xref: /linux/drivers/gpu/drm/amd/amdgpu/amdgpu_amdkfd_gfx_v8.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 
23 #include <linux/module.h>
24 #include <linux/fdtable.h>
25 #include <linux/uaccess.h>
26 #include <linux/firmware.h>
27 #include <drm/drmP.h>
28 #include "amdgpu.h"
29 #include "amdgpu_amdkfd.h"
30 #include "amdgpu_ucode.h"
31 #include "gca/gfx_8_0_sh_mask.h"
32 #include "gca/gfx_8_0_d.h"
33 #include "gca/gfx_8_0_enum.h"
34 #include "oss/oss_3_0_sh_mask.h"
35 #include "oss/oss_3_0_d.h"
36 #include "gmc/gmc_8_1_sh_mask.h"
37 #include "gmc/gmc_8_1_d.h"
38 #include "vi_structs.h"
39 #include "vid.h"
40 
41 #define VI_PIPE_PER_MEC	(4)
42 
43 struct cik_sdma_rlc_registers;
44 
45 /*
46  * Register access functions
47  */
48 
49 static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
50 		uint32_t sh_mem_config,
51 		uint32_t sh_mem_ape1_base, uint32_t sh_mem_ape1_limit,
52 		uint32_t sh_mem_bases);
53 static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
54 		unsigned int vmid);
55 static int kgd_init_pipeline(struct kgd_dev *kgd, uint32_t pipe_id,
56 		uint32_t hpd_size, uint64_t hpd_gpu_addr);
57 static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id);
58 static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
59 		uint32_t queue_id, uint32_t __user *wptr);
60 static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd);
61 static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
62 		uint32_t pipe_id, uint32_t queue_id);
63 static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd);
64 static int kgd_hqd_destroy(struct kgd_dev *kgd, uint32_t reset_type,
65 				unsigned int timeout, uint32_t pipe_id,
66 				uint32_t queue_id);
67 static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
68 				unsigned int timeout);
69 static void write_vmid_invalidate_request(struct kgd_dev *kgd, uint8_t vmid);
70 static int kgd_address_watch_disable(struct kgd_dev *kgd);
71 static int kgd_address_watch_execute(struct kgd_dev *kgd,
72 					unsigned int watch_point_id,
73 					uint32_t cntl_val,
74 					uint32_t addr_hi,
75 					uint32_t addr_lo);
76 static int kgd_wave_control_execute(struct kgd_dev *kgd,
77 					uint32_t gfx_index_val,
78 					uint32_t sq_cmd);
79 static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
80 					unsigned int watch_point_id,
81 					unsigned int reg_offset);
82 
83 static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd,
84 		uint8_t vmid);
85 static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
86 		uint8_t vmid);
87 static void write_vmid_invalidate_request(struct kgd_dev *kgd, uint8_t vmid);
88 static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type);
89 
90 static const struct kfd2kgd_calls kfd2kgd = {
91 	.init_gtt_mem_allocation = alloc_gtt_mem,
92 	.free_gtt_mem = free_gtt_mem,
93 	.get_vmem_size = get_vmem_size,
94 	.get_gpu_clock_counter = get_gpu_clock_counter,
95 	.get_max_engine_clock_in_mhz = get_max_engine_clock_in_mhz,
96 	.program_sh_mem_settings = kgd_program_sh_mem_settings,
97 	.set_pasid_vmid_mapping = kgd_set_pasid_vmid_mapping,
98 	.init_pipeline = kgd_init_pipeline,
99 	.init_interrupts = kgd_init_interrupts,
100 	.hqd_load = kgd_hqd_load,
101 	.hqd_sdma_load = kgd_hqd_sdma_load,
102 	.hqd_is_occupied = kgd_hqd_is_occupied,
103 	.hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied,
104 	.hqd_destroy = kgd_hqd_destroy,
105 	.hqd_sdma_destroy = kgd_hqd_sdma_destroy,
106 	.address_watch_disable = kgd_address_watch_disable,
107 	.address_watch_execute = kgd_address_watch_execute,
108 	.wave_control_execute = kgd_wave_control_execute,
109 	.address_watch_get_offset = kgd_address_watch_get_offset,
110 	.get_atc_vmid_pasid_mapping_pasid =
111 			get_atc_vmid_pasid_mapping_pasid,
112 	.get_atc_vmid_pasid_mapping_valid =
113 			get_atc_vmid_pasid_mapping_valid,
114 	.write_vmid_invalidate_request = write_vmid_invalidate_request,
115 	.get_fw_version = get_fw_version
116 };
117 
118 struct kfd2kgd_calls *amdgpu_amdkfd_gfx_8_0_get_functions(void)
119 {
120 	return (struct kfd2kgd_calls *)&kfd2kgd;
121 }
122 
123 static inline struct amdgpu_device *get_amdgpu_device(struct kgd_dev *kgd)
124 {
125 	return (struct amdgpu_device *)kgd;
126 }
127 
128 static void lock_srbm(struct kgd_dev *kgd, uint32_t mec, uint32_t pipe,
129 			uint32_t queue, uint32_t vmid)
130 {
131 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
132 	uint32_t value = PIPEID(pipe) | MEID(mec) | VMID(vmid) | QUEUEID(queue);
133 
134 	mutex_lock(&adev->srbm_mutex);
135 	WREG32(mmSRBM_GFX_CNTL, value);
136 }
137 
138 static void unlock_srbm(struct kgd_dev *kgd)
139 {
140 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
141 
142 	WREG32(mmSRBM_GFX_CNTL, 0);
143 	mutex_unlock(&adev->srbm_mutex);
144 }
145 
146 static void acquire_queue(struct kgd_dev *kgd, uint32_t pipe_id,
147 				uint32_t queue_id)
148 {
149 	uint32_t mec = (++pipe_id / VI_PIPE_PER_MEC) + 1;
150 	uint32_t pipe = (pipe_id % VI_PIPE_PER_MEC);
151 
152 	lock_srbm(kgd, mec, pipe, queue_id, 0);
153 }
154 
155 static void release_queue(struct kgd_dev *kgd)
156 {
157 	unlock_srbm(kgd);
158 }
159 
160 static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
161 					uint32_t sh_mem_config,
162 					uint32_t sh_mem_ape1_base,
163 					uint32_t sh_mem_ape1_limit,
164 					uint32_t sh_mem_bases)
165 {
166 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
167 
168 	lock_srbm(kgd, 0, 0, 0, vmid);
169 
170 	WREG32(mmSH_MEM_CONFIG, sh_mem_config);
171 	WREG32(mmSH_MEM_APE1_BASE, sh_mem_ape1_base);
172 	WREG32(mmSH_MEM_APE1_LIMIT, sh_mem_ape1_limit);
173 	WREG32(mmSH_MEM_BASES, sh_mem_bases);
174 
175 	unlock_srbm(kgd);
176 }
177 
178 static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
179 					unsigned int vmid)
180 {
181 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
182 
183 	/*
184 	 * We have to assume that there is no outstanding mapping.
185 	 * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0 because
186 	 * a mapping is in progress or because a mapping finished
187 	 * and the SW cleared it.
188 	 * So the protocol is to always wait & clear.
189 	 */
190 	uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
191 			ATC_VMID0_PASID_MAPPING__VALID_MASK;
192 
193 	WREG32(mmATC_VMID0_PASID_MAPPING + vmid, pasid_mapping);
194 
195 	while (!(RREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS) & (1U << vmid)))
196 		cpu_relax();
197 	WREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS, 1U << vmid);
198 
199 	/* Mapping vmid to pasid also for IH block */
200 	WREG32(mmIH_VMID_0_LUT + vmid, pasid_mapping);
201 
202 	return 0;
203 }
204 
205 static int kgd_init_pipeline(struct kgd_dev *kgd, uint32_t pipe_id,
206 				uint32_t hpd_size, uint64_t hpd_gpu_addr)
207 {
208 	return 0;
209 }
210 
211 static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id)
212 {
213 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
214 	uint32_t mec;
215 	uint32_t pipe;
216 
217 	mec = (++pipe_id / VI_PIPE_PER_MEC) + 1;
218 	pipe = (pipe_id % VI_PIPE_PER_MEC);
219 
220 	lock_srbm(kgd, mec, pipe, 0, 0);
221 
222 	WREG32(mmCPC_INT_CNTL, CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK);
223 
224 	unlock_srbm(kgd);
225 
226 	return 0;
227 }
228 
229 static inline uint32_t get_sdma_base_addr(struct cik_sdma_rlc_registers *m)
230 {
231 	return 0;
232 }
233 
234 static inline struct vi_mqd *get_mqd(void *mqd)
235 {
236 	return (struct vi_mqd *)mqd;
237 }
238 
239 static inline struct cik_sdma_rlc_registers *get_sdma_mqd(void *mqd)
240 {
241 	return (struct cik_sdma_rlc_registers *)mqd;
242 }
243 
244 static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
245 			uint32_t queue_id, uint32_t __user *wptr)
246 {
247 	struct vi_mqd *m;
248 	uint32_t shadow_wptr, valid_wptr;
249 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
250 
251 	m = get_mqd(mqd);
252 
253 	valid_wptr = copy_from_user(&shadow_wptr, wptr, sizeof(shadow_wptr));
254 	acquire_queue(kgd, pipe_id, queue_id);
255 
256 	WREG32(mmCP_MQD_CONTROL, m->cp_mqd_control);
257 	WREG32(mmCP_MQD_BASE_ADDR, m->cp_mqd_base_addr_lo);
258 	WREG32(mmCP_MQD_BASE_ADDR_HI, m->cp_mqd_base_addr_hi);
259 
260 	WREG32(mmCP_HQD_VMID, m->cp_hqd_vmid);
261 	WREG32(mmCP_HQD_PERSISTENT_STATE, m->cp_hqd_persistent_state);
262 	WREG32(mmCP_HQD_PIPE_PRIORITY, m->cp_hqd_pipe_priority);
263 	WREG32(mmCP_HQD_QUEUE_PRIORITY, m->cp_hqd_queue_priority);
264 	WREG32(mmCP_HQD_QUANTUM, m->cp_hqd_quantum);
265 	WREG32(mmCP_HQD_PQ_BASE, m->cp_hqd_pq_base_lo);
266 	WREG32(mmCP_HQD_PQ_BASE_HI, m->cp_hqd_pq_base_hi);
267 	WREG32(mmCP_HQD_PQ_RPTR_REPORT_ADDR, m->cp_hqd_pq_rptr_report_addr_lo);
268 	WREG32(mmCP_HQD_PQ_RPTR_REPORT_ADDR_HI,
269 			m->cp_hqd_pq_rptr_report_addr_hi);
270 
271 	if (valid_wptr > 0)
272 		WREG32(mmCP_HQD_PQ_WPTR, shadow_wptr);
273 
274 	WREG32(mmCP_HQD_PQ_CONTROL, m->cp_hqd_pq_control);
275 	WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, m->cp_hqd_pq_doorbell_control);
276 
277 	WREG32(mmCP_HQD_EOP_BASE_ADDR, m->cp_hqd_eop_base_addr_lo);
278 	WREG32(mmCP_HQD_EOP_BASE_ADDR_HI, m->cp_hqd_eop_base_addr_hi);
279 	WREG32(mmCP_HQD_EOP_CONTROL, m->cp_hqd_eop_control);
280 	WREG32(mmCP_HQD_EOP_RPTR, m->cp_hqd_eop_rptr);
281 	WREG32(mmCP_HQD_EOP_WPTR, m->cp_hqd_eop_wptr);
282 	WREG32(mmCP_HQD_EOP_EVENTS, m->cp_hqd_eop_done_events);
283 
284 	WREG32(mmCP_HQD_CTX_SAVE_BASE_ADDR_LO, m->cp_hqd_ctx_save_base_addr_lo);
285 	WREG32(mmCP_HQD_CTX_SAVE_BASE_ADDR_HI, m->cp_hqd_ctx_save_base_addr_hi);
286 	WREG32(mmCP_HQD_CTX_SAVE_CONTROL, m->cp_hqd_ctx_save_control);
287 	WREG32(mmCP_HQD_CNTL_STACK_OFFSET, m->cp_hqd_cntl_stack_offset);
288 	WREG32(mmCP_HQD_CNTL_STACK_SIZE, m->cp_hqd_cntl_stack_size);
289 	WREG32(mmCP_HQD_WG_STATE_OFFSET, m->cp_hqd_wg_state_offset);
290 	WREG32(mmCP_HQD_CTX_SAVE_SIZE, m->cp_hqd_ctx_save_size);
291 
292 	WREG32(mmCP_HQD_IB_CONTROL, m->cp_hqd_ib_control);
293 
294 	WREG32(mmCP_HQD_DEQUEUE_REQUEST, m->cp_hqd_dequeue_request);
295 	WREG32(mmCP_HQD_ERROR, m->cp_hqd_error);
296 	WREG32(mmCP_HQD_EOP_WPTR_MEM, m->cp_hqd_eop_wptr_mem);
297 	WREG32(mmCP_HQD_EOP_DONES, m->cp_hqd_eop_dones);
298 
299 	WREG32(mmCP_HQD_ACTIVE, m->cp_hqd_active);
300 
301 	release_queue(kgd);
302 
303 	return 0;
304 }
305 
306 static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd)
307 {
308 	return 0;
309 }
310 
311 static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
312 				uint32_t pipe_id, uint32_t queue_id)
313 {
314 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
315 	uint32_t act;
316 	bool retval = false;
317 	uint32_t low, high;
318 
319 	acquire_queue(kgd, pipe_id, queue_id);
320 	act = RREG32(mmCP_HQD_ACTIVE);
321 	if (act) {
322 		low = lower_32_bits(queue_address >> 8);
323 		high = upper_32_bits(queue_address >> 8);
324 
325 		if (low == RREG32(mmCP_HQD_PQ_BASE) &&
326 				high == RREG32(mmCP_HQD_PQ_BASE_HI))
327 			retval = true;
328 	}
329 	release_queue(kgd);
330 	return retval;
331 }
332 
333 static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd)
334 {
335 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
336 	struct cik_sdma_rlc_registers *m;
337 	uint32_t sdma_base_addr;
338 	uint32_t sdma_rlc_rb_cntl;
339 
340 	m = get_sdma_mqd(mqd);
341 	sdma_base_addr = get_sdma_base_addr(m);
342 
343 	sdma_rlc_rb_cntl = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL);
344 
345 	if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK)
346 		return true;
347 
348 	return false;
349 }
350 
351 static int kgd_hqd_destroy(struct kgd_dev *kgd, uint32_t reset_type,
352 				unsigned int timeout, uint32_t pipe_id,
353 				uint32_t queue_id)
354 {
355 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
356 	uint32_t temp;
357 
358 	acquire_queue(kgd, pipe_id, queue_id);
359 
360 	WREG32(mmCP_HQD_DEQUEUE_REQUEST, reset_type);
361 
362 	while (true) {
363 		temp = RREG32(mmCP_HQD_ACTIVE);
364 		if (temp & CP_HQD_ACTIVE__ACTIVE_MASK)
365 			break;
366 		if (timeout == 0) {
367 			pr_err("kfd: cp queue preemption time out (%dms)\n",
368 				temp);
369 			release_queue(kgd);
370 			return -ETIME;
371 		}
372 		msleep(20);
373 		timeout -= 20;
374 	}
375 
376 	release_queue(kgd);
377 	return 0;
378 }
379 
380 static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
381 				unsigned int timeout)
382 {
383 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
384 	struct cik_sdma_rlc_registers *m;
385 	uint32_t sdma_base_addr;
386 	uint32_t temp;
387 
388 	m = get_sdma_mqd(mqd);
389 	sdma_base_addr = get_sdma_base_addr(m);
390 
391 	temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL);
392 	temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK;
393 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL, temp);
394 
395 	while (true) {
396 		temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_CONTEXT_STATUS);
397 		if (temp & SDMA0_STATUS_REG__RB_CMD_IDLE__SHIFT)
398 			break;
399 		if (timeout == 0)
400 			return -ETIME;
401 		msleep(20);
402 		timeout -= 20;
403 	}
404 
405 	WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL, 0);
406 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR, 0);
407 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_WPTR, 0);
408 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE, 0);
409 
410 	return 0;
411 }
412 
413 static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd,
414 							uint8_t vmid)
415 {
416 	uint32_t reg;
417 	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
418 
419 	reg = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
420 	return reg & ATC_VMID0_PASID_MAPPING__VALID_MASK;
421 }
422 
423 static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
424 								uint8_t vmid)
425 {
426 	uint32_t reg;
427 	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
428 
429 	reg = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
430 	return reg & ATC_VMID0_PASID_MAPPING__VALID_MASK;
431 }
432 
433 static void write_vmid_invalidate_request(struct kgd_dev *kgd, uint8_t vmid)
434 {
435 	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
436 
437 	WREG32(mmVM_INVALIDATE_REQUEST, 1 << vmid);
438 }
439 
440 static int kgd_address_watch_disable(struct kgd_dev *kgd)
441 {
442 	return 0;
443 }
444 
445 static int kgd_address_watch_execute(struct kgd_dev *kgd,
446 					unsigned int watch_point_id,
447 					uint32_t cntl_val,
448 					uint32_t addr_hi,
449 					uint32_t addr_lo)
450 {
451 	return 0;
452 }
453 
454 static int kgd_wave_control_execute(struct kgd_dev *kgd,
455 					uint32_t gfx_index_val,
456 					uint32_t sq_cmd)
457 {
458 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
459 	uint32_t data = 0;
460 
461 	mutex_lock(&adev->grbm_idx_mutex);
462 
463 	WREG32(mmGRBM_GFX_INDEX, gfx_index_val);
464 	WREG32(mmSQ_CMD, sq_cmd);
465 
466 	data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
467 		INSTANCE_BROADCAST_WRITES, 1);
468 	data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
469 		SH_BROADCAST_WRITES, 1);
470 	data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
471 		SE_BROADCAST_WRITES, 1);
472 
473 	WREG32(mmGRBM_GFX_INDEX, data);
474 	mutex_unlock(&adev->grbm_idx_mutex);
475 
476 	return 0;
477 }
478 
479 static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
480 					unsigned int watch_point_id,
481 					unsigned int reg_offset)
482 {
483 	return 0;
484 }
485 
486 static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type)
487 {
488 	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
489 	const union amdgpu_firmware_header *hdr;
490 
491 	BUG_ON(kgd == NULL);
492 
493 	switch (type) {
494 	case KGD_ENGINE_PFP:
495 		hdr = (const union amdgpu_firmware_header *)
496 							adev->gfx.pfp_fw->data;
497 		break;
498 
499 	case KGD_ENGINE_ME:
500 		hdr = (const union amdgpu_firmware_header *)
501 							adev->gfx.me_fw->data;
502 		break;
503 
504 	case KGD_ENGINE_CE:
505 		hdr = (const union amdgpu_firmware_header *)
506 							adev->gfx.ce_fw->data;
507 		break;
508 
509 	case KGD_ENGINE_MEC1:
510 		hdr = (const union amdgpu_firmware_header *)
511 							adev->gfx.mec_fw->data;
512 		break;
513 
514 	case KGD_ENGINE_MEC2:
515 		hdr = (const union amdgpu_firmware_header *)
516 							adev->gfx.mec2_fw->data;
517 		break;
518 
519 	case KGD_ENGINE_RLC:
520 		hdr = (const union amdgpu_firmware_header *)
521 							adev->gfx.rlc_fw->data;
522 		break;
523 
524 	case KGD_ENGINE_SDMA1:
525 		hdr = (const union amdgpu_firmware_header *)
526 							adev->sdma.instance[0].fw->data;
527 		break;
528 
529 	case KGD_ENGINE_SDMA2:
530 		hdr = (const union amdgpu_firmware_header *)
531 							adev->sdma.instance[1].fw->data;
532 		break;
533 
534 	default:
535 		return 0;
536 	}
537 
538 	if (hdr == NULL)
539 		return 0;
540 
541 	/* Only 12 bit in use*/
542 	return hdr->common.ucode_version;
543 }
544