xref: /linux/drivers/gpu/drm/amd/amdgpu/amdgpu_amdkfd_gfx_v9.c (revision bfd5bb6f90af092aa345b15cd78143956a13c2a8)
1 /*
2  * Copyright 2014-2018 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 
23 #define pr_fmt(fmt) "kfd2kgd: " fmt
24 
25 #include <linux/module.h>
26 #include <linux/fdtable.h>
27 #include <linux/uaccess.h>
28 #include <linux/firmware.h>
29 #include <drm/drmP.h>
30 #include "amdgpu.h"
31 #include "amdgpu_amdkfd.h"
32 #include "amdgpu_ucode.h"
33 #include "soc15_hw_ip.h"
34 #include "gc/gc_9_0_offset.h"
35 #include "gc/gc_9_0_sh_mask.h"
36 #include "vega10_enum.h"
37 #include "sdma0/sdma0_4_0_offset.h"
38 #include "sdma0/sdma0_4_0_sh_mask.h"
39 #include "sdma1/sdma1_4_0_offset.h"
40 #include "sdma1/sdma1_4_0_sh_mask.h"
41 #include "athub/athub_1_0_offset.h"
42 #include "athub/athub_1_0_sh_mask.h"
43 #include "oss/osssys_4_0_offset.h"
44 #include "oss/osssys_4_0_sh_mask.h"
45 #include "soc15_common.h"
46 #include "v9_structs.h"
47 #include "soc15.h"
48 #include "soc15d.h"
49 
50 /* HACK: MMHUB and GC both have VM-related register with the same
51  * names but different offsets. Define the MMHUB register we need here
52  * with a prefix. A proper solution would be to move the functions
53  * programming these registers into gfx_v9_0.c and mmhub_v1_0.c
54  * respectively.
55  */
56 #define mmMMHUB_VM_INVALIDATE_ENG16_REQ				0x06f3
57 #define mmMMHUB_VM_INVALIDATE_ENG16_REQ_BASE_IDX		0
58 
59 #define mmMMHUB_VM_INVALIDATE_ENG16_ACK				0x0705
60 #define mmMMHUB_VM_INVALIDATE_ENG16_ACK_BASE_IDX		0
61 
62 #define mmMMHUB_VM_CONTEXT0_PAGE_TABLE_BASE_ADDR_LO32		0x072b
63 #define mmMMHUB_VM_CONTEXT0_PAGE_TABLE_BASE_ADDR_LO32_BASE_IDX	0
64 #define mmMMHUB_VM_CONTEXT0_PAGE_TABLE_BASE_ADDR_HI32		0x072c
65 #define mmMMHUB_VM_CONTEXT0_PAGE_TABLE_BASE_ADDR_HI32_BASE_IDX	0
66 
67 #define mmMMHUB_VM_CONTEXT0_PAGE_TABLE_START_ADDR_LO32		0x074b
68 #define mmMMHUB_VM_CONTEXT0_PAGE_TABLE_START_ADDR_LO32_BASE_IDX	0
69 #define mmMMHUB_VM_CONTEXT0_PAGE_TABLE_START_ADDR_HI32		0x074c
70 #define mmMMHUB_VM_CONTEXT0_PAGE_TABLE_START_ADDR_HI32_BASE_IDX	0
71 
72 #define mmMMHUB_VM_CONTEXT0_PAGE_TABLE_END_ADDR_LO32		0x076b
73 #define mmMMHUB_VM_CONTEXT0_PAGE_TABLE_END_ADDR_LO32_BASE_IDX	0
74 #define mmMMHUB_VM_CONTEXT0_PAGE_TABLE_END_ADDR_HI32		0x076c
75 #define mmMMHUB_VM_CONTEXT0_PAGE_TABLE_END_ADDR_HI32_BASE_IDX	0
76 
77 #define mmMMHUB_VM_INVALIDATE_ENG16_ADDR_RANGE_LO32		0x0727
78 #define mmMMHUB_VM_INVALIDATE_ENG16_ADDR_RANGE_LO32_BASE_IDX	0
79 #define mmMMHUB_VM_INVALIDATE_ENG16_ADDR_RANGE_HI32		0x0728
80 #define mmMMHUB_VM_INVALIDATE_ENG16_ADDR_RANGE_HI32_BASE_IDX	0
81 
82 #define V9_PIPE_PER_MEC		(4)
83 #define V9_QUEUES_PER_PIPE_MEC	(8)
84 
85 enum hqd_dequeue_request_type {
86 	NO_ACTION = 0,
87 	DRAIN_PIPE,
88 	RESET_WAVES
89 };
90 
91 /*
92  * Register access functions
93  */
94 
95 static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
96 		uint32_t sh_mem_config,
97 		uint32_t sh_mem_ape1_base, uint32_t sh_mem_ape1_limit,
98 		uint32_t sh_mem_bases);
99 static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
100 		unsigned int vmid);
101 static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id);
102 static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
103 			uint32_t queue_id, uint32_t __user *wptr,
104 			uint32_t wptr_shift, uint32_t wptr_mask,
105 			struct mm_struct *mm);
106 static int kgd_hqd_dump(struct kgd_dev *kgd,
107 			uint32_t pipe_id, uint32_t queue_id,
108 			uint32_t (**dump)[2], uint32_t *n_regs);
109 static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd,
110 			     uint32_t __user *wptr, struct mm_struct *mm);
111 static int kgd_hqd_sdma_dump(struct kgd_dev *kgd,
112 			     uint32_t engine_id, uint32_t queue_id,
113 			     uint32_t (**dump)[2], uint32_t *n_regs);
114 static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
115 		uint32_t pipe_id, uint32_t queue_id);
116 static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd);
117 static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd,
118 				enum kfd_preempt_type reset_type,
119 				unsigned int utimeout, uint32_t pipe_id,
120 				uint32_t queue_id);
121 static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
122 				unsigned int utimeout);
123 static int kgd_address_watch_disable(struct kgd_dev *kgd);
124 static int kgd_address_watch_execute(struct kgd_dev *kgd,
125 					unsigned int watch_point_id,
126 					uint32_t cntl_val,
127 					uint32_t addr_hi,
128 					uint32_t addr_lo);
129 static int kgd_wave_control_execute(struct kgd_dev *kgd,
130 					uint32_t gfx_index_val,
131 					uint32_t sq_cmd);
132 static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
133 					unsigned int watch_point_id,
134 					unsigned int reg_offset);
135 
136 static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd,
137 		uint8_t vmid);
138 static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
139 		uint8_t vmid);
140 static void set_vm_context_page_table_base(struct kgd_dev *kgd, uint32_t vmid,
141 		uint32_t page_table_base);
142 static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type);
143 static void set_scratch_backing_va(struct kgd_dev *kgd,
144 					uint64_t va, uint32_t vmid);
145 static int invalidate_tlbs(struct kgd_dev *kgd, uint16_t pasid);
146 static int invalidate_tlbs_vmid(struct kgd_dev *kgd, uint16_t vmid);
147 
148 /* Because of REG_GET_FIELD() being used, we put this function in the
149  * asic specific file.
150  */
151 static int amdgpu_amdkfd_get_tile_config(struct kgd_dev *kgd,
152 		struct tile_config *config)
153 {
154 	struct amdgpu_device *adev = (struct amdgpu_device *)kgd;
155 
156 	config->gb_addr_config = adev->gfx.config.gb_addr_config;
157 
158 	config->tile_config_ptr = adev->gfx.config.tile_mode_array;
159 	config->num_tile_configs =
160 			ARRAY_SIZE(adev->gfx.config.tile_mode_array);
161 	config->macro_tile_config_ptr =
162 			adev->gfx.config.macrotile_mode_array;
163 	config->num_macro_tile_configs =
164 			ARRAY_SIZE(adev->gfx.config.macrotile_mode_array);
165 
166 	return 0;
167 }
168 
169 static const struct kfd2kgd_calls kfd2kgd = {
170 	.init_gtt_mem_allocation = alloc_gtt_mem,
171 	.free_gtt_mem = free_gtt_mem,
172 	.get_local_mem_info = get_local_mem_info,
173 	.get_gpu_clock_counter = get_gpu_clock_counter,
174 	.get_max_engine_clock_in_mhz = get_max_engine_clock_in_mhz,
175 	.alloc_pasid = amdgpu_pasid_alloc,
176 	.free_pasid = amdgpu_pasid_free,
177 	.program_sh_mem_settings = kgd_program_sh_mem_settings,
178 	.set_pasid_vmid_mapping = kgd_set_pasid_vmid_mapping,
179 	.init_interrupts = kgd_init_interrupts,
180 	.hqd_load = kgd_hqd_load,
181 	.hqd_sdma_load = kgd_hqd_sdma_load,
182 	.hqd_dump = kgd_hqd_dump,
183 	.hqd_sdma_dump = kgd_hqd_sdma_dump,
184 	.hqd_is_occupied = kgd_hqd_is_occupied,
185 	.hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied,
186 	.hqd_destroy = kgd_hqd_destroy,
187 	.hqd_sdma_destroy = kgd_hqd_sdma_destroy,
188 	.address_watch_disable = kgd_address_watch_disable,
189 	.address_watch_execute = kgd_address_watch_execute,
190 	.wave_control_execute = kgd_wave_control_execute,
191 	.address_watch_get_offset = kgd_address_watch_get_offset,
192 	.get_atc_vmid_pasid_mapping_pasid =
193 			get_atc_vmid_pasid_mapping_pasid,
194 	.get_atc_vmid_pasid_mapping_valid =
195 			get_atc_vmid_pasid_mapping_valid,
196 	.get_fw_version = get_fw_version,
197 	.set_scratch_backing_va = set_scratch_backing_va,
198 	.get_tile_config = amdgpu_amdkfd_get_tile_config,
199 	.get_cu_info = get_cu_info,
200 	.get_vram_usage = amdgpu_amdkfd_get_vram_usage,
201 	.create_process_vm = amdgpu_amdkfd_gpuvm_create_process_vm,
202 	.acquire_process_vm = amdgpu_amdkfd_gpuvm_acquire_process_vm,
203 	.destroy_process_vm = amdgpu_amdkfd_gpuvm_destroy_process_vm,
204 	.get_process_page_dir = amdgpu_amdkfd_gpuvm_get_process_page_dir,
205 	.set_vm_context_page_table_base = set_vm_context_page_table_base,
206 	.alloc_memory_of_gpu = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu,
207 	.free_memory_of_gpu = amdgpu_amdkfd_gpuvm_free_memory_of_gpu,
208 	.map_memory_to_gpu = amdgpu_amdkfd_gpuvm_map_memory_to_gpu,
209 	.unmap_memory_to_gpu = amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu,
210 	.sync_memory = amdgpu_amdkfd_gpuvm_sync_memory,
211 	.map_gtt_bo_to_kernel = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel,
212 	.restore_process_bos = amdgpu_amdkfd_gpuvm_restore_process_bos,
213 	.invalidate_tlbs = invalidate_tlbs,
214 	.invalidate_tlbs_vmid = invalidate_tlbs_vmid,
215 	.submit_ib = amdgpu_amdkfd_submit_ib,
216 };
217 
218 struct kfd2kgd_calls *amdgpu_amdkfd_gfx_9_0_get_functions(void)
219 {
220 	return (struct kfd2kgd_calls *)&kfd2kgd;
221 }
222 
223 static inline struct amdgpu_device *get_amdgpu_device(struct kgd_dev *kgd)
224 {
225 	return (struct amdgpu_device *)kgd;
226 }
227 
228 static void lock_srbm(struct kgd_dev *kgd, uint32_t mec, uint32_t pipe,
229 			uint32_t queue, uint32_t vmid)
230 {
231 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
232 
233 	mutex_lock(&adev->srbm_mutex);
234 	soc15_grbm_select(adev, mec, pipe, queue, vmid);
235 }
236 
237 static void unlock_srbm(struct kgd_dev *kgd)
238 {
239 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
240 
241 	soc15_grbm_select(adev, 0, 0, 0, 0);
242 	mutex_unlock(&adev->srbm_mutex);
243 }
244 
245 static void acquire_queue(struct kgd_dev *kgd, uint32_t pipe_id,
246 				uint32_t queue_id)
247 {
248 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
249 
250 	uint32_t mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
251 	uint32_t pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
252 
253 	lock_srbm(kgd, mec, pipe, queue_id, 0);
254 }
255 
256 static uint32_t get_queue_mask(struct amdgpu_device *adev,
257 			       uint32_t pipe_id, uint32_t queue_id)
258 {
259 	unsigned int bit = (pipe_id * adev->gfx.mec.num_queue_per_pipe +
260 			    queue_id) & 31;
261 
262 	return ((uint32_t)1) << bit;
263 }
264 
265 static void release_queue(struct kgd_dev *kgd)
266 {
267 	unlock_srbm(kgd);
268 }
269 
270 static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
271 					uint32_t sh_mem_config,
272 					uint32_t sh_mem_ape1_base,
273 					uint32_t sh_mem_ape1_limit,
274 					uint32_t sh_mem_bases)
275 {
276 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
277 
278 	lock_srbm(kgd, 0, 0, 0, vmid);
279 
280 	WREG32(SOC15_REG_OFFSET(GC, 0, mmSH_MEM_CONFIG), sh_mem_config);
281 	WREG32(SOC15_REG_OFFSET(GC, 0, mmSH_MEM_BASES), sh_mem_bases);
282 	/* APE1 no longer exists on GFX9 */
283 
284 	unlock_srbm(kgd);
285 }
286 
287 static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
288 					unsigned int vmid)
289 {
290 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
291 
292 	/*
293 	 * We have to assume that there is no outstanding mapping.
294 	 * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0 because
295 	 * a mapping is in progress or because a mapping finished
296 	 * and the SW cleared it.
297 	 * So the protocol is to always wait & clear.
298 	 */
299 	uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
300 			ATC_VMID0_PASID_MAPPING__VALID_MASK;
301 
302 	/*
303 	 * need to do this twice, once for gfx and once for mmhub
304 	 * for ATC add 16 to VMID for mmhub, for IH different registers.
305 	 * ATC_VMID0..15 registers are separate from ATC_VMID16..31.
306 	 */
307 
308 	WREG32(SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID0_PASID_MAPPING) + vmid,
309 	       pasid_mapping);
310 
311 	while (!(RREG32(SOC15_REG_OFFSET(
312 				ATHUB, 0,
313 				mmATC_VMID_PASID_MAPPING_UPDATE_STATUS)) &
314 		 (1U << vmid)))
315 		cpu_relax();
316 
317 	WREG32(SOC15_REG_OFFSET(ATHUB, 0,
318 				mmATC_VMID_PASID_MAPPING_UPDATE_STATUS),
319 	       1U << vmid);
320 
321 	/* Mapping vmid to pasid also for IH block */
322 	WREG32(SOC15_REG_OFFSET(OSSSYS, 0, mmIH_VMID_0_LUT) + vmid,
323 	       pasid_mapping);
324 
325 	WREG32(SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID16_PASID_MAPPING) + vmid,
326 	       pasid_mapping);
327 
328 	while (!(RREG32(SOC15_REG_OFFSET(
329 				ATHUB, 0,
330 				mmATC_VMID_PASID_MAPPING_UPDATE_STATUS)) &
331 		 (1U << (vmid + 16))))
332 		cpu_relax();
333 
334 	WREG32(SOC15_REG_OFFSET(ATHUB, 0,
335 				mmATC_VMID_PASID_MAPPING_UPDATE_STATUS),
336 	       1U << (vmid + 16));
337 
338 	/* Mapping vmid to pasid also for IH block */
339 	WREG32(SOC15_REG_OFFSET(OSSSYS, 0, mmIH_VMID_0_LUT_MM) + vmid,
340 	       pasid_mapping);
341 	return 0;
342 }
343 
344 /* TODO - RING0 form of field is obsolete, seems to date back to SI
345  * but still works
346  */
347 
348 static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id)
349 {
350 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
351 	uint32_t mec;
352 	uint32_t pipe;
353 
354 	mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
355 	pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
356 
357 	lock_srbm(kgd, mec, pipe, 0, 0);
358 
359 	WREG32(SOC15_REG_OFFSET(GC, 0, mmCPC_INT_CNTL),
360 		CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK |
361 		CP_INT_CNTL_RING0__OPCODE_ERROR_INT_ENABLE_MASK);
362 
363 	unlock_srbm(kgd);
364 
365 	return 0;
366 }
367 
368 static uint32_t get_sdma_base_addr(struct amdgpu_device *adev,
369 				unsigned int engine_id,
370 				unsigned int queue_id)
371 {
372 	uint32_t base[2] = {
373 		SOC15_REG_OFFSET(SDMA0, 0,
374 				 mmSDMA0_RLC0_RB_CNTL) - mmSDMA0_RLC0_RB_CNTL,
375 		SOC15_REG_OFFSET(SDMA1, 0,
376 				 mmSDMA1_RLC0_RB_CNTL) - mmSDMA1_RLC0_RB_CNTL
377 	};
378 	uint32_t retval;
379 
380 	retval = base[engine_id] + queue_id * (mmSDMA0_RLC1_RB_CNTL -
381 					       mmSDMA0_RLC0_RB_CNTL);
382 
383 	pr_debug("sdma base address: 0x%x\n", retval);
384 
385 	return retval;
386 }
387 
388 static inline struct v9_mqd *get_mqd(void *mqd)
389 {
390 	return (struct v9_mqd *)mqd;
391 }
392 
393 static inline struct v9_sdma_mqd *get_sdma_mqd(void *mqd)
394 {
395 	return (struct v9_sdma_mqd *)mqd;
396 }
397 
398 static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
399 			uint32_t queue_id, uint32_t __user *wptr,
400 			uint32_t wptr_shift, uint32_t wptr_mask,
401 			struct mm_struct *mm)
402 {
403 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
404 	struct v9_mqd *m;
405 	uint32_t *mqd_hqd;
406 	uint32_t reg, hqd_base, data;
407 
408 	m = get_mqd(mqd);
409 
410 	acquire_queue(kgd, pipe_id, queue_id);
411 
412 	/* HIQ is set during driver init period with vmid set to 0*/
413 	if (m->cp_hqd_vmid == 0) {
414 		uint32_t value, mec, pipe;
415 
416 		mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
417 		pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
418 
419 		pr_debug("kfd: set HIQ, mec:%d, pipe:%d, queue:%d.\n",
420 			mec, pipe, queue_id);
421 		value = RREG32(SOC15_REG_OFFSET(GC, 0, mmRLC_CP_SCHEDULERS));
422 		value = REG_SET_FIELD(value, RLC_CP_SCHEDULERS, scheduler1,
423 			((mec << 5) | (pipe << 3) | queue_id | 0x80));
424 		WREG32(SOC15_REG_OFFSET(GC, 0, mmRLC_CP_SCHEDULERS), value);
425 	}
426 
427 	/* HQD registers extend from CP_MQD_BASE_ADDR to CP_HQD_EOP_WPTR_MEM. */
428 	mqd_hqd = &m->cp_mqd_base_addr_lo;
429 	hqd_base = SOC15_REG_OFFSET(GC, 0, mmCP_MQD_BASE_ADDR);
430 
431 	for (reg = hqd_base;
432 	     reg <= SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_HI); reg++)
433 		WREG32(reg, mqd_hqd[reg - hqd_base]);
434 
435 
436 	/* Activate doorbell logic before triggering WPTR poll. */
437 	data = REG_SET_FIELD(m->cp_hqd_pq_doorbell_control,
438 			     CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1);
439 	WREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_DOORBELL_CONTROL), data);
440 
441 	if (wptr) {
442 		/* Don't read wptr with get_user because the user
443 		 * context may not be accessible (if this function
444 		 * runs in a work queue). Instead trigger a one-shot
445 		 * polling read from memory in the CP. This assumes
446 		 * that wptr is GPU-accessible in the queue's VMID via
447 		 * ATC or SVM. WPTR==RPTR before starting the poll so
448 		 * the CP starts fetching new commands from the right
449 		 * place.
450 		 *
451 		 * Guessing a 64-bit WPTR from a 32-bit RPTR is a bit
452 		 * tricky. Assume that the queue didn't overflow. The
453 		 * number of valid bits in the 32-bit RPTR depends on
454 		 * the queue size. The remaining bits are taken from
455 		 * the saved 64-bit WPTR. If the WPTR wrapped, add the
456 		 * queue size.
457 		 */
458 		uint32_t queue_size =
459 			2 << REG_GET_FIELD(m->cp_hqd_pq_control,
460 					   CP_HQD_PQ_CONTROL, QUEUE_SIZE);
461 		uint64_t guessed_wptr = m->cp_hqd_pq_rptr & (queue_size - 1);
462 
463 		if ((m->cp_hqd_pq_wptr_lo & (queue_size - 1)) < guessed_wptr)
464 			guessed_wptr += queue_size;
465 		guessed_wptr += m->cp_hqd_pq_wptr_lo & ~(queue_size - 1);
466 		guessed_wptr += (uint64_t)m->cp_hqd_pq_wptr_hi << 32;
467 
468 		WREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_LO),
469 		       lower_32_bits(guessed_wptr));
470 		WREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_HI),
471 		       upper_32_bits(guessed_wptr));
472 		WREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_POLL_ADDR),
473 		       lower_32_bits((uintptr_t)wptr));
474 		WREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_POLL_ADDR_HI),
475 		       upper_32_bits((uintptr_t)wptr));
476 		WREG32(SOC15_REG_OFFSET(GC, 0, mmCP_PQ_WPTR_POLL_CNTL1),
477 		       get_queue_mask(adev, pipe_id, queue_id));
478 	}
479 
480 	/* Start the EOP fetcher */
481 	WREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_EOP_RPTR),
482 	       REG_SET_FIELD(m->cp_hqd_eop_rptr,
483 			     CP_HQD_EOP_RPTR, INIT_FETCHER, 1));
484 
485 	data = REG_SET_FIELD(m->cp_hqd_active, CP_HQD_ACTIVE, ACTIVE, 1);
486 	WREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_ACTIVE), data);
487 
488 	release_queue(kgd);
489 
490 	return 0;
491 }
492 
493 static int kgd_hqd_dump(struct kgd_dev *kgd,
494 			uint32_t pipe_id, uint32_t queue_id,
495 			uint32_t (**dump)[2], uint32_t *n_regs)
496 {
497 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
498 	uint32_t i = 0, reg;
499 #define HQD_N_REGS 56
500 #define DUMP_REG(addr) do {				\
501 		if (WARN_ON_ONCE(i >= HQD_N_REGS))	\
502 			break;				\
503 		(*dump)[i][0] = (addr) << 2;		\
504 		(*dump)[i++][1] = RREG32(addr);		\
505 	} while (0)
506 
507 	*dump = kmalloc_array(HQD_N_REGS * 2, sizeof(uint32_t), GFP_KERNEL);
508 	if (*dump == NULL)
509 		return -ENOMEM;
510 
511 	acquire_queue(kgd, pipe_id, queue_id);
512 
513 	for (reg = SOC15_REG_OFFSET(GC, 0, mmCP_MQD_BASE_ADDR);
514 	     reg <= SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_HI); reg++)
515 		DUMP_REG(reg);
516 
517 	release_queue(kgd);
518 
519 	WARN_ON_ONCE(i != HQD_N_REGS);
520 	*n_regs = i;
521 
522 	return 0;
523 }
524 
525 static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd,
526 			     uint32_t __user *wptr, struct mm_struct *mm)
527 {
528 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
529 	struct v9_sdma_mqd *m;
530 	uint32_t sdma_base_addr, sdmax_gfx_context_cntl;
531 	unsigned long end_jiffies;
532 	uint32_t data;
533 	uint64_t data64;
534 	uint64_t __user *wptr64 = (uint64_t __user *)wptr;
535 
536 	m = get_sdma_mqd(mqd);
537 	sdma_base_addr = get_sdma_base_addr(adev, m->sdma_engine_id,
538 					    m->sdma_queue_id);
539 	sdmax_gfx_context_cntl = m->sdma_engine_id ?
540 		SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_GFX_CONTEXT_CNTL) :
541 		SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_GFX_CONTEXT_CNTL);
542 
543 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL,
544 		m->sdmax_rlcx_rb_cntl & (~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK));
545 
546 	end_jiffies = msecs_to_jiffies(2000) + jiffies;
547 	while (true) {
548 		data = RREG32(sdma_base_addr + mmSDMA0_RLC0_CONTEXT_STATUS);
549 		if (data & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
550 			break;
551 		if (time_after(jiffies, end_jiffies))
552 			return -ETIME;
553 		usleep_range(500, 1000);
554 	}
555 	data = RREG32(sdmax_gfx_context_cntl);
556 	data = REG_SET_FIELD(data, SDMA0_GFX_CONTEXT_CNTL,
557 			     RESUME_CTX, 0);
558 	WREG32(sdmax_gfx_context_cntl, data);
559 
560 	WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL_OFFSET,
561 	       m->sdmax_rlcx_doorbell_offset);
562 
563 	data = REG_SET_FIELD(m->sdmax_rlcx_doorbell, SDMA0_RLC0_DOORBELL,
564 			     ENABLE, 1);
565 	WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL, data);
566 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR, m->sdmax_rlcx_rb_rptr);
567 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_HI,
568 				m->sdmax_rlcx_rb_rptr_hi);
569 
570 	WREG32(sdma_base_addr + mmSDMA0_RLC0_MINOR_PTR_UPDATE, 1);
571 	if (read_user_wptr(mm, wptr64, data64)) {
572 		WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_WPTR,
573 		       lower_32_bits(data64));
574 		WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_WPTR_HI,
575 		       upper_32_bits(data64));
576 	} else {
577 		WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_WPTR,
578 		       m->sdmax_rlcx_rb_rptr);
579 		WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_WPTR_HI,
580 		       m->sdmax_rlcx_rb_rptr_hi);
581 	}
582 	WREG32(sdma_base_addr + mmSDMA0_RLC0_MINOR_PTR_UPDATE, 0);
583 
584 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE, m->sdmax_rlcx_rb_base);
585 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE_HI,
586 			m->sdmax_rlcx_rb_base_hi);
587 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_ADDR_LO,
588 			m->sdmax_rlcx_rb_rptr_addr_lo);
589 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_ADDR_HI,
590 			m->sdmax_rlcx_rb_rptr_addr_hi);
591 
592 	data = REG_SET_FIELD(m->sdmax_rlcx_rb_cntl, SDMA0_RLC0_RB_CNTL,
593 			     RB_ENABLE, 1);
594 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL, data);
595 
596 	return 0;
597 }
598 
599 static int kgd_hqd_sdma_dump(struct kgd_dev *kgd,
600 			     uint32_t engine_id, uint32_t queue_id,
601 			     uint32_t (**dump)[2], uint32_t *n_regs)
602 {
603 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
604 	uint32_t sdma_base_addr = get_sdma_base_addr(adev, engine_id, queue_id);
605 	uint32_t i = 0, reg;
606 #undef HQD_N_REGS
607 #define HQD_N_REGS (19+6+7+10)
608 
609 	*dump = kmalloc_array(HQD_N_REGS * 2, sizeof(uint32_t), GFP_KERNEL);
610 	if (*dump == NULL)
611 		return -ENOMEM;
612 
613 	for (reg = mmSDMA0_RLC0_RB_CNTL; reg <= mmSDMA0_RLC0_DOORBELL; reg++)
614 		DUMP_REG(sdma_base_addr + reg);
615 	for (reg = mmSDMA0_RLC0_STATUS; reg <= mmSDMA0_RLC0_CSA_ADDR_HI; reg++)
616 		DUMP_REG(sdma_base_addr + reg);
617 	for (reg = mmSDMA0_RLC0_IB_SUB_REMAIN;
618 	     reg <= mmSDMA0_RLC0_MINOR_PTR_UPDATE; reg++)
619 		DUMP_REG(sdma_base_addr + reg);
620 	for (reg = mmSDMA0_RLC0_MIDCMD_DATA0;
621 	     reg <= mmSDMA0_RLC0_MIDCMD_CNTL; reg++)
622 		DUMP_REG(sdma_base_addr + reg);
623 
624 	WARN_ON_ONCE(i != HQD_N_REGS);
625 	*n_regs = i;
626 
627 	return 0;
628 }
629 
630 static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
631 				uint32_t pipe_id, uint32_t queue_id)
632 {
633 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
634 	uint32_t act;
635 	bool retval = false;
636 	uint32_t low, high;
637 
638 	acquire_queue(kgd, pipe_id, queue_id);
639 	act = RREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_ACTIVE));
640 	if (act) {
641 		low = lower_32_bits(queue_address >> 8);
642 		high = upper_32_bits(queue_address >> 8);
643 
644 		if (low == RREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_BASE)) &&
645 		   high == RREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_BASE_HI)))
646 			retval = true;
647 	}
648 	release_queue(kgd);
649 	return retval;
650 }
651 
652 static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd)
653 {
654 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
655 	struct v9_sdma_mqd *m;
656 	uint32_t sdma_base_addr;
657 	uint32_t sdma_rlc_rb_cntl;
658 
659 	m = get_sdma_mqd(mqd);
660 	sdma_base_addr = get_sdma_base_addr(adev, m->sdma_engine_id,
661 					    m->sdma_queue_id);
662 
663 	sdma_rlc_rb_cntl = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL);
664 
665 	if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK)
666 		return true;
667 
668 	return false;
669 }
670 
671 static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd,
672 				enum kfd_preempt_type reset_type,
673 				unsigned int utimeout, uint32_t pipe_id,
674 				uint32_t queue_id)
675 {
676 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
677 	enum hqd_dequeue_request_type type;
678 	unsigned long end_jiffies;
679 	uint32_t temp;
680 	struct v9_mqd *m = get_mqd(mqd);
681 
682 	acquire_queue(kgd, pipe_id, queue_id);
683 
684 	if (m->cp_hqd_vmid == 0)
685 		WREG32_FIELD15(GC, 0, RLC_CP_SCHEDULERS, scheduler1, 0);
686 
687 	switch (reset_type) {
688 	case KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN:
689 		type = DRAIN_PIPE;
690 		break;
691 	case KFD_PREEMPT_TYPE_WAVEFRONT_RESET:
692 		type = RESET_WAVES;
693 		break;
694 	default:
695 		type = DRAIN_PIPE;
696 		break;
697 	}
698 
699 	WREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_DEQUEUE_REQUEST), type);
700 
701 	end_jiffies = (utimeout * HZ / 1000) + jiffies;
702 	while (true) {
703 		temp = RREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_ACTIVE));
704 		if (!(temp & CP_HQD_ACTIVE__ACTIVE_MASK))
705 			break;
706 		if (time_after(jiffies, end_jiffies)) {
707 			pr_err("cp queue preemption time out.\n");
708 			release_queue(kgd);
709 			return -ETIME;
710 		}
711 		usleep_range(500, 1000);
712 	}
713 
714 	release_queue(kgd);
715 	return 0;
716 }
717 
718 static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
719 				unsigned int utimeout)
720 {
721 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
722 	struct v9_sdma_mqd *m;
723 	uint32_t sdma_base_addr;
724 	uint32_t temp;
725 	unsigned long end_jiffies = (utimeout * HZ / 1000) + jiffies;
726 
727 	m = get_sdma_mqd(mqd);
728 	sdma_base_addr = get_sdma_base_addr(adev, m->sdma_engine_id,
729 					    m->sdma_queue_id);
730 
731 	temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL);
732 	temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK;
733 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL, temp);
734 
735 	while (true) {
736 		temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_CONTEXT_STATUS);
737 		if (temp & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
738 			break;
739 		if (time_after(jiffies, end_jiffies))
740 			return -ETIME;
741 		usleep_range(500, 1000);
742 	}
743 
744 	WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL, 0);
745 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL,
746 		RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL) |
747 		SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK);
748 
749 	m->sdmax_rlcx_rb_rptr = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR);
750 	m->sdmax_rlcx_rb_rptr_hi =
751 		RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_HI);
752 
753 	return 0;
754 }
755 
756 static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd,
757 							uint8_t vmid)
758 {
759 	uint32_t reg;
760 	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
761 
762 	reg = RREG32(SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID0_PASID_MAPPING)
763 		     + vmid);
764 	return reg & ATC_VMID0_PASID_MAPPING__VALID_MASK;
765 }
766 
767 static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
768 								uint8_t vmid)
769 {
770 	uint32_t reg;
771 	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
772 
773 	reg = RREG32(SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID0_PASID_MAPPING)
774 		     + vmid);
775 	return reg & ATC_VMID0_PASID_MAPPING__PASID_MASK;
776 }
777 
778 static void write_vmid_invalidate_request(struct kgd_dev *kgd, uint8_t vmid)
779 {
780 	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
781 	uint32_t req = (1 << vmid) |
782 		(0 << VM_INVALIDATE_ENG16_REQ__FLUSH_TYPE__SHIFT) | /* legacy */
783 		VM_INVALIDATE_ENG16_REQ__INVALIDATE_L2_PTES_MASK |
784 		VM_INVALIDATE_ENG16_REQ__INVALIDATE_L2_PDE0_MASK |
785 		VM_INVALIDATE_ENG16_REQ__INVALIDATE_L2_PDE1_MASK |
786 		VM_INVALIDATE_ENG16_REQ__INVALIDATE_L2_PDE2_MASK |
787 		VM_INVALIDATE_ENG16_REQ__INVALIDATE_L1_PTES_MASK;
788 
789 	mutex_lock(&adev->srbm_mutex);
790 
791 	/* Use legacy mode tlb invalidation.
792 	 *
793 	 * Currently on Raven the code below is broken for anything but
794 	 * legacy mode due to a MMHUB power gating problem. A workaround
795 	 * is for MMHUB to wait until the condition PER_VMID_INVALIDATE_REQ
796 	 * == PER_VMID_INVALIDATE_ACK instead of simply waiting for the ack
797 	 * bit.
798 	 *
799 	 * TODO 1: agree on the right set of invalidation registers for
800 	 * KFD use. Use the last one for now. Invalidate both GC and
801 	 * MMHUB.
802 	 *
803 	 * TODO 2: support range-based invalidation, requires kfg2kgd
804 	 * interface change
805 	 */
806 	WREG32(SOC15_REG_OFFSET(GC, 0, mmVM_INVALIDATE_ENG16_ADDR_RANGE_LO32),
807 				0xffffffff);
808 	WREG32(SOC15_REG_OFFSET(GC, 0, mmVM_INVALIDATE_ENG16_ADDR_RANGE_HI32),
809 				0x0000001f);
810 
811 	WREG32(SOC15_REG_OFFSET(MMHUB, 0,
812 				mmMMHUB_VM_INVALIDATE_ENG16_ADDR_RANGE_LO32),
813 				0xffffffff);
814 	WREG32(SOC15_REG_OFFSET(MMHUB, 0,
815 				mmMMHUB_VM_INVALIDATE_ENG16_ADDR_RANGE_HI32),
816 				0x0000001f);
817 
818 	WREG32(SOC15_REG_OFFSET(GC, 0, mmVM_INVALIDATE_ENG16_REQ), req);
819 
820 	WREG32(SOC15_REG_OFFSET(MMHUB, 0, mmMMHUB_VM_INVALIDATE_ENG16_REQ),
821 				req);
822 
823 	while (!(RREG32(SOC15_REG_OFFSET(GC, 0, mmVM_INVALIDATE_ENG16_ACK)) &
824 					(1 << vmid)))
825 		cpu_relax();
826 
827 	while (!(RREG32(SOC15_REG_OFFSET(MMHUB, 0,
828 					mmMMHUB_VM_INVALIDATE_ENG16_ACK)) &
829 					(1 << vmid)))
830 		cpu_relax();
831 
832 	mutex_unlock(&adev->srbm_mutex);
833 
834 }
835 
836 static int invalidate_tlbs_with_kiq(struct amdgpu_device *adev, uint16_t pasid)
837 {
838 	signed long r;
839 	uint32_t seq;
840 	struct amdgpu_ring *ring = &adev->gfx.kiq.ring;
841 
842 	spin_lock(&adev->gfx.kiq.ring_lock);
843 	amdgpu_ring_alloc(ring, 12); /* fence + invalidate_tlbs package*/
844 	amdgpu_ring_write(ring, PACKET3(PACKET3_INVALIDATE_TLBS, 0));
845 	amdgpu_ring_write(ring,
846 			PACKET3_INVALIDATE_TLBS_DST_SEL(1) |
847 			PACKET3_INVALIDATE_TLBS_ALL_HUB(1) |
848 			PACKET3_INVALIDATE_TLBS_PASID(pasid) |
849 			PACKET3_INVALIDATE_TLBS_FLUSH_TYPE(0)); /* legacy */
850 	amdgpu_fence_emit_polling(ring, &seq);
851 	amdgpu_ring_commit(ring);
852 	spin_unlock(&adev->gfx.kiq.ring_lock);
853 
854 	r = amdgpu_fence_wait_polling(ring, seq, adev->usec_timeout);
855 	if (r < 1) {
856 		DRM_ERROR("wait for kiq fence error: %ld.\n", r);
857 		return -ETIME;
858 	}
859 
860 	return 0;
861 }
862 
863 static int invalidate_tlbs(struct kgd_dev *kgd, uint16_t pasid)
864 {
865 	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
866 	int vmid;
867 	struct amdgpu_ring *ring = &adev->gfx.kiq.ring;
868 
869 	if (ring->ready)
870 		return invalidate_tlbs_with_kiq(adev, pasid);
871 
872 	for (vmid = 0; vmid < 16; vmid++) {
873 		if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid))
874 			continue;
875 		if (get_atc_vmid_pasid_mapping_valid(kgd, vmid)) {
876 			if (get_atc_vmid_pasid_mapping_pasid(kgd, vmid)
877 				== pasid) {
878 				write_vmid_invalidate_request(kgd, vmid);
879 				break;
880 			}
881 		}
882 	}
883 
884 	return 0;
885 }
886 
887 static int invalidate_tlbs_vmid(struct kgd_dev *kgd, uint16_t vmid)
888 {
889 	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
890 
891 	if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) {
892 		pr_err("non kfd vmid %d\n", vmid);
893 		return 0;
894 	}
895 
896 	write_vmid_invalidate_request(kgd, vmid);
897 	return 0;
898 }
899 
900 static int kgd_address_watch_disable(struct kgd_dev *kgd)
901 {
902 	return 0;
903 }
904 
905 static int kgd_address_watch_execute(struct kgd_dev *kgd,
906 					unsigned int watch_point_id,
907 					uint32_t cntl_val,
908 					uint32_t addr_hi,
909 					uint32_t addr_lo)
910 {
911 	return 0;
912 }
913 
914 static int kgd_wave_control_execute(struct kgd_dev *kgd,
915 					uint32_t gfx_index_val,
916 					uint32_t sq_cmd)
917 {
918 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
919 	uint32_t data = 0;
920 
921 	mutex_lock(&adev->grbm_idx_mutex);
922 
923 	WREG32(SOC15_REG_OFFSET(GC, 0, mmGRBM_GFX_INDEX), gfx_index_val);
924 	WREG32(SOC15_REG_OFFSET(GC, 0, mmSQ_CMD), sq_cmd);
925 
926 	data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
927 		INSTANCE_BROADCAST_WRITES, 1);
928 	data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
929 		SH_BROADCAST_WRITES, 1);
930 	data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
931 		SE_BROADCAST_WRITES, 1);
932 
933 	WREG32(SOC15_REG_OFFSET(GC, 0, mmGRBM_GFX_INDEX), data);
934 	mutex_unlock(&adev->grbm_idx_mutex);
935 
936 	return 0;
937 }
938 
939 static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
940 					unsigned int watch_point_id,
941 					unsigned int reg_offset)
942 {
943 	return 0;
944 }
945 
946 static void set_scratch_backing_va(struct kgd_dev *kgd,
947 					uint64_t va, uint32_t vmid)
948 {
949 	/* No longer needed on GFXv9. The scratch base address is
950 	 * passed to the shader by the CP. It's the user mode driver's
951 	 * responsibility.
952 	 */
953 }
954 
955 /* FIXME: Does this need to be ASIC-specific code? */
956 static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type)
957 {
958 	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
959 	const union amdgpu_firmware_header *hdr;
960 
961 	switch (type) {
962 	case KGD_ENGINE_PFP:
963 		hdr = (const union amdgpu_firmware_header *)adev->gfx.pfp_fw->data;
964 		break;
965 
966 	case KGD_ENGINE_ME:
967 		hdr = (const union amdgpu_firmware_header *)adev->gfx.me_fw->data;
968 		break;
969 
970 	case KGD_ENGINE_CE:
971 		hdr = (const union amdgpu_firmware_header *)adev->gfx.ce_fw->data;
972 		break;
973 
974 	case KGD_ENGINE_MEC1:
975 		hdr = (const union amdgpu_firmware_header *)adev->gfx.mec_fw->data;
976 		break;
977 
978 	case KGD_ENGINE_MEC2:
979 		hdr = (const union amdgpu_firmware_header *)adev->gfx.mec2_fw->data;
980 		break;
981 
982 	case KGD_ENGINE_RLC:
983 		hdr = (const union amdgpu_firmware_header *)adev->gfx.rlc_fw->data;
984 		break;
985 
986 	case KGD_ENGINE_SDMA1:
987 		hdr = (const union amdgpu_firmware_header *)adev->sdma.instance[0].fw->data;
988 		break;
989 
990 	case KGD_ENGINE_SDMA2:
991 		hdr = (const union amdgpu_firmware_header *)adev->sdma.instance[1].fw->data;
992 		break;
993 
994 	default:
995 		return 0;
996 	}
997 
998 	if (hdr == NULL)
999 		return 0;
1000 
1001 	/* Only 12 bit in use*/
1002 	return hdr->common.ucode_version;
1003 }
1004 
1005 static void set_vm_context_page_table_base(struct kgd_dev *kgd, uint32_t vmid,
1006 		uint32_t page_table_base)
1007 {
1008 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
1009 	uint64_t base = (uint64_t)page_table_base << PAGE_SHIFT |
1010 		AMDGPU_PTE_VALID;
1011 
1012 	if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) {
1013 		pr_err("trying to set page table base for wrong VMID %u\n",
1014 		       vmid);
1015 		return;
1016 	}
1017 
1018 	/* TODO: take advantage of per-process address space size. For
1019 	 * now, all processes share the same address space size, like
1020 	 * on GFX8 and older.
1021 	 */
1022 	WREG32(SOC15_REG_OFFSET(MMHUB, 0, mmMMHUB_VM_CONTEXT0_PAGE_TABLE_START_ADDR_LO32) + (vmid*2), 0);
1023 	WREG32(SOC15_REG_OFFSET(MMHUB, 0, mmMMHUB_VM_CONTEXT0_PAGE_TABLE_START_ADDR_HI32) + (vmid*2), 0);
1024 
1025 	WREG32(SOC15_REG_OFFSET(MMHUB, 0, mmMMHUB_VM_CONTEXT0_PAGE_TABLE_END_ADDR_LO32) + (vmid*2),
1026 			lower_32_bits(adev->vm_manager.max_pfn - 1));
1027 	WREG32(SOC15_REG_OFFSET(MMHUB, 0, mmMMHUB_VM_CONTEXT0_PAGE_TABLE_END_ADDR_HI32) + (vmid*2),
1028 			upper_32_bits(adev->vm_manager.max_pfn - 1));
1029 
1030 	WREG32(SOC15_REG_OFFSET(MMHUB, 0, mmMMHUB_VM_CONTEXT0_PAGE_TABLE_BASE_ADDR_LO32) + (vmid*2), lower_32_bits(base));
1031 	WREG32(SOC15_REG_OFFSET(MMHUB, 0, mmMMHUB_VM_CONTEXT0_PAGE_TABLE_BASE_ADDR_HI32) + (vmid*2), upper_32_bits(base));
1032 
1033 	WREG32(SOC15_REG_OFFSET(GC, 0, mmVM_CONTEXT0_PAGE_TABLE_START_ADDR_LO32) + (vmid*2), 0);
1034 	WREG32(SOC15_REG_OFFSET(GC, 0, mmVM_CONTEXT0_PAGE_TABLE_START_ADDR_HI32) + (vmid*2), 0);
1035 
1036 	WREG32(SOC15_REG_OFFSET(GC, 0, mmVM_CONTEXT0_PAGE_TABLE_END_ADDR_LO32) + (vmid*2),
1037 			lower_32_bits(adev->vm_manager.max_pfn - 1));
1038 	WREG32(SOC15_REG_OFFSET(GC, 0, mmVM_CONTEXT0_PAGE_TABLE_END_ADDR_HI32) + (vmid*2),
1039 			upper_32_bits(adev->vm_manager.max_pfn - 1));
1040 
1041 	WREG32(SOC15_REG_OFFSET(GC, 0, mmVM_CONTEXT0_PAGE_TABLE_BASE_ADDR_LO32) + (vmid*2), lower_32_bits(base));
1042 	WREG32(SOC15_REG_OFFSET(GC, 0, mmVM_CONTEXT0_PAGE_TABLE_BASE_ADDR_HI32) + (vmid*2), upper_32_bits(base));
1043 }
1044