struct sg_table *sg = kmalloc(sizeof(*sg), GFP_KERNEL); 528 529 if (!sg) 530 return NULL; 531 if (sg_alloc_table(sg, 1, GFP_KERNEL)) { 532 kfree(sg); 533 return NULL; 534 } 535 sg_dma_address(sg->sgl) = addr; 536 sg->sgl->length = size; 537 #ifdef CONFIG_NEED_SG_DMA_LENGTH 538 sg->sgl->dma_length = size; 539 #endif 540 return sg; 541 } 542 543 static int 544 kfd_mem_dmamap_userptr(struct kgd_mem *mem, 545 struct kfd_mem_attachment *attachment) 546 { 547 enum dma_data_direction direction = 548 mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? 549 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 550 struct ttm_operation_ctx ctx = {.interruptible = true}; 551 struct amdgpu_bo *bo = attachment->bo_va->base.bo; 552 struct amdgpu_device *adev = attachment->adev; 553 struct ttm_tt *src_ttm = mem->bo->tbo.ttm; 554 struct ttm_tt *ttm = bo->tbo.ttm; 555 int ret; 556 557 if (WARN_ON(ttm->num_pages != src_ttm->num_pages)) 558 return -EINVAL; 559 560 ttm->sg = kmalloc(sizeof(*ttm->sg), GFP_KERNEL); 561 if (unlikely(!ttm->sg)) 562 return -ENOMEM; 563 564 /* Same sequence as in amdgpu_ttm_tt_pin_userptr */ 565 ret = sg_alloc_table_from_pages(ttm->sg, src_ttm->pages, 566 ttm->num_pages, 0, 567 (u64)ttm->num_pages << PAGE_SHIFT, 568 GFP_KERNEL); 569 if (unlikely(ret)) 570 goto free_sg; 571 572 ret = dma_map_sgtable(adev->dev, ttm->sg, direction, 0); 573 if (unlikely(ret)) 574 goto release_sg; 575 576 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_GTT); 577 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 578 if (ret) 579 goto unmap_sg; 580 581 return 0; 582 583 unmap_sg: 584 dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0); 585 release_sg: 586 pr_err("DMA map userptr failed: %d\n", ret); 587 sg_free_table(ttm->sg); 588 free_sg: 589 kfree(ttm->sg); 590 ttm->sg = NULL; 591 return ret; 592 } 593 594 static int 595 kfd_mem_dmamap_dmabuf(struct kfd_mem_attachment *attachment) 596 { 597 struct ttm_operation_ctx ctx = {.interruptible = true}; 598 struct amdgpu_bo *bo = attachment->bo_va->base.bo; 599 600 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_GTT); 601 return ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 602 } 603 604 /** 605 * kfd_mem_dmamap_sg_bo() - Create DMA mapped sg_table to access DOORBELL or MMIO BO 606 * @mem: SG BO of the DOORBELL or MMIO resource on the owning device 607 * @attachment: Virtual address attachment of the BO on accessing device 608 * 609 * An access request from the device that owns DOORBELL does not require DMA mapping. 610 * This is because the request doesn't go through PCIe root complex i.e. it instead 611 * loops back. The need to DMA map arises only when accessing peer device's DOORBELL 612 * 613 * In contrast, all access requests for MMIO need to be DMA mapped without regard to 614 * device ownership. This is because access requests for MMIO go through PCIe root 615 * complex. 616 * 617 * This is accomplished in two steps: 618 * - Obtain DMA mapped address of DOORBELL or MMIO memory that could be used 619 * in updating requesting device's page table 620 * - Signal TTM to mark memory pointed to by requesting device's BO as GPU 621 * accessible. This allows an update of requesting device's page table 622 * with entries associated with DOOREBELL or MMIO memory 623 * 624 * This method is invoked in the following contexts: 625 * - Mapping of DOORBELL or MMIO BO of same or peer device 626 * - Validating an evicted DOOREBELL or MMIO BO on device seeking access 627 * 628 * Return: ZERO if successful, NON-ZERO otherwise 629 */ 630 static int 631 kfd_mem_dmamap_sg_bo(struct kgd_mem *mem, 632 struct kfd_mem_attachment *attachment) 633 { 634 struct ttm_operation_ctx ctx = {.interruptible = true}; 635 struct amdgpu_bo *bo = attachment->bo_va->base.bo; 636 struct amdgpu_device *adev = attachment->adev; 637 struct ttm_tt *ttm = bo->tbo.ttm; 638 enum dma_data_direction dir; 639 dma_addr_t dma_addr; 640 bool mmio; 641 int ret; 642 643 /* Expect SG Table of dmapmap BO to be NULL */ 644 mmio = (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP); 645 if (unlikely(ttm->sg)) { 646 pr_err("SG Table of %d BO for peer device is UNEXPECTEDLY NON-NULL", mmio); 647 return -EINVAL; 648 } 649 650 dir = mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? 651 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 652 dma_addr = mem->bo->tbo.sg->sgl->dma_address; 653 pr_debug("%d BO size: %d\n", mmio, mem->bo->tbo.sg->sgl->length); 654 pr_debug("%d BO address before DMA mapping: %llx\n", mmio, dma_addr); 655 dma_addr = dma_map_resource(adev->dev, dma_addr, 656 mem->bo->tbo.sg->sgl->length, dir, DMA_ATTR_SKIP_CPU_SYNC); 657 ret = dma_mapping_error(adev->dev, dma_addr); 658 if (unlikely(ret)) 659 return ret; 660 pr_debug("%d BO address after DMA mapping: %llx\n", mmio, dma_addr); 661 662 ttm->sg = create_sg_table(dma_addr, mem->bo->tbo.sg->sgl->length); 663 if (unlikely(!ttm->sg)) { 664 ret = -ENOMEM; 665 goto unmap_sg; 666 } 667 668 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_GTT); 669 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 670 if (unlikely(ret)) 671 goto free_sg; 672 673 return ret; 674 675 free_sg: 676 sg_free_table(ttm->sg); 677 kfree(ttm->sg); 678 ttm->sg = NULL; 679 unmap_sg: 680 dma_unmap_resource(adev->dev, dma_addr, mem->bo->tbo.sg->sgl->length, 681 dir, DMA_ATTR_SKIP_CPU_SYNC); 682 return ret; 683 } 684 685 static int 686 kfd_mem_dmamap_attachment(struct kgd_mem *mem, 687 struct kfd_mem_attachment *attachment) 688 { 689 switch (attachment->type) { 690 case KFD_MEM_ATT_SHARED: 691 return 0; 692 case KFD_MEM_ATT_USERPTR: 693 return kfd_mem_dmamap_userptr(mem, attachment); 694 case KFD_MEM_ATT_DMABUF: 695 return kfd_mem_dmamap_dmabuf(attachment); 696 case KFD_MEM_ATT_SG: 697 return kfd_mem_dmamap_sg_bo(mem, attachment); 698 default: 699 WARN_ON_ONCE(1); 700 } 701 return -EINVAL; 702 } 703 704 static void 705 kfd_mem_dmaunmap_userptr(struct kgd_mem *mem, 706 struct kfd_mem_attachment *attachment) 707 { 708 enum dma_data_direction direction = 709 mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? 710 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 711 struct ttm_operation_ctx ctx = {.interruptible = false}; 712 struct amdgpu_bo *bo = attachment->bo_va->base.bo; 713 struct amdgpu_device *adev = attachment->adev; 714 struct ttm_tt *ttm = bo->tbo.ttm; 715 716 if (unlikely(!ttm->sg)) 717 return; 718 719 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_CPU); 720 (void)ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 721 722 dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0); 723 sg_free_table(ttm->sg); 724 kfree(ttm->sg); 725 ttm->sg = NULL; 726 } 727 728 static void 729 kfd_mem_dmaunmap_dmabuf(struct kfd_mem_attachment *attachment) 730 { 731 /* This is a no-op. We don't want to trigger eviction fences when 732 * unmapping DMABufs. Therefore the invalidation (moving to system 733 * domain) is done in kfd_mem_dmamap_dmabuf. 734 */ 735 } 736 737 /** 738 * kfd_mem_dmaunmap_sg_bo() - Free DMA mapped sg_table of DOORBELL or MMIO BO 739 * @mem: SG BO of the DOORBELL or MMIO resource on the owning device 740 * @attachment: Virtual address attachment of the BO on accessing device 741 * 742 * The method performs following steps: 743 * - Signal TTM to mark memory pointed to by BO as GPU inaccessible 744 * - Free SG Table that is used to encapsulate DMA mapped memory of 745 * peer device's DOORBELL or MMIO memory 746 * 747 * This method is invoked in the following contexts: 748 * UNMapping of DOORBELL or MMIO BO on a device having access to its memory 749 * Eviction of DOOREBELL or MMIO BO on device having access to its memory 750 * 751 * Return: void 752 */ 753 static void 754 kfd_mem_dmaunmap_sg_bo(struct kgd_mem *mem, 755 struct kfd_mem_attachment *attachment) 756 { 757 struct ttm_operation_ctx ctx = {.interruptible = true}; 758 struct amdgpu_bo *bo = attachment->bo_va->base.bo; 759 struct amdgpu_device *adev = attachment->adev; 760 struct ttm_tt *ttm = bo->tbo.ttm; 761 enum dma_data_direction dir; 762 763 if (unlikely(!ttm->sg)) { 764 pr_debug("SG Table of BO is NULL"); 765 return; 766 } 767 768 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_CPU); 769 (void)ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 770 771 dir = mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? 772 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 773 dma_unmap_resource(adev->dev, ttm->sg->sgl->dma_address, 774 ttm->sg->sgl->length, dir, DMA_ATTR_SKIP_CPU_SYNC); 775 sg_free_table(ttm->sg); 776 kfree(ttm->sg); 777 ttm->sg = NULL; 778 bo->tbo.sg = NULL; 779 } 780 781 static void 782 kfd_mem_dmaunmap_attachment(struct kgd_mem *mem, 783 struct kfd_mem_attachment *attachment) 784 { 785 switch (attachment->type) { 786 case KFD_MEM_ATT_SHARED: 787 break; 788 case KFD_MEM_ATT_USERPTR: 789 kfd_mem_dmaunmap_userptr(mem, attachment); 790 break; 791 case KFD_MEM_ATT_DMABUF: 792 kfd_mem_dmaunmap_dmabuf(attachment); 793 break; 794 case KFD_MEM_ATT_SG: 795 kfd_mem_dmaunmap_sg_bo(mem, attachment); 796 break; 797 default: 798 WARN_ON_ONCE(1); 799 } 800 } 801 802 static int kfd_mem_export_dmabuf(struct kgd_mem *mem) 803 { 804 if (!mem->dmabuf) { 805 struct amdgpu_device *bo_adev; 806 struct dma_buf *dmabuf; 807 808 bo_adev = amdgpu_ttm_adev(mem->bo->tbo.bdev); 809 dmabuf = drm_gem_prime_handle_to_dmabuf(&bo_adev->ddev, bo_adev->kfd.client.file, 810 mem->gem_handle, 811 mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? 812 DRM_RDWR : 0); 813 if (IS_ERR(dmabuf)) 814 return PTR_ERR(dmabuf); 815 mem->dmabuf = dmabuf; 816 } 817 818 return 0; 819 } 820 821 static int 822 kfd_mem_attach_dmabuf(struct amdgpu_device *adev, struct kgd_mem *mem, 823 struct amdgpu_bo **bo) 824 { 825 struct drm_gem_object *gobj; 826 int ret; 827 828 ret = kfd_mem_export_dmabuf(mem); 829 if (ret) 830 return ret; 831 832 gobj = amdgpu_gem_prime_import(adev_to_drm(adev), mem->dmabuf); 833 if (IS_ERR(gobj)) 834 return PTR_ERR(gobj); 835 836 *bo = gem_to_amdgpu_bo(gobj); 837 (*bo)->flags |= AMDGPU_GEM_CREATE_PREEMPTIBLE; 838 839 return 0; 840 } 841 842 /* kfd_mem_attach - Add a BO to a VM 843 * 844 * Everything that needs to bo done only once when a BO is first added 845 * to a VM. It can later be mapped and unmapped many times without 846 * repeating these steps. 847 * 848 * 0. Create BO for DMA mapping, if needed 849 * 1. Allocate and initialize BO VA entry data structure 850 * 2. Add BO to the VM 851 * 3. Determine ASIC-specific PTE flags 852 * 4. Alloc page tables and directories if needed 853 * 4a. Validate new page tables and directories 854 */ 855 static int kfd_mem_attach(struct amdgpu_device *adev, struct kgd_mem *mem, 856 struct amdgpu_vm *vm, bool is_aql) 857 { 858 struct amdgpu_device *bo_adev = amdgpu_ttm_adev(mem->bo->tbo.bdev); 859 unsigned long bo_size = mem->bo->tbo.base.size; 860 uint64_t va = mem->va; 861 struct kfd_mem_attachment *attachment[2] = {NULL, NULL}; 862 struct amdgpu_bo *bo[2] = {NULL, NULL}; 863 struct amdgpu_bo_va *bo_va; 864 bool same_hive = false; 865 int i, ret; 866 867 if (!va) { 868 pr_err("Invalid VA when adding BO to VM\n"); 869 return -EINVAL; 870 } 871 872 /* Determine access to VRAM, MMIO and DOORBELL BOs of peer devices 873 * 874 * The access path of MMIO and DOORBELL BOs of is always over PCIe. 875 * In contrast the access path of VRAM BOs depens upon the type of 876 * link that connects the peer device. Access over PCIe is allowed 877 * if peer device has large BAR. In contrast, access over xGMI is 878 * allowed for both small and large BAR configurations of peer device 879 */ 880 if ((adev != bo_adev && !adev->apu_prefer_gtt) && 881 ((mem->domain == AMDGPU_GEM_DOMAIN_VRAM) || 882 (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) || 883 (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP))) { 884 if (mem->domain == AMDGPU_GEM_DOMAIN_VRAM) 885 same_hive = amdgpu_xgmi_same_hive(adev, bo_adev); 886 if (!same_hive && !amdgpu_device_is_peer_accessible(bo_adev, adev)) 887 return -EINVAL; 888 } 889 890 for (i = 0; i <= is_aql; i++) { 891 attachment[i] = kzalloc(sizeof(*attachment[i]), GFP_KERNEL); 892 if (unlikely(!attachment[i])) { 893 ret = -ENOMEM; 894 goto unwind; 895 } 896 897 pr_debug("\t add VA 0x%llx - 0x%llx to vm %p\n", va, 898 va + bo_size, vm); 899 900 if ((adev == bo_adev && !(mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) || 901 (amdgpu_ttm_tt_get_usermm(mem->bo->tbo.ttm) && reuse_dmamap(adev, bo_adev)) || 902 (mem->domain == AMDGPU_GEM_DOMAIN_GTT && reuse_dmamap(adev, bo_adev)) || 903 same_hive) { 904 /* Mappings on the local GPU, or VRAM mappings in the 905 * local hive, or userptr, or GTT mapping can reuse dma map 906 * address space share the original BO 907 */ 908 attachment[i]->type = KFD_MEM_ATT_SHARED; 909 bo[i] = mem->bo; 910 drm_gem_object_get(&bo[i]->tbo.base); 911 } else if (i > 0) { 912 /* Multiple mappings on the same GPU share the BO */ 913 attachment[i]->type = KFD_MEM_ATT_SHARED; 914 bo[i] = bo[0]; 915 drm_gem_object_get(&bo[i]->tbo.base); 916 } else if (amdgpu_ttm_tt_get_usermm(mem->bo->tbo.ttm)) { 917 /* Create an SG BO to DMA-map userptrs on other GPUs */ 918 attachment[i]->type = KFD_MEM_ATT_USERPTR; 919 ret = create_dmamap_sg_bo(adev, mem, &bo[i]); 920 if (ret) 921 goto unwind; 922 /* Handle DOORBELL BOs of peer devices and MMIO BOs of local and peer devices */ 923 } else if (mem->bo->tbo.type == ttm_bo_type_sg) { 924 WARN_ONCE(!(mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL || 925 mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP), 926 "Handing invalid SG BO in ATTACH request"); 927 attachment[i]->type = KFD_MEM_ATT_SG; 928 ret = create_dmamap_sg_bo(adev, mem, &bo[i]); 929 if (ret) 930 goto unwind; 931 /* Enable acces to GTT and VRAM BOs of peer devices */ 932 } else if (mem->domain == AMDGPU_GEM_DOMAIN_GTT || 933 mem->domain == AMDGPU_GEM_DOMAIN_VRAM) { 934 attachment[i]->type = KFD_MEM_ATT_DMABUF; 935 ret = kfd_mem_attach_dmabuf(adev, mem, &bo[i]); 936 if (ret) 937 goto unwind; 938 pr_debug("Employ DMABUF mechanism to enable peer GPU access\n"); 939 } else { 940 WARN_ONCE(true, "Handling invalid ATTACH request"); 941 ret = -EINVAL; 942 goto unwind; 943 } 944 945 /* Add BO to VM internal data structures */ 946 ret = amdgpu_bo_reserve(bo[i], false); 947 if (ret) { 948 pr_debug("Unable to reserve BO during memory attach"); 949 goto unwind; 950 } 951 bo_va = amdgpu_vm_bo_find(vm, bo[i]); 952 if (!bo_va) 953 bo_va = amdgpu_vm_bo_add(adev, vm, bo[i]); 954 else 955 ++bo_va->ref_count; 956 attachment[i]->bo_va = bo_va; 957 amdgpu_bo_unreserve(bo[i]); 958 if (unlikely(!attachment[i]->bo_va)) { 959 ret = -ENOMEM; 960 pr_err("Failed to add BO object to VM. ret == %d\n", 961 ret); 962 goto unwind; 963 } 964 attachment[i]->va = va; 965 attachment[i]->pte_flags = get_pte_flags(adev, vm, mem); 966 attachment[i]->adev = adev; 967 list_add(&attachment[i]->list, &mem->attachments); 968 969 va += bo_size; 970 } 971 972 return 0; 973 974 unwind: 975 for (; i >= 0; i--) { 976 if (!attachment[i]) 977 continue; 978 if (attachment[i]->bo_va) { 979 (void)amdgpu_bo_reserve(bo[i], true); 980 if (--attachment[i]->bo_va->ref_count == 0) 981 amdgpu_vm_bo_del(adev, attachment[i]->bo_va); 982 amdgpu_bo_unreserve(bo[i]); 983 list_del(&attachment[i]->list); 984 } 985 if (bo[i]) 986 drm_gem_object_put(&bo[i]->tbo.base); 987 kfree(attachment[i]); 988 } 989 return ret; 990 } 991 992 static void kfd_mem_detach(struct kfd_mem_attachment *attachment) 993 { 994 struct amdgpu_bo *bo = attachment->bo_va->base.bo; 995 996 pr_debug("\t remove VA 0x%llx in entry %p\n", 997 attachment->va, attachment); 998 if (--attachment->bo_va->ref_count == 0) 999 amdgpu_vm_bo_del(attachment->adev, attachment->bo_va); 1000 drm_gem_object_put(&bo->tbo.base); 1001 list_del(&attachment->list); 1002 kfree(attachment); 1003 } 1004 1005 static void add_kgd_mem_to_kfd_bo_list(struct kgd_mem *mem, 1006 struct amdkfd_process_info *process_info, 1007 bool userptr) 1008 { 1009 mutex_lock(&process_info->lock); 1010 if (userptr) 1011 list_add_tail(&mem->validate_list, 1012 &process_info->userptr_valid_list); 1013 else 1014 list_add_tail(&mem->validate_list, &process_info->kfd_bo_list); 1015 mutex_unlock(&process_info->lock); 1016 } 1017 1018 static void remove_kgd_mem_from_kfd_bo_list(struct kgd_mem *mem, 1019 struct amdkfd_process_info *process_info) 1020 { 1021 mutex_lock(&process_info->lock); 1022 list_del(&mem->validate_list); 1023 mutex_unlock(&process_info->lock); 1024 } 1025 1026 /* Initializes user pages. It registers the MMU notifier and validates 1027 * the userptr BO in the GTT domain. 1028 * 1029 * The BO must already be on the userptr_valid_list. Otherwise an 1030 * eviction and restore may happen that leaves the new BO unmapped 1031 * with the user mode queues running. 1032 * 1033 * Takes the process_info->lock to protect against concurrent restore 1034 * workers. 1035 * 1036 * Returns 0 for success, negative errno for errors. 1037 */ 1038 static int init_user_pages(struct kgd_mem *mem, uint64_t user_addr, 1039 bool criu_resume) 1040 { 1041 struct amdkfd_process_info *process_info = mem->process_info; 1042 struct amdgpu_bo *bo = mem->bo; 1043 struct ttm_operation_ctx ctx = { true, false }; 1044 struct hmm_range *range; 1045 int ret = 0; 1046 1047 mutex_lock(&process_info->lock); 1048 1049 ret = amdgpu_ttm_tt_set_userptr(&bo->tbo, user_addr, 0); 1050 if (ret) { 1051 pr_err("%s: Failed to set userptr: %d\n", __func__, ret); 1052 goto out; 1053 } 1054 1055 ret = amdgpu_hmm_register(bo, user_addr); 1056 if (ret) { 1057 pr_err("%s: Failed to register MMU notifier: %d\n", 1058 __func__, ret); 1059 goto out; 1060 } 1061 1062 if (criu_resume) { 1063 /* 1064 * During a CRIU restore operation, the userptr buffer objects 1065 * will be validated in the restore_userptr_work worker at a 1066 * later stage when it is scheduled by another ioctl called by 1067 * CRIU master process for the target pid for restore. 1068 */ 1069 mutex_lock(&process_info->notifier_lock); 1070 mem->invalid++; 1071 mutex_unlock(&process_info->notifier_lock); 1072 mutex_unlock(&process_info->lock); 1073 return 0; 1074 } 1075 1076 ret = amdgpu_ttm_tt_get_user_pages(bo, bo->tbo.ttm->pages, &range); 1077 if (ret) { 1078 if (ret == -EAGAIN) 1079 pr_debug("Failed to get user pages, try again\n"); 1080 else 1081 pr_err("%s: Failed to get user pages: %d\n", __func__, ret); 1082 goto unregister_out; 1083 } 1084 1085 ret = amdgpu_bo_reserve(bo, true); 1086 if (ret) { 1087 pr_err("%s: Failed to reserve BO\n", __func__); 1088 goto release_out; 1089 } 1090 amdgpu_bo_placement_from_domain(bo, mem->domain); 1091 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 1092 if (ret) 1093 pr_err("%s: failed to validate BO\n", __func__); 1094 amdgpu_bo_unreserve(bo); 1095 1096 release_out: 1097 amdgpu_ttm_tt_get_user_pages_done(bo->tbo.ttm, range); 1098 unregister_out: 1099 if (ret) 1100 amdgpu_hmm_unregister(bo); 1101 out: 1102 mutex_unlock(&process_info->lock); 1103 return ret; 1104 } 1105 1106 /* Reserving a BO and its page table BOs must happen atomically to 1107 * avoid deadlocks. Some operations update multiple VMs at once. Track 1108 * all the reservation info in a context structure. Optionally a sync 1109 * object can track VM updates. 1110 */ 1111 struct bo_vm_reservation_context { 1112 /* DRM execution context for the reservation */ 1113 struct drm_exec exec; 1114 /* Number of VMs reserved */ 1115 unsigned int n_vms; 1116 /* Pointer to sync object */ 1117 struct amdgpu_sync *sync; 1118 }; 1119 1120 enum bo_vm_match { 1121 BO_VM_NOT_MAPPED = 0, /* Match VMs where a BO is not mapped */ 1122 BO_VM_MAPPED, /* Match VMs where a BO is mapped */ 1123 BO_VM_ALL, /* Match all VMs a BO was added to */ 1124 }; 1125 1126 /** 1127 * reserve_bo_and_vm - reserve a BO and a VM unconditionally. 1128 * @mem: KFD BO structure. 1129 * @vm: the VM to reserve. 1130 * @ctx: the struct that will be used in unreserve_bo_and_vms(). 1131 */ 1132 static int reserve_bo_and_vm(struct kgd_mem *mem, 1133 struct amdgpu_vm *vm, 1134 struct bo_vm_reservation_context *ctx) 1135 { 1136 struct amdgpu_bo *bo = mem->bo; 1137 int ret; 1138 1139 WARN_ON(!vm); 1140 1141 ctx->n_vms = 1; 1142 ctx->sync = &mem->sync; 1143 drm_exec_init(&ctx->exec, DRM_EXEC_INTERRUPTIBLE_WAIT, 0); 1144 drm_exec_until_all_locked(&ctx->exec) { 1145 ret = amdgpu_vm_lock_pd(vm, &ctx->exec, 2); 1146 drm_exec_retry_on_contention(&ctx->exec); 1147 if (unlikely(ret)) 1148 goto error; 1149 1150 ret = drm_exec_prepare_obj(&ctx->exec, &bo->tbo.base, 1); 1151 drm_exec_retry_on_contention(&ctx->exec); 1152 if (unlikely(ret)) 1153 goto error; 1154 } 1155 return 0; 1156 1157 error: 1158 pr_err("Failed to reserve buffers in ttm.\n"); 1159 drm_exec_fini(&ctx->exec); 1160 return ret; 1161 } 1162 1163 /** 1164 * reserve_bo_and_cond_vms - reserve a BO and some VMs conditionally 1165 * @mem: KFD BO structure. 1166 * @vm: the VM to reserve. If NULL, then all VMs associated with the BO 1167 * is used. Otherwise, a single VM associated with the BO. 1168 * @map_type: the mapping status that will be used to filter the VMs. 1169 * @ctx: the struct that will be used in unreserve_bo_and_vms(). 1170 * 1171 * Returns 0 for success, negative for failure. 1172 */ 1173 static int reserve_bo_and_cond_vms(struct kgd_mem *mem, 1174 struct amdgpu_vm *vm, enum bo_vm_match map_type, 1175 struct bo_vm_reservation_context *ctx) 1176 { 1177 struct kfd_mem_attachment *entry; 1178 struct amdgpu_bo *bo = mem->bo; 1179 int ret; 1180 1181 ctx->sync = &mem->sync; 1182 drm_exec_init(&ctx->exec, DRM_EXEC_INTERRUPTIBLE_WAIT | 1183 DRM_EXEC_IGNORE_DUPLICATES, 0); 1184 drm_exec_until_all_locked(&ctx->exec) { 1185 ctx->n_vms = 0; 1186 list_for_each_entry(entry, &mem->attachments, list) { 1187 if ((vm && vm != entry->bo_va->base.vm) || 1188 (entry->is_mapped != map_type 1189 && map_type != BO_VM_ALL)) 1190 continue; 1191 1192 ret = amdgpu_vm_lock_pd(entry->bo_va->base.vm, 1193 &ctx->exec, 2); 1194 drm_exec_retry_on_contention(&ctx->exec); 1195 if (unlikely(ret)) 1196 goto error; 1197 ++ctx->n_vms; 1198 } 1199 1200 ret = drm_exec_prepare_obj(&ctx->exec, &bo->tbo.base, 1); 1201 drm_exec_retry_on_contention(&ctx->exec); 1202 if (unlikely(ret)) 1203 goto error; 1204 } 1205 return 0; 1206 1207 error: 1208 pr_err("Failed to reserve buffers in ttm.\n"); 1209 drm_exec_fini(&ctx->exec); 1210 return ret; 1211 } 1212 1213 /** 1214 * unreserve_bo_and_vms - Unreserve BO and VMs from a reservation context 1215 * @ctx: Reservation context to unreserve 1216 * @wait: Optionally wait for a sync object representing pending VM updates 1217 * @intr: Whether the wait is interruptible 1218 * 1219 * Also frees any resources allocated in 1220 * reserve_bo_and_(cond_)vm(s). Returns the status from 1221 * amdgpu_sync_wait. 1222 */ 1223 static int unreserve_bo_and_vms(struct bo_vm_reservation_context *ctx, 1224 bool wait, bool intr) 1225 { 1226 int ret = 0; 1227 1228 if (wait) 1229 ret = amdgpu_sync_wait(ctx->sync, intr); 1230 1231 drm_exec_fini(&ctx->exec); 1232 ctx->sync = NULL; 1233 return ret; 1234 } 1235 1236 static int unmap_bo_from_gpuvm(struct kgd_mem *mem, 1237 struct kfd_mem_attachment *entry, 1238 struct amdgpu_sync *sync) 1239 { 1240 struct amdgpu_bo_va *bo_va = entry->bo_va; 1241 struct amdgpu_device *adev = entry->adev; 1242 struct amdgpu_vm *vm = bo_va->base.vm; 1243 1244 if (bo_va->queue_refcount) { 1245 pr_debug("bo_va->queue_refcount %d\n", bo_va->queue_refcount); 1246 return -EBUSY; 1247 } 1248 1249 (void)amdgpu_vm_bo_unmap(adev, bo_va, entry->va); 1250 1251 (void)amdgpu_vm_clear_freed(adev, vm, &bo_va->last_pt_update); 1252 1253 (void)amdgpu_sync_fence(sync, bo_va->last_pt_update, GFP_KERNEL); 1254 1255 return 0; 1256 } 1257 1258 static int update_gpuvm_pte(struct kgd_mem *mem, 1259 struct kfd_mem_attachment *entry, 1260 struct amdgpu_sync *sync) 1261 { 1262 struct amdgpu_bo_va *bo_va = entry->bo_va; 1263 struct amdgpu_device *adev = entry->adev; 1264 int ret; 1265 1266 ret = kfd_mem_dmamap_attachment(mem, entry); 1267 if (ret) 1268 return ret; 1269 1270 /* Update the page tables */ 1271 ret = amdgpu_vm_bo_update(adev, bo_va, false); 1272 if (ret) { 1273 pr_err("amdgpu_vm_bo_update failed\n"); 1274 return ret; 1275 } 1276 1277 return amdgpu_sync_fence(sync, bo_va->last_pt_update, GFP_KERNEL); 1278 } 1279 1280 static int map_bo_to_gpuvm(struct kgd_mem *mem, 1281 struct kfd_mem_attachment *entry, 1282 struct amdgpu_sync *sync, 1283 bool no_update_pte) 1284 { 1285 int ret; 1286 1287 /* Set virtual address for the allocation */ 1288 ret = amdgpu_vm_bo_map(entry->adev, entry->bo_va, entry->va, 0, 1289 amdgpu_bo_size(entry->bo_va->base.bo), 1290 entry->pte_flags); 1291 if (ret) { 1292 pr_err("Failed to map VA 0x%llx in vm. ret %d\n", 1293 entry->va, ret); 1294 return ret; 1295 } 1296 1297 if (no_update_pte) 1298 return 0; 1299 1300 ret = update_gpuvm_pte(mem, entry, sync); 1301 if (ret) { 1302 pr_err("update_gpuvm_pte() failed\n"); 1303 goto update_gpuvm_pte_failed; 1304 } 1305 1306 return 0; 1307 1308 update_gpuvm_pte_failed: 1309 unmap_bo_from_gpuvm(mem, entry, sync); 1310 kfd_mem_dmaunmap_attachment(mem, entry); 1311 return ret; 1312 } 1313 1314 static int process_validate_vms(struct amdkfd_process_info *process_info, 1315 struct ww_acquire_ctx *ticket) 1316 { 1317 struct amdgpu_vm *peer_vm; 1318 int ret; 1319 1320 list_for_each_entry(peer_vm, &process_info->vm_list_head, 1321 vm_list_node) { 1322 ret = vm_validate_pt_pd_bos(peer_vm, ticket); 1323 if (ret) 1324 return ret; 1325 } 1326 1327 return 0; 1328 } 1329 1330 static int process_sync_pds_resv(struct amdkfd_process_info *process_info, 1331 struct amdgpu_sync *sync) 1332 { 1333 struct amdgpu_vm *peer_vm; 1334 int ret; 1335 1336 list_for_each_entry(peer_vm, &process_info->vm_list_head, 1337 vm_list_node) { 1338 struct amdgpu_bo *pd = peer_vm->root.bo; 1339 1340 ret = amdgpu_sync_resv(NULL, sync, pd->tbo.base.resv, 1341 AMDGPU_SYNC_NE_OWNER, 1342 AMDGPU_FENCE_OWNER_KFD); 1343 if (ret) 1344 return ret; 1345 } 1346 1347 return 0; 1348 } 1349 1350 static int process_update_pds(struct amdkfd_process_info *process_info, 1351 struct amdgpu_sync *sync) 1352 { 1353 struct amdgpu_vm *peer_vm; 1354 int ret; 1355 1356 list_for_each_entry(peer_vm, &process_info->vm_list_head, 1357 vm_list_node) { 1358 ret = vm_update_pds(peer_vm, sync); 1359 if (ret) 1360 return ret; 1361 } 1362 1363 return 0; 1364 } 1365 1366 static int init_kfd_vm(struct amdgpu_vm *vm, void **process_info, 1367 struct dma_fence **ef) 1368 { 1369 struct amdkfd_process_info *info = NULL; 1370 int ret; 1371 1372 if (!*process_info) { 1373 info = kzalloc(sizeof(*info), GFP_KERNEL); 1374 if (!info) 1375 return -ENOMEM; 1376 1377 mutex_init(&info->lock); 1378 mutex_init(&info->notifier_lock); 1379 INIT_LIST_HEAD(&info->vm_list_head); 1380 INIT_LIST_HEAD(&info->kfd_bo_list); 1381 INIT_LIST_HEAD(&info->userptr_valid_list); 1382 INIT_LIST_HEAD(&info->userptr_inval_list); 1383 1384 info->eviction_fence = 1385 amdgpu_amdkfd_fence_create(dma_fence_context_alloc(1), 1386 current->mm, 1387 NULL); 1388 if (!info->eviction_fence) { 1389 pr_err("Failed to create eviction fence\n"); 1390 ret = -ENOMEM; 1391 goto create_evict_fence_fail; 1392 } 1393 1394 info->pid = get_task_pid(current->group_leader, PIDTYPE_PID); 1395 INIT_DELAYED_WORK(&info->restore_userptr_work, 1396 amdgpu_amdkfd_restore_userptr_worker); 1397 1398 *process_info = info; 1399 } 1400 1401 vm->process_info = *process_info; 1402 1403 /* Validate page directory and attach eviction fence */ 1404 ret = amdgpu_bo_reserve(vm->root.bo, true); 1405 if (ret) 1406 goto reserve_pd_fail; 1407 ret = vm_validate_pt_pd_bos(vm, NULL); 1408 if (ret) { 1409 pr_err("validate_pt_pd_bos() failed\n"); 1410 goto validate_pd_fail; 1411 } 1412 ret = amdgpu_bo_sync_wait(vm->root.bo, 1413 AMDGPU_FENCE_OWNER_KFD, false); 1414 if (ret) 1415 goto wait_pd_fail; 1416 ret = dma_resv_reserve_fences(vm->root.bo->tbo.base.resv, 1); 1417 if (ret) 1418 goto reserve_shared_fail; 1419 dma_resv_add_fence(vm->root.bo->tbo.base.resv, 1420 &vm->process_info->eviction_fence->base, 1421 DMA_RESV_USAGE_BOOKKEEP); 1422 amdgpu_bo_unreserve(vm->root.bo); 1423 1424 /* Update process info */ 1425 mutex_lock(&vm->process_info->lock); 1426 list_add_tail(&vm->vm_list_node, 1427 &(vm->process_info->vm_list_head)); 1428 vm->process_info->n_vms++; 1429 if (ef) 1430 *ef = dma_fence_get(&vm->process_info->eviction_fence->base); 1431 mutex_unlock(&vm->process_info->lock); 1432 1433 return 0; 1434 1435 reserve_shared_fail: 1436 wait_pd_fail: 1437 validate_pd_fail: 1438 amdgpu_bo_unreserve(vm->root.bo); 1439 reserve_pd_fail: 1440 vm->process_info = NULL; 1441 if (info) { 1442 dma_fence_put(&info->eviction_fence->base); 1443 *process_info = NULL; 1444 put_pid(info->pid); 1445 create_evict_fence_fail: 1446 mutex_destroy(&info->lock); 1447 mutex_destroy(&info->notifier_lock); 1448 kfree(info); 1449 } 1450 return ret; 1451 } 1452 1453 /** 1454 * amdgpu_amdkfd_gpuvm_pin_bo() - Pins a BO using following criteria 1455 * @bo: Handle of buffer object being pinned 1456 * @domain: Domain into which BO should be pinned 1457 * 1458 * - USERPTR BOs are UNPINNABLE and will return error 1459 * - All other BO types (GTT, VRAM, MMIO and DOORBELL) will have their 1460 * PIN count incremented. It is valid to PIN a BO multiple times 1461 * 1462 * Return: ZERO if successful in pinning, Non-Zero in case of error. 1463 */ 1464 static int amdgpu_amdkfd_gpuvm_pin_bo(struct amdgpu_bo *bo, u32 domain) 1465 { 1466 int ret = 0; 1467 1468 ret = amdgpu_bo_reserve(bo, false); 1469 if (unlikely(ret)) 1470 return ret; 1471 1472 if (bo->flags & AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS) { 1473 /* 1474 * If bo is not contiguous on VRAM, move to system memory first to ensure 1475 * we can get contiguous VRAM space after evicting other BOs. 1476 */ 1477 if (!(bo->tbo.resource->placement & TTM_PL_FLAG_CONTIGUOUS)) { 1478 struct ttm_operation_ctx ctx = { true, false }; 1479 1480 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_GTT); 1481 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 1482 if (unlikely(ret)) { 1483 pr_debug("validate bo 0x%p to GTT failed %d\n", &bo->tbo, ret); 1484 goto out; 1485 } 1486 } 1487 } 1488 1489 ret = amdgpu_bo_pin(bo, domain); 1490 if (ret) 1491 pr_err("Error in Pinning BO to domain: %d\n", domain); 1492 1493 amdgpu_bo_sync_wait(bo, AMDGPU_FENCE_OWNER_KFD, false); 1494 out: 1495 amdgpu_bo_unreserve(bo); 1496 return ret; 1497 } 1498 1499 /** 1500 * amdgpu_amdkfd_gpuvm_unpin_bo() - Unpins BO using following criteria 1501 * @bo: Handle of buffer object being unpinned 1502 * 1503 * - Is a illegal request for USERPTR BOs and is ignored 1504 * - All other BO types (GTT, VRAM, MMIO and DOORBELL) will have their 1505 * PIN count decremented. Calls to UNPIN must balance calls to PIN 1506 */ 1507 static void amdgpu_amdkfd_gpuvm_unpin_bo(struct amdgpu_bo *bo) 1508 { 1509 int ret = 0; 1510 1511 ret = amdgpu_bo_reserve(bo, false); 1512 if (unlikely(ret)) 1513 return; 1514 1515 amdgpu_bo_unpin(bo); 1516 amdgpu_bo_unreserve(bo); 1517 } 1518 1519 int amdgpu_amdkfd_gpuvm_acquire_process_vm(struct amdgpu_device *adev, 1520 struct amdgpu_vm *avm, 1521 void **process_info, 1522 struct dma_fence **ef) 1523 { 1524 int ret; 1525 1526 /* Already a compute VM? */ 1527 if (avm->process_info) 1528 return -EINVAL; 1529 1530 /* Convert VM into a compute VM */ 1531 ret = amdgpu_vm_make_compute(adev, avm); 1532 if (ret) 1533 return ret; 1534 1535 /* Initialize KFD part of the VM and process info */ 1536 ret = init_kfd_vm(avm, process_info, ef); 1537 if (ret) 1538 return ret; 1539 1540 amdgpu_vm_set_task_info(avm); 1541 1542 return 0; 1543 } 1544 1545 void amdgpu_amdkfd_gpuvm_destroy_cb(struct amdgpu_device *adev, 1546 struct amdgpu_vm *vm) 1547 { 1548 struct amdkfd_process_info *process_info = vm->process_info; 1549 1550 if (!process_info) 1551 return; 1552 1553 /* Update process info */ 1554 mutex_lock(&process_info->lock); 1555 process_info->n_vms--; 1556 list_del(&vm->vm_list_node); 1557 mutex_unlock(&process_info->lock); 1558 1559 vm->process_info = NULL; 1560 1561 /* Release per-process resources when last compute VM is destroyed */ 1562 if (!process_info->n_vms) { 1563 WARN_ON(!list_empty(&process_info->kfd_bo_list)); 1564 WARN_ON(!list_empty(&process_info->userptr_valid_list)); 1565 WARN_ON(!list_empty(&process_info->userptr_inval_list)); 1566 1567 dma_fence_put(&process_info->eviction_fence->base); 1568 cancel_delayed_work_sync(&process_info->restore_userptr_work); 1569 put_pid(process_info->pid); 1570 mutex_destroy(&process_info->lock); 1571 mutex_destroy(&process_info->notifier_lock); 1572 kfree(process_info); 1573 } 1574 } 1575 1576 uint64_t amdgpu_amdkfd_gpuvm_get_process_page_dir(void *drm_priv) 1577 { 1578 struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv); 1579 struct amdgpu_bo *pd = avm->root.bo; 1580 struct amdgpu_device *adev = amdgpu_ttm_adev(pd->tbo.bdev); 1581 1582 if (adev->asic_type < CHIP_VEGA10) 1583 return avm->pd_phys_addr >> AMDGPU_GPU_PAGE_SHIFT; 1584 return avm->pd_phys_addr; 1585 } 1586 1587 void amdgpu_amdkfd_block_mmu_notifications(void *p) 1588 { 1589 struct amdkfd_process_info *pinfo = (struct amdkfd_process_info *)p; 1590 1591 mutex_lock(&pinfo->lock); 1592 WRITE_ONCE(pinfo->block_mmu_notifications, true); 1593 mutex_unlock(&pinfo->lock); 1594 } 1595 1596 int amdgpu_amdkfd_criu_resume(void *p) 1597 { 1598 int ret = 0; 1599 struct amdkfd_process_info *pinfo = (struct amdkfd_process_info *)p; 1600 1601 mutex_lock(&pinfo->lock); 1602 pr_debug("scheduling work\n"); 1603 mutex_lock(&pinfo->notifier_lock); 1604 pinfo->evicted_bos++; 1605 mutex_unlock(&pinfo->notifier_lock); 1606 if (!READ_ONCE(pinfo->block_mmu_notifications)) { 1607 ret = -EINVAL; 1608 goto out_unlock; 1609 } 1610 WRITE_ONCE(pinfo->block_mmu_notifications, false); 1611 queue_delayed_work(system_freezable_wq, 1612 &pinfo->restore_userptr_work, 0); 1613 1614 out_unlock: 1615 mutex_unlock(&pinfo->lock); 1616 return ret; 1617 } 1618 1619 size_t amdgpu_amdkfd_get_available_memory(struct amdgpu_device *adev, 1620 uint8_t xcp_id) 1621 { 1622 uint64_t reserved_for_pt = 1623 ESTIMATE_PT_SIZE(amdgpu_amdkfd_total_mem_size); 1624 struct amdgpu_ras *con = amdgpu_ras_get_context(adev); 1625 uint64_t reserved_for_ras = (con ? con->reserved_pages_in_bytes : 0); 1626 ssize_t available; 1627 uint64_t vram_available, system_mem_available, ttm_mem_available; 1628 1629 spin_lock(&kfd_mem_limit.mem_limit_lock); 1630 vram_available = KFD_XCP_MEMORY_SIZE(adev, xcp_id) 1631 - adev->kfd.vram_used_aligned[xcp_id] 1632 - atomic64_read(&adev->vram_pin_size) 1633 - reserved_for_pt 1634 - reserved_for_ras; 1635 1636 if (adev->apu_prefer_gtt) { 1637 system_mem_available = no_system_mem_limit ? 1638 kfd_mem_limit.max_system_mem_limit : 1639 kfd_mem_limit.max_system_mem_limit - 1640 kfd_mem_limit.system_mem_used; 1641 1642 ttm_mem_available = kfd_mem_limit.max_ttm_mem_limit - 1643 kfd_mem_limit.ttm_mem_used; 1644 1645 available = min3(system_mem_available, ttm_mem_available, 1646 vram_available); 1647 available = ALIGN_DOWN(available, PAGE_SIZE); 1648 } else { 1649 available = ALIGN_DOWN(vram_available, VRAM_AVAILABLITY_ALIGN); 1650 } 1651 1652 spin_unlock(&kfd_mem_limit.mem_limit_lock); 1653 1654 if (available < 0) 1655 available = 0; 1656 1657 return available; 1658 } 1659 1660 int amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu( 1661 struct amdgpu_device *adev, uint64_t va, uint64_t size, 1662 void *drm_priv, struct kgd_mem **mem, 1663 uint64_t *offset, uint32_t flags, bool criu_resume) 1664 { 1665 struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv); 1666 struct amdgpu_fpriv *fpriv = container_of(avm, struct amdgpu_fpriv, vm); 1667 enum ttm_bo_type bo_type = ttm_bo_type_device; 1668 struct sg_table *sg = NULL; 1669 uint64_t user_addr = 0; 1670 struct amdgpu_bo *bo; 1671 struct drm_gem_object *gobj = NULL; 1672 u32 domain, alloc_domain; 1673 uint64_t aligned_size; 1674 int8_t xcp_id = -1; 1675 u64 alloc_flags; 1676 int ret; 1677 1678 /* 1679 * Check on which domain to allocate BO 1680 */ 1681 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) { 1682 domain = alloc_domain = AMDGPU_GEM_DOMAIN_VRAM; 1683 1684 if (adev->apu_prefer_gtt) { 1685 domain = AMDGPU_GEM_DOMAIN_GTT; 1686 alloc_domain = AMDGPU_GEM_DOMAIN_GTT; 1687 alloc_flags = 0; 1688 } else { 1689 alloc_flags = AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE; 1690 alloc_flags |= (flags & KFD_IOC_ALLOC_MEM_FLAGS_PUBLIC) ? 1691 AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED : 0; 1692 1693 /* For contiguous VRAM allocation */ 1694 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_CONTIGUOUS) 1695 alloc_flags |= AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS; 1696 } 1697 xcp_id = fpriv->xcp_id == AMDGPU_XCP_NO_PARTITION ? 1698 0 : fpriv->xcp_id; 1699 } else if (flags & KFD_IOC_ALLOC_MEM_FLAGS_GTT) { 1700 domain = alloc_domain = AMDGPU_GEM_DOMAIN_GTT; 1701 alloc_flags = 0; 1702 } else { 1703 domain = AMDGPU_GEM_DOMAIN_GTT; 1704 alloc_domain = AMDGPU_GEM_DOMAIN_CPU; 1705 alloc_flags = AMDGPU_GEM_CREATE_PREEMPTIBLE; 1706 1707 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) { 1708 if (!offset || !*offset) 1709 return -EINVAL; 1710 user_addr = untagged_addr(*offset); 1711 } else if (flags & (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL | 1712 KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) { 1713 bo_type = ttm_bo_type_sg; 1714 if (size > UINT_MAX) 1715 return -EINVAL; 1716 sg = create_sg_table(*offset, size); 1717 if (!sg) 1718 return -ENOMEM; 1719 } else { 1720 return -EINVAL; 1721 } 1722 } 1723 1724 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_COHERENT) 1725 alloc_flags |= AMDGPU_GEM_CREATE_COHERENT; 1726 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_EXT_COHERENT) 1727 alloc_flags |= AMDGPU_GEM_CREATE_EXT_COHERENT; 1728 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_UNCACHED) 1729 alloc_flags |= AMDGPU_GEM_CREATE_UNCACHED; 1730 1731 *mem = kzalloc(sizeof(struct kgd_mem), GFP_KERNEL); 1732 if (!*mem) { 1733 ret = -ENOMEM; 1734 goto err; 1735 } 1736 INIT_LIST_HEAD(&(*mem)->attachments); 1737 mutex_init(&(*mem)->lock); 1738 (*mem)->aql_queue = !!(flags & KFD_IOC_ALLOC_MEM_FLAGS_AQL_QUEUE_MEM); 1739 1740 /* Workaround for AQL queue wraparound bug. Map the same 1741 * memory twice. That means we only actually allocate half 1742 * the memory. 1743 */ 1744 if ((*mem)->aql_queue) 1745 size >>= 1; 1746 aligned_size = PAGE_ALIGN(size); 1747 1748 (*mem)->alloc_flags = flags; 1749 1750 amdgpu_sync_create(&(*mem)->sync); 1751 1752 ret = amdgpu_amdkfd_reserve_mem_limit(adev, aligned_size, flags, 1753 xcp_id); 1754 if (ret) { 1755 pr_debug("Insufficient memory\n"); 1756 goto err_reserve_limit; 1757 } 1758 1759 pr_debug("\tcreate BO VA 0x%llx size 0x%llx domain %s xcp_id %d\n", 1760 va, (*mem)->aql_queue ? size << 1 : size, 1761 domain_string(alloc_domain), xcp_id); 1762 1763 ret = amdgpu_gem_object_create(adev, aligned_size, 1, alloc_domain, alloc_flags, 1764 bo_type, NULL, &gobj, xcp_id + 1); 1765 if (ret) { 1766 pr_debug("Failed to create BO on domain %s. ret %d\n", 1767 domain_string(alloc_domain), ret); 1768 goto err_bo_create; 1769 } 1770 ret = drm_vma_node_allow(&gobj->vma_node, drm_priv); 1771 if (ret) { 1772 pr_debug("Failed to allow vma node access. ret %d\n", ret); 1773 goto err_node_allow; 1774 } 1775 ret = drm_gem_handle_create(adev->kfd.client.file, gobj, &(*mem)->gem_handle); 1776 if (ret) 1777 goto err_gem_handle_create; 1778 bo = gem_to_amdgpu_bo(gobj); 1779 if (bo_type == ttm_bo_type_sg) { 1780 bo->tbo.sg = sg; 1781 bo->tbo.ttm->sg = sg; 1782 } 1783 bo->kfd_bo = *mem; 1784 (*mem)->bo = bo; 1785 if (user_addr) 1786 bo->flags |= AMDGPU_AMDKFD_CREATE_USERPTR_BO; 1787 1788 (*mem)->va = va; 1789 (*mem)->domain = domain; 1790 (*mem)->mapped_to_gpu_memory = 0; 1791 (*mem)->process_info = avm->process_info; 1792 1793 add_kgd_mem_to_kfd_bo_list(*mem, avm->process_info, user_addr); 1794 1795 if (user_addr) { 1796 pr_debug("creating userptr BO for user_addr = %llx\n", user_addr); 1797 ret = init_user_pages(*mem, user_addr, criu_resume); 1798 if (ret) 1799 goto allocate_init_user_pages_failed; 1800 } else if (flags & (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL | 1801 KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) { 1802 ret = amdgpu_amdkfd_gpuvm_pin_bo(bo, AMDGPU_GEM_DOMAIN_GTT); 1803 if (ret) { 1804 pr_err("Pinning MMIO/DOORBELL BO during ALLOC FAILED\n"); 1805 goto err_pin_bo; 1806 } 1807 bo->allowed_domains = AMDGPU_GEM_DOMAIN_GTT; 1808 bo->preferred_domains = AMDGPU_GEM_DOMAIN_GTT; 1809 } else { 1810 mutex_lock(&avm->process_info->lock); 1811 if (avm->process_info->eviction_fence && 1812 !dma_fence_is_signaled(&avm->process_info->eviction_fence->base)) 1813 ret = amdgpu_amdkfd_bo_validate_and_fence(bo, domain, 1814 &avm->process_info->eviction_fence->base); 1815 mutex_unlock(&avm->process_info->lock); 1816 if (ret) 1817 goto err_validate_bo; 1818 } 1819 1820 if (offset) 1821 *offset = amdgpu_bo_mmap_offset(bo); 1822 1823 return 0; 1824 1825 allocate_init_user_pages_failed: 1826 err_pin_bo: 1827 err_validate_bo: 1828 remove_kgd_mem_from_kfd_bo_list(*mem, avm->process_info); 1829 drm_gem_handle_delete(adev->kfd.client.file, (*mem)->gem_handle); 1830 err_gem_handle_create: 1831 drm_vma_node_revoke(&gobj->vma_node, drm_priv); 1832 err_node_allow: 1833 /* Don't unreserve system mem limit twice */ 1834 goto err_reserve_limit; 1835 err_bo_create: 1836 amdgpu_amdkfd_unreserve_mem_limit(adev, aligned_size, flags, xcp_id); 1837 err_reserve_limit: 1838 amdgpu_sync_free(&(*mem)->sync); 1839 mutex_destroy(&(*mem)->lock); 1840 if (gobj) 1841 drm_gem_object_put(gobj); 1842 else 1843 kfree(*mem); 1844 err: 1845 if (sg) { 1846 sg_free_table(sg); 1847 kfree(sg); 1848 } 1849 return ret; 1850 } 1851 1852 int amdgpu_amdkfd_gpuvm_free_memory_of_gpu( 1853 struct amdgpu_device *adev, struct kgd_mem *mem, void *drm_priv, 1854 uint64_t *size) 1855 { 1856 struct amdkfd_process_info *process_info = mem->process_info; 1857 unsigned long bo_size = mem->bo->tbo.base.size; 1858 bool use_release_notifier = (mem->bo->kfd_bo == mem); 1859 struct kfd_mem_attachment *entry, *tmp; 1860 struct bo_vm_reservation_context ctx; 1861 unsigned int mapped_to_gpu_memory; 1862 int ret; 1863 bool is_imported = false; 1864 1865 mutex_lock(&mem->lock); 1866 1867 /* Unpin MMIO/DOORBELL BO's that were pinned during allocation */ 1868 if (mem->alloc_flags & 1869 (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL | 1870 KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) { 1871 amdgpu_amdkfd_gpuvm_unpin_bo(mem->bo); 1872 } 1873 1874 mapped_to_gpu_memory = mem->mapped_to_gpu_memory; 1875 is_imported = mem->is_imported; 1876 mutex_unlock(&mem->lock); 1877 /* lock is not needed after this, since mem is unused and will 1878 * be freed anyway 1879 */ 1880 1881 if (mapped_to_gpu_memory > 0) { 1882 pr_debug("BO VA 0x%llx size 0x%lx is still mapped.\n", 1883 mem->va, bo_size); 1884 return -EBUSY; 1885 } 1886 1887 /* Make sure restore workers don't access the BO any more */ 1888 mutex_lock(&process_info->lock); 1889 list_del(&mem->validate_list); 1890 mutex_unlock(&process_info->lock); 1891 1892 /* Cleanup user pages and MMU notifiers */ 1893 if (amdgpu_ttm_tt_get_usermm(mem->bo->tbo.ttm)) { 1894 amdgpu_hmm_unregister(mem->bo); 1895 mutex_lock(&process_info->notifier_lock); 1896 amdgpu_ttm_tt_discard_user_pages(mem->bo->tbo.ttm, mem->range); 1897 mutex_unlock(&process_info->notifier_lock); 1898 } 1899 1900 ret = reserve_bo_and_cond_vms(mem, NULL, BO_VM_ALL, &ctx); 1901 if (unlikely(ret)) 1902 return ret; 1903 1904 amdgpu_amdkfd_remove_eviction_fence(mem->bo, 1905 process_info->eviction_fence); 1906 pr_debug("Release VA 0x%llx - 0x%llx\n", mem->va, 1907 mem->va + bo_size * (1 + mem->aql_queue)); 1908 1909 /* Remove from VM internal data structures */ 1910 list_for_each_entry_safe(entry, tmp, &mem->attachments, list) { 1911 kfd_mem_dmaunmap_attachment(mem, entry); 1912 kfd_mem_detach(entry); 1913 } 1914 1915 ret = unreserve_bo_and_vms(&ctx, false, false); 1916 1917 /* Free the sync object */ 1918 amdgpu_sync_free(&mem->sync); 1919 1920 /* If the SG is not NULL, it's one we created for a doorbell or mmio 1921 * remap BO. We need to free it. 1922 */ 1923 if (mem->bo->tbo.sg) { 1924 sg_free_table(mem->bo->tbo.sg); 1925 kfree(mem->bo->tbo.sg); 1926 } 1927 1928 /* Update the size of the BO being freed if it was allocated from 1929 * VRAM and is not imported. For APP APU VRAM allocations are done 1930 * in GTT domain 1931 */ 1932 if (size) { 1933 if (!is_imported && 1934 (mem->bo->preferred_domains == AMDGPU_GEM_DOMAIN_VRAM || 1935 (adev->apu_prefer_gtt && 1936 mem->bo->preferred_domains == AMDGPU_GEM_DOMAIN_GTT))) 1937 *size = bo_size; 1938 else 1939 *size = 0; 1940 } 1941 1942 /* Free the BO*/ 1943 drm_vma_node_revoke(&mem->bo->tbo.base.vma_node, drm_priv); 1944 drm_gem_handle_delete(adev->kfd.client.file, mem->gem_handle); 1945 if (mem->dmabuf) { 1946 dma_buf_put(mem->dmabuf); 1947 mem->dmabuf = NULL; 1948 } 1949 mutex_destroy(&mem->lock); 1950 1951 /* If this releases the last reference, it will end up calling 1952 * amdgpu_amdkfd_release_notify and kfree the mem struct. That's why 1953 * this needs to be the last call here. 1954 */ 1955 drm_gem_object_put(&mem->bo->tbo.base); 1956 1957 /* 1958 * For kgd_mem allocated in amdgpu_amdkfd_gpuvm_import_dmabuf(), 1959 * explicitly free it here. 1960 */ 1961 if (!use_release_notifier) 1962 kfree(mem); 1963 1964 return ret; 1965 } 1966 1967 int amdgpu_amdkfd_gpuvm_map_memory_to_gpu( 1968 struct amdgpu_device *adev, struct kgd_mem *mem, 1969 void *drm_priv) 1970 { 1971 struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv); 1972 int ret; 1973 struct amdgpu_bo *bo; 1974 uint32_t domain; 1975 struct kfd_mem_attachment *entry; 1976 struct bo_vm_reservation_context ctx; 1977 unsigned long bo_size; 1978 bool is_invalid_userptr = false; 1979 1980 bo = mem->bo; 1981 if (!bo) { 1982 pr_err("Invalid BO when mapping memory to GPU\n"); 1983 return -EINVAL; 1984 } 1985 1986 /* Make sure restore is not running concurrently. Since we 1987 * don't map invalid userptr BOs, we rely on the next restore 1988 * worker to do the mapping 1989 */ 1990 mutex_lock(&mem->process_info->lock); 1991 1992 /* Lock notifier lock. If we find an invalid userptr BO, we can be 1993 * sure that the MMU notifier is no longer running 1994 * concurrently and the queues are actually stopped 1995 */ 1996 if (amdgpu_ttm_tt_get_usermm(bo->tbo.ttm)) { 1997 mutex_lock(&mem->process_info->notifier_lock); 1998 is_invalid_userptr = !!mem->invalid; 1999 mutex_unlock(&mem->process_info->notifier_lock); 2000 } 2001 2002 mutex_lock(&mem->lock); 2003 2004 domain = mem->domain; 2005 bo_size = bo->tbo.base.size; 2006 2007 pr_debug("Map VA 0x%llx - 0x%llx to vm %p domain %s\n", 2008 mem->va, 2009 mem->va + bo_size * (1 + mem->aql_queue), 2010 avm, domain_string(domain)); 2011 2012 if (!kfd_mem_is_attached(avm, mem)) { 2013 ret = kfd_mem_attach(adev, mem, avm, mem->aql_queue); 2014 if (ret) 2015 goto out; 2016 } 2017 2018 ret = reserve_bo_and_vm(mem, avm, &ctx); 2019 if (unlikely(ret)) 2020 goto out; 2021 2022 /* Userptr can be marked as "not invalid", but not actually be 2023 * validated yet (still in the system domain). In that case 2024 * the queues are still stopped and we can leave mapping for 2025 * the next restore worker 2026 */ 2027 if (amdgpu_ttm_tt_get_usermm(bo->tbo.ttm) && 2028 bo->tbo.resource->mem_type == TTM_PL_SYSTEM) 2029 is_invalid_userptr = true; 2030 2031 ret = vm_validate_pt_pd_bos(avm, NULL); 2032 if (unlikely(ret)) 2033 goto out_unreserve; 2034 2035 list_for_each_entry(entry, &mem->attachments, list) { 2036 if (entry->bo_va->base.vm != avm || entry->is_mapped) 2037 continue; 2038 2039 pr_debug("\t map VA 0x%llx - 0x%llx in entry %p\n", 2040 entry->va, entry->va + bo_size, entry); 2041 2042 ret = map_bo_to_gpuvm(mem, entry, ctx.sync, 2043 is_invalid_userptr); 2044 if (ret) { 2045 pr_err("Failed to map bo to gpuvm\n"); 2046 goto out_unreserve; 2047 } 2048 2049 ret = vm_update_pds(avm, ctx.sync); 2050 if (ret) { 2051 pr_err("Failed to update page directories\n"); 2052 goto out_unreserve; 2053 } 2054 2055 entry->is_mapped = true; 2056 mem->mapped_to_gpu_memory++; 2057 pr_debug("\t INC mapping count %d\n", 2058 mem->mapped_to_gpu_memory); 2059 } 2060 2061 ret = unreserve_bo_and_vms(&ctx, false, false); 2062 2063 goto out; 2064 2065 out_unreserve: 2066 unreserve_bo_and_vms(&ctx, false, false); 2067 out: 2068 mutex_unlock(&mem->process_info->lock); 2069 mutex_unlock(&mem->lock); 2070 return ret; 2071 } 2072 2073 int amdgpu_amdkfd_gpuvm_dmaunmap_mem(struct kgd_mem *mem, void *drm_priv) 2074 { 2075 struct kfd_mem_attachment *entry; 2076 struct amdgpu_vm *vm; 2077 int ret; 2078 2079 vm = drm_priv_to_vm(drm_priv); 2080 2081 mutex_lock(&mem->lock); 2082 2083 ret = amdgpu_bo_reserve(mem->bo, true); 2084 if (ret) 2085 goto out; 2086 2087 list_for_each_entry(entry, &mem->attachments, list) { 2088 if (entry->bo_va->base.vm != vm) 2089 continue; 2090 if (entry->bo_va->base.bo->tbo.ttm && 2091 !entry->bo_va->base.bo->tbo.ttm->sg) 2092 continue; 2093 2094 kfd_mem_dmaunmap_attachment(mem, entry); 2095 } 2096 2097 amdgpu_bo_unreserve(mem->bo); 2098 out: 2099 mutex_unlock(&mem->lock); 2100 2101 return ret; 2102 } 2103 2104 int amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu( 2105 struct amdgpu_device *adev, struct kgd_mem *mem, void *drm_priv) 2106 { 2107 struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv); 2108 unsigned long bo_size = mem->bo->tbo.base.size; 2109 struct kfd_mem_attachment *entry; 2110 struct bo_vm_reservation_context ctx; 2111 int ret; 2112 2113 mutex_lock(&mem->lock); 2114 2115 ret = reserve_bo_and_cond_vms(mem, avm, BO_VM_MAPPED, &ctx); 2116 if (unlikely(ret)) 2117 goto out; 2118 /* If no VMs were reserved, it means the BO wasn't actually mapped */ 2119 if (ctx.n_vms == 0) { 2120 ret = -EINVAL; 2121 goto unreserve_out; 2122 } 2123 2124 ret = vm_validate_pt_pd_bos(avm, NULL); 2125 if (unlikely(ret)) 2126 goto unreserve_out; 2127 2128 pr_debug("Unmap VA 0x%llx - 0x%llx from vm %p\n", 2129 mem->va, 2130 mem->va + bo_size * (1 + mem->aql_queue), 2131 avm); 2132 2133 list_for_each_entry(entry, &mem->attachments, list) { 2134 if (entry->bo_va->base.vm != avm || !entry->is_mapped) 2135 continue; 2136 2137 pr_debug("\t unmap VA 0x%llx - 0x%llx from entry %p\n", 2138 entry->va, entry->va + bo_size, entry); 2139 2140 ret = unmap_bo_from_gpuvm(mem, entry, ctx.sync); 2141 if (ret) 2142 goto unreserve_out; 2143 2144 entry->is_mapped = false; 2145 2146 mem->mapped_to_gpu_memory--; 2147 pr_debug("\t DEC mapping count %d\n", 2148 mem->mapped_to_gpu_memory); 2149 } 2150 2151 unreserve_out: 2152 unreserve_bo_and_vms(&ctx, false, false); 2153 out: 2154 mutex_unlock(&mem->lock); 2155 return ret; 2156 } 2157 2158 int amdgpu_amdkfd_gpuvm_sync_memory( 2159 struct amdgpu_device *adev, struct kgd_mem *mem, bool intr) 2160 { 2161 struct amdgpu_sync sync; 2162 int ret; 2163 2164 amdgpu_sync_create(&sync); 2165 2166 mutex_lock(&mem->lock); 2167 amdgpu_sync_clone(&mem->sync, &sync); 2168 mutex_unlock(&mem->lock); 2169 2170 ret = amdgpu_sync_wait(&sync, intr); 2171 amdgpu_sync_free(&sync); 2172 return ret; 2173 } 2174 2175 /** 2176 * amdgpu_amdkfd_map_gtt_bo_to_gart - Map BO to GART and increment reference count 2177 * @bo: Buffer object to be mapped 2178 * @bo_gart: Return bo reference 2179 * 2180 * Before return, bo reference count is incremented. To release the reference and unpin/ 2181 * unmap the BO, call amdgpu_amdkfd_free_gtt_mem. 2182 */ 2183 int amdgpu_amdkfd_map_gtt_bo_to_gart(struct amdgpu_bo *bo, struct amdgpu_bo **bo_gart) 2184 { 2185 int ret; 2186 2187 ret = amdgpu_bo_reserve(bo, true); 2188 if (ret) { 2189 pr_err("Failed to reserve bo. ret %d\n", ret); 2190 goto err_reserve_bo_failed; 2191 } 2192 2193 ret = amdgpu_bo_pin(bo, AMDGPU_GEM_DOMAIN_GTT); 2194 if (ret) { 2195 pr_err("Failed to pin bo. ret %d\n", ret); 2196 goto err_pin_bo_failed; 2197 } 2198 2199 ret = amdgpu_ttm_alloc_gart(&bo->tbo); 2200 if (ret) { 2201 pr_err("Failed to bind bo to GART. ret %d\n", ret); 2202 goto err_map_bo_gart_failed; 2203 } 2204 2205 amdgpu_amdkfd_remove_eviction_fence( 2206 bo, bo->vm_bo->vm->process_info->eviction_fence); 2207 2208 amdgpu_bo_unreserve(bo); 2209 2210 *bo_gart = amdgpu_bo_ref(bo); 2211 2212 return 0; 2213 2214 err_map_bo_gart_failed: 2215 amdgpu_bo_unpin(bo); 2216 err_pin_bo_failed: 2217 amdgpu_bo_unreserve(bo); 2218 err_reserve_bo_failed: 2219 2220 return ret; 2221 } 2222 2223 /** amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel() - Map a GTT BO for kernel CPU access 2224 * 2225 * @mem: Buffer object to be mapped for CPU access 2226 * @kptr[out]: pointer in kernel CPU address space 2227 * @size[out]: size of the buffer 2228 * 2229 * Pins the BO and maps it for kernel CPU access. The eviction fence is removed 2230 * from the BO, since pinned BOs cannot be evicted. The bo must remain on the 2231 * validate_list, so the GPU mapping can be restored after a page table was 2232 * evicted. 2233 * 2234 * Return: 0 on success, error code on failure 2235 */ 2236 int amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(struct kgd_mem *mem, 2237 void **kptr, uint64_t *size) 2238 { 2239 int ret; 2240 struct amdgpu_bo *bo = mem->bo; 2241 2242 if (amdgpu_ttm_tt_get_usermm(bo->tbo.ttm)) { 2243 pr_err("userptr can't be mapped to kernel\n"); 2244 return -EINVAL; 2245 } 2246 2247 mutex_lock(&mem->process_info->lock); 2248 2249 ret = amdgpu_bo_reserve(bo, true); 2250 if (ret) { 2251 pr_err("Failed to reserve bo. ret %d\n", ret); 2252 goto bo_reserve_failed; 2253 } 2254 2255 ret = amdgpu_bo_pin(bo, AMDGPU_GEM_DOMAIN_GTT); 2256 if (ret) { 2257 pr_err("Failed to pin bo. ret %d\n", ret); 2258 goto pin_failed; 2259 } 2260 2261 ret = amdgpu_bo_kmap(bo, kptr); 2262 if (ret) { 2263 pr_err("Failed to map bo to kernel. ret %d\n", ret); 2264 goto kmap_failed; 2265 } 2266 2267 amdgpu_amdkfd_remove_eviction_fence( 2268 bo, mem->process_info->eviction_fence); 2269 2270 if (size) 2271 *size = amdgpu_bo_size(bo); 2272 2273 amdgpu_bo_unreserve(bo); 2274 2275 mutex_unlock(&mem->process_info->lock); 2276 return 0; 2277 2278 kmap_failed: 2279 amdgpu_bo_unpin(bo); 2280 pin_failed: 2281 amdgpu_bo_unreserve(bo); 2282 bo_reserve_failed: 2283 mutex_unlock(&mem->process_info->lock); 2284 2285 return ret; 2286 } 2287 2288 /** amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel() - Unmap a GTT BO for kernel CPU access 2289 * 2290 * @mem: Buffer object to be unmapped for CPU access 2291 * 2292 * Removes the kernel CPU mapping and unpins the BO. It does not restore the 2293 * eviction fence, so this function should only be used for cleanup before the 2294 * BO is destroyed. 2295 */ 2296 void amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(struct kgd_mem *mem) 2297 { 2298 struct amdgpu_bo *bo = mem->bo; 2299 2300 (void)amdgpu_bo_reserve(bo, true); 2301 amdgpu_bo_kunmap(bo); 2302 amdgpu_bo_unpin(bo); 2303 amdgpu_bo_unreserve(bo); 2304 } 2305 2306 int amdgpu_amdkfd_gpuvm_get_vm_fault_info(struct amdgpu_device *adev, 2307 struct kfd_vm_fault_info *mem) 2308 { 2309 if (atomic_read(&adev->gmc.vm_fault_info_updated) == 1) { 2310 *mem = *adev->gmc.vm_fault_info; 2311 mb(); /* make sure read happened */ 2312 atomic_set(&adev->gmc.vm_fault_info_updated, 0); 2313 } 2314 return 0; 2315 } 2316 2317 static int import_obj_create(struct amdgpu_device *adev, 2318 struct dma_buf *dma_buf, 2319 struct drm_gem_object *obj, 2320 uint64_t va, void *drm_priv, 2321 struct kgd_mem **mem, uint64_t *size, 2322 uint64_t *mmap_offset) 2323 { 2324 struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv); 2325 struct amdgpu_bo *bo; 2326 int ret; 2327 2328 bo = gem_to_amdgpu_bo(obj); 2329 if (!(bo->preferred_domains & (AMDGPU_GEM_DOMAIN_VRAM | 2330 AMDGPU_GEM_DOMAIN_GTT))) 2331 /* Only VRAM and GTT BOs are supported */ 2332 return -EINVAL; 2333 2334 *mem = kzalloc(sizeof(struct kgd_mem), GFP_KERNEL); 2335 if (!*mem) 2336 return -ENOMEM; 2337 2338 ret = drm_vma_node_allow(&obj->vma_node, drm_priv); 2339 if (ret) 2340 goto err_free_mem; 2341 2342 if (size) 2343 *size = amdgpu_bo_size(bo); 2344 2345 if (mmap_offset) 2346 *mmap_offset = amdgpu_bo_mmap_offset(bo); 2347 2348 INIT_LIST_HEAD(&(*mem)->attachments); 2349 mutex_init(&(*mem)->lock); 2350 2351 (*mem)->alloc_flags = 2352 ((bo->preferred_domains & AMDGPU_GEM_DOMAIN_VRAM) ? 2353 KFD_IOC_ALLOC_MEM_FLAGS_VRAM : KFD_IOC_ALLOC_MEM_FLAGS_GTT) 2354 | KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE 2355 | KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE; 2356 2357 get_dma_buf(dma_buf); 2358 (*mem)->dmabuf = dma_buf; 2359 (*mem)->bo = bo; 2360 (*mem)->va = va; 2361 (*mem)->domain = (bo->preferred_domains & AMDGPU_GEM_DOMAIN_VRAM) && 2362 !adev->apu_prefer_gtt ? 2363 AMDGPU_GEM_DOMAIN_VRAM : AMDGPU_GEM_DOMAIN_GTT; 2364 2365 (*mem)->mapped_to_gpu_memory = 0; 2366 (*mem)->process_info = avm->process_info; 2367 add_kgd_mem_to_kfd_bo_list(*mem, avm->process_info, false); 2368 amdgpu_sync_create(&(*mem)->sync); 2369 (*mem)->is_imported = true; 2370 2371 mutex_lock(&avm->process_info->lock); 2372 if (avm->process_info->eviction_fence && 2373 !dma_fence_is_signaled(&avm->process_info->eviction_fence->base)) 2374 ret = amdgpu_amdkfd_bo_validate_and_fence(bo, (*mem)->domain, 2375 &avm->process_info->eviction_fence->base); 2376 mutex_unlock(&avm->process_info->lock); 2377 if (ret) 2378 goto err_remove_mem; 2379 2380 return 0; 2381 2382 err_remove_mem: 2383 remove_kgd_mem_from_kfd_bo_list(*mem, avm->process_info); 2384 drm_vma_node_revoke(&obj->vma_node, drm_priv); 2385 err_free_mem: 2386 kfree(*mem); 2387 return ret; 2388 } 2389 2390 int amdgpu_amdkfd_gpuvm_import_dmabuf_fd(struct amdgpu_device *adev, int fd, 2391 uint64_t va, void *drm_priv, 2392 struct kgd_mem **mem, uint64_t *size, 2393 uint64_t *mmap_offset) 2394 { 2395 struct drm_gem_object *obj; 2396 uint32_t handle; 2397 int ret; 2398 2399 ret = drm_gem_prime_fd_to_handle(&adev->ddev, adev->kfd.client.file, fd, 2400 &handle); 2401 if (ret) 2402 return ret; 2403 obj = drm_gem_object_lookup(adev->kfd.client.file, handle); 2404 if (!obj) { 2405 ret = -EINVAL; 2406 goto err_release_handle; 2407 } 2408 2409 ret = import_obj_create(adev, obj->dma_buf, obj, va, drm_priv, mem, size, 2410 mmap_offset); 2411 if (ret) 2412 goto err_put_obj; 2413 2414 (*mem)->gem_handle = handle; 2415 2416 return 0; 2417 2418 err_put_obj: 2419 drm_gem_object_put(obj); 2420 err_release_handle: 2421 drm_gem_handle_delete(adev->kfd.client.file, handle); 2422 return ret; 2423 } 2424 2425 int amdgpu_amdkfd_gpuvm_export_dmabuf(struct kgd_mem *mem, 2426 struct dma_buf **dma_buf) 2427 { 2428 int ret; 2429 2430 mutex_lock(&mem->lock); 2431 ret = kfd_mem_export_dmabuf(mem); 2432 if (ret) 2433 goto out; 2434 2435 get_dma_buf(mem->dmabuf); 2436 *dma_buf = mem->dmabuf; 2437 out: 2438 mutex_unlock(&mem->lock); 2439 return ret; 2440 } 2441 2442 /* Evict a userptr BO by stopping the queues if necessary 2443 * 2444 * Runs in MMU notifier, may be in RECLAIM_FS context. This means it 2445 * cannot do any memory allocations, and cannot take any locks that 2446 * are held elsewhere while allocating memory. 2447 * 2448 * It doesn't do anything to the BO itself. The real work happens in 2449 * restore, where we get updated page addresses. This function only 2450 * ensures that GPU access to the BO is stopped. 2451 */ 2452 int amdgpu_amdkfd_evict_userptr(struct mmu_interval_notifier *mni, 2453 unsigned long cur_seq, struct kgd_mem *mem) 2454 { 2455 struct amdkfd_process_info *process_info = mem->process_info; 2456 int r = 0; 2457 2458 /* Do not process MMU notifications during CRIU restore until 2459 * KFD_CRIU_OP_RESUME IOCTL is received 2460 */ 2461 if (READ_ONCE(process_info->block_mmu_notifications)) 2462 return 0; 2463 2464 mutex_lock(&process_info->notifier_lock); 2465 mmu_interval_set_seq(mni, cur_seq); 2466 2467 mem->invalid++; 2468 if (++process_info->evicted_bos == 1) { 2469 /* First eviction, stop the queues */ 2470 r = kgd2kfd_quiesce_mm(mni->mm, 2471 KFD_QUEUE_EVICTION_TRIGGER_USERPTR); 2472 2473 if (r && r != -ESRCH) 2474 pr_err("Failed to quiesce KFD\n"); 2475 2476 if (r != -ESRCH) 2477 queue_delayed_work(system_freezable_wq, 2478 &process_info->restore_userptr_work, 2479 msecs_to_jiffies(AMDGPU_USERPTR_RESTORE_DELAY_MS)); 2480 } 2481 mutex_unlock(&process_info->notifier_lock); 2482 2483 return r; 2484 } 2485 2486 /* Update invalid userptr BOs 2487 * 2488 * Moves invalidated (evicted) userptr BOs from userptr_valid_list to 2489 * userptr_inval_list and updates user pages for all BOs that have 2490 * been invalidated since their last update. 2491 */ 2492 static int update_invalid_user_pages(struct amdkfd_process_info *process_info, 2493 struct mm_struct *mm) 2494 { 2495 struct kgd_mem *mem, *tmp_mem; 2496 struct amdgpu_bo *bo; 2497 struct ttm_operation_ctx ctx = { false, false }; 2498 uint32_t invalid; 2499 int ret = 0; 2500 2501 mutex_lock(&process_info->notifier_lock); 2502 2503 /* Move all invalidated BOs to the userptr_inval_list */ 2504 list_for_each_entry_safe(mem, tmp_mem, 2505 &process_info->userptr_valid_list, 2506 validate_list) 2507 if (mem->invalid) 2508 list_move_tail(&mem->validate_list, 2509 &process_info->userptr_inval_list); 2510 2511 /* Go through userptr_inval_list and update any invalid user_pages */ 2512 list_for_each_entry(mem, &process_info->userptr_inval_list, 2513 validate_list) { 2514 invalid = mem->invalid; 2515 if (!invalid) 2516 /* BO hasn't been invalidated since the last 2517 * revalidation attempt. Keep its page list. 2518 */ 2519 continue; 2520 2521 bo = mem->bo; 2522 2523 amdgpu_ttm_tt_discard_user_pages(bo->tbo.ttm, mem->range); 2524 mem->range = NULL; 2525 2526 /* BO reservations and getting user pages (hmm_range_fault) 2527 * must happen outside the notifier lock 2528 */ 2529 mutex_unlock(&process_info->notifier_lock); 2530 2531 /* Move the BO to system (CPU) domain if necessary to unmap 2532 * and free the SG table 2533 */ 2534 if (bo->tbo.resource->mem_type != TTM_PL_SYSTEM) { 2535 if (amdgpu_bo_reserve(bo, true)) 2536 return -EAGAIN; 2537 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_CPU); 2538 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 2539 amdgpu_bo_unreserve(bo); 2540 if (ret) { 2541 pr_err("%s: Failed to invalidate userptr BO\n", 2542 __func__); 2543 return -EAGAIN; 2544 } 2545 } 2546 2547 /* Get updated user pages */ 2548 ret = amdgpu_ttm_tt_get_user_pages(bo, bo->tbo.ttm->pages, 2549 &mem->range); 2550 if (ret) { 2551 pr_debug("Failed %d to get user pages\n", ret); 2552 2553 /* Return -EFAULT bad address error as success. It will 2554 * fail later with a VM fault if the GPU tries to access 2555 * it. Better than hanging indefinitely with stalled 2556 * user mode queues. 2557 * 2558 * Return other error -EBUSY or -ENOMEM to retry restore 2559 */ 2560 if (ret != -EFAULT) 2561 return ret; 2562 2563 /* If applications unmap memory before destroying the userptr 2564 * from the KFD, trigger a segmentation fault in VM debug mode. 2565 */ 2566 if (amdgpu_ttm_adev(bo->tbo.bdev)->debug_vm_userptr) { 2567 pr_err("Pid %d unmapped memory before destroying userptr at GPU addr 0x%llx\n", 2568 pid_nr(process_info->pid), mem->va); 2569 2570 // Send GPU VM fault to user space 2571 kfd_signal_vm_fault_event_with_userptr(kfd_lookup_process_by_pid(process_info->pid), 2572 mem->va); 2573 } 2574 2575 ret = 0; 2576 } 2577 2578 mutex_lock(&process_info->notifier_lock); 2579 2580 /* Mark the BO as valid unless it was invalidated 2581 * again concurrently. 2582 */ 2583 if (mem->invalid != invalid) { 2584 ret = -EAGAIN; 2585 goto unlock_out; 2586 } 2587 /* set mem valid if mem has hmm range associated */ 2588 if (mem->range) 2589 mem->invalid = 0; 2590 } 2591 2592 unlock_out: 2593 mutex_unlock(&process_info->notifier_lock); 2594 2595 return ret; 2596 } 2597 2598 /* Validate invalid userptr BOs 2599 * 2600 * Validates BOs on the userptr_inval_list. Also updates GPUVM page tables 2601 * with new page addresses and waits for the page table updates to complete. 2602 */ 2603 static int validate_invalid_user_pages(struct amdkfd_process_info *process_info) 2604 { 2605 struct ttm_operation_ctx ctx = { false, false }; 2606 struct amdgpu_sync sync; 2607 struct drm_exec exec; 2608 2609 struct amdgpu_vm *peer_vm; 2610 struct kgd_mem *mem, *tmp_mem; 2611 struct amdgpu_bo *bo; 2612 int ret; 2613 2614 amdgpu_sync_create(&sync); 2615 2616 drm_exec_init(&exec, 0, 0); 2617 /* Reserve all BOs and page tables for validation */ 2618 drm_exec_until_all_locked(&exec) { 2619 /* Reserve all the page directories */ 2620 list_for_each_entry(peer_vm, &process_info->vm_list_head, 2621 vm_list_node) { 2622 ret = amdgpu_vm_lock_pd(peer_vm, &exec, 2); 2623 drm_exec_retry_on_contention(&exec); 2624 if (unlikely(ret)) 2625 goto unreserve_out; 2626 } 2627 2628 /* Reserve the userptr_inval_list entries to resv_list */ 2629 list_for_each_entry(mem, &process_info->userptr_inval_list, 2630 validate_list) { 2631 struct drm_gem_object *gobj; 2632 2633 gobj = &mem->bo->tbo.base; 2634 ret = drm_exec_prepare_obj(&exec, gobj, 1); 2635 drm_exec_retry_on_contention(&exec); 2636 if (unlikely(ret)) 2637 goto unreserve_out; 2638 } 2639 } 2640 2641 ret = process_validate_vms(process_info, NULL); 2642 if (ret) 2643 goto unreserve_out; 2644 2645 /* Validate BOs and update GPUVM page tables */ 2646 list_for_each_entry_safe(mem, tmp_mem, 2647 &process_info->userptr_inval_list, 2648 validate_list) { 2649 struct kfd_mem_attachment *attachment; 2650 2651 bo = mem->bo; 2652 2653 /* Validate the BO if we got user pages */ 2654 if (bo->tbo.ttm->pages[0]) { 2655 amdgpu_bo_placement_from_domain(bo, mem->domain); 2656 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 2657 if (ret) { 2658 pr_err("%s: failed to validate BO\n", __func__); 2659 goto unreserve_out; 2660 } 2661 } 2662 2663 /* Update mapping. If the BO was not validated 2664 * (because we couldn't get user pages), this will 2665 * clear the page table entries, which will result in 2666 * VM faults if the GPU tries to access the invalid 2667 * memory. 2668 */ 2669 list_for_each_entry(attachment, &mem->attachments, list) { 2670 if (!attachment->is_mapped) 2671 continue; 2672 2673 kfd_mem_dmaunmap_attachment(mem, attachment); 2674 ret = update_gpuvm_pte(mem, attachment, &sync); 2675 if (ret) { 2676 pr_err("%s: update PTE failed\n", __func__); 2677 /* make sure this gets validated again */ 2678 mutex_lock(&process_info->notifier_lock); 2679 mem->invalid++; 2680 mutex_unlock(&process_info->notifier_lock); 2681 goto unreserve_out; 2682 } 2683 } 2684 } 2685 2686 /* Update page directories */ 2687 ret = process_update_pds(process_info, &sync); 2688 2689 unreserve_out: 2690 drm_exec_fini(&exec); 2691 amdgpu_sync_wait(&sync, false); 2692 amdgpu_sync_free(&sync); 2693 2694 return ret; 2695 } 2696 2697 /* Confirm that all user pages are valid while holding the notifier lock 2698 * 2699 * Moves valid BOs from the userptr_inval_list back to userptr_val_list. 2700 */ 2701 static int confirm_valid_user_pages_locked(struct amdkfd_process_info *process_info) 2702 { 2703 struct kgd_mem *mem, *tmp_mem; 2704 int ret = 0; 2705 2706 list_for_each_entry_safe(mem, tmp_mem, 2707 &process_info->userptr_inval_list, 2708 validate_list) { 2709 bool valid; 2710 2711 /* keep mem without hmm range at userptr_inval_list */ 2712 if (!mem->range) 2713 continue; 2714 2715 /* Only check mem with hmm range associated */ 2716 valid = amdgpu_ttm_tt_get_user_pages_done( 2717 mem->bo->tbo.ttm, mem->range); 2718 2719 mem->range = NULL; 2720 if (!valid) { 2721 WARN(!mem->invalid, "Invalid BO not marked invalid"); 2722 ret = -EAGAIN; 2723 continue; 2724 } 2725 2726 if (mem->invalid) { 2727 WARN(1, "Valid BO is marked invalid"); 2728 ret = -EAGAIN; 2729 continue; 2730 } 2731 2732 list_move_tail(&mem->validate_list, 2733 &process_info->userptr_valid_list); 2734 } 2735 2736 return ret; 2737 } 2738 2739 /* Worker callback to restore evicted userptr BOs 2740 * 2741 * Tries to update and validate all userptr BOs. If successful and no 2742 * concurrent evictions happened, the queues are restarted. Otherwise, 2743 * reschedule for another attempt later. 2744 */ 2745 static void amdgpu_amdkfd_restore_userptr_worker(struct work_struct *work) 2746 { 2747 struct delayed_work *dwork = to_delayed_work(work); 2748 struct amdkfd_process_info *process_info = 2749 container_of(dwork, struct amdkfd_process_info, 2750 restore_userptr_work); 2751 struct task_struct *usertask; 2752 struct mm_struct *mm; 2753 uint32_t evicted_bos; 2754 2755 mutex_lock(&process_info->notifier_lock); 2756 evicted_bos = process_info->evicted_bos; 2757 mutex_unlock(&process_info->notifier_lock); 2758 if (!evicted_bos) 2759 return; 2760 2761 /* Reference task and mm in case of concurrent process termination */ 2762 usertask = get_pid_task(process_info->pid, PIDTYPE_PID); 2763 if (!usertask) 2764 return; 2765 mm = get_task_mm(usertask); 2766 if (!mm) { 2767 put_task_struct(usertask); 2768 return; 2769 } 2770 2771 mutex_lock(&process_info->lock); 2772 2773 if (update_invalid_user_pages(process_info, mm)) 2774 goto unlock_out; 2775 /* userptr_inval_list can be empty if all evicted userptr BOs 2776 * have been freed. In that case there is nothing to validate 2777 * and we can just restart the queues. 2778 */ 2779 if (!list_empty(&process_info->userptr_inval_list)) { 2780 if (validate_invalid_user_pages(process_info)) 2781 goto unlock_out; 2782 } 2783 /* Final check for concurrent evicton and atomic update. If 2784 * another eviction happens after successful update, it will 2785 * be a first eviction that calls quiesce_mm. The eviction 2786 * reference counting inside KFD will handle this case. 2787 */ 2788 mutex_lock(&process_info->notifier_lock); 2789 if (process_info->evicted_bos != evicted_bos) 2790 goto unlock_notifier_out; 2791 2792 if (confirm_valid_user_pages_locked(process_info)) { 2793 WARN(1, "User pages unexpectedly invalid"); 2794 goto unlock_notifier_out; 2795 } 2796 2797 process_info->evicted_bos = evicted_bos = 0; 2798 2799 if (kgd2kfd_resume_mm(mm)) { 2800 pr_err("%s: Failed to resume KFD\n", __func__); 2801 /* No recovery from this failure. Probably the CP is 2802 * hanging. No point trying again. 2803 */ 2804 } 2805 2806 unlock_notifier_out: 2807 mutex_unlock(&process_info->notifier_lock); 2808 unlock_out: 2809 mutex_unlock(&process_info->lock); 2810 2811 /* If validation failed, reschedule another attempt */ 2812 if (evicted_bos) { 2813 queue_delayed_work(system_freezable_wq, 2814 &process_info->restore_userptr_work, 2815 msecs_to_jiffies(AMDGPU_USERPTR_RESTORE_DELAY_MS)); 2816 2817 kfd_smi_event_queue_restore_rescheduled(mm); 2818 } 2819 mmput(mm); 2820 put_task_struct(usertask); 2821 } 2822 2823 static void replace_eviction_fence(struct dma_fence __rcu **ef, 2824 struct dma_fence *new_ef) 2825 { 2826 struct dma_fence *old_ef = rcu_replace_pointer(*ef, new_ef, true 2827 /* protected by process_info->lock */); 2828 2829 /* If we're replacing an unsignaled eviction fence, that fence will 2830 * never be signaled, and if anyone is still waiting on that fence, 2831 * they will hang forever. This should never happen. We should only 2832 * replace the fence in restore_work that only gets scheduled after 2833 * eviction work signaled the fence. 2834 */ 2835 WARN_ONCE(!dma_fence_is_signaled(old_ef), 2836 "Replacing unsignaled eviction fence"); 2837 dma_fence_put(old_ef); 2838 } 2839 2840 /** amdgpu_amdkfd_gpuvm_restore_process_bos - Restore all BOs for the given 2841 * KFD process identified by process_info 2842 * 2843 * @process_info: amdkfd_process_info of the KFD process 2844 * 2845 * After memory eviction, restore thread calls this function. The function 2846 * should be called when the Process is still valid. BO restore involves - 2847 * 2848 * 1. Release old eviction fence and create new one 2849 * 2. Get two copies of PD BO list from all the VMs. Keep one copy as pd_list. 2850 * 3 Use the second PD list and kfd_bo_list to create a list (ctx.list) of 2851 * BOs that need to be reserved. 2852 * 4. Reserve all the BOs 2853 * 5. Validate of PD and PT BOs. 2854 * 6. Validate all KFD BOs using kfd_bo_list and Map them and add new fence 2855 * 7. Add fence to all PD and PT BOs. 2856 * 8. Unreserve all BOs 2857 */ 2858 int amdgpu_amdkfd_gpuvm_restore_process_bos(void *info, struct dma_fence __rcu **ef) 2859 { 2860 struct amdkfd_process_info *process_info = info; 2861 struct amdgpu_vm *peer_vm; 2862 struct kgd_mem *mem; 2863 struct list_head duplicate_save; 2864 struct amdgpu_sync sync_obj; 2865 unsigned long failed_size = 0; 2866 unsigned long total_size = 0; 2867 struct drm_exec exec; 2868 int ret; 2869 2870 INIT_LIST_HEAD(&duplicate_save); 2871 2872 mutex_lock(&process_info->lock); 2873 2874 drm_exec_init(&exec, DRM_EXEC_IGNORE_DUPLICATES, 0); 2875 drm_exec_until_all_locked(&exec) { 2876 list_for_each_entry(peer_vm, &process_info->vm_list_head, 2877 vm_list_node) { 2878 ret = amdgpu_vm_lock_pd(peer_vm, &exec, 2); 2879 drm_exec_retry_on_contention(&exec); 2880 if (unlikely(ret)) { 2881 pr_err("Locking VM PD failed, ret: %d\n", ret); 2882 goto ttm_reserve_fail; 2883 } 2884 } 2885 2886 /* Reserve all BOs and page tables/directory. Add all BOs from 2887 * kfd_bo_list to ctx.list 2888 */ 2889 list_for_each_entry(mem, &process_info->kfd_bo_list, 2890 validate_list) { 2891 struct drm_gem_object *gobj; 2892 2893 gobj = &mem->bo->tbo.base; 2894 ret = drm_exec_prepare_obj(&exec, gobj, 1); 2895 drm_exec_retry_on_contention(&exec); 2896 if (unlikely(ret)) { 2897 pr_err("drm_exec_prepare_obj failed, ret: %d\n", ret); 2898 goto ttm_reserve_fail; 2899 } 2900 } 2901 } 2902 2903 amdgpu_sync_create(&sync_obj); 2904 2905 /* Validate BOs managed by KFD */ 2906 list_for_each_entry(mem, &process_info->kfd_bo_list, 2907 validate_list) { 2908 2909 struct amdgpu_bo *bo = mem->bo; 2910 uint32_t domain = mem->domain; 2911 struct dma_resv_iter cursor; 2912 struct dma_fence *fence; 2913 2914 total_size += amdgpu_bo_size(bo); 2915 2916 ret = amdgpu_amdkfd_bo_validate(bo, domain, false); 2917 if (ret) { 2918 pr_debug("Memory eviction: Validate BOs failed\n"); 2919 failed_size += amdgpu_bo_size(bo); 2920 ret = amdgpu_amdkfd_bo_validate(bo, 2921 AMDGPU_GEM_DOMAIN_GTT, false); 2922 if (ret) { 2923 pr_debug("Memory eviction: Try again\n"); 2924 goto validate_map_fail; 2925 } 2926 } 2927 dma_resv_for_each_fence(&cursor, bo->tbo.base.resv, 2928 DMA_RESV_USAGE_KERNEL, fence) { 2929 ret = amdgpu_sync_fence(&sync_obj, fence, GFP_KERNEL); 2930 if (ret) { 2931 pr_debug("Memory eviction: Sync BO fence failed. Try again\n"); 2932 goto validate_map_fail; 2933 } 2934 } 2935 } 2936 2937 if (failed_size) 2938 pr_debug("0x%lx/0x%lx in system\n", failed_size, total_size); 2939 2940 /* Validate PDs, PTs and evicted DMABuf imports last. Otherwise BO 2941 * validations above would invalidate DMABuf imports again. 2942 */ 2943 ret = process_validate_vms(process_info, &exec.ticket); 2944 if (ret) { 2945 pr_debug("Validating VMs failed, ret: %d\n", ret); 2946 goto validate_map_fail; 2947 } 2948 2949 /* Update mappings managed by KFD. */ 2950 list_for_each_entry(mem, &process_info->kfd_bo_list, 2951 validate_list) { 2952 struct kfd_mem_attachment *attachment; 2953 2954 list_for_each_entry(attachment, &mem->attachments, list) { 2955 if (!attachment->is_mapped) 2956 continue; 2957 2958 kfd_mem_dmaunmap_attachment(mem, attachment); 2959 ret = update_gpuvm_pte(mem, attachment, &sync_obj); 2960 if (ret) { 2961 pr_debug("Memory eviction: update PTE failed. Try again\n"); 2962 goto validate_map_fail; 2963 } 2964 } 2965 } 2966 2967 /* Update mappings not managed by KFD */ 2968 list_for_each_entry(peer_vm, &process_info->vm_list_head, 2969 vm_list_node) { 2970 struct amdgpu_device *adev = amdgpu_ttm_adev( 2971 peer_vm->root.bo->tbo.bdev); 2972 2973 struct amdgpu_fpriv *fpriv = 2974 container_of(peer_vm, struct amdgpu_fpriv, vm); 2975 2976 ret = amdgpu_vm_bo_update(adev, fpriv->prt_va, false); 2977 if (ret) { 2978 dev_dbg(adev->dev, 2979 "Memory eviction: handle PRT moved failed, pid %8d. Try again.\n", 2980 pid_nr(process_info->pid)); 2981 goto validate_map_fail; 2982 } 2983 2984 ret = amdgpu_vm_handle_moved(adev, peer_vm, &exec.ticket); 2985 if (ret) { 2986 dev_dbg(adev->dev, 2987 "Memory eviction: handle moved failed, pid %8d. Try again.\n", 2988 pid_nr(process_info->pid)); 2989 goto validate_map_fail; 2990 } 2991 } 2992 2993 /* Update page directories */ 2994 ret = process_update_pds(process_info, &sync_obj); 2995 if (ret) { 2996 pr_debug("Memory eviction: update PDs failed. Try again\n"); 2997 goto validate_map_fail; 2998 } 2999 3000 /* Sync with fences on all the page tables. They implicitly depend on any 3001 * move fences from amdgpu_vm_handle_moved above. 3002 */ 3003 ret = process_sync_pds_resv(process_info, &sync_obj); 3004 if (ret) { 3005 pr_debug("Memory eviction: Failed to sync to PD BO moving fence. Try again\n"); 3006 goto validate_map_fail; 3007 } 3008 3009 /* Wait for validate and PT updates to finish */ 3010 amdgpu_sync_wait(&sync_obj, false); 3011 3012 /* The old eviction fence may be unsignaled if restore happens 3013 * after a GPU reset or suspend/resume. Keep the old fence in that 3014 * case. Otherwise release the old eviction fence and create new 3015 * one, because fence only goes from unsignaled to signaled once 3016 * and cannot be reused. Use context and mm from the old fence. 3017 * 3018 * If an old eviction fence signals after this check, that's OK. 3019 * Anyone signaling an eviction fence must stop the queues first 3020 * and schedule another restore worker. 3021 */ 3022 if (dma_fence_is_signaled(&process_info->eviction_fence->base)) { 3023 struct amdgpu_amdkfd_fence *new_fence = 3024 amdgpu_amdkfd_fence_create( 3025 process_info->eviction_fence->base.context, 3026 process_info->eviction_fence->mm, 3027 NULL); 3028 3029 if (!new_fence) { 3030 pr_err("Failed to create eviction fence\n"); 3031 ret = -ENOMEM; 3032 goto validate_map_fail; 3033 } 3034 dma_fence_put(&process_info->eviction_fence->base); 3035 process_info->eviction_fence = new_fence; 3036 replace_eviction_fence(ef, dma_fence_get(&new_fence->base)); 3037 } else { 3038 WARN_ONCE(*ef != &process_info->eviction_fence->base, 3039 "KFD eviction fence doesn't match KGD process_info"); 3040 } 3041 3042 /* Attach new eviction fence to all BOs except pinned ones */ 3043 list_for_each_entry(mem, &process_info->kfd_bo_list, validate_list) { 3044 if (mem->bo->tbo.pin_count) 3045 continue; 3046 3047 dma_resv_add_fence(mem->bo->tbo.base.resv, 3048 &process_info->eviction_fence->base, 3049 DMA_RESV_USAGE_BOOKKEEP); 3050 } 3051 /* Attach eviction fence to PD / PT BOs and DMABuf imports */ 3052 list_for_each_entry(peer_vm, &process_info->vm_list_head, 3053 vm_list_node) { 3054 struct amdgpu_bo *bo = peer_vm->root.bo; 3055 3056 dma_resv_add_fence(bo->tbo.base.resv, 3057 &process_info->eviction_fence->base, 3058 DMA_RESV_USAGE_BOOKKEEP); 3059 } 3060 3061 validate_map_fail: 3062 amdgpu_sync_free(&sync_obj); 3063 ttm_reserve_fail: 3064 drm_exec_fini(&exec); 3065 mutex_unlock(&process_info->lock); 3066 return ret; 3067 } 3068 3069 int amdgpu_amdkfd_add_gws_to_process(void *info, void *gws, struct kgd_mem **mem) 3070 { 3071 struct amdkfd_process_info *process_info = (struct amdkfd_process_info *)info; 3072 struct amdgpu_bo *gws_bo = (struct amdgpu_bo *)gws; 3073 int ret; 3074 3075 if (!info || !gws) 3076 return -EINVAL; 3077 3078 *mem = kzalloc(sizeof(struct kgd_mem), GFP_KERNEL); 3079 if (!*mem) 3080 return -ENOMEM; 3081 3082 mutex_init(&(*mem)->lock); 3083 INIT_LIST_HEAD(&(*mem)->attachments); 3084 (*mem)->bo = amdgpu_bo_ref(gws_bo); 3085 (*mem)->domain = AMDGPU_GEM_DOMAIN_GWS; 3086 (*mem)->process_info = process_info; 3087 add_kgd_mem_to_kfd_bo_list(*mem, process_info, false); 3088 amdgpu_sync_create(&(*mem)->sync); 3089 3090 3091 /* Validate gws bo the first time it is added to process */ 3092 mutex_lock(&(*mem)->process_info->lock); 3093 ret = amdgpu_bo_reserve(gws_bo, false); 3094 if (unlikely(ret)) { 3095 pr_err("Reserve gws bo failed %d\n", ret); 3096 goto bo_reservation_failure; 3097 } 3098 3099 ret = amdgpu_amdkfd_bo_validate(gws_bo, AMDGPU_GEM_DOMAIN_GWS, true); 3100 if (ret) { 3101 pr_err("GWS BO validate failed %d\n", ret); 3102 goto bo_validation_failure; 3103 } 3104 /* GWS resource is shared b/t amdgpu and amdkfd 3105 * Add process eviction fence to bo so they can 3106 * evict each other. 3107 */ 3108 ret = dma_resv_reserve_fences(gws_bo->tbo.base.resv, 1); 3109 if (ret) 3110 goto reserve_shared_fail; 3111 dma_resv_add_fence(gws_bo->tbo.base.resv, 3112 &process_info->eviction_fence->base, 3113 DMA_RESV_USAGE_BOOKKEEP); 3114 amdgpu_bo_unreserve(gws_bo); 3115 mutex_unlock(&(*mem)->process_info->lock); 3116 3117 return ret; 3118 3119 reserve_shared_fail: 3120 bo_validation_failure: 3121 amdgpu_bo_unreserve(gws_bo); 3122 bo_reservation_failure: 3123 mutex_unlock(&(*mem)->process_info->lock); 3124 amdgpu_sync_free(&(*mem)->sync); 3125 remove_kgd_mem_from_kfd_bo_list(*mem, process_info); 3126 amdgpu_bo_unref(&gws_bo); 3127 mutex_destroy(&(*mem)->lock); 3128 kfree(*mem); 3129 *mem = NULL; 3130 return ret; 3131 } 3132 3133 int amdgpu_amdkfd_remove_gws_from_process(void *info, void *mem) 3134 { 3135 int ret; 3136 struct amdkfd_process_info *process_info = (struct amdkfd_process_info *)info; 3137 struct kgd_mem *kgd_mem = (struct kgd_mem *)mem; 3138 struct amdgpu_bo *gws_bo = kgd_mem->bo; 3139 3140 /* Remove BO from process's validate list so restore worker won't touch 3141 * it anymore 3142 */ 3143 remove_kgd_mem_from_kfd_bo_list(kgd_mem, process_info); 3144 3145 ret = amdgpu_bo_reserve(gws_bo, false); 3146 if (unlikely(ret)) { 3147 pr_err("Reserve gws bo failed %d\n", ret); 3148 //TODO add BO back to validate_list? 3149 return ret; 3150 } 3151 amdgpu_amdkfd_remove_eviction_fence(gws_bo, 3152 process_info->eviction_fence); 3153 amdgpu_bo_unreserve(gws_bo); 3154 amdgpu_sync_free(&kgd_mem->sync); 3155 amdgpu_bo_unref(&gws_bo); 3156 mutex_destroy(&kgd_mem->lock); 3157 kfree(mem); 3158 return 0; 3159 } 3160 3161 /* Returns GPU-specific tiling mode information */ 3162 int amdgpu_amdkfd_get_tile_config(struct amdgpu_device *adev, 3163 struct tile_config *config) 3164 { 3165 config->gb_addr_config = adev->gfx.config.gb_addr_config; 3166 config->tile_config_ptr = adev->gfx.config.tile_mode_array; 3167 config->num_tile_configs = 3168 ARRAY_SIZE(adev->gfx.config.tile_mode_array); 3169 config->macro_tile_config_ptr = 3170 adev->gfx.config.macrotile_mode_array; 3171 config->num_macro_tile_configs = 3172 ARRAY_SIZE(adev->gfx.config.macrotile_mode_array); 3173 3174 /* Those values are not set from GFX9 onwards */ 3175 config->num_banks = adev->gfx.config.num_banks; 3176 config->num_ranks = adev->gfx.config.num_ranks; 3177 3178 return 0; 3179 } 3180 3181 bool amdgpu_amdkfd_bo_mapped_to_dev(void *drm_priv, struct kgd_mem *mem) 3182 { 3183 struct amdgpu_vm *vm = drm_priv_to_vm(drm_priv); 3184 struct kfd_mem_attachment *entry; 3185 3186 list_for_each_entry(entry, &mem->attachments, list) { 3187 if (entry->is_mapped && entry->bo_va->base.vm == vm) 3188 return true; 3189 } 3190 return false; 3191 } 3192 3193 #if defined(CONFIG_DEBUG_FS) 3194 3195 int kfd_debugfs_kfd_mem_limits(struct seq_file *m, void *data) 3196 { 3197 3198 spin_lock(&kfd_mem_limit.mem_limit_lock); 3199 seq_printf(m, "System mem used %lldM out of %lluM\n", 3200 (kfd_mem_limit.system_mem_used >> 20), 3201 (kfd_mem_limit.max_system_mem_limit >> 20)); 3202 seq_printf(m, "TTM mem used %lldM out of %lluM\n", 3203 (kfd_mem_limit.ttm_mem_used >> 20), 3204 (kfd_mem_limit.max_ttm_mem_limit >> 20)); 3205 spin_unlock(&kfd_mem_limit.mem_limit_lock); 3206 3207 return 0; 3208 } 3209 3210 #endif 3211