xref: /linux/drivers/gpu/drm/amd/amdgpu/amdgpu_amdkfd_gfx_v8.c (revision 26b433d0da062d6e19d75350c0171d3cf8ff560d)
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 
23 #include <linux/module.h>
24 #include <linux/fdtable.h>
25 #include <linux/uaccess.h>
26 #include <linux/firmware.h>
27 #include <drm/drmP.h>
28 #include "amdgpu.h"
29 #include "amdgpu_amdkfd.h"
30 #include "amdgpu_ucode.h"
31 #include "gfx_v8_0.h"
32 #include "gca/gfx_8_0_sh_mask.h"
33 #include "gca/gfx_8_0_d.h"
34 #include "gca/gfx_8_0_enum.h"
35 #include "oss/oss_3_0_sh_mask.h"
36 #include "oss/oss_3_0_d.h"
37 #include "gmc/gmc_8_1_sh_mask.h"
38 #include "gmc/gmc_8_1_d.h"
39 #include "vi_structs.h"
40 #include "vid.h"
41 
42 enum hqd_dequeue_request_type {
43 	NO_ACTION = 0,
44 	DRAIN_PIPE,
45 	RESET_WAVES
46 };
47 
48 struct cik_sdma_rlc_registers;
49 
50 /*
51  * Register access functions
52  */
53 
54 static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
55 		uint32_t sh_mem_config,
56 		uint32_t sh_mem_ape1_base, uint32_t sh_mem_ape1_limit,
57 		uint32_t sh_mem_bases);
58 static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
59 		unsigned int vmid);
60 static int kgd_init_pipeline(struct kgd_dev *kgd, uint32_t pipe_id,
61 		uint32_t hpd_size, uint64_t hpd_gpu_addr);
62 static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id);
63 static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
64 			uint32_t queue_id, uint32_t __user *wptr,
65 			uint32_t wptr_shift, uint32_t wptr_mask,
66 			struct mm_struct *mm);
67 static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd);
68 static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
69 		uint32_t pipe_id, uint32_t queue_id);
70 static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd);
71 static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd,
72 				enum kfd_preempt_type reset_type,
73 				unsigned int utimeout, uint32_t pipe_id,
74 				uint32_t queue_id);
75 static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
76 				unsigned int utimeout);
77 static void write_vmid_invalidate_request(struct kgd_dev *kgd, uint8_t vmid);
78 static int kgd_address_watch_disable(struct kgd_dev *kgd);
79 static int kgd_address_watch_execute(struct kgd_dev *kgd,
80 					unsigned int watch_point_id,
81 					uint32_t cntl_val,
82 					uint32_t addr_hi,
83 					uint32_t addr_lo);
84 static int kgd_wave_control_execute(struct kgd_dev *kgd,
85 					uint32_t gfx_index_val,
86 					uint32_t sq_cmd);
87 static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
88 					unsigned int watch_point_id,
89 					unsigned int reg_offset);
90 
91 static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd,
92 		uint8_t vmid);
93 static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
94 		uint8_t vmid);
95 static void write_vmid_invalidate_request(struct kgd_dev *kgd, uint8_t vmid);
96 static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type);
97 static void set_scratch_backing_va(struct kgd_dev *kgd,
98 					uint64_t va, uint32_t vmid);
99 
100 /* Because of REG_GET_FIELD() being used, we put this function in the
101  * asic specific file.
102  */
103 static int get_tile_config(struct kgd_dev *kgd,
104 		struct tile_config *config)
105 {
106 	struct amdgpu_device *adev = (struct amdgpu_device *)kgd;
107 
108 	config->gb_addr_config = adev->gfx.config.gb_addr_config;
109 	config->num_banks = REG_GET_FIELD(adev->gfx.config.mc_arb_ramcfg,
110 				MC_ARB_RAMCFG, NOOFBANK);
111 	config->num_ranks = REG_GET_FIELD(adev->gfx.config.mc_arb_ramcfg,
112 				MC_ARB_RAMCFG, NOOFRANKS);
113 
114 	config->tile_config_ptr = adev->gfx.config.tile_mode_array;
115 	config->num_tile_configs =
116 			ARRAY_SIZE(adev->gfx.config.tile_mode_array);
117 	config->macro_tile_config_ptr =
118 			adev->gfx.config.macrotile_mode_array;
119 	config->num_macro_tile_configs =
120 			ARRAY_SIZE(adev->gfx.config.macrotile_mode_array);
121 
122 	return 0;
123 }
124 
125 static const struct kfd2kgd_calls kfd2kgd = {
126 	.init_gtt_mem_allocation = alloc_gtt_mem,
127 	.free_gtt_mem = free_gtt_mem,
128 	.get_vmem_size = get_vmem_size,
129 	.get_gpu_clock_counter = get_gpu_clock_counter,
130 	.get_max_engine_clock_in_mhz = get_max_engine_clock_in_mhz,
131 	.program_sh_mem_settings = kgd_program_sh_mem_settings,
132 	.set_pasid_vmid_mapping = kgd_set_pasid_vmid_mapping,
133 	.init_pipeline = kgd_init_pipeline,
134 	.init_interrupts = kgd_init_interrupts,
135 	.hqd_load = kgd_hqd_load,
136 	.hqd_sdma_load = kgd_hqd_sdma_load,
137 	.hqd_is_occupied = kgd_hqd_is_occupied,
138 	.hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied,
139 	.hqd_destroy = kgd_hqd_destroy,
140 	.hqd_sdma_destroy = kgd_hqd_sdma_destroy,
141 	.address_watch_disable = kgd_address_watch_disable,
142 	.address_watch_execute = kgd_address_watch_execute,
143 	.wave_control_execute = kgd_wave_control_execute,
144 	.address_watch_get_offset = kgd_address_watch_get_offset,
145 	.get_atc_vmid_pasid_mapping_pasid =
146 			get_atc_vmid_pasid_mapping_pasid,
147 	.get_atc_vmid_pasid_mapping_valid =
148 			get_atc_vmid_pasid_mapping_valid,
149 	.write_vmid_invalidate_request = write_vmid_invalidate_request,
150 	.get_fw_version = get_fw_version,
151 	.set_scratch_backing_va = set_scratch_backing_va,
152 	.get_tile_config = get_tile_config,
153 };
154 
155 struct kfd2kgd_calls *amdgpu_amdkfd_gfx_8_0_get_functions(void)
156 {
157 	return (struct kfd2kgd_calls *)&kfd2kgd;
158 	return (struct kfd2kgd_calls *)&kfd2kgd;
159 }
160 
161 static inline struct amdgpu_device *get_amdgpu_device(struct kgd_dev *kgd)
162 {
163 	return (struct amdgpu_device *)kgd;
164 }
165 
166 static void lock_srbm(struct kgd_dev *kgd, uint32_t mec, uint32_t pipe,
167 			uint32_t queue, uint32_t vmid)
168 {
169 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
170 	uint32_t value = PIPEID(pipe) | MEID(mec) | VMID(vmid) | QUEUEID(queue);
171 
172 	mutex_lock(&adev->srbm_mutex);
173 	WREG32(mmSRBM_GFX_CNTL, value);
174 }
175 
176 static void unlock_srbm(struct kgd_dev *kgd)
177 {
178 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
179 
180 	WREG32(mmSRBM_GFX_CNTL, 0);
181 	mutex_unlock(&adev->srbm_mutex);
182 }
183 
184 static void acquire_queue(struct kgd_dev *kgd, uint32_t pipe_id,
185 				uint32_t queue_id)
186 {
187 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
188 
189 	uint32_t mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
190 	uint32_t pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
191 
192 	lock_srbm(kgd, mec, pipe, queue_id, 0);
193 }
194 
195 static void release_queue(struct kgd_dev *kgd)
196 {
197 	unlock_srbm(kgd);
198 }
199 
200 static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
201 					uint32_t sh_mem_config,
202 					uint32_t sh_mem_ape1_base,
203 					uint32_t sh_mem_ape1_limit,
204 					uint32_t sh_mem_bases)
205 {
206 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
207 
208 	lock_srbm(kgd, 0, 0, 0, vmid);
209 
210 	WREG32(mmSH_MEM_CONFIG, sh_mem_config);
211 	WREG32(mmSH_MEM_APE1_BASE, sh_mem_ape1_base);
212 	WREG32(mmSH_MEM_APE1_LIMIT, sh_mem_ape1_limit);
213 	WREG32(mmSH_MEM_BASES, sh_mem_bases);
214 
215 	unlock_srbm(kgd);
216 }
217 
218 static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
219 					unsigned int vmid)
220 {
221 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
222 
223 	/*
224 	 * We have to assume that there is no outstanding mapping.
225 	 * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0 because
226 	 * a mapping is in progress or because a mapping finished
227 	 * and the SW cleared it.
228 	 * So the protocol is to always wait & clear.
229 	 */
230 	uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
231 			ATC_VMID0_PASID_MAPPING__VALID_MASK;
232 
233 	WREG32(mmATC_VMID0_PASID_MAPPING + vmid, pasid_mapping);
234 
235 	while (!(RREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS) & (1U << vmid)))
236 		cpu_relax();
237 	WREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS, 1U << vmid);
238 
239 	/* Mapping vmid to pasid also for IH block */
240 	WREG32(mmIH_VMID_0_LUT + vmid, pasid_mapping);
241 
242 	return 0;
243 }
244 
245 static int kgd_init_pipeline(struct kgd_dev *kgd, uint32_t pipe_id,
246 				uint32_t hpd_size, uint64_t hpd_gpu_addr)
247 {
248 	/* amdgpu owns the per-pipe state */
249 	return 0;
250 }
251 
252 static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id)
253 {
254 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
255 	uint32_t mec;
256 	uint32_t pipe;
257 
258 	mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
259 	pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
260 
261 	lock_srbm(kgd, mec, pipe, 0, 0);
262 
263 	WREG32(mmCPC_INT_CNTL, CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK);
264 
265 	unlock_srbm(kgd);
266 
267 	return 0;
268 }
269 
270 static inline uint32_t get_sdma_base_addr(struct cik_sdma_rlc_registers *m)
271 {
272 	return 0;
273 }
274 
275 static inline struct vi_mqd *get_mqd(void *mqd)
276 {
277 	return (struct vi_mqd *)mqd;
278 }
279 
280 static inline struct cik_sdma_rlc_registers *get_sdma_mqd(void *mqd)
281 {
282 	return (struct cik_sdma_rlc_registers *)mqd;
283 }
284 
285 static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
286 			uint32_t queue_id, uint32_t __user *wptr,
287 			uint32_t wptr_shift, uint32_t wptr_mask,
288 			struct mm_struct *mm)
289 {
290 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
291 	struct vi_mqd *m;
292 	uint32_t *mqd_hqd;
293 	uint32_t reg, wptr_val, data;
294 
295 	m = get_mqd(mqd);
296 
297 	acquire_queue(kgd, pipe_id, queue_id);
298 
299 	/* HIQ is set during driver init period with vmid set to 0*/
300 	if (m->cp_hqd_vmid == 0) {
301 		uint32_t value, mec, pipe;
302 
303 		mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
304 		pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
305 
306 		pr_debug("kfd: set HIQ, mec:%d, pipe:%d, queue:%d.\n",
307 			mec, pipe, queue_id);
308 		value = RREG32(mmRLC_CP_SCHEDULERS);
309 		value = REG_SET_FIELD(value, RLC_CP_SCHEDULERS, scheduler1,
310 			((mec << 5) | (pipe << 3) | queue_id | 0x80));
311 		WREG32(mmRLC_CP_SCHEDULERS, value);
312 	}
313 
314 	/* HQD registers extend from CP_MQD_BASE_ADDR to CP_HQD_EOP_WPTR_MEM. */
315 	mqd_hqd = &m->cp_mqd_base_addr_lo;
316 
317 	for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_HQD_EOP_CONTROL; reg++)
318 		WREG32(reg, mqd_hqd[reg - mmCP_MQD_BASE_ADDR]);
319 
320 	/* Tonga errata: EOP RPTR/WPTR should be left unmodified.
321 	 * This is safe since EOP RPTR==WPTR for any inactive HQD
322 	 * on ASICs that do not support context-save.
323 	 * EOP writes/reads can start anywhere in the ring.
324 	 */
325 	if (get_amdgpu_device(kgd)->asic_type != CHIP_TONGA) {
326 		WREG32(mmCP_HQD_EOP_RPTR, m->cp_hqd_eop_rptr);
327 		WREG32(mmCP_HQD_EOP_WPTR, m->cp_hqd_eop_wptr);
328 		WREG32(mmCP_HQD_EOP_WPTR_MEM, m->cp_hqd_eop_wptr_mem);
329 	}
330 
331 	for (reg = mmCP_HQD_EOP_EVENTS; reg <= mmCP_HQD_ERROR; reg++)
332 		WREG32(reg, mqd_hqd[reg - mmCP_MQD_BASE_ADDR]);
333 
334 	/* Copy userspace write pointer value to register.
335 	 * Activate doorbell logic to monitor subsequent changes.
336 	 */
337 	data = REG_SET_FIELD(m->cp_hqd_pq_doorbell_control,
338 			     CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1);
339 	WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, data);
340 
341 	if (read_user_wptr(mm, wptr, wptr_val))
342 		WREG32(mmCP_HQD_PQ_WPTR, (wptr_val << wptr_shift) & wptr_mask);
343 
344 	data = REG_SET_FIELD(m->cp_hqd_active, CP_HQD_ACTIVE, ACTIVE, 1);
345 	WREG32(mmCP_HQD_ACTIVE, data);
346 
347 	release_queue(kgd);
348 
349 	return 0;
350 }
351 
352 static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd)
353 {
354 	return 0;
355 }
356 
357 static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
358 				uint32_t pipe_id, uint32_t queue_id)
359 {
360 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
361 	uint32_t act;
362 	bool retval = false;
363 	uint32_t low, high;
364 
365 	acquire_queue(kgd, pipe_id, queue_id);
366 	act = RREG32(mmCP_HQD_ACTIVE);
367 	if (act) {
368 		low = lower_32_bits(queue_address >> 8);
369 		high = upper_32_bits(queue_address >> 8);
370 
371 		if (low == RREG32(mmCP_HQD_PQ_BASE) &&
372 				high == RREG32(mmCP_HQD_PQ_BASE_HI))
373 			retval = true;
374 	}
375 	release_queue(kgd);
376 	return retval;
377 }
378 
379 static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd)
380 {
381 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
382 	struct cik_sdma_rlc_registers *m;
383 	uint32_t sdma_base_addr;
384 	uint32_t sdma_rlc_rb_cntl;
385 
386 	m = get_sdma_mqd(mqd);
387 	sdma_base_addr = get_sdma_base_addr(m);
388 
389 	sdma_rlc_rb_cntl = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL);
390 
391 	if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK)
392 		return true;
393 
394 	return false;
395 }
396 
397 static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd,
398 				enum kfd_preempt_type reset_type,
399 				unsigned int utimeout, uint32_t pipe_id,
400 				uint32_t queue_id)
401 {
402 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
403 	uint32_t temp;
404 	enum hqd_dequeue_request_type type;
405 	unsigned long flags, end_jiffies;
406 	int retry;
407 	struct vi_mqd *m = get_mqd(mqd);
408 
409 	acquire_queue(kgd, pipe_id, queue_id);
410 
411 	if (m->cp_hqd_vmid == 0)
412 		WREG32_FIELD(RLC_CP_SCHEDULERS, scheduler1, 0);
413 
414 	switch (reset_type) {
415 	case KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN:
416 		type = DRAIN_PIPE;
417 		break;
418 	case KFD_PREEMPT_TYPE_WAVEFRONT_RESET:
419 		type = RESET_WAVES;
420 		break;
421 	default:
422 		type = DRAIN_PIPE;
423 		break;
424 	}
425 
426 	/* Workaround: If IQ timer is active and the wait time is close to or
427 	 * equal to 0, dequeueing is not safe. Wait until either the wait time
428 	 * is larger or timer is cleared. Also, ensure that IQ_REQ_PEND is
429 	 * cleared before continuing. Also, ensure wait times are set to at
430 	 * least 0x3.
431 	 */
432 	local_irq_save(flags);
433 	preempt_disable();
434 	retry = 5000; /* wait for 500 usecs at maximum */
435 	while (true) {
436 		temp = RREG32(mmCP_HQD_IQ_TIMER);
437 		if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, PROCESSING_IQ)) {
438 			pr_debug("HW is processing IQ\n");
439 			goto loop;
440 		}
441 		if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, ACTIVE)) {
442 			if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, RETRY_TYPE)
443 					== 3) /* SEM-rearm is safe */
444 				break;
445 			/* Wait time 3 is safe for CP, but our MMIO read/write
446 			 * time is close to 1 microsecond, so check for 10 to
447 			 * leave more buffer room
448 			 */
449 			if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, WAIT_TIME)
450 					>= 10)
451 				break;
452 			pr_debug("IQ timer is active\n");
453 		} else
454 			break;
455 loop:
456 		if (!retry) {
457 			pr_err("CP HQD IQ timer status time out\n");
458 			break;
459 		}
460 		ndelay(100);
461 		--retry;
462 	}
463 	retry = 1000;
464 	while (true) {
465 		temp = RREG32(mmCP_HQD_DEQUEUE_REQUEST);
466 		if (!(temp & CP_HQD_DEQUEUE_REQUEST__IQ_REQ_PEND_MASK))
467 			break;
468 		pr_debug("Dequeue request is pending\n");
469 
470 		if (!retry) {
471 			pr_err("CP HQD dequeue request time out\n");
472 			break;
473 		}
474 		ndelay(100);
475 		--retry;
476 	}
477 	local_irq_restore(flags);
478 	preempt_enable();
479 
480 	WREG32(mmCP_HQD_DEQUEUE_REQUEST, type);
481 
482 	end_jiffies = (utimeout * HZ / 1000) + jiffies;
483 	while (true) {
484 		temp = RREG32(mmCP_HQD_ACTIVE);
485 		if (!(temp & CP_HQD_ACTIVE__ACTIVE_MASK))
486 			break;
487 		if (time_after(jiffies, end_jiffies)) {
488 			pr_err("cp queue preemption time out.\n");
489 			release_queue(kgd);
490 			return -ETIME;
491 		}
492 		usleep_range(500, 1000);
493 	}
494 
495 	release_queue(kgd);
496 	return 0;
497 }
498 
499 static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
500 				unsigned int utimeout)
501 {
502 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
503 	struct cik_sdma_rlc_registers *m;
504 	uint32_t sdma_base_addr;
505 	uint32_t temp;
506 	int timeout = utimeout;
507 
508 	m = get_sdma_mqd(mqd);
509 	sdma_base_addr = get_sdma_base_addr(m);
510 
511 	temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL);
512 	temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK;
513 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL, temp);
514 
515 	while (true) {
516 		temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_CONTEXT_STATUS);
517 		if (temp & SDMA0_STATUS_REG__RB_CMD_IDLE__SHIFT)
518 			break;
519 		if (timeout <= 0)
520 			return -ETIME;
521 		msleep(20);
522 		timeout -= 20;
523 	}
524 
525 	WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL, 0);
526 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR, 0);
527 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_WPTR, 0);
528 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE, 0);
529 
530 	return 0;
531 }
532 
533 static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd,
534 							uint8_t vmid)
535 {
536 	uint32_t reg;
537 	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
538 
539 	reg = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
540 	return reg & ATC_VMID0_PASID_MAPPING__VALID_MASK;
541 }
542 
543 static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
544 								uint8_t vmid)
545 {
546 	uint32_t reg;
547 	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
548 
549 	reg = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
550 	return reg & ATC_VMID0_PASID_MAPPING__VALID_MASK;
551 }
552 
553 static void write_vmid_invalidate_request(struct kgd_dev *kgd, uint8_t vmid)
554 {
555 	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
556 
557 	WREG32(mmVM_INVALIDATE_REQUEST, 1 << vmid);
558 }
559 
560 static int kgd_address_watch_disable(struct kgd_dev *kgd)
561 {
562 	return 0;
563 }
564 
565 static int kgd_address_watch_execute(struct kgd_dev *kgd,
566 					unsigned int watch_point_id,
567 					uint32_t cntl_val,
568 					uint32_t addr_hi,
569 					uint32_t addr_lo)
570 {
571 	return 0;
572 }
573 
574 static int kgd_wave_control_execute(struct kgd_dev *kgd,
575 					uint32_t gfx_index_val,
576 					uint32_t sq_cmd)
577 {
578 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
579 	uint32_t data = 0;
580 
581 	mutex_lock(&adev->grbm_idx_mutex);
582 
583 	WREG32(mmGRBM_GFX_INDEX, gfx_index_val);
584 	WREG32(mmSQ_CMD, sq_cmd);
585 
586 	data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
587 		INSTANCE_BROADCAST_WRITES, 1);
588 	data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
589 		SH_BROADCAST_WRITES, 1);
590 	data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
591 		SE_BROADCAST_WRITES, 1);
592 
593 	WREG32(mmGRBM_GFX_INDEX, data);
594 	mutex_unlock(&adev->grbm_idx_mutex);
595 
596 	return 0;
597 }
598 
599 static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
600 					unsigned int watch_point_id,
601 					unsigned int reg_offset)
602 {
603 	return 0;
604 }
605 
606 static void set_scratch_backing_va(struct kgd_dev *kgd,
607 					uint64_t va, uint32_t vmid)
608 {
609 	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
610 
611 	lock_srbm(kgd, 0, 0, 0, vmid);
612 	WREG32(mmSH_HIDDEN_PRIVATE_BASE_VMID, va);
613 	unlock_srbm(kgd);
614 }
615 
616 static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type)
617 {
618 	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
619 	const union amdgpu_firmware_header *hdr;
620 
621 	BUG_ON(kgd == NULL);
622 
623 	switch (type) {
624 	case KGD_ENGINE_PFP:
625 		hdr = (const union amdgpu_firmware_header *)
626 						adev->gfx.pfp_fw->data;
627 		break;
628 
629 	case KGD_ENGINE_ME:
630 		hdr = (const union amdgpu_firmware_header *)
631 						adev->gfx.me_fw->data;
632 		break;
633 
634 	case KGD_ENGINE_CE:
635 		hdr = (const union amdgpu_firmware_header *)
636 						adev->gfx.ce_fw->data;
637 		break;
638 
639 	case KGD_ENGINE_MEC1:
640 		hdr = (const union amdgpu_firmware_header *)
641 						adev->gfx.mec_fw->data;
642 		break;
643 
644 	case KGD_ENGINE_MEC2:
645 		hdr = (const union amdgpu_firmware_header *)
646 						adev->gfx.mec2_fw->data;
647 		break;
648 
649 	case KGD_ENGINE_RLC:
650 		hdr = (const union amdgpu_firmware_header *)
651 						adev->gfx.rlc_fw->data;
652 		break;
653 
654 	case KGD_ENGINE_SDMA1:
655 		hdr = (const union amdgpu_firmware_header *)
656 						adev->sdma.instance[0].fw->data;
657 		break;
658 
659 	case KGD_ENGINE_SDMA2:
660 		hdr = (const union amdgpu_firmware_header *)
661 						adev->sdma.instance[1].fw->data;
662 		break;
663 
664 	default:
665 		return 0;
666 	}
667 
668 	if (hdr == NULL)
669 		return 0;
670 
671 	/* Only 12 bit in use*/
672 	return hdr->common.ucode_version;
673 }
674