xref: /linux/drivers/gpu/drm/amd/amdgpu/amdgpu_amdkfd_gfx_v7.c (revision ef40b2346563aa11575446c8e3b04af44c31abb5)
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 
23 #include <linux/fdtable.h>
24 #include <linux/uaccess.h>
25 #include <linux/firmware.h>
26 #include <drm/drmP.h>
27 #include "amdgpu.h"
28 #include "amdgpu_amdkfd.h"
29 #include "cikd.h"
30 #include "cik_sdma.h"
31 #include "amdgpu_ucode.h"
32 #include "gfx_v7_0.h"
33 #include "gca/gfx_7_2_d.h"
34 #include "gca/gfx_7_2_enum.h"
35 #include "gca/gfx_7_2_sh_mask.h"
36 #include "oss/oss_2_0_d.h"
37 #include "oss/oss_2_0_sh_mask.h"
38 #include "gmc/gmc_7_1_d.h"
39 #include "gmc/gmc_7_1_sh_mask.h"
40 #include "cik_structs.h"
41 
42 enum hqd_dequeue_request_type {
43 	NO_ACTION = 0,
44 	DRAIN_PIPE,
45 	RESET_WAVES
46 };
47 
48 enum {
49 	MAX_TRAPID = 8,		/* 3 bits in the bitfield. */
50 	MAX_WATCH_ADDRESSES = 4
51 };
52 
53 enum {
54 	ADDRESS_WATCH_REG_ADDR_HI = 0,
55 	ADDRESS_WATCH_REG_ADDR_LO,
56 	ADDRESS_WATCH_REG_CNTL,
57 	ADDRESS_WATCH_REG_MAX
58 };
59 
60 /*  not defined in the CI/KV reg file  */
61 enum {
62 	ADDRESS_WATCH_REG_CNTL_ATC_BIT = 0x10000000UL,
63 	ADDRESS_WATCH_REG_CNTL_DEFAULT_MASK = 0x00FFFFFF,
64 	ADDRESS_WATCH_REG_ADDLOW_MASK_EXTENSION = 0x03000000,
65 	/* extend the mask to 26 bits to match the low address field */
66 	ADDRESS_WATCH_REG_ADDLOW_SHIFT = 6,
67 	ADDRESS_WATCH_REG_ADDHIGH_MASK = 0xFFFF
68 };
69 
70 static const uint32_t watchRegs[MAX_WATCH_ADDRESSES * ADDRESS_WATCH_REG_MAX] = {
71 	mmTCP_WATCH0_ADDR_H, mmTCP_WATCH0_ADDR_L, mmTCP_WATCH0_CNTL,
72 	mmTCP_WATCH1_ADDR_H, mmTCP_WATCH1_ADDR_L, mmTCP_WATCH1_CNTL,
73 	mmTCP_WATCH2_ADDR_H, mmTCP_WATCH2_ADDR_L, mmTCP_WATCH2_CNTL,
74 	mmTCP_WATCH3_ADDR_H, mmTCP_WATCH3_ADDR_L, mmTCP_WATCH3_CNTL
75 };
76 
77 union TCP_WATCH_CNTL_BITS {
78 	struct {
79 		uint32_t mask:24;
80 		uint32_t vmid:4;
81 		uint32_t atc:1;
82 		uint32_t mode:2;
83 		uint32_t valid:1;
84 	} bitfields, bits;
85 	uint32_t u32All;
86 	signed int i32All;
87 	float f32All;
88 };
89 
90 /*
91  * Register access functions
92  */
93 
94 static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
95 		uint32_t sh_mem_config,	uint32_t sh_mem_ape1_base,
96 		uint32_t sh_mem_ape1_limit, uint32_t sh_mem_bases);
97 
98 static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
99 					unsigned int vmid);
100 
101 static int kgd_init_pipeline(struct kgd_dev *kgd, uint32_t pipe_id,
102 				uint32_t hpd_size, uint64_t hpd_gpu_addr);
103 static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id);
104 static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
105 			uint32_t queue_id, uint32_t __user *wptr,
106 			uint32_t wptr_shift, uint32_t wptr_mask,
107 			struct mm_struct *mm);
108 static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd);
109 static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
110 				uint32_t pipe_id, uint32_t queue_id);
111 
112 static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd,
113 				enum kfd_preempt_type reset_type,
114 				unsigned int utimeout, uint32_t pipe_id,
115 				uint32_t queue_id);
116 static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd);
117 static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
118 				unsigned int utimeout);
119 static int kgd_address_watch_disable(struct kgd_dev *kgd);
120 static int kgd_address_watch_execute(struct kgd_dev *kgd,
121 					unsigned int watch_point_id,
122 					uint32_t cntl_val,
123 					uint32_t addr_hi,
124 					uint32_t addr_lo);
125 static int kgd_wave_control_execute(struct kgd_dev *kgd,
126 					uint32_t gfx_index_val,
127 					uint32_t sq_cmd);
128 static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
129 					unsigned int watch_point_id,
130 					unsigned int reg_offset);
131 
132 static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd, uint8_t vmid);
133 static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
134 							uint8_t vmid);
135 static void write_vmid_invalidate_request(struct kgd_dev *kgd, uint8_t vmid);
136 
137 static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type);
138 static void set_scratch_backing_va(struct kgd_dev *kgd,
139 					uint64_t va, uint32_t vmid);
140 
141 /* Because of REG_GET_FIELD() being used, we put this function in the
142  * asic specific file.
143  */
144 static int get_tile_config(struct kgd_dev *kgd,
145 		struct tile_config *config)
146 {
147 	struct amdgpu_device *adev = (struct amdgpu_device *)kgd;
148 
149 	config->gb_addr_config = adev->gfx.config.gb_addr_config;
150 	config->num_banks = REG_GET_FIELD(adev->gfx.config.mc_arb_ramcfg,
151 				MC_ARB_RAMCFG, NOOFBANK);
152 	config->num_ranks = REG_GET_FIELD(adev->gfx.config.mc_arb_ramcfg,
153 				MC_ARB_RAMCFG, NOOFRANKS);
154 
155 	config->tile_config_ptr = adev->gfx.config.tile_mode_array;
156 	config->num_tile_configs =
157 			ARRAY_SIZE(adev->gfx.config.tile_mode_array);
158 	config->macro_tile_config_ptr =
159 			adev->gfx.config.macrotile_mode_array;
160 	config->num_macro_tile_configs =
161 			ARRAY_SIZE(adev->gfx.config.macrotile_mode_array);
162 
163 	return 0;
164 }
165 
166 static const struct kfd2kgd_calls kfd2kgd = {
167 	.init_gtt_mem_allocation = alloc_gtt_mem,
168 	.free_gtt_mem = free_gtt_mem,
169 	.get_vmem_size = get_vmem_size,
170 	.get_gpu_clock_counter = get_gpu_clock_counter,
171 	.get_max_engine_clock_in_mhz = get_max_engine_clock_in_mhz,
172 	.alloc_pasid = amdgpu_vm_alloc_pasid,
173 	.free_pasid = amdgpu_vm_free_pasid,
174 	.program_sh_mem_settings = kgd_program_sh_mem_settings,
175 	.set_pasid_vmid_mapping = kgd_set_pasid_vmid_mapping,
176 	.init_pipeline = kgd_init_pipeline,
177 	.init_interrupts = kgd_init_interrupts,
178 	.hqd_load = kgd_hqd_load,
179 	.hqd_sdma_load = kgd_hqd_sdma_load,
180 	.hqd_is_occupied = kgd_hqd_is_occupied,
181 	.hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied,
182 	.hqd_destroy = kgd_hqd_destroy,
183 	.hqd_sdma_destroy = kgd_hqd_sdma_destroy,
184 	.address_watch_disable = kgd_address_watch_disable,
185 	.address_watch_execute = kgd_address_watch_execute,
186 	.wave_control_execute = kgd_wave_control_execute,
187 	.address_watch_get_offset = kgd_address_watch_get_offset,
188 	.get_atc_vmid_pasid_mapping_pasid = get_atc_vmid_pasid_mapping_pasid,
189 	.get_atc_vmid_pasid_mapping_valid = get_atc_vmid_pasid_mapping_valid,
190 	.write_vmid_invalidate_request = write_vmid_invalidate_request,
191 	.get_fw_version = get_fw_version,
192 	.set_scratch_backing_va = set_scratch_backing_va,
193 	.get_tile_config = get_tile_config,
194 };
195 
196 struct kfd2kgd_calls *amdgpu_amdkfd_gfx_7_get_functions(void)
197 {
198 	return (struct kfd2kgd_calls *)&kfd2kgd;
199 }
200 
201 static inline struct amdgpu_device *get_amdgpu_device(struct kgd_dev *kgd)
202 {
203 	return (struct amdgpu_device *)kgd;
204 }
205 
206 static void lock_srbm(struct kgd_dev *kgd, uint32_t mec, uint32_t pipe,
207 			uint32_t queue, uint32_t vmid)
208 {
209 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
210 	uint32_t value = PIPEID(pipe) | MEID(mec) | VMID(vmid) | QUEUEID(queue);
211 
212 	mutex_lock(&adev->srbm_mutex);
213 	WREG32(mmSRBM_GFX_CNTL, value);
214 }
215 
216 static void unlock_srbm(struct kgd_dev *kgd)
217 {
218 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
219 
220 	WREG32(mmSRBM_GFX_CNTL, 0);
221 	mutex_unlock(&adev->srbm_mutex);
222 }
223 
224 static void acquire_queue(struct kgd_dev *kgd, uint32_t pipe_id,
225 				uint32_t queue_id)
226 {
227 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
228 
229 	uint32_t mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
230 	uint32_t pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
231 
232 	lock_srbm(kgd, mec, pipe, queue_id, 0);
233 }
234 
235 static void release_queue(struct kgd_dev *kgd)
236 {
237 	unlock_srbm(kgd);
238 }
239 
240 static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
241 					uint32_t sh_mem_config,
242 					uint32_t sh_mem_ape1_base,
243 					uint32_t sh_mem_ape1_limit,
244 					uint32_t sh_mem_bases)
245 {
246 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
247 
248 	lock_srbm(kgd, 0, 0, 0, vmid);
249 
250 	WREG32(mmSH_MEM_CONFIG, sh_mem_config);
251 	WREG32(mmSH_MEM_APE1_BASE, sh_mem_ape1_base);
252 	WREG32(mmSH_MEM_APE1_LIMIT, sh_mem_ape1_limit);
253 	WREG32(mmSH_MEM_BASES, sh_mem_bases);
254 
255 	unlock_srbm(kgd);
256 }
257 
258 static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
259 					unsigned int vmid)
260 {
261 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
262 
263 	/*
264 	 * We have to assume that there is no outstanding mapping.
265 	 * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0 because
266 	 * a mapping is in progress or because a mapping finished and the
267 	 * SW cleared it. So the protocol is to always wait & clear.
268 	 */
269 	uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
270 			ATC_VMID0_PASID_MAPPING__VALID_MASK;
271 
272 	WREG32(mmATC_VMID0_PASID_MAPPING + vmid, pasid_mapping);
273 
274 	while (!(RREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS) & (1U << vmid)))
275 		cpu_relax();
276 	WREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS, 1U << vmid);
277 
278 	/* Mapping vmid to pasid also for IH block */
279 	WREG32(mmIH_VMID_0_LUT + vmid, pasid_mapping);
280 
281 	return 0;
282 }
283 
284 static int kgd_init_pipeline(struct kgd_dev *kgd, uint32_t pipe_id,
285 				uint32_t hpd_size, uint64_t hpd_gpu_addr)
286 {
287 	/* amdgpu owns the per-pipe state */
288 	return 0;
289 }
290 
291 static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id)
292 {
293 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
294 	uint32_t mec;
295 	uint32_t pipe;
296 
297 	mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
298 	pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
299 
300 	lock_srbm(kgd, mec, pipe, 0, 0);
301 
302 	WREG32(mmCPC_INT_CNTL, CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK |
303 			CP_INT_CNTL_RING0__OPCODE_ERROR_INT_ENABLE_MASK);
304 
305 	unlock_srbm(kgd);
306 
307 	return 0;
308 }
309 
310 static inline uint32_t get_sdma_base_addr(struct cik_sdma_rlc_registers *m)
311 {
312 	uint32_t retval;
313 
314 	retval = m->sdma_engine_id * SDMA1_REGISTER_OFFSET +
315 			m->sdma_queue_id * KFD_CIK_SDMA_QUEUE_OFFSET;
316 
317 	pr_debug("kfd: sdma base address: 0x%x\n", retval);
318 
319 	return retval;
320 }
321 
322 static inline struct cik_mqd *get_mqd(void *mqd)
323 {
324 	return (struct cik_mqd *)mqd;
325 }
326 
327 static inline struct cik_sdma_rlc_registers *get_sdma_mqd(void *mqd)
328 {
329 	return (struct cik_sdma_rlc_registers *)mqd;
330 }
331 
332 static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
333 			uint32_t queue_id, uint32_t __user *wptr,
334 			uint32_t wptr_shift, uint32_t wptr_mask,
335 			struct mm_struct *mm)
336 {
337 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
338 	struct cik_mqd *m;
339 	uint32_t *mqd_hqd;
340 	uint32_t reg, wptr_val, data;
341 
342 	m = get_mqd(mqd);
343 
344 	acquire_queue(kgd, pipe_id, queue_id);
345 
346 	/* HQD registers extend from CP_MQD_BASE_ADDR to CP_MQD_CONTROL. */
347 	mqd_hqd = &m->cp_mqd_base_addr_lo;
348 
349 	for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_MQD_CONTROL; reg++)
350 		WREG32(reg, mqd_hqd[reg - mmCP_MQD_BASE_ADDR]);
351 
352 	/* Copy userspace write pointer value to register.
353 	 * Activate doorbell logic to monitor subsequent changes.
354 	 */
355 	data = REG_SET_FIELD(m->cp_hqd_pq_doorbell_control,
356 			     CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1);
357 	WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, data);
358 
359 	if (read_user_wptr(mm, wptr, wptr_val))
360 		WREG32(mmCP_HQD_PQ_WPTR, (wptr_val << wptr_shift) & wptr_mask);
361 
362 	data = REG_SET_FIELD(m->cp_hqd_active, CP_HQD_ACTIVE, ACTIVE, 1);
363 	WREG32(mmCP_HQD_ACTIVE, data);
364 
365 	release_queue(kgd);
366 
367 	return 0;
368 }
369 
370 static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd)
371 {
372 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
373 	struct cik_sdma_rlc_registers *m;
374 	uint32_t sdma_base_addr;
375 
376 	m = get_sdma_mqd(mqd);
377 	sdma_base_addr = get_sdma_base_addr(m);
378 
379 	WREG32(sdma_base_addr + mmSDMA0_RLC0_VIRTUAL_ADDR,
380 			m->sdma_rlc_virtual_addr);
381 
382 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE,
383 			m->sdma_rlc_rb_base);
384 
385 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE_HI,
386 			m->sdma_rlc_rb_base_hi);
387 
388 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_ADDR_LO,
389 			m->sdma_rlc_rb_rptr_addr_lo);
390 
391 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_ADDR_HI,
392 			m->sdma_rlc_rb_rptr_addr_hi);
393 
394 	WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL,
395 			m->sdma_rlc_doorbell);
396 
397 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL,
398 			m->sdma_rlc_rb_cntl);
399 
400 	return 0;
401 }
402 
403 static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
404 				uint32_t pipe_id, uint32_t queue_id)
405 {
406 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
407 	uint32_t act;
408 	bool retval = false;
409 	uint32_t low, high;
410 
411 	acquire_queue(kgd, pipe_id, queue_id);
412 	act = RREG32(mmCP_HQD_ACTIVE);
413 	if (act) {
414 		low = lower_32_bits(queue_address >> 8);
415 		high = upper_32_bits(queue_address >> 8);
416 
417 		if (low == RREG32(mmCP_HQD_PQ_BASE) &&
418 				high == RREG32(mmCP_HQD_PQ_BASE_HI))
419 			retval = true;
420 	}
421 	release_queue(kgd);
422 	return retval;
423 }
424 
425 static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd)
426 {
427 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
428 	struct cik_sdma_rlc_registers *m;
429 	uint32_t sdma_base_addr;
430 	uint32_t sdma_rlc_rb_cntl;
431 
432 	m = get_sdma_mqd(mqd);
433 	sdma_base_addr = get_sdma_base_addr(m);
434 
435 	sdma_rlc_rb_cntl = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL);
436 
437 	if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK)
438 		return true;
439 
440 	return false;
441 }
442 
443 static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd,
444 				enum kfd_preempt_type reset_type,
445 				unsigned int utimeout, uint32_t pipe_id,
446 				uint32_t queue_id)
447 {
448 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
449 	uint32_t temp;
450 	enum hqd_dequeue_request_type type;
451 	unsigned long flags, end_jiffies;
452 	int retry;
453 
454 	acquire_queue(kgd, pipe_id, queue_id);
455 	WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, 0);
456 
457 	switch (reset_type) {
458 	case KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN:
459 		type = DRAIN_PIPE;
460 		break;
461 	case KFD_PREEMPT_TYPE_WAVEFRONT_RESET:
462 		type = RESET_WAVES;
463 		break;
464 	default:
465 		type = DRAIN_PIPE;
466 		break;
467 	}
468 
469 	/* Workaround: If IQ timer is active and the wait time is close to or
470 	 * equal to 0, dequeueing is not safe. Wait until either the wait time
471 	 * is larger or timer is cleared. Also, ensure that IQ_REQ_PEND is
472 	 * cleared before continuing. Also, ensure wait times are set to at
473 	 * least 0x3.
474 	 */
475 	local_irq_save(flags);
476 	preempt_disable();
477 	retry = 5000; /* wait for 500 usecs at maximum */
478 	while (true) {
479 		temp = RREG32(mmCP_HQD_IQ_TIMER);
480 		if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, PROCESSING_IQ)) {
481 			pr_debug("HW is processing IQ\n");
482 			goto loop;
483 		}
484 		if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, ACTIVE)) {
485 			if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, RETRY_TYPE)
486 					== 3) /* SEM-rearm is safe */
487 				break;
488 			/* Wait time 3 is safe for CP, but our MMIO read/write
489 			 * time is close to 1 microsecond, so check for 10 to
490 			 * leave more buffer room
491 			 */
492 			if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, WAIT_TIME)
493 					>= 10)
494 				break;
495 			pr_debug("IQ timer is active\n");
496 		} else
497 			break;
498 loop:
499 		if (!retry) {
500 			pr_err("CP HQD IQ timer status time out\n");
501 			break;
502 		}
503 		ndelay(100);
504 		--retry;
505 	}
506 	retry = 1000;
507 	while (true) {
508 		temp = RREG32(mmCP_HQD_DEQUEUE_REQUEST);
509 		if (!(temp & CP_HQD_DEQUEUE_REQUEST__IQ_REQ_PEND_MASK))
510 			break;
511 		pr_debug("Dequeue request is pending\n");
512 
513 		if (!retry) {
514 			pr_err("CP HQD dequeue request time out\n");
515 			break;
516 		}
517 		ndelay(100);
518 		--retry;
519 	}
520 	local_irq_restore(flags);
521 	preempt_enable();
522 
523 	WREG32(mmCP_HQD_DEQUEUE_REQUEST, type);
524 
525 	end_jiffies = (utimeout * HZ / 1000) + jiffies;
526 	while (true) {
527 		temp = RREG32(mmCP_HQD_ACTIVE);
528 		if (!(temp & CP_HQD_ACTIVE__ACTIVE_MASK))
529 			break;
530 		if (time_after(jiffies, end_jiffies)) {
531 			pr_err("cp queue preemption time out\n");
532 			release_queue(kgd);
533 			return -ETIME;
534 		}
535 		usleep_range(500, 1000);
536 	}
537 
538 	release_queue(kgd);
539 	return 0;
540 }
541 
542 static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
543 				unsigned int utimeout)
544 {
545 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
546 	struct cik_sdma_rlc_registers *m;
547 	uint32_t sdma_base_addr;
548 	uint32_t temp;
549 	int timeout = utimeout;
550 
551 	m = get_sdma_mqd(mqd);
552 	sdma_base_addr = get_sdma_base_addr(m);
553 
554 	temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL);
555 	temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK;
556 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL, temp);
557 
558 	while (true) {
559 		temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_CONTEXT_STATUS);
560 		if (temp & SDMA0_STATUS_REG__RB_CMD_IDLE__SHIFT)
561 			break;
562 		if (timeout <= 0)
563 			return -ETIME;
564 		msleep(20);
565 		timeout -= 20;
566 	}
567 
568 	WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL, 0);
569 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR, 0);
570 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_WPTR, 0);
571 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE, 0);
572 
573 	return 0;
574 }
575 
576 static int kgd_address_watch_disable(struct kgd_dev *kgd)
577 {
578 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
579 	union TCP_WATCH_CNTL_BITS cntl;
580 	unsigned int i;
581 
582 	cntl.u32All = 0;
583 
584 	cntl.bitfields.valid = 0;
585 	cntl.bitfields.mask = ADDRESS_WATCH_REG_CNTL_DEFAULT_MASK;
586 	cntl.bitfields.atc = 1;
587 
588 	/* Turning off this address until we set all the registers */
589 	for (i = 0; i < MAX_WATCH_ADDRESSES; i++)
590 		WREG32(watchRegs[i * ADDRESS_WATCH_REG_MAX +
591 			ADDRESS_WATCH_REG_CNTL], cntl.u32All);
592 
593 	return 0;
594 }
595 
596 static int kgd_address_watch_execute(struct kgd_dev *kgd,
597 					unsigned int watch_point_id,
598 					uint32_t cntl_val,
599 					uint32_t addr_hi,
600 					uint32_t addr_lo)
601 {
602 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
603 	union TCP_WATCH_CNTL_BITS cntl;
604 
605 	cntl.u32All = cntl_val;
606 
607 	/* Turning off this watch point until we set all the registers */
608 	cntl.bitfields.valid = 0;
609 	WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
610 		ADDRESS_WATCH_REG_CNTL], cntl.u32All);
611 
612 	WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
613 		ADDRESS_WATCH_REG_ADDR_HI], addr_hi);
614 
615 	WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
616 		ADDRESS_WATCH_REG_ADDR_LO], addr_lo);
617 
618 	/* Enable the watch point */
619 	cntl.bitfields.valid = 1;
620 
621 	WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
622 		ADDRESS_WATCH_REG_CNTL], cntl.u32All);
623 
624 	return 0;
625 }
626 
627 static int kgd_wave_control_execute(struct kgd_dev *kgd,
628 					uint32_t gfx_index_val,
629 					uint32_t sq_cmd)
630 {
631 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
632 	uint32_t data;
633 
634 	mutex_lock(&adev->grbm_idx_mutex);
635 
636 	WREG32(mmGRBM_GFX_INDEX, gfx_index_val);
637 	WREG32(mmSQ_CMD, sq_cmd);
638 
639 	/*  Restore the GRBM_GFX_INDEX register  */
640 
641 	data = GRBM_GFX_INDEX__INSTANCE_BROADCAST_WRITES_MASK |
642 		GRBM_GFX_INDEX__SH_BROADCAST_WRITES_MASK |
643 		GRBM_GFX_INDEX__SE_BROADCAST_WRITES_MASK;
644 
645 	WREG32(mmGRBM_GFX_INDEX, data);
646 
647 	mutex_unlock(&adev->grbm_idx_mutex);
648 
649 	return 0;
650 }
651 
652 static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
653 					unsigned int watch_point_id,
654 					unsigned int reg_offset)
655 {
656 	return watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX + reg_offset];
657 }
658 
659 static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd,
660 							uint8_t vmid)
661 {
662 	uint32_t reg;
663 	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
664 
665 	reg = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
666 	return reg & ATC_VMID0_PASID_MAPPING__VALID_MASK;
667 }
668 
669 static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
670 								uint8_t vmid)
671 {
672 	uint32_t reg;
673 	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
674 
675 	reg = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
676 	return reg & ATC_VMID0_PASID_MAPPING__VALID_MASK;
677 }
678 
679 static void write_vmid_invalidate_request(struct kgd_dev *kgd, uint8_t vmid)
680 {
681 	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
682 
683 	WREG32(mmVM_INVALIDATE_REQUEST, 1 << vmid);
684 }
685 
686 static void set_scratch_backing_va(struct kgd_dev *kgd,
687 					uint64_t va, uint32_t vmid)
688 {
689 	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
690 
691 	lock_srbm(kgd, 0, 0, 0, vmid);
692 	WREG32(mmSH_HIDDEN_PRIVATE_BASE_VMID, va);
693 	unlock_srbm(kgd);
694 }
695 
696 static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type)
697 {
698 	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
699 	const union amdgpu_firmware_header *hdr;
700 
701 	BUG_ON(kgd == NULL);
702 
703 	switch (type) {
704 	case KGD_ENGINE_PFP:
705 		hdr = (const union amdgpu_firmware_header *)
706 						adev->gfx.pfp_fw->data;
707 		break;
708 
709 	case KGD_ENGINE_ME:
710 		hdr = (const union amdgpu_firmware_header *)
711 						adev->gfx.me_fw->data;
712 		break;
713 
714 	case KGD_ENGINE_CE:
715 		hdr = (const union amdgpu_firmware_header *)
716 						adev->gfx.ce_fw->data;
717 		break;
718 
719 	case KGD_ENGINE_MEC1:
720 		hdr = (const union amdgpu_firmware_header *)
721 						adev->gfx.mec_fw->data;
722 		break;
723 
724 	case KGD_ENGINE_MEC2:
725 		hdr = (const union amdgpu_firmware_header *)
726 						adev->gfx.mec2_fw->data;
727 		break;
728 
729 	case KGD_ENGINE_RLC:
730 		hdr = (const union amdgpu_firmware_header *)
731 						adev->gfx.rlc_fw->data;
732 		break;
733 
734 	case KGD_ENGINE_SDMA1:
735 		hdr = (const union amdgpu_firmware_header *)
736 						adev->sdma.instance[0].fw->data;
737 		break;
738 
739 	case KGD_ENGINE_SDMA2:
740 		hdr = (const union amdgpu_firmware_header *)
741 						adev->sdma.instance[1].fw->data;
742 		break;
743 
744 	default:
745 		return 0;
746 	}
747 
748 	if (hdr == NULL)
749 		return 0;
750 
751 	/* Only 12 bit in use*/
752 	return hdr->common.ucode_version;
753 }
754 
755